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Cell Decomposition for Two Dimensional Local Fields.

ALI BLEYBEL (%)

ABSTRACT - We prove a cell decomposition theorem for the two-dimensional local
field @,((®)).

Introduction.

The purpose of this paper is to give a cell decomposition for the field of
Laurent series on p-adic fields. Originally, cell decomposition theorems
were used to prove rationality of Igusa Zeta function, and of Poincaré
series, avoiding resolution of singularities. Also, using cell decomposition
for a p-adic field (for p a fixed prime), Denef (1986) gave a new proof of
elimination of quantifiers in @,. Later, Pas (1989) proved a uniform (in p)
cell decomposition for p-adic fields, thus obtaining a uniform quantifier
elimination.

In this paper we prove a cell decomposition for @,((t)) (or for K((?))
where K is a finite algebraic extension of @), using both the ¢-adic and p-
adic valuations. Our proof uses a mixture of Denef and Pas results, and
may be useful for the development of motivic integration on the two-di-
mensional local field @,((?)), in a similar way to the work of Cluckers &
Loeser (2004) (hereafter CL 2004). Note that integration over higher di-
mensional local fields was also addressed by Hrushovski & Kazhdan (2005).

In section 1 we recall the language of 2-valued fields used in the paper,
as well of the definitions for definable sets and cells. In section 2 we state
Cell Decomposition I together with its proof. This section also contains a
lemma needed in the proofs of theorems I and II. Theorem II (Cell de-
composition II) is stated and proved in section 3. Finally a generalized cell
decomposition theorem is stated and proved in section 4.

(*) Indirizzo dell’A.: Lebanese University, Faculty of Sciences, Beirut, Lebanon
E-mail: bleybel@etu.upme.fr
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1. Language of 2-valued fields.

An n-dimensional local field is a complete discrete valuation field F
whose residue field is # — 1-dimensional local field (Fesenko 2003). Let K
be a 2-dimensional local field, also named 2-valued field. K is equipped with
a valuation ord; : K* — I" for some ordered abelian group I, R its va-
luation ring with residue field K. K is also a valued field, with valuation
ords : K — 2 with 2 an ordered abelian group, R its valuation ring and %
the residue field. There is a projection res : R — K = R/P of the valuation
ring onto the residue field, where P is the maximal ideal of R. We also
define an angular component map ac : K* — K*. ac is a multiplicative map
which can be extended by putting ac(0) = 0. The language adopted is a
multi-sorted language

L = (Lya,Lgyv, Lovq, , Lorg,, ordy, ordz, ac)

with 4-sorts

(i) a Val-sort for the 2-valued field sort,
(ii)) an RV-sort for the 1-valued field sort,
(iii) an Ord;-sort for the value group (with respect to the first va-
luation map) sort, and
(iv) an Ordg-sort for the value group (with respect to the second
valuation map) sort,

where Ly, is the language of rings Lgings = (+,—,.,0,1) and Lgy is an
expansion of Macintyre’s language Ly = LRings U {Pn|n € N,n > 1}
where P,, are predicates whose interpretations are the set of nonzero -
power) and Loyq, (and Loyq,) is an expansion of the language of ordered
groups, for instance Lpp,, a variant of the Presburger language
Lpr =1{+,0,1,<}U{=, |n € N,n > 1} defined by Lpgo. = Lpr U {oc}. A
structure for this language consists of a tuple (K, K, I', X) where K is a 2-
valued field with residue field K, value group I” valuation map ord; and an
angular component map ac, and K is a valued field with a value group 2 and
a valuation map ordg, together with an interpretation of Lry in K, and an
interpretation of Loyq, and Loy, in I” and X respectively.
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A formula in this language is built up from symbols of £ together with
variables, the logical connectives A (and), V (or), — (not), the quantifiers 3,
Vv, the equality symbol = and parameters.

When K = K((t)) for some valued field K, there exists a natural va-
luation map ord; := ord; : K((t))* — Z (extended by putting ord;(0) = oo)
and a natural angular component map ac : > a;t'— a; # 0. The valued field

i>l
K is assumed Henselian of zero characteristic.

If we interpret =, in Loyq, and Lo,q, as “congruent modulo »” in Z then

(@,((1),Q),Z,Z) is a structure for the language £, with the natural p-
adic valuation ord, as an interpretation for ords (where we also extend ord,
by ord,(0) = o).

Also, note that the map res is definable in this language (in a non-ca-
nonical way) (see the remark under definition 2.2 and the lemma 3.4 in (Pas
1989)).

Notice the analogy of the language £ with the three-sorted Denef-Pas
language Lpp (Pas 1989).

Finally, we will use the fact that if (K, K, I, X) is a structure for £ then
(K, 2)is a structure for the 2-sorted language Lyrae = (Lrv, Lord,)-

Consider now the L-theory T of 2-valued Henselian fields of zero
characteristic and having surjective valuation maps, surjective angular
component map, and 1-valued Henselian field of characteristic zero and
bounded ramification (ords(p) = 1 for some prime p).

In this context we have the following variant of Denef-Pas Theorem on
elimination of 2-valued field quantifiers

THEOREM 1.1. The theory Ty admits elimination of quantifiers in the
2-valued field sort. More precisely, every L formula ¢(x, ¢, a,f), with x
variables in the Val-sort, £ variables in the RV-sort, o variables in the Ord; -
sort and f variables in the Ords-sort, is Ty equivalent to a finite disjunction
of formulas of the form

p(@c fi(@), . .., ac fir(x), & ) A Oord, f1(w), . . ., ordy fi(), o, ),

with w a (Lry U Loyg,)-formula, 0 a (Loga, U Loyg,)-formula and fi, ..., fi
polynomaials in Z[X].

Note the analogy of our statement with theorem 2.1.1 of (CL 2004).

Proor. Direct application of theorem 4.1 and lemma 5.3 of Pas (1989).
O
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A subset C of K™ x K" x I'"t x X" (where m,n,r; and 7, are positive
integers) is called definable if it is definable by an £-formula.

A function f is definable if its graph is a definable subset.

A subset D of K" x X" is Lya.-definable if it is definable by an Lyge-
formula.

An Ly,c-definable subset of K" (when K is a p-adic field, that is a finite
algebraic extension of @) is also a semi-algebraic set in the standard
terminology, e.g. Denef (1984).

REMARK 1.2. It should be noted that even if I' = X = Z, it is not al-
lowed to mix variables of I'-sort with variables of X-sort.

DEeriINITION 1.3. Let x = (x4, ...,%x,) be Val-variables, & = (&4,...,&,)
RV-variables. Let C be a definable subset of K™ x K". Let by, bs, ¢ be de-
finable functions from C to K, 1;, Ao positive integers, dy, ds, e definable
functions from Proj.C (the image of C by the projection of K™ x K" onto
K™ to K, and let {1, {2, [0; and [z be <, <, or no condition.

For each & € K", let A(¢) be the set of (x,T) € K™ x K subject to the
definable conditions

{(x, T)e K" x K|(x, &) € C, ordy by (x, &) &1 -ordy (T— c(x, &) $oordy ba(x, &),
ords d1(&) [h 4z - ordz(@c(T — c(x, &) — e(£)) Oz ords dz(é)}
and suppose that for all & & € K" with & # & A NA(E) = 0, then
A=A
Z

is a cell in K™ x K" with parameters (¢4, .. ., &,), primary center c(x, &) and
secondary center e(); A(E) is a fiber of the cell A.

2. Cell decomposition I.

Now consider a model for the theory T such that K = K((t)) and
r=x==17.

THEOREM 2.1. Let f(x,T) be a polynomial in T of degree d whose
coefficients are definable functions in x € K(t))"™, ¢ € K"

Then there exists a partition of K((£))™ x K((t)) in a finite number of cells
A with parameters (&1, ..., &y, &L, -, &) € K™, each cell has primary and
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secondary centers c(x, &) and e(E, E') respectively such that if we write
d
@.1.1) f@, D)= i, T — e, O)
i=0

then for all (£,&) € K™ and for all (x,T) € A&, &) we have
(21.2) ord, f(w, T)=ordya;, (v, )T (e, )" = min ordya;(@, )T —cle, O

where 1y does not depend on (x,&, &, T), and
(2:1.3) ord(@e £, 7)) < min ord, (bi(&,&) (@A - @, ) — (&, &))') +1

forsomel € N; bi(&, &) are (partial) Lyrac-definable functions K" — K (to
be defined below) and &,...,&. € K such that & =ac fix,0),...,C. =
= ac f;(x, &) where f1(x,8),. .., fr(x,&) are polynomials in x with integer
coefficients.

Proor. We assume the result for all polynomials of degree < d. The
theorem then holds for f’(x, T') (derivative of f(x, T) with respect to T'), and
so there exists a partition of K((£))" x K((t))in cells A = |J A(&) (of centers

c(x, &) and e(&, &) as above such that &g
(2.1.4) ord; (e, T) = min ord, ia;(@, O)(T — (@, &)t
and

(2.1.,5)  ordy@cf'(x,T)) <
< min ord, (K& &) x (T — @, &) — e(&,&))’) +1

T 0<i<d-1

where 0}(E, &) are partial definable functions K" — K, ' € N, «fj’- = ];.’(90, 19)
and f}(x, &) are polynomials in « with integer coefficients.
For each ¢ € K", let A(&) be defined by

{(-’r, T)e K((t)" xK|(x, &) €C, ordsbi (x, &) $11 - ordo(T—c(a, &) Hoordy ba(e, &),

ord, di(&) [ Az - ord,@c(T — c(x, &) — e(&)) Tp ord,, dz(f)}

where 41, A2, C, by, b2, dy,ds, c and e are as in (1.3) and where the RV-vari-
ables & were added to the parameters & (by defining e.g. ¢'(x, &, &) = e(x, &)
for all (x,¢&, &) € K((t))™ x K" x K" and replacing n +r by #/, and then
renaming ¢’ as ¢ and %’ as n).



56 Ali Bleybel

We will further partition A into subcells on which the theorem holds for
[, D).

Consider only the nontrivial case, where the set I of j such that

2.1.6) ordsa;(e, TXT — e, &) = min ordsat;(e, )T — e, O)'

has a cardinality > 1.
Let iy € I; then each fiber A(¢) is a disjoint union of two sets

@217 A1) = {T) € A®)| ord f(x,T) = ordsa;,(x, T — cla, é))i‘)}
and

(2.18) A& = {(@,T) € A©)| ord; f(x, T) > ordsa;, (xc, (T — c(, f))i"}.
Consider the polynomials F;({) given by

2.1.9) FiQ =Y g4

iel
where g;; are Lyac-definable functions K" x K" — K, such that
%(a/i(.%', é)) = glj(ia %fl(xa é); cee 7%.]07'('%'7 f))

for (x, &) € Xj, where (X;); form a partition of K(t))™ x K", andfi,....f,are
polynomials in & with integer coefficients, as in lemma 2.2 below.

As the functions g;; are definable in L., we can apply the cell de-
composition theorem I of Denef (1986) to F';({); it follows that there exists a
finite partition of K"™*! in Denef-type cells B; (of center ¢;(&,¢&),
(&,¢&) € K™ defined by

B; = {(,¢,0 e K" x K|(&,&) € Dj, ordyeyi(&, &) Oy
ord,({ — e;(&, &) Ogjord,cs(&, &N},

where D; C K" is a Ly.-definable set, and ¢y;(¢, &), ¢2i(&, &) and ¢;(E, &)
are
Lac-definable functions K" — K, such that

2.1.10) ord, F(0) < min ord, (b(& )¢ — (& N +1;

with [; € N; b;(¢, &Y are the coefficients of F;(0) written in the form
@.1.11) FiQ) = b&, N = ei(&, N,

and [y, Cp; (for each j) is <, < or no condition.
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As (= ¢;(¢, &) if and only if ord, ({ — ¢;(&, &) = oo, it follows that by the
above observation, (x, T') € A if and only if

Fy@e(T — o, &) = 0
for some j, if and only if
%(T - C(QC, é)) == e](éyﬁ.fl(xa é), e a%f’r‘(xa 6))

and bOj(éaﬁfl(gm é)a s 7%]{;"(%’ é)) =0.
It follows that A;(&) can be written as a finite union of sets of the fol-
lowing form

U{@D e Alw.&¢) € ¥ 380 - ow, ) # 61,0,
é/
ord, ¢1;(¢, &) Oyjord,@E(T — c(x, &) — e;(&, &) Opjord, coi(¢, f/)}

or

U{@D e Al @) e 2,0y, &) # 0,80 - e@,&) = ¢ &) }.

5/

Also it follows that As(¢) is a finite union of sets of the form

U{@ D) €Al @68 € 2,by(E,&) = 0,87 — e, &) = ¢, )},
7
where
Y ={(@,¢8) e K(6)"xK" x K"|(x,¢) € X, (&, &) € D,
acfix, &) =&, ...,ac f(w, &) = £},
and
Z; ={(,£,&) e K()" x K" x K"|(x, &) € X;,(¢,&) € D,
ac fi(x,&) =&y, ... ac fi(w, &) = &, ¢1j(&, &) 015 0, ¢9i(&, &) 095 0}

with o4 is # or no condition and ¢s; is = or no condition.

Note that one of the centers e(&, &) or e;(&, &) in the above description
can be eliminated, (or both of them and a new center introduced, see the
proof of theorem II below), whence each of the sets A; and A is a finite
union of cells.

On A4; the theorem is easily seen to hold, as

(2.1.12) acf(x,T) = Fj@c(T — c(x, ).
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On A, notice that as the condition

holds, thus we may follow the steps of Pas’ proof on pages (148-154).
The crucial point in these steps is to find a new center d(x, &) for the cell
A such that

d_ £() .
D) = f G e, T — dte )+ - G — w0
p; ‘

This entails that
ord; f(x, T) =ord; f'(x, d(x, ONT — d(x, &)

() )
= min ord, (M(T — da, f)Y>
1<j<d J
on As, and
S0,

ord, ac f(x, T') = ord, ac f'(x, d(x, &) + ord, ac(T — d(x, &)

and the second statement of the theorem holds on A (by eliminating one of
the (secondary) centers e or 0, and by observing that ord,ac f'(x,T) is
bounded on A, as ac f’(x, T) # 0 on Ay and using 2.1.5). O

The following statement should be folklore; nevertheless we provide a
detailed proof.

Lemma 2.2. Letf; (i =1,...,1), be definable functions

(2.2.1) Ji: C— K(®)

where C is a definable subset of K((t)" x K". Then there exists a partition
of K(())™ x K" into definable subsets Xj, such that

Jorall (x,&) € Xj, and wheve hy, . .., h, are polynomials with integer coef-
ficients in x and g;; is a Lyac-definable function from a Lyac-definable
subset C' c K" into K, with r is a positive integer.

PrOOF. Let us consider first the case I =1, f := f1. As f is a definable
function, ac o f is also definable and its graph is defined by an £-formula
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l//(xlv coe s Loy éla v 75%7 é) in m Val-VaI'iableS (xlu s 7xm) and n + 1 RV-
variables &, ..., &,

©223) W@, Byl EnyO) = (% O @1y Ty Epy e &) = c).

In y atomic formulas of the form h(xy, . . ., x,) = 0 (Where & is a polynomial
in  (xy,...,2,) with integer coefficients) can be replaced by
ac h(xy, ..., x,) = 0. We may suppose then that the variables x1,..., 2,

appear in y only through the RV-terms acfi(x,&) and the Ord;-terms
ord; hj(x, &), (t=1,...,7j=1,...,s). Let ¢ be the formula obtained by
replacing iny ac f;(x, &) by aRV-variable p; (¢ = 1, ..., 7),and ord; h;(x, &) by
a Ord;-variable [;, j = 1,...,s). Then 2.2.3 is equivalent to

(HP)(HD [¢(é7 Ca Pls--sPrs llv s 7l5) A (/\%ﬂ(xv é) = pi)/\
i=1

A /\1 ord; hj(w, &) = lj)]

Notice that ¢ defines the graph of a (partial) function
2.2.4) 9g:K'xK'xI'* — K

whose domain is given by

Dz{@mwnmwhuwmeK“UdﬂGM%@6@

(Z\lﬁfi(ﬁc, $) = pi> A (]/i\l ordy hj(x, &) = l,) }

The 2-valued-field quantifiers in the above description can be eliminated,
whence the domain of ¢ is definable in the language Lyac.

Let now (€K be such that @& py,...,pmlt,. .. ls)A
ANEL pyyeeiply, ...y ls) holds for some (& py,...,ppl1,...,1s) €D,
then we have

ey, &, O A, &0)]

andso(=/{.
Apply now theorem (1.1) to ¢, to get

N
(225) ¢(éy€7/)17'"7pwlla-"al8)<:>\/(Xj/\0j)
j=1
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where y; is an Lyc-formula, and 6; is an Loy, -formula. We can verify
then that y; defines the graph of a partial function g; : K" x k" — K.
Assume that (& (py,...,p) and (& py,...,p,) hold, then
Xj(éu 4'7/)17 cee ﬂpr) A Hj(lh o 7ls) and Xj(é7 C/“Ula ce 7/)7') A Hj(lla v 7ls) also
hold and then by the above result we should have { = ¢

Finally let

(2.2.6) X; = {(@,9) € C| 0j(ordy(h1 (, &), . . ., ordy(hs(, )},
then, for all (v, ¢) € X;

2.2.7) ac f(x,8) = gy, ..., &y, ac fiw, ), ... ac fi(w, ).

The case [ > 1is trivially proved by simultaneous applications of the lemma
to each function f; separately and taking intersections.

3. Cell decomposition II.

Analogously to Denef (1986) and Pas (1989), we prove the cell decom-
position theorem II, which relies on theorem I.

THEOREM 3.1. Letfi(x,T),..., fr(x, T) be polynomials as in theorem I,
andny € N*. Then there exists a finite partition of K(®)™ x K((t)) in cells.
Each such cell A has parameters (&4, ..., &) and primary and secondary
centers c(x, &) and e(&) respectively such that, for all £ € K" and for all
(x,T) € A©

ord; fi(w, T) = ordy(h(x, E)(T — c(x, £)))
and
acfi(x, T) = wi@c(T — c(x, &), &))" gi(O@e(T — c(x, &) — e(&))”

foriv=1,...,7r, and where h;(x,&),9:(&) are definable functions to K((t))
and K respectively; ord,u = 0 and y;, v; are non-negative integers that do
not depend on (x, &, T).

Proor. Consider first the case r = 1;f(x, T') := fi(x, T). In the proof of
theorem I, we realize that we can partition K((t))" x K(()) in cells A on
which we have

acf (e, T) = ae a;,(x, Oae(T — c(x, &))"
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or

acf(e,T) =Y aca;(e, Hac(T — e, )’
iel
where I is as in the proof of theorem 2.1. Clearly we need only to consider
the case where the cardinality of I is greater than 1; consider then the
polynomials

Fi&,&.0=> _gy& e

1€l
where

for (x,$) € Xj,i=1¢ I and where X; (j=1,...,s)is a definable subset of
K(@®)"™ x K", and fi,...,f, are polynomials in x € K((t)) with integer
coefficients as in lemma (3.2) above. We can apply theorem II of Denef
(1986) separately to each of the polynomials F;(Z, & ) and then substitute
ac(T — c(x, &) for { to get the desired result.

Consider then the case » > 1.

Let us now consider the following statement P(A, s):

A 1s the intersection of s cells, with parameters & = (&q,...,¢&,) and
centers c1(x, &), ..., cs(x, &) and e1(&), . .., es(E) respectively. Denote by A(E)
the intersection of the fibers of the cells of which A is the intersection. For
all & for all (x,T) € A(E), and fori=1,...,r we have

ord; fi(e, T) = ord;(h;(x, E)T — Cﬂ(i)(xv EN)

acfi(x,T) =y acayi(e, )ac(T — ¢yi@, O))
kel;
where the hi(x, &) are definable functions, and the non-negative integers i;,
themap n: {1,...,r} — {1,...,s} does not depend on (x,&,T).

Applying theorem I to each of the polynomials fi, ..., f, we get a finite
partition of K((£))" x K((t)) in subsets A such that P(A,r) holds. The next
step is to show theorem II by descending induction.

Assuming we have a set A and an integer s, 1 < s < r such that P(4, s)
holds, we should partition A further in a finite number of sets B such that
P(B,s —1) holds.

Consider two different cells (which have respective centers c;(x, &),
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e1(8) and ca(x, &), e2()). By splitting A into
{@, 1) € A®)| c1(x, &) = caol, &)}

and its complement in A, so we will assume that c;(x, &) # ca(x, ). Also, we
will assume that e;(&) # eq(&) by splitting C into

{(,0) € Cler(d) = ex(O}

and its complement in C.
There are four different cases:

(1) ordy(T — c1(x, &) > ords(ce(a, &) — c1(x, &) In this case we have
T — co(w,8) =(T — c1(x, 0) — (e1(x, &) — c2(w, &)
B T —c1(x, Q)
=(c2(, &) — c1(x, &) (1 — m)
T - C(x; é)
ci1(x, &) — calx, &)

ordi (T — ca(x, &) = ordslea(x, &) — ci(x, &)

As ord, > 0 we get

and
(3.1.1) ac(T — ca(w, &) = acl(cz(x, &) — ci(x, &).
Let

By = U {@,T) € AO)|ordy(T — c1(x, &) > ordi(ca(, &) — 1, O)}
¢

Then on B; the center ¢y is eliminated.
Note that it follows from 3.1.1 that

@c(T — c2(w, &) — e2(8)) = (@c( — (c2(w, &) — c1(x, &) — e2(L))
and thus we can eliminate es(&) too.

@) ordy(T — c1(x, &) < ordi(ca(zx, &) — c1(x, &) In this case we have
ordy(T — c1(x, &) = ordy (T — cz(w, &) and ac(T — c1(x, &) = ac(T — ca(x, &)).
Let

By = J{@. 1) € A@ord(T - e1(a, &) < ordy(ea(a, & — e1(a, )}
¢

and we can eliminate co.

Now note that as ac(T — c1(x, &) = ac(T — ca(x, £)) we can repeat ex-
actly the same arguments in Denef (1986) (page 163) to eliminate one of the
centers e1(&) and e2(&).
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(i) ordy(T — ez, &) > ords(ca (e, &) — c1(w, &));
In this case we eliminate c¢; and es.

(iv) ord(T — c1(w, Q) = ordi(cz(, &) — c1(x, Q) = ordy(T — ca(w, O)).
In this case we have

ac(ca(w, &) — c1(x, &) =ac((T — ci(x, &) — (T — ca(, &)
=ac(T — ci(x, &) — ac(T — ca(x, &)

T - 62(90; f)
T —cix, Q)
eliminate either c;(x, &) or ca(x, &), and we can proceed as before for the
elimination of e;(&) and ex(¢).

Now we get a finite partition of K((¢))™ x K((¢)) in cells A, such that

OI'dth'(-%', T) = ordt(hi(ac, ET — e(x, f))/l"’)

where we used the fact that ord; { 1- } = 0. In this case we can

and

B, T) = > 8y, )by OFe(T — e, &)%)

kEIi

for all (x,7T) € A and y;, v}, € N. Finally apply theorem II of Denef (1986)
to the polynomials

G’Lj(év 6,7 C) = Z g;c”(é, é/)bm(f)él};k

kel;
(where g;ﬂ](f, f,) are as in (4.1.6)) to get
Gy(&,&,0 = uy(&, &, 0'g4E IC — & &N

(after further partitioning of the cells A), v; € V. It suffices to substitute
ac(T — c(x, &) for { in the above to get the result. O

4. Generalized Cell Decomposition.

Let C be a definable subset of K™ x K" x I'" x X*.
We call the cells defined above strict cells. Now we define a generalized
1-cell (or 1-cell for short) by

A=JAEz272)

%4
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with
A(é7 2, zl) = {(9(/'7 T) € Km X K| (907 57 z, zl) € Cv Ordt(T - C(x7 é)) = O‘('/X’.a fa 2'),
ord,@c(T — c(x, &) — e(&) = px,&,2), @(T — c(w, &) — e(d) € APnl}

where ¢ = (&,...,&,) are variables in the RV sort, z = (z1,...,2,) are

variables in the Ord; sort, 2’ € 2* are variables in the Ords sort, and the

definable functions, c(x, &), e(£) are the centers of the cell, and such that the

fibers A(¢, z,2') are disjoint for distinet (&, z,2’). We remind the reader that

P,, is the set of nonzero n;-powers of K, where 7; is some positive integer

(> 2)and 1 € K. The definable set C'is called the parameter set of the cell A.
A 0-cell is defined by

A=JA¢z2)

x4

A,2,2)={@,T) e K" x K|(x,&,2,2) € C,T = c(x, )}
for some definable function ¢ : K™ x K" — K.
Note that strict cells falls under the new definition, by adding one Ord;-
variable and one Ordg-variable in the following way:
ord(T — c(x,9) ==
ord,@c(T — c(x, &) =7

and then using the conditions

ord; bi(x, &) 1 Ay - ordi (T — e(we, &) $o ord; bala, &)
and
ord, di(&) Ty Az - ord,@c(T — c(x, &) — e()) s ordy, da(&)

to constrain the variables z and 2'.

Now fix a model (K, K, I',X) for the theory T», with K = K((t)) and
r=x=17.

Let us state theorem III (generalized cell decomposition theorem).

THEOREM 4.1. Let X be a definable subset of K(t))" x K(()), and f a
definable function from X to K((t)). Then there is a finite partition of X in
(generalized) cells A of centers c(x, &) and e(E) such that

ac(f(x, 1)) = g@c(T — cx, ), x, &)
ord;(f(x, T)) = h(x,2)
ord,@c(f(x,T))) = W' (&,2)

where g, h and k' are definable functions.
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Proor. Asf and X are definable we have:
@, TeX=ykT)
{=@coN),T)=y/'(,(T)
z=ord(f(x, 1)) = P, 2,T)
? = ord,@cf(x, 1) = ¢ (x,2',T)

where { € K,z € Z,2 € Z, and y,y/'$, ¢ are L—formulas.

We assume as usual that the occurrences of (x,7) in w,y/,$,¢ are
uniquely through the RV-terms acf;(x, T) and the Ord;-terms ord; g;(x, T,
t=1,...,7,j=1,...,5), where f; and g; are polynomials in (x,T) with
integer coefficients.

Then, applying theorem (1.1), to the conjunction y A v/ (for instance) we
see that it is Ts-equivalent to

q
\/ (X}g(é’) %fl(a% T)) s 7%]{‘7’(%7 T)) /\ Qk(ordt gl(x7 T)a A 70rdt gs(x7 T)))7
k=1

where y;, is an Ly, and 0y, is an Lo,q,-formula.

Applying theorem II to the polynomials f;,g; we can find a finite par-
tition of K((t))"*! in cells, each cell A having parameter set C and para-
meters (&,...,&) € K (21,...,2,) €Z", (,...,2)) €Z® and centers
c(x, &) and e(&) such that

acfi(e, T) = u;@c(T — c(x, &), " d;(E)@E(T — c(x, &) — e(&)”
ord; gj(x, T) = ord; hj(x, E)(T — c(e, )

with ord, u; =0, foralli =1,...,7.

It is assumed that each polynomial f;, g; is either identically zero or
nowhere vanishing on A(&, 2).

We will further partition the cell A on which the theorem holds .

On A(¢,2), w Ay is Te-equivalent to

1

CHIEEN) l( J\ordyn; = 0 A 1 G O@E(T — (@, 8) — (&) = p;)
1=1
q

MV (0@ eop) 1 O 1)) A( P\ord e, XT — (e, O = )
j=1

k=1

NO(E, 2, ac(T — e, ©), ord(T — c(, é)))]
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where py,...,pu. 1y, ..., 1, are RV-variables and [y,...,[l, are Ord;-vari-
ables, and @ is the formula that says that (x, T) € A(¢, 2,2).

We can verify that y, defines the graph of a partial function
gr - K" x 2 — K whose domain is defined by the formula

v

E0)ENEE) lek O (N (@ - o, ), & i)

i=1

X @ET — o, ) — €@ = p;) ) A ((/\ ordshyte, XT — e, O = lj)] .
j=1

Call the formula in the brackets ¥;.(x, T, &, z,2'). Then for all (x, T') such
that 363232/ V. (x, T, &, 2,2) holds, we have { = gi(py,...,p.).
Ifforalli=1,...,7,v;=0and for all j =1,...,s, 4; = 0, no further
partitioning of the cell A is required, but we may need to constrain the
parameter set C further to satisfy the requirements of the theorem.
Fori=1,...,+ such that v; # 0 and d;(¢) # 0

@nord,n; = 0 Ay di(&)@e(T — c(x, ) — e(©)”" = p;
& (yiord,@c(T — c(x, &) — e(£)) = ordyp; — ord,d;(S))

A @E(T — e(@,9) — (&) € (p;/di( )" Py,
Also,
ord; h(x, (T — c(x, ) = I;
& (ordy(T — c(x, ) = l; — ord; hj(x, O)),

forj=1,...,s.

By theorem 1.1 of (Scowcroft & van den Dries 1988) there exists a
partition of the Lyr..-definable set Projg.C into Lya.-definable subsets D,
on each of which the definable function d;(¢) is analytie. Thus, by parti-
tioning the definable sets D further if necessary we can assume that
(p; /di(é))l/ ’ have constant n;-th power residue, hence (p; /di(é))l/ UPy,, =
= APy, for some 4; € K.

In the above description we notify the reader that our cell decomposi-
tion may contain 0-cells (if we have [; = oo, 1 # 0 and ord; /;(x, &) < oo for
some 7).

Also, using the observation that given two n'" power residues having
non-empty intersection, one of them must contain the other, we deduce
that ac(T' — c(x, &) — e(&) € 4;Py, for some 1.
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Finally notice that a function given conjunctly by definable conditions is

a function given by the conjunction of these conditions, hence the result
follows.

(1]
(2]
(3]
(4]
(5]
(6]

[7]
(8]
[9]

The remaining statements of the theorem are left to the reader. 0O
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