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Some New Formulas Involving I, Functions.

THOMAS ERNST (¥)

ABSTRACT - In a recent paper we found some new results for g-functions of many
variables with the aid of the Iy function. The Heine notation reminding of the
hypergeometric case was used throughout, and some relations between I,
functions were presented. This paper aims at giving the promised longer ex-
position of I'y - revealing also the connection between this and the Jacobi-theta
functions which appear in context. We will give a slightly generalized definition
of the Heine series with more general tilde operators. 4 g-summation formulas of
Andrews will be given in the new notation. The close affinity to g-binomial
coefficient formulas will be stressed by expressing the finite g-hypergeometric
formulas, the canonical form, in two ways. Two further g-analogues of Kummer’s
oF1(— 1) formula will be given. An ancient g-analogue of the Euler reflection
formula will be used for the proof of a special case of the Bailey-Daum sum-
mation formula, conjectured in the previous paper.

Multiple extensions of Gauss’ formula will be given by a similar technique. All
this will explain the utility of the Heine notation.

1. Introduction.

In this section we present the necessary definitions together with
useful related formulas. The notation from [13] will be used whenever
possible. The umbral calculus from [15] will play a significant role in the
definition of the g-hypergeometric series. The Jackson Iy function fits
nicely together with the ¢-shifted facorial. In Section two, 2 ¢-summation
formulas of Andrews are given in terms of I, functions, and 2 g-summation
formulas of Andrews will be proved by Watson’s [46] transformation for-
mula for a terminating very-well-poised g¢; series. In Section three two
further g-analogues of Kummer’s 2F';( — 1) formula will be given. We will
prove a special case of the Bailey-Daum summation formula, conjectured in

(*) Indirizzo dell’A.: Department of Mathematics, Uppsala University, P.O. Box
480, SE-751 06 Uppsala, Sweden; E-mail: thomas@math.uu.se
2000 Mathematics Subject Classification: Primary 33D05; Secondary 33D70.



160 Thomas Ernst

the previous paper [13], by using Jacobi-theta functions. In Section four
multiple extensions of Gauss’ formula will be given by a similar technique.
1.1 — Tilde operators.

For preliminary definitions the reader is referred to the paper [13]. In
that paper we defined a g—shifted factorial and a tilde operator.

DEFINITION 1. The operator

. Cc C
==
7 7
is defined by
b4
1 —_—
(1) a—a+ Tog g
By (1) it follows that
o n—1
(2) <a,; q>n = H(l + qaﬂn),

m=0

It turns out that in certain formulas it is not easy to cope with the case a = 0.
That’s why we define

3) (0:0), = (1;0),_1-

This means that if a = 0 we skip the first factor 1 4+ 1, which is not really a g-

shifted facorial, and just compute the last n — 1 factors. The reason is the

affinity with the factor 1 — 1, which causes trouble in denominators.
Because

(4) (1—n:q), = (0;9),4 Y,

we also define

(5) (1—-n;q), = (1-n:q), ;.

This formula was already used by Watson [47, p. 64].

To be able to treat a general root of unity, it is desirable to generalize
this operator in the following way. In equations (6) to (16) we assume that
(m,l)=1.
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DEFINITION 2. The operator

= C C

1 — —
is defined by

2mim

(6) a|—>a+l10gq.
This means
(7) r;za q H(l 2m%qot+m)7

m=0
Furthermore we define
(8) Haiq), = (fasq),.

We will also need another generalization of the tilde operator.

n—1

9) g, =[] (kiq““*mv

m=0 \ =0
(10) <2Ad; q>n = <67 Q>n
(11) (1a;9), = 1.
(12) K0 9), = (3 4),

The following simple rules follow from (6). Some of them were pre-
viously known in other notation from [17].

THEOREM 1.1.
m 2
(138) raj:bZZ(aﬁ:b)modiZ
logq
L 1 L 27
(14) ij:akzz +a, mod —,
=i =i logg’
~ I?I/_v 2 )
(15) ?xazﬂ#mod %,

27'un

(16) QE(™) = QE(e
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where the second equation is a consequence of the fact that we work

modﬁ.
logq
Furthermore,
THEOREM 1.2.
(17) <a7 q2>n = <4lav%a§ Q>n'
p—1 -
(18) (a;q"), = H(Fa; q),, Where p is an odd prime.
k=0
(19) <(l; qk>n = <(L; q>n X k<CL; q)n'

This leads to the following q-analogue of [36, p. 22, (2)].

THEOREM 1.3.

@ o= T 0), e (%),

m=0

1.2 — Heine’s series

The g-hypergeometric series was developed by Heine 1846 [24] as a
generalization of the hypergeometric series.

DEFINITION 3. Generalizing Heine’s series, we shall define a ¢-hy-
pergeometric series by (compare [17, p. 4], [22, p. 345]):

ot Briy Ay A3 b1, DR 251, - St ) =
Cil,...7dp S1y--5 Sy
pp Prar | ~ g, 2|l =
T by, b e

(21)

00 a17 <ap7q> () 1+r+v —p—p’
= (—D"qe X
; L;igq n<b17 > : <b%q>n |: }

P’

2 T Ges n H 9,
=1 k=1

ke

=
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where ¢ # 0 whenp +p’ > r+7'+1, and

Q)
I
8

(22) -

Ta,
w0

In a few cases the parameter a in (21) will be the real plus infinity
(0 < |q| < 1). They correspond to multiplication by 1. If we want to be
formal, we could introduce a symbol ooz, with property

(23) (oom;q),, = (com +a;q), =1, a € C, 0 < |g| < 1.

The symbol coy corresponds to parameter 0in[17, p. 4]. We will denote coy
by oo in the rest of the paper.

The terms to the left of | in (21) are thought to be exponents, they are

periodic mod ﬂ
logq

The first term to the right of | in (21) is the base, and the second is a
letter in the spirit of the umbral calculus in [15]. The terms to the right of ||
in (21) are Watson g-shifted factorials [17]. There will be a certain re-
dundance in notation here, but this is no problem.

1.3 — The Iy function

In the same way as the I" function plays a basic role in complex analysis,
the I'; function is fundamental for g-calculus. During the last years there
has been an increasing interest in the I'; function. However there are
certain restrictions in our knowledge of this function as the following ex-
position shows. The I'; function is defined in the unit disk 0 < |¢| < 1 by

DEFINITION 4.

7<1’q>oc P S
(24) Iyx) = <%;%(1 .

Here we deviate from the usual convention g < 1, because we want to

work with meromorphie functions of several variables. The simple poles

are located at x = —n + @, n,k € N.
logq
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Heine, Ashton and Daum [11] used another function without the factor
(1 — @', which they called the Heine Q-function. The main difference
between the two functions is that € has zeros, in contrast to the I'; function

1
which has no zeros, and therefore T is entire. Ashton [5] in his thesis su-

pervised by Lindemann, showed its qconnection to elliptic functions. Daum
[11] tried to find all the basic analogues of Thomae’s 3F; transformation
formula [42, eq. 11], using a notation analogous to that used by Whipple
[48], and by essentially replacing the Iy function by the Heine Q-function.

Daum’s work was continued when in 1987 Beyer - Louck - Stein [9] and in
1992 Srinivasa Rao - Van der Jeugt - Raynal - Jagannathan - Rajeswari [38]
showed that certain two-term transformation formulas between hypergeo-
metric series easily can be described by means of invariance groups. In other
words, they explained Whipple’s [48] discovery in group language. In 1999
Van der Jeugt - Srinivasa Rao [43] found g-analogues of these results.

Daum [11] concludes his thesis by saying It is hoped, however, that the
use of the modified Heine Q-function, will serve to emphasize the analogy
between hypergeometric series and q-hypergeometric series and simplify
the notation generally.

Let’s now return to the I", function: To save space, the following no-
tation for quotients of I'; functions will often be used.

DEFINITION 5. The generalized I', function is given by

ol :Fq(al)...l"q(ap)
b1,y | Ly(by) ... Ty(by)

DEFINITION 6. This generalized /' function is called balanced if

P r
(26) Za’“’:zb’“ p="r
=1 =1

DEFINITION 7. A quotient of infinite g-shifted factorials

(25)

P
H <a/k; q>oo
(27) =
H <bk; q>oo
k=1
is called balanced if
ya 7
(28) Z%Z by, p=r.
k=1 k=1

These definitions are easily seen to be equivalent.
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Balanced quotients of I'y’s occur in many equations of g-calculus. To see
why this is the case, we need to go back 100 years to the work of Mellin [31].
Mellin discovered that every hypergeometric function can be written as a
function of generalized I" functions. In the same way, every g-hypergeo-
metric function can be written as a function of generalized I', functions [23,
p. 258]. In the presence of a balanced quotient of I'y’s, limits when the
parameters tend to + oo usually pose no problem. It would therefore be
agreeable if we could find bounds for quotients of balanced I'’s. The first
step in this direction was made by Ismail and Muldoon [25, p. 320]. This
was generalized by Alzer [1].

The following lemmas are just a few examples of I" formulas.

LEMMA 1.4. A relation between I'y functions with different bases.

qu(%) _ <I, q>oo

29 — 1+ =1+, :
(29) @ <%;q>m( ) A+ (L), 4
LemMA 1.5.
1+a a o
(2 ’1_b+§’q>oo_
(1+a—0;¢%)
(30) a “a
l+a—0b1+= gy
L |[Tre-bieg (1+5-big)
a 0 — :
Proor. Use the Bailey-Daum theorem. |

We are going to find g-analogues of hypergeometric summation for-
mulas in this paper. One example is the Whipple formula [48] for a ter-
minating series, which was first given by Watson.

l1+a—mn 1+c¢c 1l+c—a+n 1

1 _ ) 9 [y

g; +a n’;1>:r 2 2 2 2

2 2 l1+al—=n l—a+c l4+c+n
2 7 27 2 ’ 2

(31) 3F% (a, —n,

2. Four g-summation formulas of Andrews.

In recent years, combinatorics has developed quickly. Combinatorial
identities can be expressed either as hypergeometric formulas - the ca-
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nonical form-, or as binomial coefficient identities. Combinatorial results
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are often expressed as g-formulas. Here we have a similar duality: ¢-hy-

pergeometric formulas - the canonical form-, or g-binomial coefficient
identities. Now g-binomial coefficient computations are easier to handle by

hand, or by computer. Some mathematicians, like for example Catalan,

Bateman and Gould, have tried (in vain) to make systematic treatments of
binomial coefficient identities. Nonetheless, g-hypergeometric formulas
and ¢-binomial coefficient identities belong together. Therefore we re-

present many theorems of this chapter both ways.

As a basis for the following calculations, we are going to use 4 g-for-

mulas by Andrews. The first is

THEOREM 2.1. Andrews’s q-analogue of Kummer’s formula [28, (2),

p. 134] from [2, 1.8 p. 526].

(32)

1+
ab 1+a+bj_< 2;q>
295 | 1 b 14a+ble,—q|=T 2 o) R
2 2 2 9 2 ivq .
2
l1+a+b 1
2 2
qZ
1+ 1+a
2 72

PrOOF. By [2, 1.8 p. 526]

14+a+b 1. <1+qu>
by 30) 2 T3 2 " e by

LHS r, - —
l4+a,-— l+a+b, @
2 < 2 71+2aq .
Fltatbh . <flbq>
2 1 - a 2 ’
L+b _ lta+b
L 2 ) 2 7q -
rl+a+b 1 <1Tb' >
2 2 . 2
r, e Arqt— 2 [To W phg
1+ 1+a 1+a+b
L T2 2 2z 1)
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where we have used the g-analogue of the Legendre duplication formula in
the penultimate step. O

REMARK 1. The name Gauss second summation theorem for
Kummer’s formula [28, (2), p. 134] was coined by Slater. This formula
has recently received a lot of attention. We will generalize the g¢-
analogue later.

If b is a negative integer, (32) may be reformulated in the form

THEOREM 2.2.

a,—2N
2¢2[1+a—2N l1+a—2Nlg,—q| =
2 ’ 2

2N <2N) 2(12“)+k(172N) ( - 1)k<a; q>k
k)Y

(34) r <1 + az— 2N ; q2>k
(o) (),
1- — 1 — 2N
< za’ 2>N < +a2 ;2>N
a,—N
2¢2[1+a—N 1+?7—qu,—(1} =
2 ’ 2
(35)
~(N 2(4)+k(1-N) (- DYaiq), N odd
;(’6)(1(1 <1+a—N'q2> =0,N odd.
2 "k

The following corollary was influenced by [27]. The proof is the same.
This idea to use the contiguity relations goes back to Kummer [28, p.
134-36].
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COROLLARY 2.3.

a,b " b Ml <ZT+b§Q>
22| 24+a+b 2+a+b g q} _A=a) LR R
7 ’ @ —-q " 124b 1+a 1
2 2 2 2 <§?q>_
36 — ’
. 24a+b 1 <ﬂ;q>
g1 — q°) 2 2|\ 2 /g
gt —¢® "M 14b2+a| T\
2 2 <23q>m

Z

a,b
2¢2[8+a+b Sta+b I%—q} =
2 ’ 2

Sta+b 1 <3Tb.q>

q“(l—qb) qa(l_qbﬂ)r 2 7§ 2 7 .
qa_qb qa_qb+1 q 3+b 1+a 1
2 2 24/,
2
S+a+b 17 /2+D,
b+1(1_ ay 9 9 2 " an
q q z
- qa_qb+1 q T -

240 2+a 1
37 4Ty fl
(37) 5 g <2,q>agl

3+a+b 1 <2Tb.q>
qb(l _ qa) qa+1(1 _ qb)r 2 9 2 7 a+l

2
qa_qb qa+1_qb q 24b 2+a <'1V >

2 2 29/,
3+a+b1 <1+b;q>
g =gt 2 oz \ 2 /e
@t —q " 1+b 3+a 1
2 2 29/ ..

THEOREM 2.4. Andrews’s g-analogue of Kummer’s formula [28, p. 134]
from [2, 1.8 p. 526] and [39, (15), p. 9].
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¢ 1+c ltc—a
a,l—a . 2 9 2 ,q%
_~ s — =T ~—E
e c,1 4.4 “NM+c—a a+c <E-q>
(38) 22 27/
c l+c
27 2
I
“1+c—a ate
2 T2

Proor. By [2, 1.9 p. 526]

l1+c—aa+c ,

< 2 g2 ¢

LHS = %
(€ Q)

<1+c—a l4c—aa+tec a+tc
2 b 2 b 2 b 2 7q

S >°°_RHS.
<1+c 1+c¢

If @ is a negative integer, (38) may be reformulated in the form

THEOREM 2.5.

—2N,1+2N .
2o ~ lg, —q°| =
c,1

(40) oON <C — 2N q2>
<2N) (— 1)fq2(6) k=2 (I4+2N;q), _ \" 2 7 /y

k q —

q

O

k=0

c—N ,
~N.1+N < 2 5q>1fw
(41) 2¢2 q,—q =

- 2 N odd.
1

- Ehy

We have expressed two of Andrew’s formulas by the I”; function, and
also expressed the corresponding finite sums by quotients of g-shifted
factorials. We will continue with generalizations of these two formulas.
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We need a lemma for the following proof.

LEmMMA 2.6. A g-analogue of the Legendre duplication formula for the
I'-function written in q-shifted factorial form is

(1—m; q2>g
— 1
<1 —Mn; q>n71 <§7 (12>%

THEOREM 2.7. Compare [18, (I1 17), p. 355]. A q-analogue of [45], [8,
(1.2), p. 237].

2

= (-1} QE <— %),n even.

(42)

E7Eaa>_2N <1 ].-’-C——a/q2>
43 2°2 — 27 2 ’ N
(43)  agy — 9.4 l-a 1+c¢ '
—2N+1+4a 2N +1+a < _.q2>
) Y 2 ’ 2 ’ N
2 2
%a%?a7_N
44 N ,q| =0, N odd.
(#) | _Nilta NFi+a 20
2 2z ¢

ProoF. The proof of (44) is relegated to the next proof, i.e. (54). We will
use the method in Andrews [3, p. 334]. For convenience, we will denote the
cc

§7§aa7_n
LHS of (43) 4¢, — 9,9
-n+1l+a —n+1l+a ¢
2 ’ 2 ’

By Watson’s [46] transformation formula for a terminating very-well-
poised g¢; series, denoting

(45) () =(a,b,c,d, 1+ %a, 1 —|—%0L,@7 -n),

1 1
(46) (ﬂ)E(1+a—b,1+a—c,1+a—d,l+a—e,éa,§a,l+a+n),

this formula takes the following form

¢ (@) q2a+2+n—b—c—d—e _ <1 +a, l+a—-d- 2 q>n
871 1+a—-d,1+a—eq),

(ﬁ)lq,
(47)
d,e,1+a—b—c,—n

l1+a—-b,1+a—c,d+e—n—

4¢3{ Cqu,q .
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Now make the substitution

¢

-n+1-—a —nﬁ—a
,C— év

(48) a— —n,b— 5 5

Cc
d——e—
K 2’

to obtain

<—n+1—9,—n+1—9;q>
|q q1+ac] __ 2 2 no__
’ (—n+1,-n+1-¢q)

[ (o)
L(B)

81

n

193

where

n_ [~ —h+l-a —ntl-acC, 1 , 1
(50) (OC): <—7’L, B) s B ,é,é,4l—§n,41—én,—n>,

-n+1+a —nﬁJral 4 1
2 2 o "tTgTn

(61) (B)=(

Now

(52) <a7 q2>% = <%~ ’ %a/; q>n'

By the ¢-Dixon theorem we have, assuming n even

Q

,—n
1493

¢ ¢
2'2
-n+1+a

2
193

— ¢, q L=

e e c
Yo —"+1—*7*n+1**§Q>
2’ " 2 l+a—c < _ 2 2 n
¢ (—n+1,-n+1-c¢gq),

(53)

— l-n+a-c _
c c L2 1 14+c—a
- ].——7— ].——7 <1—7L, 7q> — (g2
< n+ B n—+ B q>n 2 s byﬁﬂ) <2’ 2 aq>ﬂ

2

—ntl-ntl-cq), [_,pq ¢ lonta o\ l-oadde o\
< D RS )

2 I 2 ) q n
(|
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Equation (43) may be reformulated in the form

THEOREM 2.8. Compare [3, p. 334].

cc
§,§aa7_n
1%3 — 9.9
-n+1l+a —n+l+a
2 2 °
- _ (L,1-cq)
(1-n,—n+1-cq)_
-2n+21+a -n+2-ca-n+l-c ,
< 2 2 2 g 1
o0
<2—c 1+a—n—n+2a+l—c_q2>
b ) b b
2 2 2 2 ~
Proor.
—ntl-a 119 —n <fn+179,fn+17£;q>
_ 2 2y 2 Lac 2 2 _
LHS =4 ¢, —lg*.q —
l-nta . ¢ 7 (—n+1,-n+1-¢q)
g ol 33
~ a+1 —-n+2-c —n+a+l-c
<17170§q>00<?77n+17 2 ) 2 §q2>
— ) a—n+1-n+22-ca+tl-c , -
<—n+1,—n+1—c,q>o€< 5 Ty g D) JI>OC
(55) ) <a+1—n+1 l-c n+a+l-c , N
o\ 2 2 a (L1-¢q), o
<a712@+1in+2lfc’a+;fc;q2> A=n,—n+1-cq)
<—2n+21+a—n+2—c a-n+l-c ,
2 b 2 9 2 9 2 7q o
<2701+a7n7n+2a+17c_ 2
27 2 9 2 b 2 7q -~

REMARK 2. The equivalent expression

2 ) 2 ) 2 k) 2 7q

<a+1 -n+1l1l-c -n+a+l-c 2>
<1 a-n+1-n+l-ca+l-c 2>

(56)

éa 2 ) 2 ) 2 q
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for the RHS of (54) was given in [21, 1.4.]. The simple proof uses the Euler
formula [16, p. 271]

~ 1
(57) <1;q>oo<§;q2> =1.
This was the beginning of the investigation that led to the current paper.
Now let ¢ — —oo in (54) and (43) to arrive at (32) and (34).

COROLLARY 2.9.

a, —2N, oo <1 q2>
58 P =2 /N
(58) 3% |14+a—2N 1+a—2N 44| =725
2 ’ 2 < 2 1 >N
Proor. Letc — ooin (43). O

COROLLARY 2.10.
cc
3, [55’ —2N, 4
C

_E/C 2
k=0 q

(59) (¢ a)y
1. 2 Nc
_ <§,q >N q
/4,
< 2 +q >N
cc
3 [é@ N, q]
(60) ¢, 00
c
N (— D50
= Z(ZZ) q(.’g)Hc(l—N) <c~<2> >k —0,N odd.
k=0 q s
ProoF. Let a — oo in (43) and (44). O

COROLLARY 2.11. Compare [18, ex. 3.4, p. 101].
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e g2
<2’q N
1+c 5
< 2 ’q>N
¢ N (—1)
= ——N
(62) 3¢,(2°2 :Z< ) < > =0,N odd
. —~ (¢ 9y,
Proor. Leta — —ooin (43) and (44). O
THEOREM 2.12. [3, p. 333]
cc
—=14+n,—n e,e—
i |22 9.q| = <efie’_en f’eqzmcm x
c+1-—el,e ’ P
(63)
<e—|—1+n—n+e+1—c Cted
2 ) 2 ) 7q -
<—n+e+1 n+1+e—ce. 9
2 ) 2 ) -

Proor. We will again use Watson’s 1929 [46] transformation formula
for a terminating very-well-poised g¢, series. Now make the substitution
c c
(64) a— -nte—1b—-n+e—1c— = nd—>2, 5
to obtain

C c
_ n+e—,n+e—;q>
8¢ (a/)|q qe+1ac}< _ 2 2 n
™ (-n+e,—n+e—cq),

14+n,—n
l9,q] -

,c+1—e

193

)
— NJIQ)

7
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where
iy N CEll+efn§1+efn
(66) ()= —n,—n+e—1,—n+e_17é,§’A e >,
N = (05 T cy-nte—1;-nte—1-~
(67) (ﬁ):(e,@ae_n—é,e '}/L—§74 3 , 5 1)
Now
~ 2 18
(68) (@;¢%), = (a,10;9),
And we have
fc ¢
S,5 140, —n
a$g|2'2 lq, :| =
Lelc+l—e
[ —n- e
77L71+e'1 n+e7g7in <7n+eiia*n+€**:,q>
i 2 2 2 _etl+n—c 2 2 w
1% — lg°,q — -
e,efnf%fnge*l <—n+e,—n+e—c;q>n
(69) - . X
gy (tEetl L Tmtetloc
o - 1 1-— T le—m. — P
(—n+e,—n+e—cq) (e, nitetlntet C. (e=mn,—n+e—c;q)
—2n+2—ce+1+n —n+e+1—c2e—c o
2 2 5 3 F) s
2¢—c —2n+2—c -—nt+etln+l+te—c - ’
’ s ,e:q
2 2 - O

< 2 2
Equation (63) may be reformulated in the form
THEOREM 2.13. A gq-analogue of the Whipple formula [48, p. 114], [8,

(1.3), p. 237].
cc
=,=,1+2N,-2N

4¢3[2 2 e,
c+1-—el,e
1) . C 2
(70) z%(zjv) (s D <1+2N’~q>'“<2’q )
k=0 k q <c+1_ea176;q>k
¢e—2N e+1—-c ,
2 b 2 7q >N.

e+12+c—e 9
b 2 7q>N

(-1 QE(N2+N+NC—N6)<

&
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cc
Z 2 2+4+2N,—2N —1
4¢3[2 2 IM}

c+1—el,e

_ ijl <2N + 1) (g)_sz( — 1)"(2 +2N; Q>k<% q2>k
(71) B q q <C+1 _e7ive;q>k‘

Nl 9 e—2N—-1 e—c
DY QB oW D) (S5 )

L

Now let ¢ — — oo in (70) and (71) to arrive at (40) and (41).

COROLLARY 2.14. Another g-analogue of Kummers formula.

_2N,1+ 2N, 00

3%s C,I lg,q| =
(72) c—2N ,

X (2N (— 1)Fq(8) k2N (1 +?N; D, _ < 2 1 >N PN

k=0 k q (¢, L;q)y, <1 t C~q2>

2 'Y /N
N,1+ N, N /N Mar i (1 + N;
3¢2 |: ’i’ ‘ ’q:| = Z <k> ( _ l)kq(2)+k Nk < = q)k
) k=0 q (¢, 1; )y

(73)

ProoF. Letc¢ — oo in (70) and (71).



Some New Formulas Involving I, Functions 177

3. Kummer’s 2F;( — 1) formula and Jacobi’s theta function.

In [13] we used a g—analogue of the Dixon-Schafheitlin theorem

1
a,b,c,1+§a ,
4dy — gg"Er =

1+a—b,1+a—c,%a
(74)

1+a7a1+afql+gJ+gfbfc
=14 a a
1+%1+a7b7a1+§fh1+§—

to prove a g-analogue of Kummer’s oF;(— 1) formula [28], the Bailey—

Daum summation formula, N
1+ab1+g}<1+ @1ﬂ>

l1+a,14+2—b a — \
<1+2,1 b,q>OC

(75) 2¢,(a,b;14+a—blqg,—¢*")=T

wherel+a—0+#0,—-1,—2....
We can easily find two related formulas.

THEOREM 3.1. A second q-analogue of Kummer’s oF1( — 1) formula.

a

(76) ¢< b1+%11a-b2 colg gt ) r, 1+a_b1+§
3 a,o, —O()qqz =

’ 2 1+a1+ —b

wherel+a—b#0,-1,—2....
Proor. Let ¢ — —oo in (74). This proof is a g-analogue of [7, p. 13]. O

THEOREM 3.2. A third q-analogue of Kummer’s oF1( — 1) formula.

a
— 1+a—b1+2] .
(W)4%thl+%wml+a —Mq"‘> r, o 2|¢t,
1+0/71+§—b

where 1 +a — b #0,—1,

Proor. Let ¢ — + oo in (74). This proof is a g-analogue of [4, p. 144].
O
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In [13] we found the following special case of (75)
2¢1( - 2N7 b7 1 - 2N - b|q7 _ql_b) =

2N, 2N k _oN_ <b >
2 : (2)+k(1 2N-b) Q)
( )q 1

S\ k d-2N-biq),
,;( k )q( Yav bk TN )Y Wby
<Z§Q>N 1. 2
Wb \F T
(79) 2¢,(—N,b;1 =N —blg, —¢' %) = 0, N odd.

The aim of the rest of this section is to give a proof of (78).
The proof for ¢ = 1 [35, p. 43] uses the Euler reflection formula
T

(80) IF')rd-—-ux =-— .
sin 7y

The following crucial formula has an interesting history. It was known
in the literature twice before it was given in English in 2001. It first ap-
peared 1873 in a book by Thomae about among other things theta func-
tions. Then it appeared in an Italian paper 1923 by Pia Nalli. The inter-
esting thing is that both Thomae and Pia Nalli used notations for theta
functions which are clearly different from the modern notation. The Tho-
mae notation is reminiscent of Riemann theta functions and the Pia Nalli
notation was probably influenced by nineteenth-century Italian books
about elliptic functions. It is also rumoured that Andrews and Askey have
known this formula for many years.

THEOREM 3.3. The q-analogue of (80) is [41, p. 183 (168a)], [6, p. 1326],
[32, p. 338]

- 1/8¢1 _ . 3
(81) L@ — ) = 0= O(L:0))

q*/201 (_2”0 log¢,q"/ 2>

where the first Jacobi theta function is given by

)

(82) 01(z,q9) = 2 nio( - 1)"QE ((n + %)2) sin 2n + 1)z.

This function has period 2r and quasiperiod %l logg.
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For the proof of (78) we need two further lemmata.

LEmMMA 3.4.  Amnother g-analogue of the Legendre duplication formula
written in q-shifted factorial form is

(1 - N (5) ?
) N-1 27 N
LEMMA 3.5.
o 1/2
(84) 01 ( lelogq, q'%) —(— 1)V
—iV 12
01| —5logg,q
Proor. Use the quasiperiodicity of 6;. O

Proor. Ifwe use the same method of proof as in [35, p. 43], but use (81)
instead of (80), we arrive at

1-b 1 :q)
2¢(—2N,b;1 —2N —b|q,—q¢ ") = ———"2X

(1-N—b,N;q), <N> 01(—iNlogq,q"?)
(1—2N —b,2N;q)..

(85)

(1—N—b,N;q)y QE (N) 01 (—iNlogq,q"/?)
o \2 ‘

(1-N,1-2N —biq o, (—;Nlogq7q1/2)

b,N; _q 1/2
(1-N,b+N;q)y 0, (Tl"g 7. q1/2>
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On the other hand, by (5), (83) and (84) we have

. _ 4 1/2
(1-N:iq)y 0 (Tlogq,ql/z)

The last two formulas together prove (78). O

4. Multiple extensions of Gauss’ formula.

In this section we will look at several multiple g-formulas, so we start
with some notation.

DEFINITION 8. The notation }_ denotes a multiple summation with the
n
indices my, ..., m, running over all non-negative integer values. In this
n
connection we put [m| = > m;.
j=1

If 77 and k are two afbitrary vectors with 7 elements, their g-binomial
coefficient is defined as

()-1),

If {x; }}":1 and {y; }}Ll are two arbitrary sequences of complex numbers, then
their scalar product is defined by

n
(88) XYy = ijyj.
=1

In the same way we define the following vector versions of powers, etc.

(89) #=]]x7,
j=1
1, ifm=Fk;
(90) 0pf = )
’ 0, otherwise.



Some New Formulas Involving I, Functions 181

(91) g6 = ﬁq(";),
j=1

(92) @95 = [0 (—DF = (- DM,

J=1

The following theorem, for » = 1 forms the basis of g-analysis.

According to Jensen [26, p. 30], Ward [44, p. 255] and Kupershmidt [29,
p. 244], this theorem was obtained by Euler. It was also obtained by Gauss
and published posthumously in 1876 [19]. It is proved by induction [12].

THEOREM 4.1.

k T o
(93) Z(—nm(?ﬁ%) q(z)amz(a;q),;
q

=0
COROLLARY 4.2.

k i )
(94) S (=7 <:i> %) = S5
q

m=0

Our aim is now to find some further multidimensional variations of (94)
and a couple of related formulas. For the proof we need some other for-
mulas, starting with

THEOREM 4.3. The Jackson q-derivative expressed as q-difference of a
q-shifted factorial.

(95) D"

vV o =(=D"{k—n+1}, (y+o+n; q)k_nq(g)“”.

We will only need one g-Lauricella function, which is defined by

DEFINITION 9.

@%Z)(a,bl, cobselgi e, x,) =

n )
7

<(l; Q>m1+..4+mn <b1; Q>m1 ce <bn7 q>m,, 1_[190]

=2 =
- n
& (c; Q>m1+m+mn 1_[1<1§q>mj
]:
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The following lemma is a g-analogue of Chaundy [10, p. 164].

LEMMA 4.4.

zf: ~ D" (L q)p(Li)g

M=

X
r=0 s:O 1 q>R 1<1 q>s<1 q> S—s
¢—1;9),,5(6; Qo2 r s
(97) < o R E + +8r )=
(€ = 1 @)or25(C Drisprts Q <2) <2>
{ 17 'Lf R=S= 07
0, otherwise.

PRrOOF.

R S
(—=R;q),(=S;q),
LHS = 2}: p—— x
=0 5=0 <1;Q>T<1;q>s<7,§; q2>m

c+1 ¢ 2>

< -1 Q> + < o d
TS\ 2 72 ris
ERr 4+ S + s))
COPEY T

c+1c¢ ,
R+S —1; —_—,
_ 1 + <C 17Q>k< 2 5%7(1 >k »

(“Rig),(~S:q),
Loy, QB+ 50

(=R, —k;q),.(=S; q)
115k (Lq), QERr + Sk +r1 +9))

c+1c
1 BS <C—1;Q>k<T7§;q2>k

~ e c—1¢
(€ 9res k=0 <C+R+S§Q>k<—2 7§;q2>k
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-S;
<<1. q(;}ik 2¢,(—k,—R;1+ S —k|q, q1+S+R) _

(—S;q}kF 1+S-k1+S+R|
N1+81+S-k+R|

| RS @—1q<
<CQ>R+Sk 0<C—|—R—|—Sq><

%),
-1lec
éq

),

(98)

(=Siqy, A+89) 4
(Lig), I+R+8:q);

c+1 c+1
1 R+S<C—1 -S—R, 5 q>k qr SR

(¢ Qpys =0 ~1c¢-1
c+R+8,1,°~ 451@k

1 1 c+l ~1c-1
= a1 -R-8, T e RS, S e )

(c; (1>R+S 2 2

. R+sc+R+sC+1,—E1

I
<C§q>R+S I c+1
2

+ R+ S 1+R+SOC

Result 0, except for B + S = 0. Then the 3¢, equals 1 and we get 1. |

COROLLARY 4.5.

@ Y () (1) a5 00

m=0 n=0



184 Thomas Ernst

The following result from [13] leads to the same formula.

@1(&; b, b/; c|q; qcfafb, qcfafbfb’) —

(100)

, , c,c—a—b-10
¢1(a; b7 b/; c|q; qc—a—b—b 7qc—a—b ) — Fq |: :| ,

c—a,c—b—"b

where |¢°%*"¥| < 1. Put b = —s,b’ = —t to obtain

S t t
S50 (0) () @ hsle b mt b
m=0 n= q

( ) ()+m(c a)+n(c—a+s)):<c—a;q>s+t.
(10

Now multiply with ¢*¢* and apply D}/ to both sides to obtain

s t

s\ [t
D ) 3 A 8

(") (3)+ ) e £0) =3

Finally, apply Dgf;; to both sides to obtain

S S (), (£) (") - () + () o)

(103) m=0 n=0
QE(C+t;m_n>+®+tmnmn+m)

The following important formula is a g-analogue of [34] and [37].

THEOREM 4.6. [14]. If {Cy}, "¢, {om},—o are bounded sequences of
complex numbers then

Cm1+ Ay, H L 7<O(7, q> n k
Z J=1 QE(kaZal>

z HOQ>
(104) =1
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COROLLARY 4.7.

Db, —k1, ..., —kpiclg g T g R g =

(105) (¢ —b;q) n
y4/k bk
Wk gk Ny =k
(e )y, ;
Proor. Put
(106) w=QE(1—ks—...—J), Cy = 2Dy b
(c; (1>N

in (104). O

COROLLARY 4.8.

—

i . . n n
(17 > (;) (= 1) DQE (k:m +y mil = k1)> =0z
m=0 q 7=l

I=j+1
Proor. Putc = bin (105). O

COROLLARY 4.9. A g-analogue of [30, p. 150].

y—o—ptos+...to, y—o—ptog+...+o, —ou—py __
Bto g P N =

DB, o, ... ;g5 g

(108) o .
Fq[y’y * ﬁ},Re(y—oz—ﬁ)>O, Zai:cx.

y—oy—p o
Proor. Put
(109) r=QE(y—a—-f+o+...+ o), CN=<ﬂ;q>N.
QN
in (104). O
COROLLARY 4.10. A generalization of (99) and (103).
i E . . . n j
(110) > - (-1 (DQE —km+ Y mi(Y k) | =05
=0 q =1 =1
Proor. Puto; = —k;, y = fin (108). O

The formulas (107) and (110) are the 2 multiple extensions of Gauss’
formula.
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5. Conclusion.

We have shown that hypergeometric formulas involving balanced
generalized I” functions can have g-analogues involving the corresponding
generalized I'; function or the equivalent quotient of infinite g-shifted
factorials. Limits when some parameters — =4 oo have been established.
These limits have the same form as in the case ¢ = 1.

The importance of theta functions for I, functions has been shown. In
the last chapter we found again that I', functions, ¢-difference operators
and g¢-shifted factorials fit nicely in the context of multiple g-functions.
Further results in the same spirit will follow.
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