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ABSTRACT - We consider infinite locally finite-simple groups (that is, infinite groups
in which every finite subset lies in a finite simple subgroup). We first prove that
in such groups, centralizers of involutions either are soluble or involve an infinite
simple group, and we conclude that in either case centralizers of involutions are
not inert subgroups. We also show that in such groups, the centralizer of an
involution is linear if and only if the ambient group is linear.

1. Introduction.

Centralizers of involutions played an important role in the classification
of finite simple groups. In infinite periodic simple groups, centralizers of
involutions are a natural source for finding infinite proper subgroups. The
question of whether the centralizer of every involution in an infinite locally
finite simple group involves an infinite simple group is answered nega-
tively by Meierfrankenfeld in [13, Chapter 16]. To be more precise, he
constructed infinite non-linear locally finite simple groups in which the
centralizer of every involution is almost locally soluble.

If Pis a property of groups, then a group G is called a locally P group, if
every finite subset of G lies in a subgroup of G with the property P. In this
context, a locally finite-simple group is a group in which every finite
subset lies in a finite simple subgroup. Clearly such groups are simple,
locally finite and have a local system consisting of finite simple subgroups.
However, not all infinite simple locally finite groups are locally finite-
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simple (see [20] and [8, Corollary 3.8]).

The main aim of this work is to show that in an infinite locally finite-
simple group, centralizers of involutions either are soluble or involve an
infinite non-abelian simple group. A more technical and detailed result is
stated as Theorem 4 below. This theorem can be considered as a gen-
eralization and unification of Theorems B and D in [6] in the context of
involutions.

One should note that the condition on the local system cannot be re-
moved from the statement of Theorem 4, since there are infinite locally
finite non-linear simple groups in which the centralizer of at least one in-
volution is almost locally soluble, but not soluble [13].

A corollary of Theorem 4 is: In an infinite locally finite-simple group, if the
centralizer of an involution is linear, then the ambient group is also linear.

By [4, Theorem B] and [14], Theorem 7 below covers all simple periodic
groups of finitary linear transformations acting on a space over a field of
odd characteristic. In fact, by a remark of J. Hall in [8, page 165], the re-
striction on characteristic may be removed.

As an application of Theorem 4, we also prove that the centralizers of
involutions are not inert in infinite locally finite-simple groups. (Recall that
a subgroup H in a group Gis inertin G,if |[H : H N HY| < oo for any g € G.)

2. Some remarks on groups of Lie type.

In infinite simple locally finite groups of Lie type, centralizers of in-
volutions either involve infinite simple groups or are soluble. The former
case occurs in groups of higher rank and the latter in small rank. Inter-
estingly, there is only one type of infinite simple locally finite group that
contains both kinds of centralizers, namely PSp(4, ) where F is an infinite
locally finite field of characteristic 2.

LEmMMmA 1. Let F and K be infinite locally finite fields. Assume ¥ is of
characteristic 2 and K is of arbitrary characteristic. In the simple groups
PSL2,K), PSL3, ), PSU3, ) and Sz(F), all centralizers of involutions
are soluble. The simple group PSp4,F) =2 PQ(5,F) contains three con-
Jugacy classes of involutions. Centralizers of two classes involve infinite
simple groups, and centralizers of the remaining class are soluble.

ProoF. The proof of the lemma can be easily extracted from [1, 15, 16]
and elementary observations. O
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LeEmMA 2. Let q be a prime power.

1) 042, q) is dihedral group of order 2(q — ¢), where ¢ = + 1.
(2) PQ@B3,q) = PSL(2,q) = PSp2,q)

(3) PQ"(4,q) = PSL(2,q) x PSL(2,q), PQ (4,q) = PSL(2, ¢?)
(4) PQ(5,q) = PSp4,q)

(5) PQ(6,q) 2 PSU4,q), PQ"(6,q) =~ PSL(4,q)

(6) O@2m + 1,2F) =~ Sp2m, 2¢)

(1) SO(n,2F) = Q¥(n,2F)

Proor. These are well-known results. One can see [17, Sections 11, 12]
for example. O

3. Proof of the Theorem.

The class of all locally finite groups having a series of finite length in
which there are at most 7 non-abelian simple factors and the rest are lo-
cally soluble is denoted by §,,. The following will be helpful in proving the
main theorem below.

ASSERTION 3 [6, Lemma 2.3]. If all finitely generated subgroups of a
locally finite group lie in 3%, then the group also lies in 3,,.

The next theorem is that in ‘most’ infinite locally finite-simple groups,
centralizers of involutions involve infinite simple groups. We use the ex-
pression to tnvolve a simple group in what follows, but we have more than
the existence of a simple section: Our simple section appears as a factor in
the composition series described below.

THEOREM 4. Let G be an infinite locally finite-simple group. Then the
centralizer of every tnvolution i € G belongs to §4; that is, it has a series of
finite length in which each factor is either locally soluble or non-abelian
simple, and the number n(t) of non-abelian simple factors is at most four.
Moreover we have the following.

1) For every involution i € G, n(i) = 0 if and only if G is one of the
Sfollowing: PSL(2, K) where K is an infinite locally finite field of arbitrary
characteristic, PSL(3, ), PSU(3, ), Sz(IF) where ¥ is an infinite locally
Jfinite field of characteristic 2. In this case, centralizers of involutions are
soluble.
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2) There exist involutions i,j € G such that n(i) = 0 and n(j) # 0 if
and only if G = PSp(4, F) and the characteristic of IF is 2.

ProoOF. Since G is locally finite-simple, G has a local system consisting
of finite simple subgroups. By the classification of the finite simple groups,
there are only finitely many sporadic simple groups, so we may discard
them from the local system. Moreover, by [10, 1.A.10], we may assume that
G has a local system consisting entirely of finite alternating groups or en-
tirely of finite simple groups of Lie type.

Case 1. Assume that G has a local system consisting of finite alternating
groups. In this case, centralizers of involutions are in 5, and n(i) # 0 for
every involution 7 € G by [6, Proposition 2.5].

Case 2. Assume that G has a local system consisting of finite simple
groups of Lie type. By [10, 1.A.10] again, G has a local system consisting of
finite simple groups of a fixed Lie type. Now, these groups may be of
bounded or unbounded (Lie) rank.

Case 2.1. If there is a bound on the rank of finite simple groups of fixed
Lie type, then by a theorem (proved independently by Belyaev [2], Hart-
ley—Shute [7], Borovik [5], Thomas [18]), we obtain that G is a simple linear
group of Lie type over an infinite locally finite field F.

Case 2.1.1. Assume that [ has odd characteristic. If the rank of G is
greater than or equal to 2, then by [6, Theorem D], the centralizer of every
involution is in ¥, and involves an infinite simple group. Note that PQ(8, I)
has a centralizer of an involution which involves four simple groups.

Hence it suffices to consider only the cases where therank of Gis 1. If G is
isomorphic to PSL(2, I'), then the centralizers of involutions are soluble by
Lemma 1. If G is isomorphic to PSU(3, I), then the centralizers of involu-
tions involve PSU(2, IV) by [16, Chapter 6 (5.15)]. Finally, let G = 2G2(K),
where K is an infinite locally finite field of characteristic 3. By [19, p. 63] and
[9, Lemma 2.1], all involutions in 2G»(3%"*1) are conjugate, hence all involu-
tions in 2G2(K) are conjugate. Moreover, the centralizer of any involution in
2(G5(3%1) is isomorphic to Ze x PSL(2,3%1) by [12, pp. 16-19], and hence
the centralizer of any involution in 2G(K) is isomorphic to Zs x PSL(2, K).

Case 2.1.2. Assume that ¥ has characteristic 2. Hence G is an infinite
simple group of Lie type over a locally finite field of characteristic 2. Note
that owing to Assertion 3, it is enough to prove the results for the corre-
sponding finite simple groups of Lie type. We invoke [16] for the cen-
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tralizers of involutions in finite classical groups and [1] for finite excep-
tional groups. Let k > 1.

In PSL(n,2"), centralizers of involutions are in J, for every n > 2 and
involve PSL(r,2F) for some 1 < r <n if n >4 by [16, Chapter 6 (5.3)].
Centralizers of involutions are soluble in PSL(2, ") and PSL(3, ) by
Lemma 1.

In PSp(2m, 2¥), centralizers of involutions are in %o for every m > 2 and
involve PSp(2r, 2k) for some 1 < # < m if m >3 by [16, Chapter 6 (5.14)].
Centralizers of involutions in PSp(4, I¥) were already discussed in Lem-
ma 1.

In PSU(n,2F), centralizers of involutions are in %o for every n > 3 and
involve PSU(r,2F) for some 1 < r < n if n > 4 by [16, Chapter 6 (5.16)].
Centralizers of involutions are soluble in PSU(3, ) by Lemma 1.

Owing to Lemma 2, it is enough to consider the orthogonal groups
PQ¥(n,2F) for the cases where n > 8 and n = 2m is even. In such groups,
centralizers of involutions all lie in §, and involve either PQ(r,2*) or
PSp(2s,2F) for some 1 < r < nor 1 < s < m by [16, Chapter 6 (5.18)].

In E¢2F), there are three conjugacy classes of involutions with re-
presentatives x,%,z [1, 12.8], and their centralizers involve PSL(6,2"),
PSp(6,2F), PSL(2,2") x PSL(3,2F) respectively [1, 15.5, corrections].

In F42%), there are four conjugacy classes of involutions with re-
presentatives t,u,tu and v [1, 12.6], and their centralizers involve
PSp(6,2F), PSp(6,2%), PSp(4,2%), and PSL(2,2") respectively [1, p. 45 and
13.3].

In E;(2F), there are five conjugacy classes of involutions with re-
presentatives x,y,z, 4 and v [1, 12.9], and their centralizers involve
PQT(12,2F), PSp(8,2%) x PSL(2,2F), PSL(2,2") x PSp(6,2F) Fy2%) and
PSp(6,2F) respectively [1, 16.20].

In Eg(2F), there are four conjugacy classes of involutions with re-
presentatives x, 4,z and u [1, 12.11], and their centralizers involve E7(2%),
PSp(12,2%), F4(2F) x PSL(2,2*) and PSp(8,2") respectively [1, 17.15].

In G2(2%), there are two conjugacy classes of involutions [1, 18.2], and
their centralizers involve PSL(2,2F) in both cases [1, 18.4].

In Sz(I¥), centralizers of involutions are soluble by [15, Proposition 1].

In 3D4(2F), there are two conjugacy classes of involutions with re-
presentatives z and ¢ [1, 18.2], and their centralizers involve PSL(2,2%) and
PSL(2,2%) respectively [1, 18.5].

In 2E4(2F), there are three conjugacy classes of involutions with re-
presentatives ¢, and v [1, 12.7], and their centralizers involve PSU(6, 2"),
PQ(7,2F) and PSL(2,2") respectively [1, 14.3].
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In 2F42%), there are two conjugacy classes of involutions with re-
presentatives z and ¢ [1, 18.2], and their centralizers involve Sz(2¥) and
PSL(2,2F) respectively [1, 18.6].

Case 2.2. By [10, 1.A.10] we may assume that G is a non-linear locally
finite simple group with a local system consisting of a unique type of
classical Lie group and the ranks of these groups are not bounded. In this
case, the result follows from the analysis done in Case 2.1 and Assertion 3.
(One can also use [6, Theorem D] for the odd characteristic case.) Note that
n(t) # 0 for every involution ¢ € G in this case. O

The following corollary is an easy consequence of the proof of the
previous theorem.

COROLLARY 5. Let G be an infinite locally finite-simple group. Then
the following statements hold.

1) Let i € G be an involution. Then Cg(i) s linear if and only if G is
linear.

2) If Cg(i) involves a finite non-abelian simple group for some in-
volution i € G, then Cg(2) involves an infinite simple group.

COROLLARY 6. In an infinite locally finite-simple group, no centra-
lizer of an 1mwvolution is an inert subgroup.

Proor. Let G be a group satisfying the hypothesis. Then for the
groups in the statement of Theorem 4 part (1), centralizers of involutions
involve infinite simple groups. Clearly, in a simple group, inert subgroups
are residually finite, but by [11, Lemma 4.1], any residually finite, locally
finite group in $,, is locally solvable, a contradiction. Hence it is enough to
consider the five types of groups excluded in part (1) of Theorem 4. But by
[3, Corollary 5.2], there exists no infinite proper inert subgroup in locally
finite simple groups of Lie type. O

A Kegel cover K of a locally finite group G is a set of pairs (H, M) such
that H is a finite subgroup of G, M is a maximal normal subgroup of H and
for each finite subgroup K of G there exists (H,M) € K with K < H and
KN M = 1. The simple groups H/M are called factors of .

Following the line of proof in [6, Theorem B’], we may restate Theo-
rem 4, Corollary 5 and Corollary 6 for a more general class of locally finite
groups. As mentioned in the Introduction, in this general form, the fol-
lowing theorem covers all simple locally finite finitary linear groups.
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THEOREM 7. Let G be an infinite locally finite simple group with a
Kegel cover K such that for each (H,M) € K, M /O M 1is hypercentral in
H /Oy M. Then the following statements hold.

1) The centralizer of every involution i € G belongs to F,, that is, it
has a series of finite length in which each factor is either locally soluble or
non-abelian simple, and the number n(i) of non-abelian simple factors is
at most four.

2) (a) Forevery involution i € G, n(i) = 01ifand only if G is one of the
Sfollowing: PSL(2, K) where K is an infinite locally finite field of arbitrary
characteristic, PSL(3, '), PSU(3, ') and Sz(F") where ' is an infinite locally
Jfinite field of characteristic 2. In this case, centralizers of involutions are
soluble.

(b) There exist involutions 1,5 € G such that n(t) = 0 and n(j) # 0
if and only if G = PSp(4,IF) and the characteristic of I is 2.

3) Let i € G be an tnvolution. Then Cg(1) 1s linear if and only if G is
linear.

4) If Cg(i) tnwolves a finite non-abelian simple group for some in-
volution i € G, then Cg(2) involves an infinite simple group.
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