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(S5, Sg)-Amalgams V.

WOLFGANG LEMPKEN(*) - CHRISTOPHER PARKER(**) - PETER ROWLEY(***)

Introduction.

In part IV of this present series the commuting case for (Ss,Se)-
amalgams was examined when o € O(Sg) for (o, o) a critical pair. This
paper and the succeeding two parts are devoted to the commuting case
when, for (o, ') a critical pair, « € O(S3). In fact the bulk of our work is
concerned with the situation 7(Gg, Vg) = 1, where f € O(Sg). Unlike Part
IV, for this situation, there appear to be no subamalgams which can be
exploited early on. Although a very precise description of V} is obtained in
Theorem 12.1 for our subsequent analysis we need to consider five sub-
cases. This subdivision, given in Section 12, is done according to the size of
coreg,Vp (a € A(f)) and also whether Vj/Zy is an orthogonal module or not.
Of the five possibilities three, as it were, are the “mainline” cases -
Cases 1, 3 and 4. We briefly discuss and compare each of these cases.

Case 3 is concerned with the smallest possibility for coreg,Vj, namely
coreg,Vp = Z,. This case has the most complicated possibilities for Vs /Zg,

with Vj/Z; being a quotient of (411 ) @1. For this case the core argument

(Lemma 9.9) is especially valuable as it often enables us to restrict the size
of certain commutators. Our scrutiny of Case 3 takes place in Part VI - the
end result being that this case cannot arise! For all the other cases we
obtain bounds on the parameter b which are pursued further in [LPR2]. At
the other end of the scale we have Case 1 with [V} : coreg, V] =2 (and
then Vy/Zp is a natural module). This, from the outset, is a very tight
configuration (for example, Vj acts as a central transvection on V,, /Z,, for
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(o, o) € %), which nevertheless requires a delicate analysis. By contrast
with Case 3 the core argument is no use here whatsoever. Case 4 (when
[V} : coreg, V] = 22 and Vi/Zp is a natural module) lies somewhere be-
tween Cases 1 and 3. The core argument is of little use and, initally, the
configuration has a greater degree of freedom.

We remark that central transvections make their presence felt in a big
way in Parts V, VI and VII. Indeed, without such transvections Cases 1, 2
and 3 would be virtually non-existent.

For ease of reference we continue the section numbering started
in [LPR1]. We make the most use of material in Sections 1 and 2, and it is
there we refer the reader to for notation and background results. Briefly
the contents of this paper are as follows. Section 11 is, mostly, a warm-up
for the work in Section 12 where the above mentioned structure of V; is
determined. Cases 1 and 2 are the subject of Section 13, the main con-
clusions being given in Theorems 13.1 and 13.11.

11. Some preliminary results.

For this paper and Parts V and VI we assume the following hypothesis.
HypotHEsIS 11.0.  If (a, o)) € &, then [Z,, Z,] = 1 and o« € O(S3).

Some elementary observations on this hypothesis are gathered in our
first result of this section.

LEmMMA 11.1.  Let u € O(S3) and 4 € A(u).

W) Gy Z,) = Z; = Q(ZG) = 212G,
(i) Cz,(G =1, GGN(Zﬂ) =Q, and Z,=7Z; x2Z, whenever
).1, 12 S A(,u) with ll 75 ).2.

(i) b=1@2) and b > 1.

(v) If X <Gy and X £ Qy, then [X,Z,]1 = Z; = Cz (X).
) If X < Q) is such that [X,V;]# 1, then [X,V,] = Z,.

i) [Q,, V1< Z,.

(vii) G 1s transitive on paths (11, A2, A3) of length 2 where 11 € O(Sg).

Proor. Let (o,¢/) € 4. Then [Z,,Z,] =1 implies Z, < Z(G,) and
hence 1(Z(Gy_14)) = Zy < Z¢ for all £ € A(o). Therefore b = 1(2). Since
G.p acts as an involution on Z,, [G.p,Z,] < Cz,(Gup) = 21(Z(Gyp)) = Zp.
Likewise [Guy-1,2,) < Zy-1. Hence Z,=ZpZ, 1 =[Gup,Zs)Z41. By
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Lemma 11.1(Gi) Cz,(G,) =1 and thus ZgsNZ,_; = 1. Hence, by orders,
Zg =[Gy, Z,). Since G acts edge-transitively upon I', we have verified (i)
and (ii).

Assume b =1 holds. Since, by part (i), [Z,,Qs] < Zs this then gives
1(Gg, Qp) = 0, contrary to the hypothesis Cg,(Qp) < Qp. Therefore b > 1.
For part (iv) we have G;, = XQ,, and so (iv) follows easily from (i).

Because [X,V;]# 1 there exists ¢ € 4(4) such that [X,Z;] # 1. Thus
X £ Q¢ by (ii) and now (iv) implies (v). Part (vi) is an easy consequence of
(v). While (vii) follows from G being edge-transitive and, as Ay € O(S3),
G, ;, being transitive on 4(72)\{/1}.

Our next lemma will be put to use after we have established Theo-
rem 12.1.

LEmma 11.2. If Vg /Zp contains either a matural or orthogonal Se-
module, then Q,Qp = G.p and [V, Qpl = Zp.

Proor. LetVp > X > Zg be such that X/Zy is a natural or orthogonal
Sg-module, and suppose Q,Qp # G.5. Then we have @, > Qp and so Q: > Qg
for all ¢ € A4(f) by Lemma 1.1(i), and hence Vjp < Z(Qp). If [V, Qpl # Z,
then, by Lemma 11.1(v), we also have V < Z(Qp). So, if the lemma is false,
we may view Vj as a GF(2) (Gg/Qp)-module. Appealing to Lemma 2.2(iv)

givesX =Y @ Cx(Gp) withY >4 or . In the former case Cx(Ggp) = Z3

1
and in the latter [Z : Cx(Gp)] = 2. In either case (using Proposition 2.5(1)

for Y = (%)) we obtain Q(Z(G.p)) > Zp, against Lemma 11.1(i). There-
fore Q,Qp = G.p and [V, Qg] = Zj, as required.

LEMMA 11.3.  Let (a0 e %" and put C=Cy,(0*(Gp)). Then Z,NC =Zy.

Proor. Since Cyz,(G,) =1, Z, is a direct sum of 2-dimensional irre-
ducible G,/Q,-modules. If Z, N C > Z; were to hold, then Z, N C would
contain a non-zero G,/Q,-submodule of Z,, against Lemma 1.1(ii).

Levva 114, Let (0,0) € 7. If 5Gsir,Vss1) > 1, then [Vsin
NQy, Vyl #1.

Proor. Suppose the result is false and, without loss of generality, we
take o =0 and o =d'. So n(Gs,Vg) >1 and [V3NQy,Vy]=1. Since
[V/g : V/g NQRy] < 23, [V/f : CV/;(VM)] < 2. If [Vy :Vyn Q/g] > 22, then
n(Gg,Vp) < 1.80 [V, : V,y NQgl < 2. Moreover, V, NQp < Q, implies that
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[V : Cy,(Z,)] <2, contrary to n(G.,V.,) > 1. Therefore V, NQp £ Q.
and, similarly, V,, £ Q.

(11.4.1) Zy 1| =2

By Lemma 11.1(Giv) Cy (V, N Qp) = Zy. Hence Lemma 11.1(ii) implies
Cz, . (Vy NQp) =1. So

1:Z171 mV/}’mQa’ :Zozflsz“

Since [V : VyNQpl <2, we have [V, :Cy,(Z,1)] < 22. Therefore, as
WGy, Vy) > 1, we get | Z, 1Q,/ Qx| = 2, which yields (11.4.1).

(11.4.2) Forx € Vg, [Vy:Cy, (@)] <22

Let x € V. From V,NQp £ Q, and Lemma 11.1(v) [V, NQp, V] =Zp.
Thus |[V, N@Qp,x]| <2 by (11.4.1) from which, as [V, : V, N@Qp] <2,
(11.4.2) follows.

If |V4Q./Qx| > 22, then Vj contains an element y, ¥ ¢ Q,, which
is not a transvection on some non central G,-chief factor in V,
whence #(Gy,Vy) <1 by (11.4.2). Thus [Vs:VpNQy]1=2 and so
[Vp : Cy, (V)] < 2. But then since V, £ Qp, this gives n(Gs,Vy) <1, a
contradiction. So the lemma holds.

COROLLARY 11.5. Let (5,0") € # and assume n(Gsy1,Vss1) > 1. Then
@) Vo1 NQy,Vyl=2Zg, [Vy NQs41, Vi1l = Zs11; and
(i) Vy £ Qs

Proor. Lemmas 11.1(v) and 11.4yield [V5.1 N Qg, Vy] = Zy. Suppose
Vs < Qs+1. Using Lemma 11.1(vi) gives

Zfs’ = [V{5+1 n Q(SU Vo"] < [V{5+17 Vg/] < Z(5+1

and thus [Vsy1,Vyl=Zy by orders. Then #(Gy,Vy) =0 which is im-
possible. Therefore Vy £ Qs,1. Hence we may find p € 4(¢/) such that
(p,0+1) € 7, and Lemmas 11.1(v) and 11.4 give the remaining part of (i).

LEmMA 11.6. Let (a,0') € 2 and asswme that n(Gg,Vp) > 1. If
|V Qp/Qpl < 2% then |VsQy Qx| = 2 = |V, Qps/Qpl-

Proor. By Corollary 11.5 we may find A€ A(f) such that
[Z;,Vy NQpl # 1. Lemma 11.1(iv) then gives Cz,(V, NQp) = Z; and so
CZ/»'QQI, Vyn Qﬁ) = Zﬁ. Since [V : CV,(« Z)<2[Vy,:Vyn Qﬁ] <23 and
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Gy, Vy) > 1, we infer that [Z, : Z; N Qy] < 2. Now V, NQp acts as an
involution on Z; N @, and hence

Z;NQuw,Vy NQpll =[Z,NQy : Zgl > |Zp|/2.

Because [Z; N Qy, Vo NQpl < Z,y N Zj we see that [Zp : Z,y N Zp] < 2. Let
xeVy and put Vy =V, /Zy. Then |[V, N Qp,xl| < |Zg| <2 (note that
Zp < Vy). Therefore [V, :Cy, (@) <2[Vy:VyNn@Qpl < 2% which, as
Gy, Vy) > 1, forces |VsQy/Qu| < 2. From Corollary 11.5 there exists
p € A() such that (p, f) € Z and so, as |VsQ. /Qx| = 2, we may repeat the
above argument to obtain |V, Qs/Qp| = 2. This proves the lemma.

Lemma 11.7. Suppose that b > 3, (a,o) € " and n(Gg, Vg) > 1. Then
U, <Gy

Proor. If U, £ Q,_2, then there exists o —2 e A?(x) such that
(0 — 2,0/ — 2) € Z. Applying Corollary 11.5 to (« — 2, — 2) gives

Zacfl = [VxLZ N Qo«.fl»fol] < Vauz < Qa’ y

as b > 3. Then Z, =Z, 1Zs < Qx, a contradiction. Therefore U, < Q,_».
Now, by Corollary 11.5, Z, =[VsNQy,Vy]1 < Vp and so [U,,Z,]=1.
Therefore

U, < CG,(/A (Zy) = G(x’—lfx’ )

as required.

LemMa 11.8. Let (o, o) € 2" and suppose b > 3 and n(Gg, V) > 1. Then
[UmVac’] ﬁ Uoc

ProOOF. Supposing [Ua,ym«] < U, we seek to uncover a contradiction.
Setting Py = (G.g, Vi) and Vy = Vi3 /Cy,(0*(Gp)) we first show that

(11.8.1) @) P/;/Q/; =~ S4 X 7o N
(i) »n(Gg,Vp) =2 and Vj is isomorphic to a direct sum of two
isomorphic natural Sg-modules
(ili) |Z,| =2 and |Zs| = |Z,| = 22.
(@iv) |Z1sz’/Qa’| =2and |[Za7V1’/Zot’]| =27
) Cz,(VaNGyp) =Zpg

From [U,,V,] < U, we have that Pg normalizes U, and hence Py # Gg
by Lemma 1.1@i). By the parabolic argument (Lemma 3.10)
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[V : Vi N Gagl < 2, and so [V, : V,y NQ,] < 22. Thus [V : Oy, (Z,)] < 22.
Therefore n(Gy, V) = 2with |Z,Q. /Qyx| = 2,[V. : Cy,(Z,)] = 2% and both
non central chief factors of V,, are isomorphic natural Sg-modules. Clearly
Ve £ Gyp and so we conclude that AP/;/Q/; >~ Sy x Ze. Combining
Lemmas 2.16 and 11.1(), (vi) gives (ii) for V,,, so proving part (ii). Because
Vy = (ZS" it follows from part (ii) that |Z,| = 22. Hence |Z,| = 2* and
|Zs| = 22 by Lemmas 11.1(Gi) and 11.3, and we have (iii). Also, by
Lemma 11.1(vi), Z, acts as an involution upon V,/Z,. By Lemma
ll.l(i) ﬂ(G“/,Vw/Z“/) =2 and so [sz/Z“/ : CVx//Zl/(Zot)] = 22. Hence
[ Zo, Vo ) Zy ]| = 22, so establishing (iv). Finally we prove (v). If
VinG.p <Qy then [V, :Cy,(Z,)]<2 which is impossible. So
V, N G«[f £ @, and thus Z[; = CZX(Vo:’ N Guﬂ). °

(11.8.2) Pg/Qy is the parabolic with restriction (2) on the non-central
chief factors in 17/;.

Suppose that (11.8.2) is false. Then, by (11.8.1)(Q),(i), Ps/Qp is the
1

parabolic with restriction (2) on all the (isomorphic) natural Sg-modules
1

in Vﬁ. From Lemma 11.1G) Z, < C?K(Gaﬁ). Let d be an element of order 3

in Pyg. Since d centralizes Cﬂ(Gaﬂ), we infer that 7, < CV,;(d). Thus

Zy UGyp,d) = Pp.

In particular, V,, normalizes Z,, and so [V, Z,] < Z,. From (11.8.1)(iv),(v)
|Z,NQy| =22 and Cz,(Vy N G,p) = Zp and consequently [Z, N Qy, V., N
NGyl #1. So [Z,NQy,V,]# 1 and an appeal to Lemma 11.1(ii) gives
[Z:NQy,Vy]l=Zy. Combining this with |[Z,,V,/Zy] = 22 (since
\Zy| = |Zp)) yields |[Z,, V1| = 2. But then

Zoc = [Z(zaVoc’] < Vo:’ < Qa’ )
contrary to (o, o) € Z°. With this contradiction we have proved (11.8.2).
(11.8.3) V5Qu /Qu| > 2%,

If |VﬁQU//ro’| b 227 then Vﬁ’Qa’ = Z,Q, Wwhence [‘// Vo /Zyl=
=24, V4 /Zy). Since Z,, < [Vg,Vy]by Corollary 11.5, using (11.8.1)(iii),(iv)
we see that |[Vy, V]| = 2!. Hence, as |Z4| = 22, |[V.y, V/Zg]| = 22. Conse-
quently V,, acts as a transvection upon each of the non-central chief factors in
TA//,». Together (11.8.2) and Proposition 2.5(viii) imply that O2(Pp)/Qy is ‘ahe
unique quadratically acting (upon each of the non-central chief factors in Vj)
E(23)-subgroup of each Sylow 2-subgroup of Ps/Qg. Then Proposition 2.5(iii)
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forces V,» < 02(Pp) < G, contradicting (11.8.1)(@). Thus we conclude that
|V[>’Qo:’/Qo:’| > 22-

(11.8.4) A contradiction

By Corollary 11.5 there exists p e A(«/) such that (p,p) e z. If
|V Qp/Qp| < 22, then applying Lemma 11.6 to (p, §) yields |V;Q. /Qx| = 2,
against (11.8.3). Therefore, as V, is elementary abelian, |V, Qp/Qs| = 23
and, of course, V, acts quadratically on V. Again, using (11.8.2) and
Proposition 2.5(viii), we deduce the untenable V,, < 02(Pp) < G,4. This is
the desired contradiction which completes the proof of Lemma 11.8.

12. The structure of V;/Z,.

THEOREM 12.1. Let (o, 0/) € Z. Then

(i) n(Gg,Vp) =1 with V/Zg isomorphic to a quotient of <11>691;
and
() |Z,| =22, |Zg| = 2.

Proor. First we suppose that b > 3 and 5(Gg, V) > 1 and argue for a
contradiction. So Lemmas 11.7 and 11.8 are available to give U, < G, and
(U, Vy] £ U,. Also, from Corollary 11.5, [V, V] > Z,. So if U,Qy =
= V4Qy, we then have U, = Vi(U, N Q,) whence, using Lemma 11.1(vi),
[U,,Vy]=1[Vp,Vy] <V < U,, a contradiction. Therefore U,Q, # VsQy.
Since U, is elementary abelian we infer that [V;Q, /Qy| < 22. Now Lem-
ma 11.6 and Corollary 11.5(ii) give

(1211) |V/3Qx’/Qz" = |V1'Q/3/Qﬁ| =2.
Put V/} = V[;/Zﬁ.

(1212) @) (Vy NQpQs = Gup.
(i) 7](Gﬂ7Vﬂ) 22 an_d there exists_XﬁﬂG/g with Z/; < Xﬁ < Vﬁ
such that Vi = X;Cy; (Gp) and X is isomorphic to a quotient

of <11) ) (i ) . Moreover, the two 4’s in X are isomorphic

natural Sg-modules.
(i) |Z,| =24, \Zg| = |Zy| = 22 and #(Gy, Z,) = 2.
By (12.1.1) [V : Vy NQp] = 2 and so, as n(Gy, Vy) > 1, Vy NQp £ Q..
Thus (i) holds, and [V :Cy,(Z.,)] = 22 with #(Gy,,Vy,)=2. Applying
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Lemmas 2.16 and 2.2(iv) to Vy = V,,/Z,, yields (ii) for V, so proving (ii).
Using Lemmas 11.1(i), 11.3, part (i) and the fact that Z(G,) = 1 gives (iii).
Set A(0) = {f, 00 — 1, 1}.

(12.1.3) WV : VN Qy 1] >2%.

From (12.1.1) we have Z,Q, = V3Q» and hence V,_1Q» > V;Q.. By
(1212), Uan(’ = fole’- Since Uocro’ 7& VﬂQx” |V171Q1’/Q1’| > 22 and
hence, by (12.1.2)(ii) and Proposition 2.5(iii), [X, : Cx,(V,_1)] > 24 If
[Xy NQy-1,V, 1] # 1, then by Lemma 11.1(v)

Zo«fl = [Xu’ N Qozfla Vacfl] S Vo:’ < Qoz’

whence Z, =7, 125 <Qy. Hence [X,NQ,—1,V,-1]=1 from which
(12.1.3) follows.

(12.1.4) Vyo <Qy_1 and [U,,Vy_s]=1.

Suppose Vy 2 £ Q, 1. Then there exists p e A(e' —2) such that
(p,o—1) € . Applying Corollary 11.5 to (p,a—1) gives Z, 1 <
<[Vy_2,Vy 11 < Vy_2 < Qy, since b > 3. This is against («,a') € Z, and
therefore V, o < Qy 1. If [V, 2,V, 1]1# 1, then Lemma 11.1(v) gives
Zy1=[Vy_2,V,.1] which again contradicts (x,«)€ %. Thus
[Vy_2,V,_1]1 =1 and likewise [V,,_2, V;] = 1, so we have (12.1.4).

(12.1.5) [V : VN Vy_o] > 24
This follows from (12.1.3) and (12.1.4).
(12.1.6) |[U,, VN Qg > 24V, :V,NV,_s] and (hence) [[Uy, Vi ﬂQ/;]|228.

In view of (12.1.3) V,, N Qp N Q, must act as at least a fours group on
Vu-1/Zy-1, and thus [V, N Qp N Qy, V,—11| > 2% by (12.1.2)(ii) and Propo-
sition 2.5(iii). Further, we observe, as [V, NQgNQ,,V,-1] <V, and
Vw N Qg interchanges 4 and o — 1, that

(Ve N Qﬁ N Qoz; Vel =V N Q[)’ N Qm V)] <Vear N V/l .

Let t € Vy NQp be such that V, nQs =V, NQsNQ,)(t). Then, as ¢
normalizes V, 1V, and V, 1NV,, we have |[V,1V,/V,.1NV,,t] =
=[V,.1:V,.1NV,;]. Now

(V. N Qﬂv Va—lv/l] =[Vy N Q[} N Qou Vafl][ta Vocflv/l]
from which we deduce that

Ve N Qp, Vet Vil| > 2 V,1 : Vo NV
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So, by Lemma 11.1(vii),

Vo N Qp, U]l > 2 [V : Vi N V2.
This, together with (12.1.5), yields |[V,, N Qg, U,]| > 28,
12.1.7) U, doesn’t act quadratically upon X, /Z, .

Suppose (12.1.7) is false. Then, combining (12.1.2)(ii), (iii) and Propo-
sition 2.5(ii), we have |[U,,X,]| < 28, Noting that [U,,X,]1= [U,, V],
(12.1.6) forces

[UOHVOL'] = [UamVx’ N Qﬂ] < Uxa
contradicting Lemma 11.8. Thus (12.1.7) holds.
12.1.8) Gy, Uy) > 4.

Set U, =[U,,Q,i] and V5 =[V,Q,;il. From (12.1.2)(i) and
Lemma 11.2, G5 = Q.,Qp. Hence V/;(?’) # 1 by Proposition 2.5(1). Our aim is
to show that U # V& and U,® # V®. As a consequences (see Lemma
1.2v) U,/ U,Y, U,Y/U,®, U,®/U,® all contain at least one non-central
chief factor for G,. Because G, Vﬁ(S) #1, V/;(3) NZg#1 and so
Gy, U,®) # 0 by Lemma 1.1(ii), we then obtain (12.1.8).

Suppose U,Y =V;©. Then [V,,Qy 1]1=[Vy 2,Qr 1] and so, by
(12.1.4), U, centralizes [V,,Qy_1] = [X,,Q,_1], contrary to (12.1.7). If
U,? =V;®, then likewise U, centralizes [X,, @, 1,Q, 1] which again
contradicts (12.1.7). Therefore Ua(l) #* V/;(l) and Ua@) =+ V,;(Z), as desired.

(12.1.9) U,Q./Q, is the non-quadratic E(23)-subgroup of G, 1,/Qx
acting on X,/ /Z,.

Since [Z,:Z,NQy] =2, (12.1.2)(1), (ii) imply that [Z,NQy,VyN
NQpl # 1. So there exists p € A(«') for which [Z,NQy,Z,] # 1. Thus
Z,;NQy £Q, Note that [Z,:Z,nQp] <2 by (121.1). Hence
Z,NQp £ Q, for Z,NQp < Q, would imply [Z, : CZ/,(Z% NQy)] <2 and
thence #(G,,Z,) < 1, contrary to (12.1.2)(iii).

Now

(U, : CU«(meQ/f)] <[U,: U:mep] <2U,:U, szx’]

and therefore (12.1.8) forces [U, : U, N Q./] = 23. Thus, by (12.1.7), we have
established (12.1.9).

We are now in a position to deduce the desired contradiction.
Combining (12.1.9), (12.1.2)(ii) with Proposition 2.5(viii) we get
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[X, : Cx,(U,)] > 25. Therefore [V, : V, NV, _2] >2° by (12.1.4). Hence
(12.1.6) forces |[U,,V, NQpl| > 2. Since |Z,| =22 and Z, < [U,,V,],
(12.1.2)(i) implies |[[U,, V]| < 219, Consequently

[Uavvx’] = [Uoca Vct’ n Qﬁ] S Ucc,

again contradicting Lemma 11.8. This completes the proof that
n(Gp,Vg) =1 when b > 3. Now we examine the situation 7(Gg, Vp) > 1
when b = 3.

(12.1.10) () Zyso < [Vp, Vil;
(i) either |V3Q./Qx|=|V.Qp/Qpsl=2 or |VsQ./Qx|=
= |V0’Qﬂ/Qﬂ|: & .
(iii) 7(Gy, V) =2 and, for i =1,2, there exists X}’ <Gy with
Zp < X(Z) such that Vj = X(DX(Z) and X(l)/Z/; =4 or (?)
Further the 4’s in X W and X (2) are isomorphic.

Part (i) follows from Corollary 11.5(i) while Corollary 11.5(i) and
Lemma 11.6 imply (ii). For (iii) we first note that (i) gives [V, G4l =
If |V3Qu/Qu|=|VuQp/Qpl =2, then [V, :Cy,(Z,)]=2" and so
(G, Vy,) =2 with both non-central chief factors being isomorphic nat-
ural modules. Using Lemma 2.16 and [V,,G,] =V, yields the desired
structure of Vj in this case. Turning to the latter possibility given in (ii)
we deduce, just as in Lemma 11.6, that for all x € Vy [V, : Cy, (x)] < A
Hence #(Gy,Vy) =2 and, as Vj acts as a quadratic E(23%)-group on V,,
both non central chief factors are isomorphic natural modules. Appealing
to Lemma 2.4 and Proposition 2.7(ii) completes the proof of (iii).

By (12.1.10)Gii) Vj/Zp is a quotient of (?)@(%) Put Y=
= CVK(OZ(G/;)) and, for i = 1,2, let Y/(;) be such that Yy < Y“) Y(l) 4Gp and
Y(l) /Yp =24 with Vp/Yg = Y(D /Yp x Y(Z) /Yp. Let Y(3) denote the inverse
1mage in Vg of the dlagonal submodule Clearly Vi = Y“) YO) for
1#£7€{1,2,3} so, without loss of generality, we may assume that
Y, £ Qpand VP £ Qy.

Assume for the moment that |V3Q. /Q. | = |V.Qp/Qs| = 2. So Y;,l) acts
as a transvection upon each of the non-central chief factors within Vj. If
(YD N Qg V5l #1, then E@2) = Z; < [YP NQy, Vj] whence [V V] =
=~ E(2%). However considering Vj acting upon Y;,l) yields, as Vj acts as a
transvection upon Y(l) /Zy, that [V, Ya)] = E(23). Thus we conclude that

(Y NQp Vsl =1 and, similarly, Y(2> NQsVsl=1. So YVNQp=
— CY(:’)(‘//;) for 7=1,2 and, in partlcular Yo(f) NQp > Yp. Since
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Y9 Y NQsl=2=[Vy:V,NQl and, for i =1,2, Y £ Qp, we see
that V, N Qg = (Y;,D N Q/;)(Y;,Z) N Q/;)Y;,g). In particular Yf’) < Qp and, since
Gy, Y& =1, Y¥ £ Q,. Therefore Zy=1[2,,YP1<V?. But then
Ve = Yf’) which is impossible. So now we only need consider the possibility
[VsQy/Qu| = |V4Qs/Qp| = 23. Recalling that Z, <[V}, V,], Propositio-
n 2.5(ii) implies that

[V, V/f] > Zy [X(D Goryr—1; 2] [X(Z) Ga’x’fl;z]-

Since [V, Vg] < Cy, (V) we see that
Vi, Vil = Zy [ XD, Gr-1;2] [XP, Gy 1;2] .

of o

Because [V, :VyNQgl= 23 we have V,nN Qp = ()[Vyy,Vg] where
X* = X122 With x; € XS,). Since [V, NQp, Vgl =Zg < Zyyo, [, V] < Zyyo.

Set Vy =V, /Y,. Then V, = XP x X® >~ 434 and by Lemma 11.3
Zyio = Zyra N XP) X (Z12 N XP) = E(22). Since )@ 4G, we infer that
[;, V] < Zyy2 N XS) (1 = 1,2). Without loss of generality we may suppose
71 ¢ (X, Gy1:2] (because Vy NQp # [V, VD). So (@)X, G121 =
=~ F(23) with

[V[ia <%1> [@7 Ga’a’fl; 2]] < Zac+2 ﬁXo(}) .
But Proposition 2.5(ix) shows this to be impossible and so we have ruled out
the possibility #(Gg,Vg) > 1 and b = 3. Therefore we have shown that

#(Gg, V) = 1. The remainder of the theorem follows from Proposition 2.9(i)
and Lemmas 2.2(iv), 11.3.

LEMMA 12.2. Let (OC7 OC/) € 7 and A(OC) = {;L], ﬂg, }3}

() Q(Z(Gop) = Zg = 7 and X(Z(Q,) = Zy = Z,, X Z,;, 2 E(2?),
1<i<j<s
(i) Gy = Q.Qp and [V, Qpl = Z.
(iii) coreg, V/; = V/L-, N V/1j, 177

(V) Zy < QZQp) < ( ! )

Proor. (i) is mostly a restatement of Theorem 12.1; 1(Z(Q,)) = Z,
follows since Z, is a projective G,/Q,-module and Q1(Z(Q.p)) = Zp < Z,.
Part (ii) follows from Theorem 12.1 and Lemma 11.2.

If {i,j,k} = {1,2,8}, then clearly G,;, normalizes V;, NV;,. Also,

Vi, NV, @1 <[Vy,,Qul1 < Z), <Z, <V,,NV,,.
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Using part (ii) we now see that V,, N Vij <G,, so proving (iii).
Turning to (iv), we set M = Q,(Z(Qg)). Observing that M is a Gy/Qp-
module with soc(M) = Zg we have M—P(1). Since |Q1(Z(Gp))| = 2, Pro-

position 2.5(1) implies that M doesn’t contain submodules of type (?)
Hence M < (} > by Lemma 2.4.

We will make frequent use of Lemma 12.2; often without specific re-
ference.

LEmmA 12.3. Let (o,0') € © and suppose that coreg,Vy > Zy. Then
Vi) Zg is isomorphic to 4 or (;1)

Proor. Since coreq, Vs > Z,, [coreg, Vs, Q,] #1 by Lemma 12.2(3i).
Clearly [coreq,Vj,Q,]<4G, and so Lemma 12.2(i) implies that Z, <
< [coreg, Vg, Qy). Hence

Zy < [eoreg, Vi, Q] < [Vi, Ggl

and therefore Vj = [V, Ggl. Now the lemma is a consequence of Theo-
rem 12.1.

LEmMA 12.4. Let (o, o) € . Then

() [Qp, 0*Gp) £ Qs in particular Q, NQ, 7Gy.
(i) Gy = 0%(Gp)Qs.

ProoF. (i) Put Ry := [Q4, 0%(Gp)] and assume that Ry < Q,. Clearly,
Ry<Q:=Q,NQ; and so Q4Gy with Q = Cg,(Z,) = Cq,(Vy). Since
[Qs:Q1=2 we get 22> [Q1(Z(Qp)| > |Cv,(Qp)| > /[Vs] and hence
|V < 2%, a contradiction. This proves ().

(ii) If Ly := OXGy)Q, # Gy, then [Gy: Lg] =2 with @, € SylsLyg; so
Q. N Qp = Oa2(Lp) <Gy, but this contradicts (i).

Let (a,0/) € " and put Y = CVﬁ(OZ(Gﬁ)). Assume that Y| = 22. We
now define

F,=(Y;| )€ Aw) = <YﬂG’>
and

H[f = <F,u |,u € A(ﬂ» = <FocG/l>-
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Clearly F', <G, and Hp <Gg. Some less obvious properties of these groups
are given in the next lemma.

LEMMA 12.5.

@) 7(Gy, Fy) =25 and
(i) n(Gg,Hp) > 2.

Proor. (i) First we observe that Z, <F, and, as |Yp| = 22 that
WGy, F,) <2.If 9(G,, F,) =1, then I, = YpZ, and hence

[Q“,F“] = [roa Y/fZa] = [Qm Y/f] < Z/)’ < Zoc-

Since [Q., F',1<4 Gy, we then get F, < 21(Z(Q,)) = Z,, which is impossible.
Thus #(G,, F,) = 2.

(i) Since Z, < Fy, clearly Vp < Hpg. So if (ii) is false, then Hg = F, V.
Hence [F, V3, Q3] <Gg and

[F V5, Qpl = [Fy, QsllVp, Qpl = [Fy, Q) Zs .

By Gy=@QQs and () [[F,, Q) >2* and so [F,Vj,Qs]=[F, Q.
Because F,/Z, ~2 or 2® 1, we see that |[F,, Qsl| < 23 and therefore
[F,,Qp] is centralized by OZ(G/;). Consequently Z, £ [F,,Qs] and so
Z,N[F,,Qpl = Zy. Next we consider

[F77Q’10Qﬂ] S[FmQa]m[FmQﬂ]:Zocm[FomQﬂ]:Zﬂ

Therefore [VgF,, Q. NQpl < Zp. So Q,NQp < Cq,(VpF,/Zp). Recalling
that [F,Vs, Qpl = [F, Q] has order at least 22 we deduce that @, N Qp =
= Cq,(VgF,/Zp). But then @, N Qs <Gy, contrary to Lemma 12.4(i). This
completes the verification of (ii).

The groups F', and Hj will be important in later arguments in, for ex-
ample, Section 13 and Part VI. Now we return to examine further the si-
tuation in Lemma 12.3 in our next lemma, where F, makes a brief ap-
pearance.

Lemma 12.6. Let (a,0) € ©, and assume that coreqg Vg=1V, 1N
N V/} > Z,.

o If V/;/Z/; ~4 then V, 1N Vﬁ = [Vv/;, Gaﬁ] or V,.1N Vﬁ =

(i) Assume that V/Zg =~ (;1), and set Yy = Cvﬁ(OZ(G/;)). Then

Y £V, NVgand Yp(V,—1 N Vp) # Vi Hence one of the following holds:
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(a) (b)

Furthermore, in both cases, [V, G.s; 3] = Z,.

Proor. Part (i) follows from V, ; NV <G,z and the structure of a
natural Sg-module.

(ii) Suppose Yy(V,_1 NVp) = V. Then, employing Lemma 11.1(vii),
Y, ,(Vy_onNV,)="V,. Since [Z,,V,_2] =1, this gives [V,,Z,] < Y,, con-
trary to #(G,,V,) = 1. Therefore Yp(V,_1 N Vp) # Vp. If Y3 <V,_1 NV,
then V,_1NVs<G, implies that F, = <Y/§;“> < V,-1 NV In particular,
[Fy, Qs < [V, Qpl = Zg which, as G, = Q,Qp, yields that n(G.,, Fy/Z,) = 0,
against Lemma 12.5(0). So we conclude that Y3 £V, ;NVj;. Since
Va1 NV > Z, and Yp(V,—1 N Vp) # V;, we obtain the two indicated possi-
bilities.

We now subdivide into the following cases:

Case 1. V/;/Z/g ~4and V,_1 N V/; = [V/;, Gaﬂ].
Case 2. Vj/Zy = (‘i) and Lemma 12.6(ii)(a) holds.

Case 3. coreg, Vy=V,_.1NVy=12,.
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Case 4. V/;/Z/; ~4andV,_1 N V/; = [Vﬁ, Gx/;, G“/;].

Case 5. Vj/Zy = (‘f) and Lemma 12.6(ii)(b) holds.

Consulting Theorem 12.1 and Lemmas 12.3, 12.6 we see that Cases 1 -
5 exhaust all the possibilities.

Before confronting Case 1 in the next section, we give one further re-
sult. This result is particularly useful in dealing with Case 3.

LEmvMa 12.7. Let (a,0)) € %, and put A=d —2, R=[VpV,]
W," =[W,,Q,1V;, L, = 0%G,) and P, = (Ws,Qy_1). Then the following
statements hold.

() If L; normalizes VR, then R < coreg, Vi, =V, NV,.
(i) V,R is normalized by L, if any one of the following conditions
18 satisfied.
(@ nG,,W,"/V;)=0.
(b) b <5, Z,R 1s normal in Gy_1, and P; > L;.
() b<5, Zy 1R is normal in Gy_1, and P, > L.

Proor. (i) Put X=V,R, @Q;=1[Q;,L;], Y,=0Cy(L;) and
N = Z,[X,Q,"]. Let A — 1) = {4, p,'}. Note that N = Z,[R, Q;"].

12.7.1) IRV, N V)V, NV, <22

If |V4Q./Qy| > 22, then Theorem 12.1 and Proposition 2.5(ii) gives
\RZy-1/Zy-1| <22 and, if |VsQy/Qy| =2, then |RZ,/Zy| < 2% so also
giving |RZ,_1/Z,_1| < 2. Hence we have (12.7.1).

Since L; normalizes X by hypothesis and by (12.7.1), [X : V] < 22, we
deduce that [X,L;] < V). Hence N < V. We next investigate the location
and order of [R,Q;"]. By Lemma 12.4() Q;" = (t)(Q;" N Q,_1). Clearly

[QZ* N Qa’—lyR] < [QA* N Qa’—ly Va’] < Voc’ )
and so
Q" NQy-1,RISNNV, <V,NV, =coreg, Vy.

Therefore [R,Q;"] < [t,R]coreg, V. Since t acts upon V,V,/V,NV,,
which is abelian, we note, using (12.7.1), that |[¢, R]coreg, | Vi /coreg, V. |<
<22

Now assume that n(l;, N) # 0. So, by Theorem 12.1(3), V, = Y,N =
=Zy N =Zy1[R,Q;"] < [t,Rlcoreg, V.. Therefore [V, :V;NV,]<
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<22 So Vy/Zy =4 or (11) by Lemma 12.3. If V,,/Z, =4, then by

Proposition 2.5(ii),(iii), we have (i). While if V,//Z,, = 11

in case (a) of Lemma 12.6(1ii), whence |RZ,/Z,|=2 and then
[V, :V,NnVy] <2, a contradiction. So we may suppose that n(L,,N) = 0.
Hence Z;~ < N < Y,{, and so 1= [N,LA] = [R,Q}L*,L;L]. Since [Qi*vL/l] =
= @,", the 3-subgroup lemma yields

, then we are

[Ql*;X] = [Q)»*7L),7X] = [L/UX? Ql*] S [V).JQ/’{*] g Z)v .

Hence [Q,",R]1<Z; <R, and so ;" normalizes R. Therefore R <
<V,NnVy by Lemma 12.4(31), giving (i).

(ii) Suppose (a) holds. Since V3 < Qpand V, < W;, R <[W,,Q;] < W,*
and hence V)R is normalized by L,. Parts (b) and (c) follow from the fact
that [Wy, R] = 1.

13. Cases 1 and 2.
First we consider Case 1, our main conclusion being contained in

THEOREM 13.1.  Suppose that (o,0') € Z, Vg/Zp =24 and V,_.1NVg =
= [V}, Gp). Then b € {3,5}.

The description of Wy for 0 € O(Sg) given in Lemma 13.4 plays a sig-
nificant role in establishing Theorem 13.1. The proof of Lemma 13.4 is
itself heavily dependent upon Lemmas 13.3 and 2.16. Use of Lemma 13.4
then enables us to show that [V, 3, W, ] < Z,, for (o, o) € . This turns out
to be a telling blow. Our next step is to rule out the possibility that
[Vyi3, Wy ] = 1. Then, knowing that [V,.3, W, ] = Z,,, we readily conclude
the proof of the theorem.

Let («, ') be a fixed critical pair of I'. Until the end of Lemma 13.10 we
assume the following

HYPOTHESIS.

Q) Vy/Zp = 4;
(i) V,_1NVj =1[Vy, Gyl and
(i) b>17.

Note that VynV, 1 =[Vs, Q. =1V, 1,Q, and [Vy:V;NV, 1] =2.
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Further, by Lemma 11.1(vii), we have that [V, : V,NV;] =2 for all z,
0 € O(Sg) with d(z, ) = 2.

LeEmma 13.2.  Let (0, 2, 7) be a path in I of length 2 with 6 € O(Sg). Then
(Q:NQQ;s/Qs is contained in the non-quadratic E(23)-subgroup of
Gs,/Qs acting on Vs/Zs.

Proor. Since [Q.,V,] = Z,,

([Vs,Q:),QNQI=[Vs NV, Q:NQ] < Zs.
Thus
([Vs,G5:1/ 25, QN Q) < Z:Zs) Zs = Z; ) Zis = Cy,7,(Gsz)

and the result is now a consequence of Proposition 2.5(vii).

LemMa 13.3. There exists an involution y € G,p\Qp such that
[Ws/ Vi : Cyw, v, ()] < 22

PROOF. Suppose that statement is false. So [W/Vj : Cy, v, ()] > 23
for all yeG,u\Qs with y*=1 and hence, as n(Gp Vp) =1,
[Wg/ Vg : Cw,v,()] > 2* for all y € G,p\Qp with y* = 1. In particular we
have

(13.3.1) [W. : Cw, (x)] > 2* for any « € V5\Q. -
We first show that
(13.3.2) Wy £ Gyis.

Supposing that W,, < G, 2 we argue for a contradiction. Now we have
either

(@ Wyn Q/f g Q:x or
b) Wy NQy < Q..

Assume that Case (a) holds. Then Z; = [Z,, W, N Q3] < W, and hence,
as b > 17, Wy centralizes Z3Z, 3 = Z,.». Since W, < G,,2, we conclude
that W, < Q.42 < Gp. Because Wy, is abelian, W, acts quadratically on Vg
and thus |[W,, V]| <2® by Proposition 2.5(ii). Hence, for x € V5\Q,,
Wy, ]| < [Wy, V]| <22 and so [W, : Cw, (2)] < 23, contrary to (13.3.1).

Therefore W, NQp < Q,. If W, < Quy2, then [W, :Cw, (Z,)]<
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< |W,Qs/Qp| < 2® again contradicting (18.3.1). Thus W, % Q,2. Since
W, < G,yg, this implies [W,/, Z,,2] # 1. Now V,,3 NV, 5 is centralized by
W, and has index 2 in V, 3 and therefore

Vtx+3 = Z1+2(Va+3 N Va+5)~

Consequently W, N@Q, 2 centralizes V,,3 and, in particular, centralizes
VN Vs =[Vp, Quiel. Hence |(W, NQui2)Qp/Qpl <2 and so, as
Wy : Wy N Qyy2] < 2, we obtain [W, : W, N Q,] < 22 once again contra-
dicting (13.3.1). Thus we have proved (13.3.2).

(13.3.3) VN Viys # Virs N Viys .

It V[)’ N V(x+3 = Voc+3 N Va+5; then P = <G9<+20(+37 Ga{+3a+4> # sz+2~ Now
W, centralizing V, 3 N V,,5 and Proposition 2.5(viii) yield W, < Oz(P) <
< Gyy2413, Which is impossible by (13.3.2). So (13.3.3) holds.

(1334) (1) WynNQ.3 < Q2
(i) |Wy N Qui3)Qs/Qp| = 22
(i) Wy NQuisNQp £ Q.

Suppose that Wy N@Qy3 £ Q2. So, since W, NQui3 < Gz,
[(Wy N Quy3, Zay2] # 1. Hence, as Z, 2 = ZpZ, 13, [Wy N Q.3,Z5] # 1 and
s0Zg £ Wy. This then yields that W, N Qg < Q. Now, just as in the proof of
13.3.2), Vi3 =V,3NVyi5)Z,.2, whence [Wy, NQ,i3N Quig, Viigl =1.
Therefore |(Wy N Quis N Qui2)@Qs/Qpl <2 and so [W, : W, NQpl < 23
which, as W, N Qs < Q, contradicts (13.3.1). Thus W, N Q.13 < Q.2, and
we have (i).

Because W, N Q.43 actsquadratically on Vg and, by (i), (W, N Q.13)Qp/Qp <
(QOH—S onH—Z)Qﬂ/Qﬂ we see that |(Wx’ N Qz+3)Q/)’/Qﬂ| < 22. In view of
(18.3.1) and [W,:W,NQ,3]1=2 (by (13.3.2) we must have
Wy N Qyr3)Qs/Qpl = 2% and Wy N Qy3 N Qs £ @, s0 giving (ii) and (iii).

(18.3.5) VyNVous3 > [WyNQurs, Vi1 > Zyio  with |[Wy N Ques, Vil = 2°.

Since Wy N Qi3 < Qur2 < Gpyro, we clearly have [Wy NQuq3, V] <
< VgNV,i3. From (13.3.4)(iii) we observe that Zz < [W, N Qy3, V] By
(13.3.1), (13.3.4)(ii) and Proposition 2.5(ii) we have that (W, N Q,3)Qs/Qp
is Z(Gpy12/@Qp) or is Gp,12/Qp-conjugate to (sq,t). In either case we obtain
Wy N Qurs, Vil = 22 and [Wy N Quys, Vsl > Z,.9, as required.

(13.3.6) Wy N Qs Vil = ZyioZiysa
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From (13.3.5) we see that (W,/, G,12,+3) is a parabolic subgroup of G, 3
which normalizes Z,.2/Z,.3. Hence (W, G, 2,+3) also normalizes
[Viis, Qui2l/Zois = VN V,y3/Z,43. Using (13.3.3) we deduce that

[(Vias, We 1 =[(V N Vi) Vs N Vii5), Wil
=V Vs, Wyl <V V3.

Since W, acts as a central transvection on V,.3/Z,.,3 (by (13.3.2)), it follows
that Z, 4 <Vyn V3. If Z,0y £[Wy N Quys, Vgl, then, by (13.3.5),
VN Vs = ZyalWy N Quss, Vpl. But then W, N@Q,.3 centralizes
Vs N Vs, contradicting (13.3.4)(i). Thus Z, 4 <[Wy NQuy3, Vil If
Zyio = Zyra, then (Wy, Gyioy18) = (Gyisoia, Guroyts) Which in turn implies
Vits N Vioss = Viig N Vp, against (13.3.3). So Z,42 # Z,.4 and now (13.3.5)
gives (13.3.6).

We now show that Z,.4 <V,, from which we will derive our final
contradiction. Since [V43, W, N Q,13] = Z,43 (else W, N Q43 centralizes
Vi N V43, contrary to (13.3.4)(i1)), it is clear that [V, 3, Wy] = Z,,4. Let
o + 2 be such that d(o/, o + 2) = 2. By the minimality of b, V.3 < G, .2
and V,,3 centralizes V,. Hence [V,.3,Vyi2]l<Z,y1 <V,. Conse-
quently [V,.3, Wy]1<V,, and thus Z,. 4 <V,. Combining this with
(13.3.6) gives

[Vﬁ, (Wx’ N Qa+3)/Vx’] = Za+2Z1+4Vx’/V1’
= ZotJrZVot’/Va/ = ZﬂVx’/VI’ .
So for & =Vp\Quw, |[x, Wy NQys3/Vy1| <2, whence [W, /V, : Cy, v, (0)] <
< 22, contrary to our supposition. This completes the proof of Lemma 13.3.

For the next result we require the following notation. Let 0 = O(Sg) and
y € A(9). Then we put

A, y) = {t € 40) | Z £ [Vs,Q,1}.
LEMMA 13.4. For any y € Ap),
Wp= (U |7 € 4B, U, .

Proor. Lety e 4(f). By Lemma 2.10(Gii) [{Z, | T € 4(f,y)}| = 8 and so
we have Vp=(Z,|tec Af,y). We now investigate the sections
Wﬂ/[Wﬁ,Qﬁ]V/g and [Wﬂ,Qﬂ]Vﬁ/Vﬁ. From [V/; : Vﬁ NV,q]l=2it follows
that U,/VpnV,.1 22 or 2&1 and so [Wg,Qp, Q] < V. So these two
sections are modules for G;/Qg. By Lemma 13.3 we may find an involution



250 Wolfgang Lempken - Christopher Parker - Peter Rowley

x € G,5\Qp such that
(Wi /IWg, QpIV} : Cw, jrw, v, @] <27 and
Wy, Q1Vs/Vs 2 Cw, . quw, v, @]<2%.

Furthermore, Wp;/[Wg,QslVy is generated by U,[Wg,Qsl/[Wg, QslVp
which has order 2 and is centralized by G,g. Similarly, [Wg, Qs]V;/Vj is
generated by [U,, Qz1Vs/Vs which has order at most 2 and is centralized by
G.p. Applying Proposition 2.15 to each section yields that Wy /[Wp, Q1Vp is

a quotient of 4 ) @1, as is [Wy, Q1Vp/Vy. Proceeding as in Lemma 5.17

1
gives the lemma.

LEmma 13.5. [V, 3, W,]1< Z,.

Proor. By Lemma 134 W, = (U, |t € A, o' — 1))U,_1. The mini-
mality of b implies [V,.3, U,_1] = 1. Now let = be an arbitrary element of
Ao/ o' — 1), andlet 0 € A(x)\{«'}. Since V,13 < Q. < Gsand [V,3, V] =1,
V.13 acts as at most a central transvection on Vs/Zs. Hence [V, 3, V5] < Z,.
Also, as [V,43, Vsl < V.3, Z, centralizes [V,.3, Vs]. Since 7 € Ao/, o/ — 1).
Z: LV, Qual=VyNVy 2 =Cy,(Z,). Hence [V,3,Vs1<Cy, (Z,)NZ, =
=Zy.S0[V,y3,U.] < Z,, which completes the verification of the lemma.

LEMMA 13.6.

@) If [Voc+37 Wac’] =1 then [V[fa Woc’] = Zoc+2 and W(Goc’a Wx’) =2
Qi) If n(Gp, W) =2, then [U,,QsIVy = [U,, QsIVy for all y € A(p).

Proor. (i) From [V,,3, W, ] = 1it follows that W, acts upon V;/Zs as
at most a central transvection of Gg,.2/Qgs. Hence [V, W, ] < Z, 2 and so,
as n(G,, W) > 2, part (i) follows. The assumption #(Gg, Wp) = 2 implies
that n(Gg, [Wp, Qs1Vs/Vp) = 0, which gives (ii).

LEMMA 13.7. Let t € A(e/,o — 1) and y € A(r). If n(Gg, Wp) =2, then
[(W,, Vo5l = 1 in particular W, < Gyys.

Proor. Using Lemma 13.4 gives W, = (U, | p € A(y,7))U.. Clearly
[U.,V,.5] =1. Now let p € A(y,t). Since V,,5 acts as at most a central
transvection of G,,Qn on V,/Z, for o€ Alp), we conclude that
(U, Vassl < Z).
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Our present situation is as indicated.

a' -1 a

p

F.
4 g

U.)'

Suppose that [U,,V,i5]1 > Z,. Then, since b>7, Z, centralizes
Zyly =Z, and hence Z.<Cy,Z,) =[Vy,Qy 1], contrary to
T € Ao, o/ —1). Therefore [U,,V,i5]1=Zy for some o' € A(p)\{y} or
[U,, Vai5] = 1. Suppose that the former possibility holds. Then because
p € A(y,t) we have

Vy = (Vy N Voc’)Z(/)’ = (Vy N sz’)[Upa ch(+5]-
Noting that [U., Q. 1Vy has index 2 in U, and V, £ [U,, Q« 1V, we obtain
Ur = [Ura Qa’]Va’Vy = [U‘[7 Qx’]Va’[U/)a Vot+5]~

By hypothesis #(Gg, Wg) = 2 and thus [U,, Q. 1V, <G, by Lemma 13.6(ii).
Since b > 7, [Z,,[U,, V,45]] = 1, whence

WU, Z,] = Uz, @IV, Z,] < [Ur, QulVy < U

Consequently U, is normalized by (Z,,Gy.) = Gy, using Lemma 2.10(v).
This is impossible, and so [U,, V,.45] = 1 must hold. Since p was an arbitrary
vertex in A(y, 1), [W,, V,45] = 1.

LEmMa 13.8.  Suppose that [W,,,V,.3]1 =1, and let T € A/, o/ — 1) and
y € A\{c'}. Then [W,,V,3] =1 and, in particular, W, < Gg.

Proor. From Lemma 13.6(0) we have n(G,,W,)=2. Because
[Vii3, Wyl = 1 by hypothesis, [V,43,V,] =1 and V,;3 < Q, for all p € A(7).
Let p € A(y, 7). So V.3 acts as at most a central transvection on each V,,/Z,,
for o € A(p). Hence [V,.3,U,1 < Z,. If [V,43,U,] > Z,, then, as in Lem-
ma 13.7, we obtain 7 ¢ A(e/, o' — 1) (note that W, < G153 by Lemma 13.7).
Thus [V,43,U,] < Z.y for some o' € A(p)\{y}. If [V,,3,U,] = Z. holds,
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then arguing as in Lemma 3.7 we first obtain U, = [U;, Q»1V.[U,, V.43l
and thence U,<(Z,,Gy.) = G,. So we conclude that [V,3,U,] =1 and
consequently [V,,3,W,]=1 by Lemma 13.4. Now Lemma 13.7 and
[Vigs, W,] =1 yield W, < Gp.

LEMMA 13.9. [W(x/, Va+3] = Za/.

Proor. If the lemma is false, then [W,,V,.3] = 1 by Lemma 13.5. So,
for z € A(o/, o/ — 1), Lemma 13.8 implies that G.*! < G4 with G.'Y'Q;/Qy at
most a central transvection of Gg,,2/Qp on Vi /Zs. Using Lemma 13.6(i) we
see that

[G‘r[4]7 Vﬂ] = [Wa/, V/}] = Za+2 < Woc’ < G‘:[4] ;

whence G,*' < (Vp,Gyz) = Gy, a contradiction. Hence Lemma 13.9 holds.
In our next result our attention switches to Wp.

LEmma 13.10.

(@) [Wp, V2l = 1.
(i) Vi < Qp-

PRroOOF. (i) Suppose that Wy £ Cg, ,(V,,_2). Using Lemma 13.4 again
gives

Wy = (Us | 1€ AB o+ 2)Uspz = (Us | 1€ AB), (2, 0) € Z) Uz

So there exists t€ A(f) with (z,0/) € ©° and p € A(«/ —2) such that
[U.,Z,] # 1. Hence [V,_1,Z,] # 1 for some 7 — 1 € AD\{f}. If Z, < Q._1,
then Z, 1 =[V;_1,Z,] < Vy_s, contrary to (z,o') € (¥). Thus (p,7— 1) € £
But then applying Lemma 13.9 to (p, 7 — 1) gives the contradiction

thl = [erla Voc’74] < Vx’74 < Qo%’ s

since b > 5. Therefore we have verified (i).

(ii) Suppose that V,, £ Q4 holds. Then there exists 7 € A(«’) such that
(r,p) € £. Lemma 13.9 applied to (z,$) gives [Wp,Vy_2] = Zp, contra-
dicting part (i). Thus V, < Q.

Proor oF THEOREM 13.1.  Supposing the result false, we seek a contra-
diction. So the previous lemmas in this section are available to us. Let

o—1¢€ A)\{f}.
(1311) [foh Va’74] =1
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Suppose (13.1.1) is false. Then, by Lemma 13.4, there exists
o —2¢€ Ale — 1,a) such that [U,_»,V,_4] # 1. Since [V,_4,V,_1]1=1, we
may find o — 3 € Al — 2)\{oo — 1} such that [V,_3,V,_4] # 1. Moreover
Vi _4 acts as at most a central transvection of G,_3,—2/Qy—3 on V,_3/Z, 3,
and so [V,_3,V,y_4]1 < Z, 5. Since Z,_1 £ Q, and b > 5, we deduce that
Ziy 1 £V, 3,Vy_4]l whence, as a — 2 € A(x — 1, ),

Vicr = VeV DIVo—3, Viy 4l

Combining [V, [V,—3, Vy_4]] = 1and [V, V] = Zy (by Lemma 3.10(i)) we
obtain [V,_1,Vy] < Zp <V, 1 and then V,_; <(V,,G,-1,) = G, a contra-
diction. Thus we have (13.1.1).

(13.1.2) Wy, Vyal=1

From Lemma 13.10(1) [Wp,Vy_2] =1 and so [U,,Vy_2] = 1. Therefore
Vyo <Q, o for any a —2 € A(x — 1) and V,_» acts as at most a central
transvection of G,_3,-2/Q,—3 on V, 3/Z, 3 (0 —3¢€ Al —2)). Thus
[Vy_2,V, 3] < Z, o and once again we deduce that either

@) [Wy_1,Vy_o]l=1or
(b) there exists o —2 € A(e — 1,0) and o« — 3 € Az — 2)\{o — 1} such
that [V,y_s, V,_3] # 1. (Here we use (13.1.1) to get [Vyy_2, V,-3]1 < Vy_2).

In case (b), just as in (13.1.1), we obtain
Vie1 = Vurt N VI Vw2, Vi3l

and then V,_1 <(V,,,G,_1,) = G,. So (a) must hold, as required.

Combining (13.1.1) and (13.1.2) gives W, 1 < G, with W, 1Q,/Q,
acting as a central transvection on V, /Z,. Now, by Lemma 3.10(ii) and
Gy, U,) =2, we have |[U,,V,]| > 22. Hence

[Wocflavoc’] = Za’—l = [Ua7V1’] < Uac < szl

and so W,_; <(V,y, Gy_14) = G,. With this contradiction we have completed
the proof of Theorem 13.1.
We now tackle Case 2, and will prove the following

THEOREM 13.11. Suppose that (x,o')€ 7, Vy/Zy= L11> and
(Voe1 N Vy)Yy = [V, Gl (where Yy = Cy,(O*Gp)). Then b = 3.
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ProoF. Let (o) € #. Referring to Lemma 12.6(ii) we have

We shall show that the assumption b > 5 leads to a contradiction - the
observations in (13.11.1) and (13.11.2) hold the key to doing this.

(13.11.1) Let @ € G,p. If x acts as the central transvection of G,z/Qs on
V/;/Z/g, then

(i) [Vp,x] £ Z,; and
(i) [Vp,x] £ Vo1 N Vp.

Because Z, = [V}, G,;3] part (i) is a consequence of Proposition 2.5(i),
(iii). Now if [V/;7 x]<V,_.1nN V/}, then by part (i) Y/g < [V/;7 x1Z,<V,.1N V/;,
contrary to Lemma 12.6(ii). Hence (ii) holds as well.

(13.11.2) NGy, U,) = 3.
Put N =V, 1 N Vpand U, = ([Vy, G,51%). If 5(G,, U,V /N) = 1, then

U,"Y = [V, GypIN =[V,1,GIN < V,.1 0V
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which is impossible since [V}, Gos] £ V,—1 NVj. Thus (G, U,V/N) =1
and so, using Lemma 1.2(v), we see that #(G,, U,) = 3.

(13.11.3) V3Q./Qy is the central transvection of G _1,/Qy on V1 /Z,.

Since Vj centralizes V,,_2 NV, Vj acts as the central transvection of
Gy-12/Qy on V, /Y, and now (13.11.3) follows by Proposition 2.5(iii).

(13.11.4) Vy £ Qp.

Suppose V,; < @ holds, and choose p € A(«) such that Z, £ Q,. Now
suppose that we have y € A&’ — 2) for which (y,o — 1) € . Because b > 5,
Z, centralizes [V, _2,V,_1] and hence, since Z, is transitive on A(x)\{f},
[Vu—2,Vy-1] £ V,_1 N V. Applying (13.11.3) to (y,« — 1) we obtain a con-
tradiction. Therefore Vo < @,_1. Furthermore, sinceb > 5,7, 1 £ V, o
and so [V,_1,Vy_o]l = 1. Thus [U,,V,_2] = 1. Consequently U, < G, and
|UsQuw/Qy| =2. But then [U,:Cy,(Z,)] < 22 against (13.11.2). This
proves (13.11.4).

(183.11.5) VuynQp =[Vy,V3I(V,NVy_9) and, in particular, [V, V,yNQpl=1.

This is an immediate consequence of (13.11.1)(i), (13.11.3) and (13.11.4).
We recall, from Section 12, the definition of /', and Hp.

F,=(Y,| 1€ A)
Hp =(Fy | p€ AP)
(18.11.6) [Fo,Vy2]l=1 and F,Qy =V3Q..
By the minimality of b V, 2 <G, for « —1 € A)\{f} and thus
Vy2, Y, 11<Vy_onZ, 1=1.80[F,,Vy_2] =1 and (13.11.6) follows.
(13.11.7) There exists 0 € A(f) such that (6,0) € Z” and (Gyp, Vi) = Gp.

By (13.11.4) we may find a J € 4(f) for which (Gs, V) = Gg. If
(0,0') ¢ 2, then Z; < VN Qy = [Vp, Vul(Vp N Vi) whence [Z;, V] = 1.
But then Z; < Gyg, a contradiction. So (d,«') € " and we have (13.11.7).

Since the results in (13.11.2) - (13.11.6) hold for any critical pair we may
suppose (o, ') is chosen so as (Gyg, Vi) = Gp.

(13.11.8) [(F. V) NQyw, V]l #1.
From (13.11.6) we see that F,Vp=Vs((F, V) NQ,). Thus, if
[(Fazvﬂ) N Q(Z/7 Vx’] = ]-,
[Focvﬁa Voc’] = [V/}, Voc’][(Fch[}) N QOC’7 Vm’] = [Vﬂ7 Voc’] < V/} .
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Then FQ(V/; < <G'9(/,77 Va/> = G/; and so H/g = FaV/g with ﬂ(Gﬁ,Hﬂ/V/}) =0,
contrary to Lemma 12.5(ii). Thus (13.11.8) holds.
In view of (13.11.8) we may choose 4 € A(o) such that (F,Vs) N Qy £ Q;.

(13.11.9) @G (Upez.
(ii) [Ur, Vas] = 1.
(i) U.Qp = VaQp.
@) (U, V5N Q] =1.

Suppose that (4,5) € £. Then Z; <V, NQp and so [Z;,Vs] =1 by
(13.11.5). Hence Z, < Q, < G, for o — 1 € A()\{f} and so [Z;, Y, 1] <
<VynNZ,1 =1 Thus we have [F,V;,Z,;] = 1, contrary to the choice of /.
Therefore (4,5) € 7.

The minimality of b implies that [V,,V,.s]=1 and thus, for
A+1e A\{}, either V, 3Q,.1/Q;+1 is the central transvection of
Gii1/Qu1 (on V,11/7Z;41) or Vi3 < @;41. Suppose the former holds. By
(13.11.1)30) [Viss, Vil £ Viaa NV, Now, if b > 7, then F,Vy centralizes
V.3, while when b =5, a +3 =0« —2 and (13.11.6) gives us the same
conclusion. Hence we have that (F,V;) N Q. centralizes [V,,3,V;.1] and
then [V,,3, V1] < V41 NV, by the choice of A. So V3 < Q.1 and thus
Virs, Vis1l < Vs NZ;40 < Qﬁ- Now (i) yields [V,43,V;41]1=1 which
completes the proof of (i), and so of (iii). While part (iv) follows from
Vi N Q= [V, Vi l(Viys 0 V).

We now exhibit the desired contradiction. Noting that Yy < VN Q.
and Vp =Z,(VyNQy), (13.11.8)(iv) implies that U, centralizes Y; and
U; N Q, centralizes V. Also, since Z,_1 £ Q, U; N Q, centralizes Y, for
a—1€ A)\{f}. So we have [U, N Q,,F,Vs] =1. Then by (13.11.8)(iii)
(U : Cy (F,Vp) NQ)] < 22 and so #(G;,U;) < 2, contradicting (13.11.2)
and hence completing the proof of the theorem.
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