Cell Decomposition for Two Dimensional Local Fields.

ALI BLEYBEL (*)

ABSTRACT - We prove a cell decomposition theorem for the two-dimensional local field $Q_p((t))$.

Introduction.

The purpose of this paper is to give a cell decomposition for the field of Laurent series on p-adic fields. Originally, cell decomposition theorems were used to prove rationality of Igusa Zeta function, and of Poincaré series, avoiding resolution of singularities. Also, using cell decomposition for a p-adic field (for p a fixed prime), Denef (1986) gave a new proof of elimination of quantifiers in \mathbf{Q}_p . Later, Pas (1989) proved a uniform (in p) cell decomposition for p-adic fields, thus obtaining a uniform quantifier elimination.

In this paper we prove a cell decomposition for $\mathbf{Q}_p(t)$ (or for K(t)) where K is a finite algebraic extension of \mathbf{Q}_p), using both the t-adic and p-adic valuations. Our proof uses a mixture of Denef and Pas results, and may be useful for the development of motivic integration on the two-dimensional local field $\mathbf{Q}_p(t)$, in a similar way to the work of Cluckers & Loeser (2004) (hereafter CL 2004). Note that integration over higher dimensional local fields was also addressed by Hrushovski & Kazhdan (2005).

In section 1 we recall the language of 2-valued fields used in the paper, as well of the definitions for definable sets and cells. In section 2 we state Cell Decomposition I together with its proof. This section also contains a lemma needed in the proofs of theorems I and II. Theorem II (Cell decomposition II) is stated and proved in section 3. Finally a generalized cell decomposition theorem is stated and proved in section 4.

^(*) Indirizzo dell'A.: Lebanese University, Faculty of Sciences, Beirut, Lebanon E-mail: bleybel@etu.upmc.fr

Acknowledgments. I gratefully thank Francois Loeser who suggested the problem and pointed out to me the basic idea for the solution. I also thank Raf Cluckers for fruitful discussions, and an anonymous referee for constructive comments.

1. Language of 2-valued fields.

An n-dimensional local field is a complete discrete valuation field F whose residue field is n-1-dimensional local field (Fesenko 2003). Let \bar{K} be a 2-dimensional local field, also named 2-valued field. \bar{K} is equipped with a valuation $\operatorname{ord}_1:\bar{K}^\times\to \varGamma$ for some ordered abelian group \varGamma , \bar{R} its valuation ring with residue field K. K is also a valued field, with valuation $\operatorname{ord}_2:K\to \varSigma$ with \varSigma an ordered abelian group, R its valuation ring and k the residue field. There is a projection $\operatorname{res}:\bar{R}\to K=\bar{R}/\bar{P}$ of the valuation ring onto the residue field, where \bar{P} is the maximal ideal of \bar{R} . We also define an angular component map $\overline{\operatorname{ac}}:\bar{K}^\times\to K^\times$. $\overline{\operatorname{ac}}$ is a multiplicative map which can be extended by putting $\overline{\operatorname{ac}}(0)=0$. The language adopted is a multi-sorted language

$$\mathcal{L} = (\boldsymbol{L}_{Val}, \boldsymbol{L}_{RV}, \boldsymbol{L}_{Ord_1}, \boldsymbol{L}_{Ord_2}, ord_1, ord_2, \overline{ac})$$

with 4-sorts

- (i) a Val-sort for the 2-valued field sort,
- (ii) an RV-sort for the 1-valued field sort,
- (iii) an Ord₁-sort for the value group (with respect to the first valuation map) sort, and
- (iv) an Ord_2 -sort for the value group (with respect to the second valuation map) sort,

where L_{Val} is the language of rings $L_{\mathrm{Rings}} = (+, -, ., 0, 1)$ and L_{RV} is an expansion of Macintyre's language $L_{\mathrm{Mac}} \equiv L_{\mathrm{Rings}} \cup \{P_n | n \in N, n > 1\}$ where P_n are predicates whose interpretations are the set of nonzero n^{th} -power) and $L_{\mathrm{Ord_1}}$ (and $L_{\mathrm{Ord_2}}$) is an expansion of the language of ordered groups, for instance $\mathcal{L}_{PR\infty}$, a variant of the Presburger language $\mathcal{L}_{PR} \equiv \{+,0,1,\leq\} \cup \{\equiv_n | n \in N, n > 1\}$ defined by $\mathcal{L}_{PR\infty} \equiv \mathcal{L}_{PR} \cup \{\infty\}$. A structure for this language consists of a tuple $(\bar{K},K,\Gamma,\Sigma)$ where \bar{K} is a 2-valued field with residue field K, value group Γ valuation map ord₁ and an angular component map \overline{ac} , and K is a valued field with a value group Σ and a valuation map ord₂, together with an interpretation of L_{RV} in K, and an interpretation of $L_{\mathrm{Ord_1}}$ and $L_{\mathrm{Ord_2}}$ in Γ and Σ respectively.

A formula in this language is built up from symbols of \mathcal{L} together with variables, the logical connectives \land (and), \lor (or), \neg (not), the quantifiers \exists , \forall , the equality symbol = and parameters.

When $\bar{K} = K((t))$ for some valued field K, there exists a natural valuation map $\operatorname{ord}_1 := \operatorname{ord}_t : K((t))^{\times} \to \mathbf{Z}$ (extended by putting $\operatorname{ord}_t(0) = \infty$) and a natural angular component map $\overline{\operatorname{ac}} : \sum_{i>l} a_i t^i \mapsto a_l \neq 0$. The valued field

K is assumed Henselian of zero characteristic.

If we interpret \equiv_n in $\boldsymbol{L}_{\mathrm{Ord}_1}$ and $\boldsymbol{L}_{\mathrm{Ord}_2}$ as "congruent modulo n" in \boldsymbol{Z} then $(\boldsymbol{Q}_p((t)), \boldsymbol{Q}_p, \boldsymbol{Z}, \boldsymbol{Z})$ is a structure for the language \mathcal{L} , with the natural p-adic valuation ord_p as an interpretation for ord_2 (where we also extend ord_p by $\mathrm{ord}_p(0) = \infty$).

Also, note that the map res is definable in this language (in a non-canonical way) (see the remark under definition 2.2 and the lemma 3.4 in (Pas 1989)).

Notice the analogy of the language \mathcal{L} with the three-sorted Denef-Pas language \mathcal{L}_{DP} (Pas 1989).

Finally, we will use the fact that if $(\bar{K}, K, \Gamma, \Sigma)$ is a structure for \mathcal{L} then (K, Σ) is a structure for the 2-sorted language $\mathcal{L}_{\text{Mac}} = (\boldsymbol{L}_{\text{RV}}, \boldsymbol{L}_{\text{Ord}_2})$.

Consider now the \mathcal{L} -theory T_2 of 2-valued Henselian fields of zero characteristic and having surjective valuation maps, surjective angular component map, and 1-valued Henselian field of characteristic zero and bounded ramification (ord₂(p) = 1 for some prime p).

In this context we have the following variant of Denef-Pas Theorem on elimination of 2-valued field quantifiers

THEOREM 1.1. The theory T_2 admits elimination of quantifiers in the 2-valued field sort. More precisely, every \mathcal{L} formula $\phi(x, \xi, \alpha, \beta)$, with x variables in the Val-sort, ξ variables in the RV-sort, α variables in the Ord₁-sort and β variables in the Ord₂-sort, is T_2 equivalent to a finite disjunction of formulas of the form

$$\psi(\overline{\operatorname{ac}} f_1(x), \dots, \overline{\operatorname{ac}} f_k(x), \xi, \beta) \wedge \theta(\operatorname{ord}_1 f_1(x), \dots, \operatorname{ord}_1 f_k(x), \alpha, \beta),$$

with ψ a ($\mathbf{L}_{\mathrm{RV}} \cup \mathbf{L}_{\mathrm{Ord_2}}$)-formula, θ a ($\mathbf{L}_{\mathrm{Ord_1}} \cup \mathbf{L}_{\mathrm{Ord_2}}$)-formula and f_1, \ldots, f_k polynomials in $\mathbf{Z}[X]$.

Note the analogy of our statement with theorem 2.1.1 of (CL 2004).

PROOF. Direct application of theorem 4.1 and lemma 5.3 of Pas (1989).

A subset C of $\bar{K}^m \times K^n \times \Gamma^{r_1} \times \Sigma^{r_2}$ (where m, n, r_1 and r_2 are positive integers) is called definable if it is definable by an \mathcal{L} -formula.

A function f is definable if its graph is a definable subset.

A subset D of $K^n \times \Sigma^r$ is \mathcal{L}_{Mac} -definable if it is definable by an \mathcal{L}_{Mac} -formula.

An \mathcal{L}_{Mac} -definable subset of K^n (when K is a p-adic field, that is a finite algebraic extension of \mathbf{Q}_p) is also a semi-algebraic set in the standard terminology, e.g. Denef (1984).

Remark 1.2. It should be noted that even if $\Gamma = \Sigma = \mathbf{Z}$, it is not allowed to mix variables of Γ -sort with variables of Σ -sort.

DEFINITION 1.3. Let $x = (x_1, \ldots, x_m)$ be Val-variables, $\xi = (\xi_1, \ldots, \xi_n)$ RV-variables. Let C be a definable subset of $\bar{K}^m \times K^n$. Let b_1, b_2, c be definable functions from C to \bar{K} , λ_1 , λ_2 positive integers, d_1 , d_2 , e definable functions from $\text{Proj}_{K^n}C$ (the image of C by the projection of $\bar{K}^m \times K^n$ onto K^n) to K, and let $\Diamond_1, \Diamond_2, \Box_1$ and \Box_2 be <, \leq , or no condition.

For each $\xi \in K^n$, let $A(\xi)$ be the set of $(x,T) \in \overline{K}^m \times \overline{K}$ subject to the definable conditions

$$\begin{split} \left\{ (x,T) \in \bar{K}^m \times K | (x,\xi) \in C, \ \operatorname{ord}_1 b_1(x,\xi) \diamondsuit_1 \lambda_1 \cdot \operatorname{ord}_1(T - c(x,\xi)) \diamondsuit_2 \operatorname{ord}_1 b_2(x,\xi), \\ \operatorname{ord}_2 d_1(\xi) & \square_1 \lambda_2 \cdot \operatorname{ord}_2(\overline{\operatorname{ac}}(T - c(x,\xi)) - e(\xi)) & \square_2 \operatorname{ord}_2 d_2(\xi) \right\} \end{split}$$

and suppose that for all $\xi, \xi' \in K^n$ with $\xi \neq \xi'$ $A(\xi) \cap A(\xi') = \emptyset$, then

$$A = \bigcup_{\xi} A(\xi)$$

is a cell in $\bar{K}^m \times K^n$ with parameters (ξ_1, \ldots, ξ_n) , primary center $c(x, \xi)$ and secondary center $e(\xi)$; $A(\xi)$ is a *fiber* of the cell A.

2. Cell decomposition I.

Now consider a model for the theory T_2 such that $\bar{K} = K((t))$ and $\Gamma = \Sigma = Z$.

THEOREM 2.1. Let f(x,T) be a polynomial in T of degree d whose coefficients are definable functions in $x \in K((t))^m$, $\xi \in K^n$.

Then there exists a partition of $K((t))^m \times K((t))$ in a finite number of cells A with parameters $(\xi_1, \ldots, \xi_n, \xi'_1, \ldots, \xi'_r) \in K^{n+r}$, each cell has primary and

secondary centers $c(x, \xi)$ and $e(\xi, \xi')$ respectively such that if we write

(2.1.1)
$$f(x,T) = \sum_{i=0}^{d} a_i(x,\xi)(T - c(x,\xi))^i$$

then for all $(\xi, \xi') \in K^{n+r}$ and for all $(x, T) \in A(\xi, \xi')$ we have

$$(2.1.2) \quad \operatorname{ord}_t f(x,T) = \operatorname{ord}_t a_{i_0}(x,\xi) (T - c(x,\xi))^{i_0} = \min_{0 \le i < d} \operatorname{ord}_t a_i(x,\xi) (T - c(x,\xi))^{i_0}$$

where i_0 does not depend on (x, ξ, ξ', T) , and

$$(2.1.3) \ \operatorname{ord}_p(\overline{\operatorname{ac}}\, f(x,T)) \leq \min_{0 \leq i \leq d} \operatorname{ord}_p\Big(b_i(\xi,\xi') \big(\overline{\operatorname{ac}}(T-c(x,\xi)) - e(\xi,\xi')\big)^i\Big) + l$$

for some $l \in N$; $b_i(\xi, \xi')$ are (partial) \mathcal{L}_{Mac} -definable functions $K^{n+r} \to K$ (to be defined below) and $\xi'_1, \ldots, \xi'_r \in K$ such that $\xi'_1 = \overline{\operatorname{ac}} f_1(x, \xi), \ldots, \xi'_r = \overline{\operatorname{ac}} f_r(x, \xi)$ where $f_1(x, \xi), \ldots, f_r(x, \xi)$ are polynomials in x with integer coefficients.

PROOF. We assume the result for all polynomials of degree < d. The theorem then holds for f'(x,T) (derivative of f(x,T) with respect to T), and so there exists a partition of $K((t))^m \times K((t))$ in cells $A = \bigcup_{\xi,\xi'} A(\xi)$ (of centers $c(x,\xi)$ and $e(\xi,\xi')$) as above such that

(2.1.4)
$$\operatorname{ord}_t f'(x, T) = \min_{1 < i < d} \operatorname{ord}_t i a_i(x, \xi) (T - c(x, \xi))^{i-1}$$

and

$$\begin{split} (2.1.5) & \quad \operatorname{ord}_p(\overline{\operatorname{ac}}\,f'(x,T)) \leq \\ & \leq \min_{0 \leq i \leq d-1} \operatorname{ord}_p\left(b_i'(\xi,\xi') \times \left(\overline{\operatorname{ac}}(T-c(x,\xi)) - e(\xi,\xi')\right)^i\right) + l' \end{split}$$

where $b_i'(\xi,\xi')$ are partial definable functions $K^{n+r}\to K, l'\in \mathbb{N}, \xi_j'=f_j'(x,\xi)$ and $f_j'(x,\xi)$ are polynomials in x with integer coefficients.

For each $\xi \in K^n$, let $A(\xi)$ be defined by

$$\left\{ (x,T) \in K((t))^m \times K | (x,\xi) \in C, \operatorname{ord}_t b_1(x,\xi) \diamondsuit_1 \lambda_1 \cdot \operatorname{ord}_t(T - c(x,\xi)) \diamondsuit_2 \operatorname{ord}_t b_2(x,\xi), \\ \operatorname{ord}_p d_1(\xi) \square_1 \lambda_2 \cdot \operatorname{ord}_p(\overline{\operatorname{ac}}(T - c(x,\xi)) - e(\xi)) \square_2 \operatorname{ord}_p d_2(\xi) \right\}$$

where $\lambda_1, \lambda_2, C, b_1, b_2, d_1, d_2, c$ and e are as in (1.3) and where the RV-variables ξ' were added to the parameters ξ (by defining e.g. $c'(x, \xi, \xi') \equiv c(x, \xi)$ for all $(x, \xi, \xi') \in K((t))^m \times K^n \times K^r$ and replacing n + r by n', and then renaming c' as c and n' as n).

We will further partition A into subcells on which the theorem holds for f(x, T).

Consider only the nontrivial case, where the set \tilde{I} of j such that

(2.1.6)
$$\operatorname{ord}_{t} a_{j}(x, T) (T - c(x, \xi))^{j} = \min_{0 < i < d} \operatorname{ord}_{t} a_{i}(x, \xi) (T - c(x, \xi))^{i}$$

has a cardinality > 1.

Let $i_0 \in \tilde{I}$; then each fiber $A(\xi)$ is a disjoint union of two sets

$$(2.1.7) A_1(\xi) = \{(x,T) \in A(\xi) | \operatorname{ord}_t f(x,T) = \operatorname{ord}_t a_{i_0}(x,\xi) (T - c(x,\xi))^{i_0} \}$$

and

$$(2.1.8) A_2(\xi) = \{(x,T) \in A(\xi) | \operatorname{ord}_t f(x,T) > \operatorname{ord}_t a_{i_0}(x,\xi) (T - c(x,\xi))^{i_0} \}.$$

Consider the polynomials $F_i(\zeta)$ given by

(2.1.9)
$$F_j(\zeta) = \sum_{i \in \tilde{I}} g_{ij}(\xi, \xi') \zeta^i$$

where g_{ij} are \mathcal{L}_{Mac} -definable functions $K^n \times K^r \to K$, such that

$$\overline{\operatorname{ac}}(a_i(x,\xi)) = g_{ij}(\xi, \overline{\operatorname{ac}} f_1(x,\xi), \dots, \overline{\operatorname{ac}} f_r(x,\xi))$$

for $(x, \xi) \in X_j$, where $(X_j)_j$ form a partition of $K((t))^m \times K^n$, and f_1, \ldots, f_r are polynomials in x with integer coefficients, as in lemma 2.2 below.

As the functions g_{ij} are definable in \mathcal{L}_{Mac} , we can apply the cell decomposition theorem I of Denef (1986) to $F_j(\zeta)$; it follows that there exists a finite partition of K^{n+r+1} in Denef-type cells B_j (of center $e_j(\xi, \xi')$, $(\xi, \xi') \in K^{n+r}$) defined by

$$B_j = \left\{ (\xi, \xi', \zeta) \in K^{n+r} \times K | (\xi, \xi') \in D_j, \operatorname{ord}_p c_{1j}(\xi, \xi') \square_{1j} \right. \\ \left. \operatorname{ord}_p(\zeta - e_j(\xi, \xi')) \square_{2j} \operatorname{ord}_p c_{2j}(\xi, \xi') \right\},$$

where $D_j \subset K^{n+r}$ is a \mathcal{L}_{Mac} -definable set, and $c_{1j}(\xi, \xi')$, $c_{2j}(\xi, \xi')$ and $e_j(\xi, \xi')$ are

 $\mathcal{L}_{\mathrm{Mac}}$ -definable functions $K^{n+r} \to K$, such that

(2.1.10)
$$\operatorname{ord}_{p} F_{j}(\zeta) \leq \min_{0 \leq i \leq d} \operatorname{ord}_{p} (b_{ij}(\xi, \xi')(\zeta - e_{j}(\xi, \xi'))^{i}) + l_{j}$$

with $l_j \in N$; $b_{ij}(\xi, \xi')$ are the coefficients of $F_j(\zeta)$ written in the form

(2.1.11)
$$F_{j}(\zeta) = \sum_{i} b_{ij}(\xi, \xi')(\zeta - e_{j}(\xi, \xi'))^{i},$$

and $\square_{1j}, \square_{2j}$ (for each j) is $<, \le$ or no condition.

As $\zeta = e_j(\xi, \xi')$ if and only if $\operatorname{ord}_p(\zeta - e_j(\xi, \xi')) = \infty$, it follows that by the above observation, $(x, T) \in A_2$ if and only if

$$F_i(\overline{\mathrm{ac}}(T-c(x,\xi))=0$$

for some j, if and only if

$$\overline{\operatorname{ac}}(T-c(x,\xi))=e_i(\xi,\overline{\operatorname{ac}}\,f_1(x,\xi),\ldots,\overline{\operatorname{ac}}\,f_r(x,\xi))$$

and $b_{0i}(\xi, \overline{ac} f_1(x, \xi), \dots, \overline{ac} f_r(x, \xi)) = 0$.

It follows that $A_1(\xi)$ can be written as a finite union of sets of the following form

$$\begin{split} \bigcup_{\xi'} \Big\{ (x,T) \in A | (x,\xi,\xi') \in Y_j, \overline{\operatorname{ac}}(T-c(x,\xi)) \neq e_j(\xi,\xi'), \\ \operatorname{ord}_p c_{1j}(\xi,\xi') \square_{1j} \operatorname{ord}_p (\overline{\operatorname{ac}}(T-c(x,\xi)) - e_j(\xi,\xi')) \square_{2j} \operatorname{ord}_p c_{2j}(\xi,\xi') \Big\} \end{split}$$

or

$$\bigcup_{\xi'} \Big\{ (x,T) \in A | \ (x,\xi,\xi') \in Z_j, b_{0j}(\xi,\xi') \neq 0, \overline{\mathrm{ac}}(T-c(x,\xi)) = e_j(\xi,\xi') \Big\}.$$

Also it follows that $A_2(\xi)$ is a finite union of sets of the form

$$igcup_{arxetilde{\zeta}'}\Big\{(x,T)\in A|\;(x,\zeta,\zeta')\in Z_j, b_{0j}(\zeta,\zeta')=0, \overline{\mathrm{ac}}(T-c(x,\zeta))=e_j(\zeta,\zeta')\Big\},$$

where

$$Y_j = \{(x, \xi, \xi') \in K((t))^m \times K^n \times K^r | (x, \xi) \in X_j, (\xi, \xi') \in D_j,$$

$$\overline{\operatorname{ac}} f_1(x, \xi) = \xi'_1, \dots, \overline{\operatorname{ac}} f_r(x, \xi) = \xi'_r\},$$

and

$$Z_{j} = \{(x, \xi, \xi') \in K((t))^{m} \times K^{n} \times K^{r} | (x, \xi) \in X_{j}, (\xi, \xi') \in D_{j},$$

$$\overline{ac} f_{1}(x, \xi) = \xi'_{1}, \dots, \overline{ac} f_{r}(x, \xi) = \xi'_{r}, c_{1j}(\xi, \xi') \diamond_{1j} 0, c_{2j}(\xi, \xi') \diamond_{2j} 0\}$$

with \diamond_{1j} is \neq or no condition and \diamond_{2j} is = or no condition.

Note that one of the centers $e(\xi, \xi')$ or $e_j(\xi, \xi')$ in the above description can be eliminated, (or both of them and a new center introduced, see the proof of theorem II below), whence each of the sets A_1 and A_2 is a finite union of cells.

On A_1 the theorem is easily seen to hold, as

(2.1.12)
$$\overline{\mathbf{ac}}f(x,T) = F_j(\overline{\mathbf{ac}}(T - c(x,\xi))).$$

On A_2 , notice that as the condition

$$\overline{\operatorname{ac}}(T-c(x,\xi))=e_i(\xi,\overline{\operatorname{ac}}\,f_1(x,\xi),\ldots,\overline{\operatorname{ac}}\,f_r(x,\xi))$$

holds, thus we may follow the steps of Pas' proof on pages (148-154).

The crucial point in these steps is to find a new center $d(x,\xi)$ for the cell A_2 such that

$$f(x,T) = f'(x,d(x,\xi))(T - d(x,\xi)) + \sum_{j=2}^{d} \frac{f^{(j)}(x,d(x,\xi))}{j!}(T - d(x,\xi))^{j}.$$

This entails that

$$\begin{aligned} \operatorname{ord}_t f(x, T) &= \operatorname{ord}_t f'(x, d(x, \xi))(T - d(x, \xi)) \\ &= \min_{1 \le j \le d} \operatorname{ord}_t \left(\frac{f^{(j)}(x, d(x, \xi))}{j!} (T - d(x, \xi))^j \right) \end{aligned}$$

on A_2 , and

$$\overline{\operatorname{ac}} f(x,T) = \overline{\operatorname{ac}} f'(x,d(x,\xi)) \overline{\operatorname{ac}} (T-d(x,\xi)),$$

so,

$$\operatorname{ord}_{p} \overline{\operatorname{ac}} f(x, T) = \operatorname{ord}_{p} \overline{\operatorname{ac}} f'(x, d(x, \xi)) + \operatorname{ord}_{p} \overline{\operatorname{ac}} (T - d(x, \xi))$$

and the second statement of the theorem holds on A_2 (by eliminating one of the (secondary) centers e or 0, and by observing that $\operatorname{ord}_p \overline{\operatorname{ac}} f'(x,T)$ is bounded on A, as $\overline{\operatorname{ac}} f'(x,T) \neq 0$ on A_2 and using 2.1.5).

The following statement should be folklore; nevertheless we provide a detailed proof.

Lemma 2.2. Let
$$f_i$$
 ($i = 1, ..., l$), be definable functions

$$(2.2.1) f_i: C \to K((t))$$

where C is a definable subset of $K((t))^m \times K^n$. Then there exists a partition of $K((t))^m \times K^n$ into definable subsets X_j , such that

$$(2.2.2) \overline{ac} \circ f_i(x,\xi) = g_{ij}(\xi, \overline{ac} \, h_1(x,\xi), \dots, \overline{ac} \, h_r(x,\xi))$$

for all $(x, \xi) \in X_j$, and where h_1, \ldots, h_r are polynomials with integer coefficients in x and g_{ij} is a \mathcal{L}_{Mac} -definable function from a \mathcal{L}_{Mac} -definable subset $C' \subset K^{n+r}$ into K, with r is a positive integer.

PROOF. Let us consider first the case $l = 1, f := f_1$. As f is a definable function, $\overline{ac} \circ f$ is also definable and its graph is defined by an \mathcal{L} -formula

 $\psi(x_1,\ldots,x_m,\xi_1,\ldots,\xi_n,\zeta)$ in m Val-variables (x_1,\ldots,x_m) and n+1 RV-variables ξ_1,\ldots,ξ_n,ζ ;

$$(2.2.3) \quad \psi(x_1,\ldots,x_m,\xi_1,\ldots,\xi_n,\zeta) \equiv \left(\overline{\operatorname{ac}} \circ f(x_1,\ldots,x_m,\xi_1,\ldots,\xi_n) = \zeta\right).$$

In ψ atomic formulas of the form $h(x_1,\ldots,x_m)=0$ (where h is a polynomial in (x_1,\ldots,x_m) with integer coefficients) can be replaced by $\overline{\mathrm{ac}}\,h(x_1,\ldots,x_m)=0$. We may suppose then that the variables x_1,\ldots,x_m appear in ψ only through the RV-terms $\overline{\mathrm{ac}}\,f_i(x,\xi)$ and the Ord_1 -terms $\mathrm{ord}_t\,h_j(x,\xi),\ (i=1,\ldots,r;j=1,\ldots,s).$ Let ϕ be the formula obtained by replacing in ψ $\overline{\mathrm{ac}}\,f_i(x,\xi)$ by a RV-variable ρ_i $(i=1,\ldots,r)$, and $\mathrm{ord}_t\,h_j(x,\xi)$ by a Ord_1 -variable l_i , $(j=1,\ldots,s)$. Then 2.2.3 is equivalent to

$$(\exists
ho)(\exists l) \left[\phi(\xi, \zeta,
ho_1, \dots,
ho_r, l_1, \dots, l_s) \land \left(\bigwedge_{i=1}^r \overline{\operatorname{ac}} f_i(x, \xi) =
ho_i \right) \land \left(\bigwedge_{j=1}^s \operatorname{ord}_t h_j(x, \xi) = l_j \right) \right]$$

Notice that ϕ defines the graph of a (partial) function

$$(2.2.4) g: K^n \times K^r \times \Gamma^s \to K$$

whose domain is given by

$$D = \left\{ (\xi, \rho_1, \dots, \rho_r, l_1, \dots, l_s) \in K^{n+r} \times \Gamma^s | (\exists x (x, \xi) \in C) \right.$$
$$\left(\bigwedge_{i=1}^r \overline{\operatorname{ac}} f_i(x, \xi) = \rho_i \right) \wedge \left(\bigwedge_{j=1}^s \operatorname{ord}_t h_j(x, \xi) = l_j \right) \right\}$$

The 2-valued-field quantifiers in the above description can be eliminated, whence the domain of g is definable in the language \mathcal{L}_{Mac} .

Let now $\zeta, \zeta' \in K$ be such that $\phi(\xi, \zeta, \rho_1, \dots, \rho_r, l_1, \dots, l_s) \land \phi(\xi, \zeta', \rho_1, \dots, \rho_r, l_1, \dots, l_s)$ holds for some $(\xi, \rho_1, \dots, \rho_r, l_1, \dots, l_s) \in D$, then we have

$$\exists x [\psi(x,\xi,\zeta) \land \psi(x,\xi,\zeta')]$$

and so $\zeta = \zeta'$.

Apply now theorem (1.1) to ϕ , to get

(2.2.5)
$$\phi(\xi, \zeta, \rho_1, \dots, \rho_r, l_1, \dots, l_s) \Leftrightarrow \bigvee_{i=1}^N \left(\chi_i \wedge \theta_i\right)$$

where χ_j is an $\mathcal{L}_{\mathrm{Mac}}$ -formula, and θ_j is an $\mathbf{L}_{\mathrm{Ord}_1}$ -formula. We can verify then that χ_j defines the graph of a partial function $g_j: K^n \times k^r \to K$. Assume that $\chi_j(\xi,\zeta,\rho_1,\ldots,\rho_r)$ and $\chi_j(\xi,\zeta',\rho_1,\ldots,\rho_r)$ hold, then $\chi_j(\xi,\zeta,\rho_1,\ldots,\rho_r) \wedge \theta_j(l_1,\ldots,l_s)$ and $\chi_j(\xi,\zeta',\rho_1,\ldots,\rho_r) \wedge \theta_j(l_1,\ldots,l_s)$ also hold and then by the above result we should have $\zeta=\zeta'$.

Finally let

$$(2.2.6) X_j = \{(x,\xi) \in C | \theta_j(\operatorname{ord}_t(h_1(x,\xi)), \dots, \operatorname{ord}_t(h_s(x,\xi))) \},$$

then, for all $(x, \xi) \in X_i$

$$(2.2.7) \overline{ac} f(x,\xi) = g_i(\xi_1,\ldots,\xi_n,\overline{ac} f_1(x,\xi),\ldots,\overline{ac} f_r(x,\xi)).$$

The case l > 1 is trivially proved by simultaneous applications of the lemma to each function f_i separately and taking intersections.

3. Cell decomposition II.

Analogously to Denef (1986) and Pas (1989), we prove the cell decomposition theorem II, which relies on theorem I.

THEOREM 3.1. Let $f_1(x,T), \ldots, f_r(x,T)$ be polynomials as in theorem I, and $n_1 \in \mathbb{N}^*$. Then there exists a finite partition of $K((t))^m \times K((t))$ in cells. Each such cell A has parameters (ξ_1, \ldots, ξ_l) and primary and secondary centers $c(x,\xi)$ and $e(\xi)$ respectively such that, for all $\xi \in K^n$ and for all $(x,T) \in A(\xi)$

$$\operatorname{ord}_t f_i(x, T) = \operatorname{ord}_t(h_i(x, \xi)(T - c(x, \xi))^{\mu_i})$$

and

$$\overline{\operatorname{ac}}f_i(x,T) = u_i(\overline{\operatorname{ac}}(T-c(x,\xi)),\xi)^{n_1}g_i(\xi)(\overline{\operatorname{ac}}(T-c(x,\xi))-e(\xi))^{n_2}g_i(\xi)(\overline{\operatorname{ac}}(T-c(x,\xi))-e(\xi))^{$$

for i = 1, ..., r, and where $h_i(x, \xi), g_i(\xi)$ are definable functions to K((t)) and K respectively; $\operatorname{ord}_p u = 0$ and μ_i, v_i are non-negative integers that do not depend on (x, ξ, T) .

PROOF. Consider first the case r = 1; $f(x,T) := f_1(x,T)$. In the proof of theorem I, we realize that we can partition $K((t))^m \times K((t))$ in cells A on which we have

$$\overline{\operatorname{ac}}f(x,T) = \overline{\operatorname{ac}}\,a_{i_0}(x,\xi)\overline{\operatorname{ac}}(T-c(x,\xi))^{i_0}$$

or

$$\overline{\operatorname{ac}} f(x,T) = \sum_{i \in \overline{I}} \overline{\operatorname{ac}} a_i(x,\xi) \overline{\operatorname{ac}} (T - c(x,\xi))^i$$

where \tilde{I} is as in the proof of theorem 2.1. Clearly we need only to consider the case where the cardinality of \tilde{I} is greater than 1; consider then the polynomials

$$F_j(\xi, \xi', \zeta) = \sum_{i \in I} g'_{ij}(\xi, \xi') \zeta^i$$

where

$$g'_{ii}(\xi, \overline{\operatorname{ac}} f_1(x, \xi), \dots, \overline{\operatorname{ac}} f_r(x, \xi)) = \overline{\operatorname{ac}} a_i(x, \xi)$$

for $(x, \zeta) \in X_j$, $i = 1 \in \tilde{I}$ and where X_j (j = 1, ..., s) is a definable subset of $K((t))^m \times K^n$, and $f_1, ..., f_r$ are polynomials in $x \in K((t))$ with integer coefficients as in lemma (3.2) above. We can apply theorem II of Denef (1986) separately to each of the polynomials $F_j(\xi, \xi', \zeta)$ and then substitute $\overline{ac}(T - c(x, \xi))$ for ζ to get the desired result.

Consider then the case r > 1.

Let us now consider the following statement P(A, s):

A is the intersection of s cells, with parameters $\xi = (\xi_1, \dots, \xi_n)$ and centers $c_1(x, \xi), \dots, c_s(x, \xi)$ and $e_1(\xi), \dots, e_s(\xi)$ respectively. Denote by $A(\xi)$ the intersection of the fibers of the cells of which A is the intersection. For all ξ , for all $(x, T) \in A(\xi)$, and for $i = 1, \dots, r$ we have

$$\operatorname{ord}_t f_i(x,T) = \operatorname{ord}_t(h_i(x,\xi)(T - c_{\eta(i)}(x,\xi))^{\mu_i})$$

$$\overline{\operatorname{ac}} f_i(x,T) = \sum_{k \in I} \overline{\operatorname{ac}}(a_{ki}(x,\xi)) \overline{\operatorname{ac}}((T - c_{\eta(i)}(x,\xi))^k)$$

where the $h_i(x, \xi)$ are definable functions, and the non-negative integers μ_i , the map $\eta: \{1, \ldots, r\} \to \{1, \ldots, s\}$ does not depend on (x, ξ, T) .

Applying theorem I to each of the polynomials f_1, \ldots, f_r we get a finite partition of $K((t))^m \times K((t))$ in subsets A such that P(A, r) holds. The next step is to show theorem II by descending induction.

Assuming we have a set A and an integer s, $1 < s \le r$ such that P(A, s) holds, we should partition A further in a finite number of sets B such that P(B, s - 1) holds.

Consider two different cells (which have respective centers $c_1(x,\xi)$,

 $e_1(\xi)$ and $c_2(x,\xi)$, $e_2(\xi)$). By splitting A into

$$\{(x,T) \in A(\xi) | c_1(x,\xi) = c_2(x,\xi) \}$$

and its complement in A, so we will assume that $c_1(x, \xi) \neq c_2(x, \xi)$. Also, we will assume that $e_1(\xi) \neq e_2(\xi)$ by splitting C into

$$\{(x,\xi)\in C|\,e_1(\xi)=e_2(\xi)\}$$

and its complement in C.

There are four different cases:

(i) $\operatorname{ord}_t(T-c_1(x,\xi)) > \operatorname{ord}_t(c_2(x,\xi)-c_1(x,\xi))$ In this case we have

$$\begin{split} T - c_2(x,\xi) &= (T - c_1(x,\xi)) - (c_1(x,\xi) - c_2(x,\xi)) \\ &= (c_2(x,\xi) - c_1(x,\xi)) \Big(1 - \frac{T - c_1(x,\xi)}{c_1(x,\xi) - c_2(x,\xi)} \Big). \end{split}$$

As
$$\operatorname{ord}_t \frac{T - c(x, \xi)}{c_1(x, \xi) - c_2(x, \xi)} > 0$$
 we get

$$\operatorname{ord}_{t}(T - c_{2}(x, \xi)) = \operatorname{ord}_{t}(c_{2}(x, \xi) - c_{1}(x, \xi))$$

and

$$(3.1.1) \overline{ac}(T - c_2(x, \xi)) = \overline{ac}((c_2(x, \xi) - c_1(x, \xi)).$$

Let

$$B_1 = \bigcup_{\xi} \left\{ (x,T) \in A(\xi) | \operatorname{ord}_t(T - c_1(x,\xi)) > \operatorname{ord}_t(c_2(x,\xi) - c_1(x,\xi)) \right\}$$

Then on B_1 the center c_2 is eliminated.

Note that it follows from 3.1.1 that

$$(\overline{\operatorname{ac}}(T-c_2(x,\xi))-e_2(\xi))=(\overline{\operatorname{ac}}(-(c_2(x,\xi)-c_1(x,\xi))-e_2(\xi)))$$

and thus we can eliminate $e_2(\xi)$ too.

(ii) $\operatorname{ord}_t(T-c_1(x,\xi)) < \operatorname{ord}_t(c_2(x,\xi)-c_1(x,\xi))$ In this case we have $\operatorname{ord}_t(T-c_1(x,\xi)) = \operatorname{ord}_t(T-c_2(x,\xi))$ and $\overline{\operatorname{ac}}(T-c_1(x,\xi)) = \overline{\operatorname{ac}}(T-c_2(x,\xi))$. Let

$$B_2 = \bigcup_{\xi} \Big\{ (x,T) \in A(\xi) | \operatorname{ord}_t(T - c_1(x,\xi)) < \operatorname{ord}_t(c_2(x,\xi) - c_1(x,\xi)) \Big\}$$

and we can eliminate c_2 .

Now note that as $\overline{ac}(T - c_1(x, \xi)) = \overline{ac}(T - c_2(x, \xi))$ we can repeat exactly the same arguments in Denef (1986) (page 163) to eliminate one of the centers $e_1(\xi)$ and $e_2(\xi)$.

(iii)
$$\operatorname{ord}_t(T - c_2(x, \xi)) > \operatorname{ord}_t(c_2(x, \xi) - c_1(x, \xi));$$

In this case we eliminate c_1 and e_2 .

(iv)
$$\operatorname{ord}_t(T - c_1(x, \xi)) = \operatorname{ord}_t(c_2(x, \xi) - c_1(x, \xi)) = \operatorname{ord}_t(T - c_2(x, \xi)).$$

In this case we have

$$\overline{\operatorname{ac}}(c_2(x,\xi) - c_1(x,\xi)) = \overline{\operatorname{ac}}((T - c_1(x,\xi)) - (T - c_2(x,\xi)))$$
$$= \overline{\operatorname{ac}}(T - c_1(x,\xi)) - \overline{\operatorname{ac}}(T - c_2(x,\xi))$$

where we used the fact that $\operatorname{ord}_t \left\{ 1 - \frac{T - c_2(x,\xi)}{T - c_1(x,\xi)} \right\} = 0$. In this case we can eliminate either $c_1(x,\xi)$ or $c_2(x,\xi)$, and we can proceed as before for the elimination of $e_1(\xi)$ and $e_2(\xi)$.

Now we get a finite partition of $K((t))^m \times K((t))$ in cells A, such that

$$\operatorname{ord}_t f_i(x,T) = \operatorname{ord}_t(h_i(x,\xi)(T - c(x,\xi))^{\mu_i})$$

and

$$\overline{\operatorname{ac}}f_i(x,T) = \sum_{k \in I_i} \overline{\operatorname{ac}}(a_{ki}(x,\xi)) b_{ki}(\xi) \overline{\operatorname{ac}}((T - c(x,\xi))^{\nu'_{ik}})$$

for all $(x, T) \in A$ and $\mu_i, v'_{ik} \in N$. Finally apply theorem II of Denef (1986) to the polynomials

$$G_{ij}(\xi,\xi',\zeta) = \sum_{k\in I_i} g'_{kij}(\xi,\xi') b_{ki}(\xi) \zeta^{\upsilon'_{ik}}$$

(where $g'_{kij}(\xi, \xi')$ are as in (4.1.6)) to get

$$G_{ij}(\xi,\xi',\zeta) = u_{ij}(\xi,\xi',\zeta)^n g_{ij}(\xi,\xi')(\zeta - e(\xi,\xi'))^{v_{ij}}$$

(after further partitioning of the cells A), $v_{ij} \in \mathbb{N}$. It suffices to substitute $\overline{ac}(T - c(x, \xi))$ for ξ in the above to get the result.

4. Generalized Cell Decomposition.

Let C be a definable subset of $\bar{K}^m \times K^n \times \Gamma^r \times \Sigma^s$.

We call the cells defined above $strict\ cells$. Now we define a generalized 1-cell (or 1-cell for short) by

$$A = igcup_{\xi,z,z'} A(\xi,z,z')$$

with

$$\begin{split} A(\xi,z,z') &= \left\{ (x,T) \in \bar{K}^m \times \bar{K} | \, (x,\xi,z,z') \in C, \operatorname{ord}_t(T-c(x,\xi)) = \alpha(x,\xi,z), \right. \\ &\left. \operatorname{ord}_p(\overline{\operatorname{ac}}(T-c(x,\xi)) - e(\xi)) = \beta(x,\xi,z'), (\overline{\operatorname{ac}}(T-c(x,\xi)) - e(\xi)) \in \lambda P_{n_1} \right\} \end{split}$$

where $\xi=(\xi_1,\ldots,\xi_n)$ are variables in the RV sort, $z=(z_1,\ldots,z_r)$ are variables in the Ord_1 sort, $z'\in \Sigma^s$ are variables in the Ord_2 sort, and the definable functions, $c(x,\xi),e(\xi)$ are the centers of the cell, and such that the fibers $A(\xi,z,z')$ are disjoint for distinct (ξ,z,z') . We remind the reader that P_{n_1} is the set of nonzero n_1 -powers of K, where n_1 is some positive integer (≥ 2) and $\lambda \in K$. The definable set C is called the parameter set of the cell A.

A 0-cell is defined by

$$egin{aligned} A &= igcup_{\xi,z,z'} A(\xi,z,z') \ A(\xi,z,z') &= \left\{ (x,T) \in ar{K}^m imes ar{K} | (x,\xi,z,z') \in C, T = c(x,\xi)
ight\} \end{aligned}$$

for some definable function $c: \bar{K}^m \times K^n \to \bar{K}$.

Note that strict cells falls under the new definition, by adding one Ord₁-variable and one Ord₂-variable in the following way:

$$\operatorname{ord}_t(T - c(x, \xi)) = z$$
$$\operatorname{ord}_n(\overline{\operatorname{ac}}(T - c(x, \xi)) = z'$$

and then using the conditions

$$\operatorname{ord}_t b_1(x,\xi) \diamondsuit_1 \lambda_1 \cdot \operatorname{ord}_t(T - c(x,\xi)) \diamondsuit_2 \operatorname{ord}_t b_2(x,\xi)$$

and

$$\operatorname{ord}_p d_1(\xi) \bigsqcup_1 \lambda_2 \cdot \operatorname{ord}_p(\overline{\operatorname{ac}}(T - c(x, \xi)) - e(\xi)) \bigsqcup_2 \operatorname{ord}_p d_2(\xi)$$

to constrain the variables z and z'.

Now fix a model $(\bar{K}, K, \Gamma, \Sigma)$ for the theory T_2 , with $\bar{K} = K((t))$ and $\Gamma = \Sigma = \mathbf{Z}$.

Let us state theorem III (generalized cell decomposition theorem).

THEOREM 4.1. Let X be a definable subset of $K((t))^m \times K((t))$, and f a definable function from X to K((t)). Then there is a finite partition of X in (generalized) cells A of centers $c(x, \xi)$ and $e(\xi)$ such that

$$\overline{\operatorname{ac}}(f(x,T)) = g(\overline{\operatorname{ac}}(T - c(x,\xi)), x, \xi)$$

$$\operatorname{ord}_t(f(x,T)) = h(x,z)$$

$$\operatorname{ord}_p(\overline{\operatorname{ac}}(f(x,T))) = h'(\xi,z')$$

where g, h and h' are definable functions.

PROOF. As f and X are definable we have:

$$(x,T) \in X \equiv \psi(x,T)$$

$$\zeta = (\overline{ac} \circ f)(x,T) \equiv \psi'(x,\zeta,T)$$

$$z = \operatorname{ord}_t(f(x,T)) \equiv \phi(x,z,T)$$

$$z' = \operatorname{ord}_n(\overline{ac} f(x,T)) \equiv \phi'(x,z',T)$$

where $\zeta \in K$, $z \in \mathbb{Z}$, $z' \in \mathbb{Z}$, and $\psi, \psi' \phi, \phi'$ are \mathcal{L} -formulas.

We assume as usual that the occurrences of (x,T) in ψ,ψ',ϕ,ϕ' are uniquely through the RV-terms $\overline{ac}f_i(x,T)$ and the Ord_1 -terms $\mathrm{ord}_t\,g_j(x,T)$, $(i=1,\ldots,r',j=1,\ldots,s')$, where f_i and g_j are polynomials in (x,T) with integer coefficients.

Then, applying theorem (1.1), to the conjunction $\psi \wedge \psi'$ (for instance) we see that it is T_2 -equivalent to

$$\bigvee_{k=1}^q \Big(\chi_k(\zeta, \overline{\operatorname{ac}} f_1(x, T), \dots, \overline{\operatorname{ac}} f_r(x, T)) \wedge \theta_k(\operatorname{ord}_t g_1(x, T), \dots, \operatorname{ord}_t g_s(x, T)) \Big),$$

where χ_k is an \mathcal{L}_{Mac} , and θ_k is an $\mathbf{L}_{\text{Ord}_1}$ -formula.

Applying theorem II to the polynomials f_i, g_j we can find a finite partition of $K((t))^{m+1}$ in cells, each cell A having parameter set C and parameters $(\xi_1,\ldots,\xi_l)\in K^l, (z_1,\ldots,z_r)\in \mathbf{Z}^r, \ (z_1',\ldots,z_s')\in \mathbf{Z}^s$ and centers $c(x,\xi)$ and $e(\xi)$ such that

$$\overline{\operatorname{ac}} f_i(x,T) = u_i(\overline{\operatorname{ac}}(T-c(x,\xi)), \xi)^{n_1} d_i(\xi) (\overline{\operatorname{ac}}(T-c(x,\xi)) - e(\xi))^{\nu_i}$$

$$\operatorname{ord}_t g_i(x,T) = \operatorname{ord}_t h_i(x,\xi) (T-c(x,\xi))^{\mu_j}$$

with $\operatorname{ord}_p u_i = 0$, for all $i = 1, \ldots, r'$.

It is assumed that each polynomial f_i, g_j is either identically zero or nowhere vanishing on $A(\xi, z)$.

We will further partition the $\operatorname{cell} A$ on which the theorem holds .

On $A(\xi, z)$, $\psi \wedge \psi'$ is T_2 -equivalent to

$$\begin{split} (\exists \rho) (\exists l) (\exists \eta) \Bigg[\Big(\bigwedge_{i=1}^{r'} \operatorname{ord}_p \eta_i &= 0 \wedge \eta_i^{n_1} d_i(\xi) (\overline{\operatorname{ac}} (T - c(x, \xi)) - e(\xi))^{v_i} = \rho_i \Big) \\ \wedge \Big(\bigvee_{k=1}^{q} \Big(\chi_k(\zeta, \rho_1, \dots, \rho_{r'}) \wedge \theta_k(l_1, \dots, l_s') \Big) \Big) \wedge \Big(\bigwedge_{j=1}^{s'} \operatorname{ord}_t h_j(x, \xi) (T - c(x, \xi))^{\mu_j} = l_j \Big) \\ \wedge \theta(\xi, z, \overline{\operatorname{ac}} (T - c(x, \xi)), \operatorname{ord}_t (T - c(x, \xi))) \Bigg] \end{split}$$

where $\rho_1, \ldots, \rho_{r'}, \eta_1, \ldots, \eta'_r$ are RV-variables and l_1, \ldots, l'_s are Ord_1 -variables, and θ is the formula that says that $(x, T) \in A(\xi, z, z')$.

We can verify that χ_k defines the graph of a partial function $g_k: K^{r'} \times \Sigma^{s'} \to K$ whose domain is defined by the formula

$$\begin{split} &(\exists x)(\exists T)(\exists \xi)(\exists z)\Bigg[\theta_k \wedge \theta \wedge \Big(\bigwedge_{i=1}^{r'}\Big(u_i(\overline{\operatorname{ac}}(T-c(x,\xi)),\xi)^{n_1}d_i(\xi)\\ &\times (\overline{\operatorname{ac}}(T-c(x,\xi))-e(\xi))^{v_i}=\rho_i\Big)\Big) \wedge \Big(\bigwedge_{j=1}^{s'}\operatorname{ord}_t h_j(x,\xi)(T-c(x,\xi))^{\mu_j}=l_j\Big)\Bigg]. \end{split}$$

Call the formula in the brackets $\Psi_k(x, T, \xi, z, z')$. Then for all (x, T) such that $\exists \xi \exists z \exists z' \Psi_k(x, T, \xi, z, z')$ holds, we have $\zeta = g_k(\rho_1, \dots, \rho_x')$.

If for all i = 1, ..., r', $v_i = 0$ and for all j = 1, ..., s', $\mu_j = 0$, no further partitioning of the cell A is required, but we may need to constrain the parameter set C further to satisfy the requirements of the theorem.

For
$$i = 1, ..., r'$$
 such that $v_i \neq 0$ and $d_i(\xi) \neq 0$

$$\begin{split} (\exists \eta_i) \mathrm{ord}_p \eta_i &= 0 \wedge \eta_i^{n_1} d_i(\xi) (\overline{\mathrm{ac}} (T - c(x, \xi)) - e(\xi))^{v_i} = \rho_i \\ \Leftrightarrow (v_i \mathrm{ord}_p (\overline{\mathrm{ac}} (T - c(x, \xi)) - e(\xi)) &= \mathrm{ord}_p \rho_i - \mathrm{ord}_p d_i(\xi)) \\ \wedge (\overline{\mathrm{ac}} (T - c(x, \xi)) - e(\xi)) &\in (\rho_i / d_i(\xi))^{1/v_i} P_{n_1}, \end{split}$$

Also,

$$\operatorname{ord}_{t} h_{j}(x,\xi)(T - c(x,\xi))^{\mu_{j}} = l_{j}$$

$$\Leftrightarrow (\mu_{j}\operatorname{ord}_{t}(T - c(x,\xi)) = l_{j} - \operatorname{ord}_{t} h_{j}(x,\xi)),$$

for j = 1, ..., s'.

By theorem 1.1 of (Scowcroft & van den Dries 1988) there exists a partition of the \mathcal{L}_{Mac} -definable set $\operatorname{Proj}_{K^n}C$ into \mathcal{L}_{Mac} -definable subsets D, on each of which the definable function $d_i(\xi)$ is analytic. Thus, by partitioning the definable sets D further if necessary we can assume that $(\rho_i/d_i(\xi))^{1/\nu_i}$ have constant n_1 -th power residue, hence $(\rho_i/d_i(\xi))^{1/\nu_i}P_{n_1} = \lambda_i P_{n_1}$ for some $\lambda_i \in K$.

In the above description we notify the reader that our cell decomposition may contain 0-cells (if we have $l_j = \infty$, $\mu_j \neq 0$ and $\operatorname{ord}_t h_j(x, \xi) < \infty$ for some j).

Also, using the observation that given two n^{th} power residues having non-empty intersection, one of them must contain the other, we deduce that $\overline{\text{ac}}(T - c(x, \xi)) - e(\xi) \in \lambda_i P_{n_1}$ for some i.

Finally notice that a function given conjunctly by definable conditions is a function given by the conjunction of these conditions, hence the result follows.

The remaining statements of the theorem are left to the reader. \Box

REFERENCES

- [1] R. CLUCKERS F. LOESER, Constructible motivic functions and motivic integration, preprint, math. arxiv 2004.
- [2] J. DENEF, The rationality of the Poincaré series associated to the p-adic points on a variety, Invent. Math. 77 (1984), pp. 1–23.
- [3] J. DENEF, p-adic semi-algebraic sets and cell decomposition, J. reine angew. Math. 369 (1986), pp. 154–166.
- [4] I. Fesenko, Measure, integration and elements of harmonic analysis on generalized loop spaces, www.maths.nott.ac.uk/personal/ibf/aoh.pdf, 2003.
- [5] E. HRUSHOVSKI D. KAZHDAN, Integration in valued fields, preprint, math.arxiv 2005.
- [6] J. IGUSA, An introduction to the theory of local zeta functions, AMS/IP Studies in Advanced Mathematics, 14. International Press, Cambridge, MA, 2000.
- [7] A. MACINTYRE On definable subsets of p-adic fields, J. Symb. Logic 41 (1976), pp. 605-610.
- [8] J. Pas, Uniform p-adic cell decomposition and local zeta functions, J. Reine Angew. math., 399 (1989), pp. 137–172.
- [9] P. Scowcroft L. Van den Dries, On the structure of semialgebraic sets over p-adic fields, J. Symbolic Logic, 53 (1988), pp. 1138-1164.

Manoscritto pervenuto in redazione il 12 settembre 2005