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Modular Permutations on 7.

FRrANCESCcO DEL CASTILLO (¥)

ABSTRACT - In this paper the group M of permutations o of 7 for which an integer
n = n(o) > 0 exists such that (z + n)ag = zg + n for every z € 7 is studied. M is
countably infinite locally (abelian-by-finite) and contains all finitely generated
(abelian-by-finite) groups as subgroups. The commutator subgroup M’ is an
infinite simple group and the quotient group M /M’ is isomorphic to 7. Finally,
all abelian groups that can be represented as modular permutation groups are
determined: these are countable abelian groups whose quotient over the torsion
subgroup is free.

1. Definitions and first results.

Let o be a permutation of the set 7 of the integers: we say that
n € N'\ 0 is a module for o if

(z+n)og=z0+mn,

for every z € 7 or, equivalently, if ¢ commutes with the translation 7,, and
in this case we say that o is modular. If it exists, such a n is not unique,
since any multiple of it is still a module. The set of all modular permuta-
tions is a group, denoted by M. For ¢ € M, we denote by mod (¢) the
smallest module for ¢. Then % is a module for ¢ if and only if mod (¢) divides
n. M, is the subgroup of M whose elements are the permutations for
which 7 is a module. A modular permutation ¢ € M,, preserves the n-
congruence relation, i.e. 21 = ze(mod n) if and only if z;0 = zea(mod n).
Thus, a modular permutation ¢ € M,, induces a permutation &, of the n
cosets of 7 /n’7. This fact allow us to write, for every z € 7,

(LD 20 = (¢ + a1, )0 + (2150
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where ¢ ,, [2], are resp. the quotient and the remainder of the (euclidean)
division of z by n and ay,), is an integer depending only on [z],,. With a slight
abuse we adopt the same notation for both the remainder and the classes of
n-congruence and will let 7,, act on both these objects; for this reason we
will choose the set {0, ...,n — 1} as support for the symmetric group S, in
place of the more usual {1,...,n}. Conversely we can associate to each
p €S, a permutation pe€ M, just by setting ap;, =0 in the 1.I:
2p = @z + ([2],)p. Thus, for every n > 1, two homomorphism are defined

ln5Sn_>Mn fn5Mn_’Sn
p=p o= Ty

such that l,,f, = 1. f,, is therefore surjective and [, determines an iso-
morphic copy S, of S,, in M. Let 4, be the kernel of f,,: a permutation 1 € 4,
can be written, according to 1.1, as

A=z + appn.

The features of / (which fixes each n-congruence class and acts “inside”
each of them as a translation by ay,;, ) suggest us to introduce a special class
of modular permutations: for » > 1and I C {0, ...,n — 1} the permutation
Jn 1 defined, for z € 7, by

z+n if z=17 (modn) for some ¢ €
R = .
’ otherwise

is called modular translation. In case I = {i} we just write 4,; and 4, ;
is called an elementary modular translation (shortened EMT). 1t is clear
that 1,7 =[[4n; and mod(4,;) =n. It is pure routine to check that

Ay = (Ans | zli 0,...,7 — 1) and that 4, is a free abelian group of rank » for
which the /4, ; form a basis. s

Furthermore, M,, splits as the semidirect product 4,, xS,: if x € M,,
once taken o = xf,l, € S, one has immediately 2o~ € 4, and then x = Ao,
with 1 € 4,0 € S,, uniquely determined. To this particular factorization
we will refer (unless otherwise stated) in the following when we say
“r = Ao € M,,”. We also observe that this factorization means that M is
locally (abelian-by-finite).

S, in its action by conjugation on 4, permutes the elements of the basis
according to the natural action of S,, namely one has (/ln‘i)'~7 = Jn.io; thus
M,, is isomorphic to the permutational wreath product Z wr, S,.. This al-
lows us to state the first of two theorems about groups that can be em-
bedded in M, which is somehow a converse of the local (abelian-by-finite)
structure of M.
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THEOREM 1.1. Let G be a finitely generated (abelian-by-finite) group.
Then G can be embedded in M.

Proor. LetA->— G — H be exact, with A abelian and H finite. A is the
direct product 7' x F' of its torsion subgroup 7" and a free abelian group of
rank, say, k. Put N = F the core of F' in G; N is still free abelian of rank k.
The index |G : N|is finite and then U = G/N is a finite group of order, say, n.
According to the Kaluznin-Krasner theorem ([2], theorem 6.2.8.), G is iso-
morphic to a subgroup of N w7 U ~ 7* w7 U. We now show how the latter
can be embedded in M. First we can embed the standard wreath product in
the permutational wreath product (via the Cayley regular representation for
finite groups) Z* wry S,.; now, 72X wry S, = (ZF)" xS, <7 xSy, where,
in the last embedding, S,, is identified with the subgroup of Sy, acting on the n
blocks {ik,...,i#k + (k —1)} of length k. The theorem is proved, since
VALY Sk = 7 Wy, Sk >~ Mpy,. O

2. The commutator subgroup of M.

In this section we show that M’ is an infinite simple group (Theorem
2.8) and that the quotient group M /M’ is isomorphic to 7 (theorem 2.5).
For this purpose it is useful to have another way of writing the elements of
M in terms of certain basic elements. Let I", be the subgroup of M,
generated by the modular translations whose modules divide #,

I'y = (Ap; | m divides n, 1 =0,...,m—1)
and let G,, be the image of I',, through the homomorphism f,,. Since the

image of ,,; is easily checked to be the cycle (0 m ... n—m) of
length n/m in S,,, we have G,, = (0 m ... n—m) |m divides n).

THEOREM 2.1.  Forevery n > 2, if G,, = (I'y) fy, the following equality
holds:

N if n is even and not a prime power
G, =< A, if m 1s odd and not a prime power
a p-Sylow subgroup of S,, if n is a prime power

In order to prove the theorem we recall a result due to Jordan ([4],
Theorem 13.9):

THEOREM (Jordan, 1873). Let p be a prime and G a primitive group of
degree n = p + k with k > 3. If G contains an element of degree and order
p, then G 1is either alternating or symmetric.
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ProOF oF THEOREM 2.1. The first two cases (n not a prime power) can
be proved via Jordan’s theorem. Let n = pgk with p < ¢ different primes
and k € N. Sincethecycle (0 gk... n—qk) € G, is an element of order
and degree p, one just has to check that G, is primitive. Let {0} # 4 be a
block containing 0 and x=410f, =(0 1 ... m—1). Let u be the
smallest non-zero element of 4; since 0x* = u, 4 contains the whole orbit of
0 under the action of k" and, since it is the smallest nonzero element, %
must be a divisor of n and we must have 4 = {0,u,...,n —u}. If u #1,
consider a divisor v of » such that v is neither a multiple nor a divisor of .
If p = Ay 0fu, one has the contradiction 0Op =v & 4, up = u € 4: then we
must havew = 1and 4 ={0,1,...,n — 1}, i.e. G, is primitive. Now, if n is
odd the image of any 4,, ; is a cycle of odd length and therefore it lies in A,;;
otherwise, if % is even, (7,, contains some odd permutation and must be the
whole of S,,.

Proving the case of » a prime power is a matter of counting elements.
We recall that the order of a p-Sylow subgroup of S, is p", where
r=1+p+---+p"1. We then proceed by induction on k € N. Let
Py, = G The case k =1 is trivial. Suppose now that P is a p-Sylow
subgroup of S, and consider Py,; < Sji1. Denote again by Py, the image
of Py, via the usual embedding of S in the pointwise stabilizer of the set
{p*.p" +1,...,pF =1} in Sy, let k= A1 fpen and y € Syen be a per-
mutation such that, for 0 <z < p*¥ — 1, zy = pz. Let P) = (P;)’; then

P) = (i )y 10 <j < k) =((pig)fypn |0 <j<k+1)

and P9 has support {0,p,2p, ..., p"1 —p}. For 0 <i<p—1,let P, = (P9)".
The P};’s are subgroups of Py, ; and have pairwise disjoint supports. Thus they
generate their direct product P = ((4,;;)fn |[0<j<k+1, 0<i<p-1),
whose order is | PO|” = p@*++7", Furthermore, x ¢ P and (PL)" = PL.

Let now o« = (4p0)fyn and f = ax. We have 1 # f € Pr1\ P, =1
and f normalizes P. Thus, (P,f)=Px(f) and (P,f) has order
pAHP++ e, it is a p-Sylow subgroup of S,.1. Finally, since f acts
on P essentially in the same way as x, we get Px(f) = (P) k)=
= <(ﬂpj70)f]‘0k4 ‘ 0<j<k+ 1> = Py,;1. O

COROLLARY 2.2. If n is even and not a prime power, then I', = M,,.
Proor. Let x € M,,. Since the restriction of f;, to I, is surjective one

can take y € I',, such that »f,, = «f,,, and then & = yJ for some d € 4, < ',
and therefore x € I'),. O
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COROLLARY 2.3. M is generated by the modular translations.

Thus, if x € M, besides the factorization x = Ao in some M,,, we also
have x = [] 4" with the ;s elementary modular translations and the a;’s
integers. The latter expression is not unique but will be useful in this
section as well as in the next one.

Consider the application ¥, : M — 7Z defined, for x € M, Dby

n—1
¥, = > (ke —2). ¥, is the sum of the shiftings of the first n integers

under the action of x; the restriction y,, of ¥,, to M,, is a homomorphism, as
a direct check shows: let x,y € M,,, then

n—1 n—1

n—1
(e, = Z (zx)y —2) = Z ((za)y — zx) + Z (x—2) =
2=0 2=0 2=0

n—

,_A

n—1

(@), n+20) Y — (@n + 20) + 2y, = > (@Y — )2, = Yy, + 2y,
z=0

i
S

?

Furthermore, S, < ker(y,) and 4, ;y,, = n. Thus n divides xy,, for every
x € M,.

ProrosITION 2.4. The application ¥ defined, for x € M, by =¥ =

BU
= lim — s well defined and, if x € M,,, z¥ = W” . In particular ¥ is a

1—00

smjectwe homomorphism of M onto 7.

Proor. Let x be an element of M,, and write ¢ = ¢n + [¢] (division of ¢
by n). We have

qn—1
¥ = hm (Z (zx —2) + Z(zm—z))

2=qn
lil—
@2.1) = hm qlay,,) + Z (x — 2)
S -2
Zr —Z
— im L&) gy D
imooqn +[i] im0 i

If 2y,, = kn the first limit of the last member of the (2.1) is k, while the
[i]-1 n—1
Z (rx —2)| < Z |z — 2| (an i-independent

O

second one equals 0, since
constant).




152 Francesco Del Castillo

n
What can be observed in the last proposition is that, if = [] 27" is a
i=1
n

factorization of x in terms of EMT’s, since ;% = 1, then % = > a;. Thus,

although the EMT’s that occur in the factorization of x are nlot1 uniquely
determined, the sum of the a;’s is indeed unique. In a certain sense the
EMT’s play arole in M similar to that of transpositions in finite symmetric
groups and one can also regard the value of ¥ at «x as a sort of “signature”.
However the usefulness of EMT’s is clear in the following results.

THEOREM 2.5. M’ =ker¥ and then M/M' ~ 7.

ProoF. The inclusion M’ < ker¥ is obvious since ¥ has an abelian

image. In order to prove the opposite inclusion, we note that, if
k

x=> 4" € ker¥ with the 4; EMT’s, since > _ a; = 0, we can suppose, up
to mzul%ciplication by an element of M', a; = (— 1)’ and k even (say k = 2v).
Thus it suffices to show that, for every n,m € IN and every possible 1, j,
A5 € M.

Suppose then that x = )L;;)wm,-. If n = m = 1 there is nothing to prove.
If n=m2>2, let €S, be such that ioc=j. Then one has
Aitmg = 2 G )" = D, 31 € [4y,S,] < MJ,. We also note that [4,,,S,] =
— ker¥ N 4, (since for 6 € 4,5 € Sy, clearly (0715 105)¥ = 0).

Finally, if n # m, let s =2-l.c.m.(n,m) and consider ,; and 4, ; as
elements of M;: both 4, ;f; and 4, ;f; are odd permutation of S, and then
Ay i € Asds < M A;. Thus 4,54 ; € ML 45) Nker ¥ = M/(4; Nker ¥) =

Nn,i

= M[4,,S,] < M. O

In order to obtain information about the commutator subgroup M’ we
need to better understand the structure of the groups M,,. From now on we
assume 7 > 5 and set K,, = ker ¥ N M,,. Just by simple observations, as
applying the isomorphism and the correspondence theorems, it is easy to
verify the following facts:

e 4,NK, =[4,, é;] = [4,, M,]is a free abelian group of rank n — 1
with basis {4, 44 |1 =1,...,n— 1};

o K, = 1[4, M,]xS,;

o if @, =4,xA, M, <0,

o M, =[4,,M,]xA,sK,.

LEMMA 2.6. Form >5 M) =M,
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Proor. [4,,M,] < MZ: it suffices to show that every generator
)L;L}]},n,i of [4,,M,] belongs to M. If 0+#j+#i one can take g € A,
such that jo = j and 0o =i With this choices one has at once
D = Lol 5 € [[4,, M,1,[S,,S,J] <M”. Even more trivially

A, =[A,,A] < M and putting things together gives M =

= [4,, M,] XAn < M;; O

n,j’

LEMMA 2.7.  Forn > 5, let H be a normal proper subgroup of M,. Then
H <[4,,M,]. In particular H is abelian.

Proor. Suppose H <M and H £ [4,, M,,]. Since M, /[4,,, M,,] is sim-
ple, we have H[A4,,M,,] = M;l and consequently

M_;@ — H[AnaMn] ~ [An;Mn]
H — H  HO, M

Thus in particular M/, /H is abelian and H > M|, = M/,. Thus, H = M,. [

The above results are enough to prove that M’ is simple.

THEOREM 2.8. M’ is a simple group.

Proor. Let 1# N be a normal subgroup of M’ and set, for every
n > 5, N, = NNM,. N, is normal in M, and then must coincide with M/,
or be abelian and contained in [4,,M,]. We now show that the latter
cannot always be the case. Suppose that, for every n > 5, Nn <[4,,M,].

Let m > 5 be a fixed integer and take x = H /lm k>0, xis
=0 1

also contained in Ny, and then one also has x = ] AZWM This means
1=0

that, given z € 7, x “fixes” z or “moves” it by a multiple of km, no matter
how a large k£ > 0 one chooses. This necessarily implies that £ =1 and
then N =1, which contradicts the initial assumption N # 1. Then for
some m >5 N, =M, and, for every k >0, one has Ny, =M, as
N,, < Ny, implies that Ny, is not abelian. This conclude the proof since

N=U Nigm = U M, = M.
k>0

3. Abelian subgroups of M.

Theorem 1.1 describes a large class of groups that can be embedded in
M. In this section we focus our attention to abelian groups and will com-



154 Francesco Del Castillo

pletely determine those abelian groups that can be represented as sub-
groups of M.

We denote by F,, the free abelian group of rank n (< ¥). Given a se-
quence (possibly infinite) P of prime numbers, Cp is the group DlI‘ Cp and
C% is the group Der .

Forg € M we c0n51der the equation ¥ = ¢ and, if a solution exists, we
call it a k-root of g. It is clear that mod (¢) divides mod (x). Suppose now that
x is a k-root of g and g = 1o, 2 = 6t € M,;; one has g = &* = ¢§'7* for some
0 € 4, and in particular ¥ = g, i.e. 7is a k-root of ¢: in a certain sense this
allows us to subordinate the existence of roots in M to the existence of
roots in finite symmetric groups, for which the following result holds ([3]):

PRrOPOSITION 3.1. ¢ € Sy, has a k-root if and only if for every positive
mteger I, the number of I-cycles in the canonical decomposition of o is a
multiple of {k},.

In the statement of the above proposition {k}, denotes the part of k
which shares prime divisors with [, i.e. if IT is the set of prime divisors of [,
{k}, is the IT-part of k.

If an element g = Ao € M,, admits a k-root x, it is not necessary that «
lies in M,,: anyway, both g and x will be in some M,,,, with m a multiple of .
For this reason it is useful to know how to factorize g in the group M,, for
multiples m of n.

LEmma 32. Let ne N, 1€{0,1...,n—1} and k > 0. Then the fol-
lowing equalities hold:

Ini = Aenive—1n@ 1+m o i+ (k= 1n),

s =G i it (e —Dm)
Thus, if a is a positive integer,

i = Men it G-V it Ge—2m ** * Menivh-am (@ T+m o i+ (k= Dn"

—a __ -1 -1 -1 S . —a
j’n‘i - ikn,i#—wﬂkn,i#—Zn T }'lmﬂ'ﬁ-an(l i+n ... i+(Ek-Dn

-1
For g = Ao € M,, with 1 = H )m we put &(g) = Z |a;|. We have the
following technical result: =0 =0

LeEmma 3.3. Let g = lo € M,,, m € N. Then &(g™) < me(g).



Modular Permutations on 7 155

—m+1

ProOF. If A= H A, one has g™ = =270
Thus,

o™ and 1% H Ay ””

n—1

eg™) = Z

=0

m—1

E Qigi

7=0

<l = mz @il = me(g). o

PRrROPOSITION 3.4. Let g= Ao € M,, be an element of infinite order.
Then, for every k > &(g), the equation x* = g admits no solution in M.

Proor. Asusual set 1= H A ;~ We consider first the case g € 4,, i.e.
¢ =1, and proceed by way of contradlctlon Put a = Z |a;| = &(g) and

suppose that, for some & > a, an element x € M exists such that of = 1. We
can regard « as an element of some My, with ¢ large enough so that ¢ > |a;]

for every 1 and, if a; # 0, ka; divides ¢. For such a choice of ¢ we have
n—1 —~

g = 0t € My,, with t = (H r;’l) and the 7;’s are disjoint “t-cycles” in Sy,,.
i=0

Furthermore, when a; # 0, 7}’ is the product of |a;| nontrivial cycles of

length ¢/|a;| (and in particular v # 1). Let {;( = {;;) be the number of cycles

of length ¢/|a;| in the decomposition of 7: we have {; < Z |a;| = a for every

1, and this inequality holds for every choice of t with the desn‘ed propertles
Now, if & = nv € My,, we have v* = 7, i.e. t admits a k-root in Sm and,
according to Proposition 3.1, for a; # 0, k = {k}, Jlail divides ¢; < a, which
contradicts the initial assumption k > a.
To conclude the proof, suppose o # 1 and let m be the order of . Thus
g€, If x is a kroot of g one also has x*" =g¢™ and then
km < e(g™) < me(g) and thus, k < &(g). O

As a consequence of the previous proposition we can easily describe the
structure of a torsion-free abelian subgroup of M.

THEOREM 3.5. Let G be a torsion-free abelian subgroup of M. Then G
18 free.

Proor. By Proposition 3.4 every g € G admits k-roots only for a finite
number of indexes k. Since G is torsion-free the equation 2* = g admits at
most one solution in G. Then every element of G admits only a finite number
of roots and this is enough to conclude that G is free. O
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Examples of free abelian subgroups of M we have found so far are the
A,’s, of finite rank n. A natural question is to ask whether M has a free
abelian subgroup of infinite rank and such a question can be answered
positively. Such a subgroup can be defined as the union of an ascending
chain of free abelian subgroups of M: let m > 2 be a fixed integer, set
xp = 0 and Go = (Ay0); for i > 1 let x; be such that

{ngiSZim—l

x; Za;  (mod 2m), for every j < i

If we define G; = (Aipna, |7 =0,...,7), the group G = |J G is free abelian

of infinite countable rank, i.e. G ~ Fy,. Further, if Z%?le “removes” the
generator /,, o from the generating set of G, a group H is generated which is
still isomorphic to Fy, and whose support is disjoint from the set mZ.

We turn our attention to torsion subgroups of M. We have already seen
that M contains every finite group as a subgroup (Theorem 1.1) and a natural
embedding one can think of is the regular representation in some S,,. If we
adopt an argument similar to that we have used above for the free abelian
group G of infinite rank, we can easily embed in M direct products of coun-
tably many finite cyclic groups. Let P = (p1, p2, .. .) be a sequence of prime
numbers; for every prime p; we can find a modular permutation of order p; in
such a way that these permutations have pairwise disjoint supports 2;. Let
n > p; and consider 7; € S, wheret; =(0 1 ... p—1)€S,.Fori>2
consider:

i—1
® ai,...,ap the smallest positive integers not contained in 7U 25
e k; the smallest positive integer such that 2in > a,,; 7=t
. Ti:(al as ... api)eSzkm.

Then 7; € Sy, is an element of M of order p; and the 7;’s generate a
subgroup of M isomorphic to Cp. With small changes to the argument, as
restricting the domain where to choose the integers a;, one can constrain
the support of the generated subgroup in any infinite subset of 7 with
some modular feature, for example the set m7Z mentioned above. It is
therefore clear that M contains some subgroup isomorphic to Fy, x Cp,
for every countable sequence P of prime numbers.

One can go further and consider a single g image (under the homo-
morphism [,,) of a cycle of prime length p in the symmetric group S,. As an
elementin gpv,,b, gistheimage of a permutationx € S, which is the product of
p cycles of length p: x clearly admits a p-root x; in S;, and «; is a cycle of
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length p?. Thus, g admits a p-root g; = @3 in %, One can iterate the argu-

ment and find, for every i € N, an element g; € S, such that ¢ = g; 1: ¢

and the g;’s generate a subgroup of M isomorphic to the Priifer p-group C)~.
By applying this argument to each of the 7;’s above, one can build a subgroup
of M isomorphic to C%’ and, again, one can confine the support of the group
into the set mZ. Since any abelian torsion group can be embedded in a direct
product of Priifer p-groups, one has immediately the following results.

PropPoSITION 3.6. M contains every countable abelian torsion group
as a subgroup.

ProposiTION 8.7. Let P be a countable sequence of prime numbers
and Ap = Fy, x C¥. Then Ap s isomorphic to a subgroup of M.

Proposition 3.7 individuates a large class of abelian groups that can be
embedded in M: the Ap’s and their subgroups. We now show that all
abelian subgroups of M belong to that class. Suppose A is an abelian
subgroup of M, let T be its (maximal) torsion subgroup and consider the
quotient group A/T. Let 1 # aT € A/T (in particular a is of infinite order
in A) and suppose 2T is a k-root of aT in A/T: for some 7 € T, x*t = a. If
7| = n, 2" = " and, according to Theorem 3.4, kn < &(a") < ne(a) and
then k < ¢(a). As a consequence, every element of A/T admits only a finite
number of roots and then A /T is free abelian. 7T is therefore a direct factor
of A and A is isomorphic to a subgroup of some Ap as defined in Propo-
sition 3.7. What we have seen so far proves the following theorem.

THEOREM 3.8. Let A be a countable abelian group and T be its torsion
subgroup: A can be represented as a subgroup of M if and only if A/T is
free abelian.

Since we have showed (theorem 2.8) that the commutator subgroup M’
of M is simple, a natural question could arise, whether it is possible to
restate the last and theorem 1.1 with M’ in place of M.

For theorem 3.8 it is easily seen that it is just a matter of embedding Fy,
in M’, since any embedding of C% already lies there. Such an embedding
can be simply achieved by modifying the group G = | G; constructed

— eN
before: one considers G; = <(/127,Z,x1)’1/12,»m1x7_ 7= 2,2. 1) < M;L and
G = U G; < M’ which is still isomorphic to Fy, with support disjoint
el
froml m7.
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For theorem 1.1 the same is not as immediate as for theorem 3.8, but
still possible. The homomorphism f : 4, — 4s,, defined by (1,)f =
= },gn‘i(iz,lﬂn)*l, is injective and commutes with every automorphism of
é;; furthei'more, U f < [dan, Son] = Aoy Nker () = Ao, N M. Thus, it is
possible to embed M,, = 4, >(S; into [4gy,, S;@] MSAQ; < M’ and conclude
that every finitely generated abelian-by-finite group can be embedded in
M’ (this also shows that every finitely generated (abelian-by-finite) group
can be embedded into the commutator subgroup of a finitely generated
(abelian-by-finite) group).

FINAL REMARK. Just before this work was submitted, a paper by M. R.
Dixon, M. J. Evans and H. Smith appeared ([1]) in which the existence of a
locally (abelian-by-finite) simple group that is not locally finite is estab-
lished; the authors construct such a group by means of a direct limit in-
volving wreath products of direct products of infinite eyclic groups by finite
alternating groups, which are in some way basic “bricks” not too dissimilar
to the ones of the group M of modular permutations. However, our work
was originally intended with the main purpose of obtaining a better un-
derstanding of the group M, whose definition sounds quite natural and
reasonable, even though almost no traces were found in the literature.
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