(S_3, S_6) -Amalgams V.

Wolfgang Lempken(*) - Christopher Parker(**) - Peter Rowley(***)

Introduction.

In part IV of this present series the commuting case for (S_3, S_6) -amalgams was examined when $\alpha \in O(S_6)$ for (α, α') a critical pair. This paper and the succeeding two parts are devoted to the commuting case when, for (α, α') a critical pair, $\alpha \in O(S_3)$. In fact the bulk of our work is concerned with the situation $\eta(G_\beta, V_\beta) = 1$, where $\beta \in O(S_6)$. Unlike Part IV, for this situation, there appear to be no subamalgams which can be exploited early on. Although a very precise description of V_β is obtained in Theorem 12.1 for our subsequent analysis we need to consider five subcases. This subdivision, given in Section 12, is done according to the size of $\operatorname{core}_{G_\alpha} V_\beta$ ($\alpha \in \Delta(\beta)$) and also whether V_β/Z_β is an orthogonal module or not. Of the five possibilities three, as it were, are the "mainline" cases - Cases 1, 3 and 4. We briefly discuss and compare each of these cases.

Case 3 is concerned with the smallest possibility for $\mathrm{core}_{G_{\mathbf{z}}}V_{\beta}$, namely $\mathrm{core}_{G_{\mathbf{z}}}V_{\beta}=Z_{\alpha}$. This case has the most complicated possibilities for V_{β}/Z_{β} , with V_{β}/Z_{β} being a quotient of $\binom{4}{1}\oplus 1$. For this case the core argument (Lemma 9.9) is especially valuable as it often enables us to restrict the size of certain commutators. Our scrutiny of Case 3 takes place in Part VI - the end result being that this case cannot arise! For all the other cases we obtain bounds on the parameter b which are pursued further in [LPR2]. At the other end of the scale we have Case 1 with $[V_{\beta}:\mathrm{core}_{G_{\mathbf{z}}}V_{\beta}]=2$ (and then V_{β}/Z_{β} is a natural module). This, from the outset, is a very tight configuration (for example, V_{β} acts as a central transvection on $V_{\alpha'}/Z_{\alpha'}$ for

^(*) Indirizzo dell'A.: Institute for Experimental Mathematics, University of Essen, Ellernstrasse 29, Essen, Germany.

^(**) Indirizzo dell'A.: School of Mathematics and Statistics, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.

^(***) Indirizzo dell'A.: School of Mathematics, The University of Manchester, P.O. Box 88, Manchester M60 1QD, United Kingdom.

 $(\alpha, \alpha') \in \mathscr{C}$), which nevertheless requires a delicate analysis. By contrast with Case 3 the core argument is no use here whatsoever. Case 4 (when $[V_{\beta}: \operatorname{core}_{G_{\alpha}}V_{\beta}] = 2^2$ and V_{β}/Z_{β} is a natural module) lies somewhere between Cases 1 and 3. The core argument is of little use and, initally, the configuration has a greater degree of freedom.

We remark that central transvections make their presence felt in a big way in Parts V, VI and VII. Indeed, without such transvections Cases 1, 2 and 3 would be virtually non-existent.

For ease of reference we continue the section numbering started in [LPR1]. We make the most use of material in Sections 1 and 2, and it is there we refer the reader to for notation and background results. Briefly the contents of this paper are as follows. Section 11 is, mostly, a warm-up for the work in Section 12 where the above mentioned structure of V_{β} is determined. Cases 1 and 2 are the subject of Section 13, the main conclusions being given in Theorems 13.1 and 13.11.

11. Some preliminary results.

For this paper and Parts V and VI we assume the following hypothesis.

Hypothesis 11.0. If
$$(\alpha, \alpha') \in \mathcal{C}$$
, then $[Z_{\alpha}, Z_{\alpha'}] = 1$ and $\alpha \in O(S_3)$.

Some elementary observations on this hypothesis are gathered in our first result of this section.

LEMMA 11.1. Let $\mu \in O(S_3)$ and $\lambda \in \Delta(\mu)$.

- (i) $[G_{\lambda\mu}, Z_{\mu}] = Z_{\lambda} = \Omega_1(Z(G_{\lambda\mu})) = \Omega_1(Z(G_{\lambda})).$
- (ii) $C_{Z_{\mu}}(G_{\mu})=1$, $G_{G_{\mu}}(Z_{\mu})=Q_{\mu}$ and $Z_{\mu}=Z_{\lambda_1}\times Z_{\lambda_2}$ whenever $\lambda_1,\lambda_2\in\varDelta(\mu)$ with $\lambda_1\neq\lambda_2$.
 - (iii) $b \equiv 1(2) \ and \ b > 1$.
 - (iv) If $X \leq G_{\lambda\mu}$ and $X \not\leq Q_{\mu}$, then $[X, Z_{\mu}] = Z_{\lambda} = C_{Z_{\mu}}(X)$.
 - (v) If $X \leq Q_{\lambda}$ is such that $[X, V_{\lambda}] \neq 1$, then $[X, V_{\lambda}] = Z_{\lambda}$.
 - (vi) $[Q_{\lambda}, V_{\lambda}] \leq Z_{\lambda}$.
 - (vii) G is transitive on paths $(\lambda_1, \lambda_2, \lambda_3)$ of length 2 where $\lambda_1 \in O(S_6)$.

PROOF. Let $(\alpha, \alpha') \in \mathscr{C}$. Then $[Z_{\alpha}, Z_{\alpha'}] = 1$ implies $Z_{\alpha'} \leq Z(G_{\alpha'})$ and hence $\Omega_1(Z(G_{\alpha'-1\alpha'})) = Z_{\alpha'} \leq Z_{\xi}$ for all $\xi \in \Delta(\alpha')$. Therefore $b \equiv 1(2)$. Since $G_{\alpha\beta}$ acts as an involution on Z_{α} , $[G_{\alpha\beta}, Z_{\alpha}] \leq C_{Z_{\alpha}}(G_{\alpha\beta}) = \Omega_1(Z(G_{\alpha\beta})) = Z_{\beta}$. Likewise $[G_{\alpha\alpha-1}, Z_{\alpha}] \leq Z_{\alpha-1}$. Hence $Z_{\alpha} = Z_{\beta}Z_{\alpha-1} = [G_{\alpha\beta}, Z_{\alpha}]Z_{\alpha-1}$. By

Lemma 11.1(ii) $C_{Z_{\alpha}}(G_{\alpha}) = 1$ and thus $Z_{\beta} \cap Z_{\alpha-1} = 1$. Hence, by orders, $Z_{\beta} = [G_{\alpha\beta}, Z_{\alpha}]$. Since G acts edge-transitively upon Γ , we have verified (i) and (ii).

Assume b=1 holds. Since, by part (ii), $[Z_{\alpha},Q_{\beta}] \leq Z_{\beta}$ this then gives $\eta(G_{\beta},Q_{\beta})=0$, contrary to the hypothesis $C_{G_{\beta}}(Q_{\beta})\leq Q_{\beta}$. Therefore b>1. For part (iv) we have $G_{\lambda\mu}=XQ_{\mu}$ and so (iv) follows easily from (i).

Because $[X,V_{\lambda}] \neq 1$ there exists $\xi \in \Delta(\lambda)$ such that $[X,Z_{\xi}] \neq 1$. Thus $X \not\leq Q_{\xi}$ by (ii) and now (iv) implies (v). Part (vi) is an easy consequence of (v). While (vii) follows from G being edge-transitive and, as $\lambda_2 \in O(S_3)$, $G_{\lambda_1\lambda_2}$ being transitive on $\Delta(\lambda_2)\setminus\{\lambda_1\}$.

Our next lemma will be put to use after we have established Theorem 12.1.

LEMMA 11.2. If V_{β}/Z_{β} contains either a natural or orthogonal S_6 -module, then $Q_{\alpha}Q_{\beta}=G_{\alpha\beta}$ and $[V_{\beta},Q_{\beta}]=Z_{\beta}$.

PROOF. Let $V_{\beta} \geq X \geq Z_{\beta}$ be such that X/Z_{β} is a natural or orthogonal S_6 -module, and suppose $Q_{\alpha}Q_{\beta} \neq G_{\alpha\beta}$. Then we have $Q_{\alpha} \geq Q_{\beta}$ and so $Q_{\xi} \geq Q_{\beta}$ for all $\xi \in \mathcal{A}(\beta)$ by Lemma 1.1(i), and hence $V_{\beta} \leq Z(Q_{\beta})$. If $[V_{\beta},Q_{\beta}] \neq Z_{\beta}$, then, by Lemma 11.1(v), we also have $V_{\beta} \leq Z(Q_{\beta})$. So, if the lemma is false, we may view V_{β} as a GF(2) (G_{β}/Q_{β}) -module. Appealing to Lemma 2.2(iv) gives $X = Y \oplus C_X(G_{\beta})$ with $Y \cong 4$ or $\binom{4}{1}$. In the former case $C_X(G_{\beta}) = Z_{\beta}$ and in the latter $[Z_{\beta}:C_X(G_{\beta})]=2$. In either case (using Proposition 2.5(i) for $Y\cong \binom{4}{1}$) we obtain $\Omega_1(Z(G_{\alpha\beta}))>Z_{\beta}$, against Lemma 11.1(i). Therefore $Q_{\alpha}Q_{\beta}=G_{\alpha\beta}$ and $[V_{\beta},Q_{\beta}]=Z_{\beta}$, as required.

Lemma 11.3. Let
$$(\alpha, \alpha') \in \mathscr{C}$$
 and put $C = C_{V_{\beta}}(O^2(G_{\beta}))$. Then $Z_{\alpha} \cap C = Z_{\beta}$.

PROOF. Since $C_{Z_{\alpha}}(G_{\alpha})=1$, Z_{α} is a direct sum of 2-dimensional irreducible G_{α}/Q_{α} -modules. If $Z_{\alpha} \cap C > Z_{\beta}$ were to hold, then $Z_{\alpha} \cap C$ would contain a non-zero G_{α}/Q_{α} -submodule of Z_{α} , against Lemma 1.1(ii).

Lemma 11.4. Let $(\delta, \delta') \in \mathscr{C}$. If $\eta(G_{\delta+1}, V_{\delta+1}) > 1$, then $[V_{\delta+1} \cap Q_{\delta'}, V_{\delta'}] \neq 1$.

PROOF. Suppose the result is false and, without loss of generality, we take $\alpha = \delta$ and $\alpha' = \delta'$. So $\eta(G_{\beta}, V_{\beta}) > 1$ and $[V_{\beta} \cap Q_{\alpha'}, V_{\alpha'}] = 1$. Since $[V_{\beta} : V_{\beta} \cap Q_{\alpha'}] \leq 2^3$, $[V_{\beta} : C_{V_{\beta}}(V_{\alpha'})] \leq 2^3$. If $[V_{\alpha'} : V_{\alpha'} \cap Q_{\beta}] \geq 2^2$, then $\eta(G_{\beta}, V_{\beta}) \leq 1$. So $[V_{\alpha'} : V_{\alpha'} \cap Q_{\beta}] \leq 2$. Moreover, $V_{\alpha'} \cap Q_{\beta} \leq Q_{\alpha}$ implies that

 $[V_{\alpha'}:C_{V_{\alpha'}}(Z_{\alpha})] \leq 2$, contrary to $\eta(G_{\alpha'},V_{\alpha'}) > 1$. Therefore $V_{\alpha'} \cap Q_{\beta} \not\leq Q_{\alpha}$ and, similarly, $V_{\alpha'} \not\leq Q_{\beta}$.

$$|Z_{\alpha-1}| = 2$$

By Lemma 11.1(iv) $C_{Z_x}(V_{\alpha'}\cap Q_\beta)=Z_\beta$. Hence Lemma 11.1(ii) implies $C_{Z_{x-1}}(V_{\alpha'}\cap Q_\beta)=1$. So

$$1 = Z_{\alpha-1} \cap V_{\beta} \cap Q_{lpha'} = Z_{lpha-1} \cap Q_{lpha'}$$
 .

Since $[V_{\alpha'}: V_{\alpha'} \cap Q_{\beta}] \leq 2$, we have $[V_{\alpha'}: C_{V_{\alpha'}}(Z_{\alpha-1})] \leq 2^2$. Therefore, as $\eta(G_{\alpha'}, V_{\alpha'}) > 1$, we get $|Z_{\alpha-1}Q_{\alpha'}/Q_{\alpha'}| = 2$, which yields (11.4.1).

(11.4.2) For
$$x \in V_{\beta}$$
, $[V_{\alpha'} : C_{V_{\alpha'}}(x)] \leq 2^2$.

Let $x \in V_{\beta}$. From $V_{\alpha'} \cap Q_{\beta} \not\leq Q_{\alpha}$ and Lemma 11.1(v) $[V_{\alpha'} \cap Q_{\beta}, V_{\beta}] = Z_{\beta}$. Thus $|[V_{\alpha'} \cap Q_{\beta}, x]| \leq 2$ by (11.4.1) from which, as $[V_{\alpha'} : V_{\alpha'} \cap Q_{\beta}] \leq 2$, (11.4.2) follows.

If $|V_{\beta}Q_{\alpha'}/Q_{\alpha'}| \geq 2^2$, then V_{β} contains an element $y, y \notin Q_{\alpha'}$, which is not a transvection on some non central $G_{\alpha'}$ -chief factor in $V_{\alpha'}$ whence $\eta(G_{\alpha'},V_{\alpha'}) \leq 1$ by (11.4.2). Thus $[V_{\beta}:V_{\beta}\cap Q_{\alpha'}]=2$ and so $[V_{\beta}:C_{V_{\beta}}(V_{\alpha'})]\leq 2$. But then since $V_{\alpha'} \nleq Q_{\beta}$, this gives $\eta(G_{\beta},V_{\beta})\leq 1$, a contradiction. So the lemma holds.

COROLLARY 11.5. Let $(\delta, \delta') \in \mathcal{C}$ and assume $\eta(G_{\delta+1}, V_{\delta+1}) > 1$. Then

- (i) $[V_{\delta+1} \cap Q_{\delta'}, V_{\delta'}] = Z_{\delta'}$, $[V_{\delta'} \cap Q_{\delta+1}, V_{\delta+1}] = Z_{\delta+1}$; and
- (ii) $V_{\delta'} \not \leq Q_{\delta+1}$.

PROOF. Lemmas 11.1(v) and 11.4 yield $[V_{\delta+1}\cap Q_{\delta'},V_{\delta'}]=Z_{\delta'}$. Suppose $V_{\delta'}\leq Q_{\delta+1}$. Using Lemma 11.1(vi) gives

$$Z_{\delta'} = [V_{\delta+1} \cap Q_{\delta'}, V_{\delta'}] \leq [V_{\delta+1}, V_{\delta'}] \leq Z_{\delta+1}$$

and thus $[V_{\delta+1},V_{\delta'}]=Z_{\delta'}$ by orders. Then $\eta(G_{\delta'},V_{\delta'})=0$ which is impossible. Therefore $V_{\delta'}\not\leq Q_{\delta+1}$. Hence we may find $\rho\in\varDelta(\alpha')$ such that $(\rho,\delta+1)\in\mathscr{C}$, and Lemmas 11.1(v) and 11.4 give the remaining part of (i).

LEMMA 11.6. Let $(\alpha, \alpha') \in \mathscr{C}$ and assume that $\eta(G_{\beta}, V_{\beta}) > 1$. If $|V_{\alpha'}Q_{\beta}/Q_{\beta}| \leq 2^2$, then $|V_{\beta}Q_{\alpha'}/Q_{\alpha'}| = 2 = |V_{\alpha'}Q_{\beta}/Q_{\beta}|$.

PROOF. By Corollary 11.5 we may find $\lambda \in \Delta(\beta)$ such that $[Z_{\lambda}, V_{\alpha'} \cap Q_{\beta}] \neq 1$. Lemma 11.1(iv) then gives $C_{Z_{\lambda}}(V_{\alpha'} \cap Q_{\beta}) = Z_{\beta}$ and so $C_{Z_{\lambda} \cap Q_{\alpha'}}(V_{\alpha'} \cap Q_{\beta}) = Z_{\beta}$. Since $[V_{\alpha'} : C_{V_{\alpha'}}(Z_{\lambda})] \leq 2[V_{\alpha'} : V_{\alpha'} \cap Q_{\beta}] \leq 2^3$ and

 $\eta(G_{\alpha'},V_{\alpha'})>1$, we infer that $[Z_{\lambda}:Z_{\lambda}\cap Q_{\alpha'}]\leq 2$. Now $V_{\alpha'}\cap Q_{\beta}$ acts as an involution on $Z_{\lambda}\cap Q_{\alpha'}$ and hence

$$|[Z_{\lambda} \cap Q_{lpha'}, V_{lpha'} \cap Q_{eta}]| = [Z_{\lambda} \cap Q_{lpha'} : Z_{eta}] \ge |Z_{eta}|/2.$$

Because $[Z_{\lambda} \cap Q_{\alpha'}, V_{\alpha'} \cap Q_{\beta}] \leq Z_{\alpha'} \cap Z_{\beta}$ we see that $[Z_{\beta} : Z_{\alpha'} \cap Z_{\beta}] \leq 2$. Let $x \in V_{\beta}$ and put $\overline{V}_{\alpha'} = V_{\alpha'}/Z_{\alpha'}$. Then $|[\overline{V}_{\alpha'} \cap \overline{Q}_{\beta}, x]| \leq |\overline{Z}_{\beta}| \leq 2$ (note that $Z_{\beta} \leq V_{\alpha'}$). Therefore $[V_{\alpha'} : C_{V_{\alpha'}}(x)] \leq 2[V_{\alpha'} : V_{\alpha'} \cap Q_{\beta}] \leq 2^3$ which, as $\eta(G_{\alpha'}, V_{\alpha'}) > 1$, forces $|V_{\beta}Q_{\alpha'}/Q_{\alpha'}| \leq 2$. From Corollary 11.5 there exists $\rho \in \Delta(\alpha')$ such that $(\rho, \beta) \in \mathscr{C}$ and so, as $|V_{\beta}Q_{\alpha'}/Q_{\alpha'}| = 2$, we may repeat the above argument to obtain $|V_{\alpha'}Q_{\beta}/Q_{\beta}| = 2$. This proves the lemma.

LEMMA 11.7. Suppose that b>3, $(\alpha,\alpha')\in\mathscr{C}$ and $\eta(G_{\beta},V_{\beta})>1$. Then $U_{\alpha}\leq G_{\alpha'}$.

PROOF. If $U_{\alpha} \not\leq Q_{\alpha'-2}$, then there exists $\alpha - 2 \in \Delta^{[2]}(\alpha)$ such that $(\alpha - 2, \alpha' - 2) \in \mathscr{C}$. Applying Corollary 11.5 to $(\alpha - 2, \alpha' - 2)$ gives

$$Z_{\alpha-1} = [V_{\alpha'-2} \cap Q_{\alpha-1}, V_{\alpha-1}] \le V_{\alpha'-2} \le Q_{\alpha'},$$

as b>3. Then $Z_{\alpha}=Z_{\alpha-1}Z_{\beta}\leq Q_{\alpha'}$, a contradiction. Therefore $U_{\alpha}\leq Q_{\alpha'-2}$. Now, by Corollary 11.5, $Z_{\alpha'}=[V_{\beta}\cap Q_{\alpha'},V_{\alpha'}]\leq V_{\beta}$ and so $[U_{\alpha},Z_{\alpha'}]=1$. Therefore

$$U_{\alpha} \leq C_{G_{\alpha'}}(Z_{\alpha'}) = G_{\alpha'-1\alpha'},$$

as required.

LEMMA 11.8. Let $(\alpha, \alpha') \in \mathscr{C}$ and suppose b > 3 and $\eta(G_{\beta}, V_{\beta}) > 1$. Then $[U_{\alpha}, V_{\alpha'}] \not\leq U_{\alpha}$.

PROOF. Supposing $[U_{\alpha}, V_{\alpha'}] \leq U_{\alpha}$ we seek to uncover a contradiction. Setting $P_{\beta} = \langle G_{\alpha\beta}, V_{\alpha'} \rangle$ and $\widehat{V}_{\beta} = V_{\beta}/C_{V_{\beta}}(O^2(G_{\beta}))$ we first show that

- (11.8.1) (i) $P_{\beta}/Q_{\beta} \cong S_4 \times \mathbb{Z}_2$
 - (ii) $\eta(G_{\beta}, V_{\beta}) = 2$ and \widehat{V}_{β} is isomorphic to a direct sum of two isomorphic natural S_6 -modules
 - (iii) $|Z_{\alpha}| = 2^4$ and $|Z_{\beta}| = |Z_{\alpha'}| = 2^2$.
 - (iv) $|Z_{lpha}Q_{lpha'}/Q_{lpha'}|=2$ and $|[Z_{lpha},V_{lpha'}/Z_{lpha'}]|=2^2$
 - (v) $C_{Z_{\alpha}}(V_{\alpha'}\cap G_{\alpha\beta})=Z_{\beta}$

From $[U_{\alpha}, V_{\alpha'}] \leq U_{\alpha}$ we have that P_{β} normalizes U_{α} and hence $P_{\beta} \neq G_{\beta}$ by Lemma 1.1 (ii). By the parabolic argument (Lemma 3.10)

 $[V_{\alpha'}:V_{\alpha'}\cap G_{\alpha\beta}]\leq 2$, and so $[V_{\alpha'}:V_{\alpha'}\cap Q_{\alpha}]\leq 2^2$. Thus $[V_{\alpha'}:C_{V_{\alpha'}}(Z_{\alpha'})]\leq 2^2$. Therefore $\eta(G_{\alpha'},V_{\alpha'})=2$ with $|Z_{\alpha}Q_{\alpha'}/Q_{\alpha'}|=2$, $[V_{\alpha'}:C_{V_{\alpha'}}(Z_{\alpha})]=2^2$ and both non central chief factors of $V_{\alpha'}$ are isomorphic natural S_6 -modules. Clearly $V_{\alpha'}\not\leq G_{\alpha\beta}$ and so we conclude that $P_{\beta}/Q_{\beta}\cong S_4\times \mathbb{Z}_2$. Combining Lemmas 2.16 and 11.1(i), (vi) gives (ii) for $\widehat{V}_{\alpha'}$, so proving part (ii). Because $\widehat{V}_{\beta}=\langle \widehat{Z}_{\alpha}^{G_{\beta}} \rangle$ it follows from part (ii) that $|\widehat{Z}_{\alpha}|=2^2$. Hence $|Z_{\alpha}|=2^4$ and $|Z_{\beta}|=2^2$ by Lemmas 11.1(ii) and 11.3, and we have (iii). Also, by Lemma 11.1(vi), Z_{α} acts as an involution upon $V_{\alpha'}/Z_{\alpha'}$. By Lemma 11.1(i) $\eta(G_{\alpha'},V_{\alpha'}/Z_{\alpha'})=2$ and so $[V_{\alpha'}/Z_{\alpha'}:C_{V_{\alpha'}/Z_{\alpha'}}(Z_{\alpha})]=2^2$. Hence $|Z_{\alpha},V_{\alpha'}/Z_{\alpha'}|=2^2$, so establishing (iv). Finally we prove (v). If $V_{\alpha'}\cap G_{\alpha\beta}\leq Q_{\alpha}$, then $[V_{\alpha'}:C_{V_{\alpha'}}(Z_{\alpha})]\leq 2$ which is impossible. So $V_{\alpha'}\cap G_{\alpha\beta}\leq Q_{\alpha}$ and thus $Z_{\beta}=C_{Z_{\alpha}}(V_{\alpha'}\cap G_{\alpha\beta})$.

 $V_{lpha'} \cap G_{lphaeta} \not\leq Q_{lpha}$ and thus $Z_{eta} = C_{Z_{lpha}}(V_{lpha'} \cap G_{lphaeta})$. (11.8.2) P_{eta}/Q_{eta} is the parabolic with restriction $\binom{2}{2}$ on the non-central chief factors in \widehat{V}_{eta} .

Suppose that (11.8.2) is false. Then, by (11.8.1)(i),(ii), P_{β}/Q_{β} is the parabolic with restriction $\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$ on all the (isomorphic) natural S_6 -modules

in \widehat{V}_{β} . From Lemma 11.1(i) $\widehat{Z}_{\alpha} \leq C_{\widehat{V}_{\beta}}(G_{\alpha\beta})$. Let d be an element of order 3 in P_{β} . Since d centralizes $C_{\widehat{V}_{\beta}}(G_{\alpha\beta})$, we infer that $Z_{\alpha} \leq C_{V_{\beta}}(d)$. Thus

$$Z_{\alpha} \triangleleft \langle G_{\alpha\beta}, d \rangle = P_{\beta}$$
.

In particular, $V_{\alpha'}$ normalizes $Z_{\alpha'}$ and so $[V_{\alpha'},Z_{\alpha}] \leq Z_{\alpha}$. From (11.8.1)(iv),(v) $|Z_{\alpha} \cap Q_{\alpha'}| = 2^3$ and $C_{Z_{\alpha}}(V_{\alpha'} \cap G_{\alpha\beta}) = Z_{\beta}$ and consequently $[Z_{\alpha} \cap Q_{\alpha'},V_{\alpha'} \cap G_{\alpha\beta}] \neq 1$. So $[Z_{\alpha} \cap Q_{\alpha'},V_{\alpha'}] \neq 1$ and an appeal to Lemma 11.1(ii) gives $[Z_{\alpha} \cap Q_{\alpha'},V_{\alpha'}] = Z_{\alpha'}$. Combining this with $|[Z_{\alpha},V_{\alpha'}/Z_{\alpha'}]| = 2^2$ (since $|Z_{\alpha'}| = |Z_{\beta}|$) yields $|[Z_{\alpha},V_{\alpha'}]| = 2^4$. But then

$$Z_{lpha} = [Z_{lpha}, V_{lpha'}] \le V_{lpha'} \le Q_{lpha'}$$
 ,

contrary to $(\alpha, \alpha') \in \mathcal{C}$. With this contradiction we have proved (11.8.2).

$$(11.8.3) |V_{\beta}Q_{\alpha'}/Q_{\alpha'}| \ge 2^2.$$

If $|V_{\beta}Q_{\alpha'}/Q_{\alpha'}| \geq 2^2$, then $V_{\beta}Q_{\alpha'} = Z_{\alpha}Q_{\alpha'}$ whence $[V_{\beta},V_{\alpha'}/Z_{\alpha'}] = [Z_{\alpha},V_{\alpha'}/Z_{\alpha'}]$. Since $Z_{\alpha'} \leq [V_{\beta},V_{\alpha'}]$ by Corollary 11.5, using (11.8.1)(iii),(iv) we see that $|[V_{\beta},V_{\alpha'}]| = 2^4$. Hence, as $|Z_{\beta}| = 2^2$, $|[V_{\alpha'},V_{\beta}/Z_{\beta}]| = 2^2$. Consequently $V_{\alpha'}$ acts as a transvection upon each of the non-central chief factors in \widehat{V}_{β} . Together (11.8.2) and Proposition 2.5(viii) imply that $O_2(P_{\beta})/Q_{\beta}$ is the unique quadratically acting (upon each of the non-central chief factors in \widehat{V}_{β}) $E(2^3)$ -subgroup of each Sylow 2-subgroup of P_{β}/Q_{β} . Then Proposition 2.5(iii)

forces $V_{\alpha'} \leq O_2(P_{\beta}) \leq G_{\alpha\beta}$, contradicting (11.8.1)(i). Thus we conclude that $|V_{\beta}Q_{\alpha'}/Q_{\alpha'}| \geq 2^2$.

(11.8.4) A contradiction

By Corollary 11.5 there exists $\rho \in \Delta(\alpha')$ such that $(\rho,\beta) \in \mathscr{C}$. If $|V_{\alpha'}Q_{\beta}/Q_{\beta}| \leq 2^2$, then applying Lemma 11.6 to (ρ,β) yields $|V_{\beta}Q_{\alpha'}/Q_{\alpha'}| = 2$, against (11.8.3). Therefore, as $V_{\alpha'}$ is elementary abelian, $|V_{\alpha'}Q_{\beta}/Q_{\beta}| = 2^3$, and, of course, $V_{\alpha'}$ acts quadratically on V_{β} . Again, using (11.8.2) and Proposition 2.5(viii), we deduce the untenable $V_{\alpha'} \leq O_2(P_{\beta}) \leq G_{\alpha\beta}$. This is the desired contradiction which completes the proof of Lemma 11.8.

12. The structure of V_{β}/Z_{β} .

Theorem 12.1. Let $(\alpha, \alpha') \in \mathscr{C}$. Then

(i) $\eta(G_{eta},V_{eta})=1$ with V_{eta}/Z_{eta} isomorphic to a quotient of $\binom{4}{1}\oplus 1;$ and

(ii)
$$|Z_{\alpha}| = 2^2$$
, $|Z_{\beta}| = 2$.

PROOF. First we suppose that b>3 and $\eta(G_{\beta},V_{\beta})>1$ and argue for a contradiction. So Lemmas 11.7 and 11.8 are available to give $U_{\alpha} \leq G_{\alpha'}$ and $[U_{\alpha},V_{\alpha'}] \not\leq U_{\alpha}$. Also, from Corollary 11.5, $[V_{\beta},V_{\alpha'}] \geq Z_{\alpha'}$. So if $U_{\alpha}Q_{\alpha'}=V_{\beta}Q_{\alpha'}$, we then have $U_{\alpha}=V_{\beta}(U_{\alpha}\cap Q_{\alpha'})$ whence, using Lemma 11.1(vi), $[U_{\alpha},V_{\alpha'}]=[V_{\beta},V_{\alpha'}]\leq V_{\beta}\leq U_{\alpha}$, a contradiction. Therefore $U_{\alpha}Q_{\alpha'}\neq V_{\beta}Q_{\alpha'}$. Since U_{α} is elementary abelian we infer that $|V_{\beta}Q_{\alpha'}/Q_{\alpha'}|\leq 2^2$. Now Lemma 11.6 and Corollary 11.5(ii) give

$$|V_{\beta}Q_{\alpha'}/Q_{\alpha'}|=|V_{\alpha'}Q_{\beta}/Q_{\beta}|=2.$$

Put $\overline{V}_{\beta} = V_{\beta}/Z_{\beta}$.

(12.1.2) (i) $(V_{\alpha'} \cap Q_{\beta})Q_{\alpha} = G_{\alpha\beta}$.

(ii) $\eta(G_{\beta},V_{\beta})=2$ and there exists $X_{\beta} \unlhd G_{\beta}$ with $Z_{\beta} \le X_{\beta} \le V_{\beta}$ such that $\overline{V}_{\beta}=\overline{X}_{\beta}C_{\overline{V}_{\beta}}(G_{\beta})$ and \overline{X}_{β} is isomorphic to a quotient of $\binom{4}{1} \oplus \binom{4}{1}$. Moreover, the two 4's in \overline{X}_{β} are isomorphic natural S_{6} -modules.

(iii)
$$|Z_{\alpha}|=2^4$$
, $|Z_{\beta}|=|Z_{\alpha'}|=2^2$ and $\eta(G_{\alpha},Z_{\alpha})=2$.

By (12.1.1) $[V_{\alpha'}:V_{\alpha'}\cap Q_{\beta}]=2$ and so, as $\eta(G_{\alpha'},V_{\alpha'})>1,\ V_{\alpha'}\cap Q_{\beta}\not\leq Q_{\alpha}$. Thus (i) holds, and $[V_{\alpha'}:C_{V_{\alpha'}}(Z_{\alpha})]=2^2$ with $\eta(G_{\alpha'},V_{\alpha'})=2$. Applying

Lemmas 2.16 and 2.2(iv) to $\overline{V}_{\alpha'} = V_{\alpha'}/Z_{\alpha'}$ yields (ii) for $\overline{V}_{\alpha'}$, so proving (ii). Using Lemmas 11.1(ii), 11.3, part (ii) and the fact that $Z(G_{\alpha}) = 1$ gives (iii). Set $\Delta(\alpha) = \{\beta, \alpha - 1, \lambda\}$.

$$(12.1.3) [V_{\alpha'}:V_{\alpha'}\cap Q_{\alpha-1}]\geq 2^4.$$

From (12.1.1) we have $Z_{\alpha}Q_{\alpha'}=V_{\beta}Q_{\alpha'}$ and hence $V_{\alpha-1}Q_{\alpha'}\geq V_{\beta}Q_{\alpha'}$. By (12.1.2), $U_{\alpha}Q_{\alpha'}=V_{\alpha-1}Q_{\alpha'}$. Since $U_{\alpha}Q_{\alpha'}\neq V_{\beta}Q_{\alpha'}$, $|V_{\alpha-1}Q_{\alpha'}/Q_{\alpha'}|\geq 2^2$ and hence, by (12.1.2)(ii) and Proposition 2.5(iii), $[X_{\alpha'}:C_{X_{\alpha'}}(V_{\alpha'-1})]\geq 2^4$. If $[X_{\alpha'}\cap Q_{\alpha-1},V_{\alpha-1}]\neq 1$, then by Lemma 11.1(v)

$$Z_{\alpha-1} = [X_{\alpha'} \cap Q_{\alpha-1}, V_{\alpha-1}] \le V_{\alpha'} \le Q_{\alpha'}$$

whence $Z_{\alpha}=Z_{\alpha-1}Z_{\beta}\leq Q_{\alpha'}$. Hence $[X_{\alpha'}\cap Q_{\alpha-1},V_{\alpha-1}]=1$ from which (12.1.3) follows.

(12.1.4)
$$V_{\alpha'-2} \leq Q_{\alpha-1}$$
 and $[U_{\alpha}, V_{\alpha'-2}] = 1$.

Suppose $V_{\alpha'-2} \not\leq Q_{\alpha-1}$. Then there exists $\rho \in \varDelta(\alpha'-2)$ such that $(\rho,\alpha-1) \in \mathscr{C}$. Applying Corollary 11.5 to $(\rho,\alpha-1)$ gives $Z_{\alpha-1} \leq \lfloor V_{\alpha'-2},V_{\alpha-1} \rfloor \leq V_{\alpha'-2} \leq Q_{\alpha'}$, since b>3. This is against $(\alpha,\alpha') \in \mathscr{C}$, and therefore $V_{\alpha'-2} \leq Q_{\alpha-1}$. If $[V_{\alpha'-2},V_{\alpha-1}] \neq 1$, then Lemma 11.1(v) gives $Z_{\alpha-1} = [V_{\alpha'-2},V_{\alpha-1}]$ which again contradicts $(\alpha,\alpha') \in \mathscr{C}$. Thus $[V_{\alpha'-2},V_{\alpha-1}] = 1$ and likewise $[V_{\alpha'-2},V_{\lambda}] = 1$, so we have (12.1.4).

$$(12.1.5) [V_{\alpha'}: V_{\alpha'} \cap V_{\alpha'-2}] \ge 2^4.$$

This follows from (12.1.3) and (12.1.4).

$$(12.1.6) |[U_{\alpha}, V_{\alpha'} \cap Q_{\beta}]| \ge 2^4 [V_{\alpha'} : V_{\alpha'} \cap V_{\alpha'-2}] \text{ and (hence) } |[U_{\alpha}, V_{\alpha'} \cap Q_{\beta}]| \ge 2^8.$$

In view of (12.1.3) $V_{\alpha'} \cap Q_{\beta} \cap Q_{\alpha}$ must act as at least a fours group on $V_{\alpha-1}/Z_{\alpha-1}$, and thus $|[V_{\alpha'} \cap Q_{\beta} \cap Q_{\alpha}, V_{\alpha-1}]| \geq 2^4$ by (12.1.2)(ii) and Proposition 2.5(iii). Further, we observe, as $[V_{\alpha'} \cap Q_{\beta} \cap Q_{\alpha}, V_{\alpha-1}] \leq V_{\alpha'}$ and $V_{\alpha'} \cap Q_{\beta}$ interchanges λ and $\alpha - 1$, that

$$[V_{\alpha'}\cap Q_{\beta}\cap Q_{\alpha},V_{\alpha-1}]=[V_{\alpha'}\cap Q_{\beta}\cap Q_{\alpha},V_{\lambda}]\leq V_{\alpha-1}\cap V_{\lambda}\,.$$

Let $t \in V_{\alpha'} \cap Q_{\beta}$ be such that $V_{\alpha'} \cap Q_{\beta} = (V_{\alpha'} \cap Q_{\beta} \cap Q_{\alpha})\langle t \rangle$. Then, as t normalizes $V_{\alpha-1}V_{\lambda}$ and $V_{\alpha-1} \cap V_{\lambda}$, we have $|[V_{\alpha-1}V_{\lambda}/V_{\alpha-1} \cap V_{\lambda}, t]| = [V_{\alpha-1}: V_{\alpha-1} \cap V_{\lambda}]$. Now

$$[V_{\alpha'}\cap Q_\beta,V_{\alpha-1}V_\lambda]=[V_{\alpha'}\cap Q_\beta\cap Q_\alpha,V_{\alpha-1}][t,V_{\alpha-1}V_\lambda]$$

from which we deduce that

$$|[V_{\alpha'} \cap Q_{\beta}, V_{\alpha-1}V_{\lambda}]| \ge 2^4 [V_{\alpha-1} : V_{\alpha-1} \cap V_{\lambda}].$$

So, by Lemma 11.1(vii),

$$|[V_{\alpha'} \cap Q_{\beta}, U_{\alpha}]| \ge 2^4 [V_{\alpha'} : V_{\alpha'} \cap V_{\alpha'-2}].$$

This, together with (12.1.5), yields $|[V_{\alpha'} \cap Q_{\beta}, U_{\alpha}]| \geq 2^8$.

(12.1.7) U_{α} doesn't act quadratically upon $X_{\alpha'}/Z_{\alpha'}$.

Suppose (12.1.7) is false. Then, combining (12.1.2)(ii), (iii) and Proposition 2.5(ii), we have $|[U_{\alpha}, X_{\alpha'}]| \leq 2^8$. Noting that $[U_{\alpha}, X_{\alpha'}] = [U_{\alpha}, V_{\alpha'}]$, (12.1.6) forces

$$[U_{\alpha}, V_{\alpha'}] = [U_{\alpha}, V_{\alpha'} \cap Q_{\beta}] \leq U_{\alpha},$$

contradicting Lemma 11.8. Thus (12.1.7) holds.

$$\eta(G_{\alpha}, U_{\alpha}) \ge 4.$$

Set $U_{\alpha}^{(i)} = [U_{\alpha}, Q_{\alpha}; i]$ and $V_{\beta}^{(i)} = [V_{\beta}, Q_{\alpha}; i]$. From (12.1.2)(ii) and Lemma 11.2, $G_{\alpha\beta} = Q_{\alpha}Q_{\beta}$. Hence $V_{\beta}^{(3)} \neq 1$ by Proposition 2.5(i). Our aim is to show that $U_{\alpha}^{(1)} \neq V_{\beta}^{(1)}$ and $U_{\alpha}^{(2)} \neq V_{\beta}^{(2)}$. As a consequences (see Lemma 1.2(v)) $U_{\alpha}/U_{\alpha}^{(1)}$, $U_{\alpha}^{(1)}/U_{\alpha}^{(2)}$, $U_{\alpha}^{(2)}/U_{\alpha}^{(3)}$ all contain at least one non-central chief factor for G_{α} . Because $G_{\alpha\beta} \trianglerighteq V_{\beta}^{(3)} \neq 1$, $V_{\beta}^{(3)} \cap Z_{\beta} \neq 1$ and so $\eta(G_{\alpha}, U_{\alpha}^{(3)}) \neq 0$ by Lemma 1.1(ii), we then obtain (12.1.8).

Suppose $U_{\alpha}^{(1)} = V_{\beta}^{(1)}$. Then $[V_{\alpha'}, Q_{\alpha'-1}] = [V_{\alpha'-2}, Q_{\alpha'-1}]$ and so, by (12.1.4), U_{α} centralizes $[V_{\alpha'}, Q_{\alpha'-1}] = [X_{\alpha'}, Q_{\alpha'-1}]$, contrary to (12.1.7). If $U_{\alpha}^{(2)} = V_{\beta}^{(2)}$, then likewise U_{α} centralizes $[X_{\alpha'}, Q_{\alpha'-1}, Q_{\alpha'-1}]$ which again contradicts (12.1.7). Therefore $U_{\alpha}^{(1)} \neq V_{\beta}^{(1)}$ and $U_{\alpha}^{(2)} \neq V_{\beta}^{(2)}$, as desired.

(12.1.9) $U_{\alpha}Q_{\alpha'}/Q_{\alpha'}$ is the non-quadratic $E(2^3)$ -subgroup of $G_{\alpha'-1\alpha'}/Q_{\alpha'}$ acting on $X_{\alpha'}/Z_{\alpha'}$.

Since $[Z_{\alpha}:Z_{\alpha}\cap Q_{\alpha'}]=2$, (12.1.2)(i), (iii) imply that $[Z_{\alpha}\cap Q_{\alpha'},V_{\alpha'}\cap Q_{\beta}]\neq 1$. So there exists $\rho\in \varDelta(\alpha')$ for which $[Z_{\alpha}\cap Q_{\alpha'},Z_{\rho}]\neq 1$. Thus $Z_{\alpha}\cap Q_{\alpha'}\not\leq Q_{\rho}$. Note that $[Z_{\rho}:Z_{\rho}\cap Q_{\beta}]\leq 2$ by (12.1.1). Hence $Z_{\rho}\cap Q_{\beta}\not\leq Q_{\alpha}$ for $Z_{\rho}\cap Q_{\beta}\leq Q_{\alpha}$ would imply $[Z_{\rho}:C_{Z_{\rho}}(Z_{\alpha}\cap Q_{\alpha'})]\leq 2$ and thence $\eta(G_{\rho},Z_{\rho})\leq 1$, contrary to (12.1.2)(iii).

Now

$$[U_{\alpha}:C_{U_{\alpha}}(Z_{\rho}\cap Q_{\beta})]\leq [U_{\alpha}:U_{\alpha}\cap Q_{\rho}]\leq 2[U_{\alpha}:U_{\alpha}\cap Q_{\alpha'}]$$

and therefore (12.1.8) forces $[U_{\alpha}:U_{\alpha}\cap Q_{\alpha'}]=2^3$. Thus, by (12.1.7), we have established (12.1.9).

We are now in a position to deduce the desired contradiction. Combining (12.1.9), (12.1.2)(ii) with Proposition 2.5(viii) we get

 $[X_{\alpha'}:C_{X_{\alpha'}}(U_{\alpha})]\geq 2^6$. Therefore $[V_{\alpha'}:V_{\alpha'}\cap V_{\alpha'-2}]\geq 2^6$ by (12.1.4). Hence (12.1.6) forces $|[U_{\alpha},V_{\alpha'}\cap Q_{\beta}]|\geq 2^{10}$. Since $|Z_{\alpha'}|=2^2$ and $Z_{\alpha'}\leq [U_{\alpha},V_{\alpha'}]$, (12.1.2)(ii) implies $|[U_{\alpha},V_{\alpha'}]|\leq 2^{10}$. Consequently

$$[U_{\alpha}, V_{\alpha'}] = [U_{\alpha}, V_{\alpha'} \cap Q_{\beta}] \leq U_{\alpha},$$

again contradicting Lemma 11.8. This completes the proof that $\eta(G_{\beta}, V_{\beta}) = 1$ when b > 3. Now we examine the situation $\eta(G_{\beta}, V_{\beta}) > 1$ when b = 3.

- (12.1.10) (i) $Z_{\alpha+2} \leq [V_{\beta}, V_{\alpha'}];$
 - (ii) either $|V_{\beta}Q_{\alpha'}/Q_{\alpha'}| = |V_{\alpha'}Q_{\beta}/Q_{\beta}| = 2$ or $|V_{\beta}Q_{\alpha'}/Q_{\alpha'}| = |V_{\alpha'}Q_{\beta}/Q_{\beta}| = 2^3$;
 - (iii) $\eta(G_{\beta},V_{\beta})=2$ and, for i=1,2, there exists $X_{\beta}^{(i)} \unlhd G_{\beta}$ with $Z_{\beta} \le X_{\beta}^{(i)}$ such that $V_{\beta}=X_{\beta}^{(1)}X_{\beta}^{(2)}$ and $X_{\beta}^{(i)}/Z_{\beta}\cong 4$ or $\binom{4}{1}$. Further the 4's in $X_{\beta}^{(1)}$ and $X_{\beta}^{(2)}$ are isomorphic.

Part (i) follows from Corollary 11.5(i) while Corollary 11.5(ii) and Lemma 11.6 imply (ii). For (iii) we first note that (i) gives $[V_{\beta},G_{\beta}]=V_{\beta}$. If $|V_{\beta}Q_{\alpha'}/Q_{\alpha'}|=|V_{\alpha'}Q_{\beta}/Q_{\beta}|=2$, then $[V_{\alpha'}:C_{V_{\alpha'}}(Z_{\alpha})]=2^2$ and so $\eta(G_{\alpha'},V_{\alpha'})=2$ with both non-central chief factors being isomorphic natural modules. Using Lemma 2.16 and $[V_{\alpha'},G_{\alpha'}]=V_{\alpha'}$ yields the desired structure of V_{β} in this case. Turning to the latter possibility given in (ii) we deduce, just as in Lemma 11.6, that for all $x\in V_{\beta}$ $[V_{\alpha'}:C_{V_{\alpha'}}(x)]\leq 2^4$. Hence $\eta(G_{\alpha'},V_{\alpha'})=2$ and, as V_{β} acts as a quadratic $E(2^3)$ -group on $V_{\alpha'}$, both non central chief factors are isomorphic natural modules. Appealing to Lemma 2.4 and Proposition 2.7(ii) completes the proof of (iii).

By (12.1.10)(iii) V_{β}/Z_{β} is a quotient of $\binom{4}{1} \oplus \binom{4}{1}$. Put $Y_{\beta} = C_{V_{\beta}}(O^2(G_{\beta}))$ and, for i=1,2, let $Y_{\beta}^{(i)}$ be such that $Y_{\beta} \leq Y_{\beta}^{(i)}$, $Y_{\beta}^{(i)} \leq G_{\beta}$ and $Y_{\beta}^{(i)}/Y_{\beta} \cong 4$ with $V_{\beta}/Y_{\beta} = Y_{\beta}^{(1)}/Y_{\beta} \times Y_{\beta}^{(2)}/Y_{\beta}$. Let $Y_{\beta}^{(3)}$ denote the inverse image in V_{β} of the diagonal submodule. Clearly $V_{\beta} = Y_{\beta}^{(i)}Y_{\beta}^{(j)}$ for $i \neq j \in \{1,2,3\}$ so, without loss of generality, we may assume that $Y_{\alpha}^{(1)} \not\leq Q_{\beta}$ and $Y_{\alpha}^{(2)} \not\leq Q_{\beta}$.

Assume for the moment that $|V_{\beta}Q_{\alpha'}/Q_{\alpha'}| = |V_{\alpha'}Q_{\beta}/Q_{\beta}| = 2$. So $Y_{\alpha'}^{(1)}$ acts as a transvection upon each of the non-central chief factors within V_{β} . If $[Y_{\alpha'}^{(1)} \cap Q_{\beta}, V_{\beta}] \neq 1$, then $E(2^2) \cong Z_{\beta} \leq [Y_{\alpha'}^{(1)} \cap Q_{\beta}, V_{\beta}]$ whence $[Y_{\alpha'}^{(1)}, V_{\beta}] \cong E(2^4)$. However considering V_{β} acting upon $Y_{\alpha'}^{(1)}$ yields, as V_{β} acts as a transvection upon $Y_{\alpha'}^{(1)}/Z_{\alpha'}$, that $[V_{\beta}, Y_{\alpha'}^{(1)}] \lesssim E(2^3)$. Thus we conclude that $[Y_{\alpha'}^{(1)} \cap Q_{\beta}, V_{\beta}] = 1$ and, similarly, $[Y_{\alpha'}^{(2)} \cap Q_{\beta}, V_{\beta}] = 1$. So $Y_{\alpha'}^{(i)} \cap Q_{\beta} = C_{Y_{\alpha'}^{(i)}}(V_{\beta})$ for i = 1, 2 and, in particular, $Y_{\alpha'}^{(i)} \cap Q_{\beta} \geq Y_{\beta}$. Since

$$\begin{split} [Y_{\alpha'}^{(i)}:Y_{\alpha'}^{(i)}\cap Q_{\beta}] &= 2 = [V_{\alpha'}:V_{\alpha'}\cap Q_{\beta}] \text{ and, for } i=1,2,\ Y_{\alpha'}^{(i)} \not\leq Q_{\beta}, \text{ we see} \\ \text{that } V_{\alpha'}\cap Q_{\beta} &= (Y_{\alpha'}^{(i)}\cap Q_{\beta})(Y_{\alpha'}^{(2)}\cap Q_{\beta})Y_{\alpha'}^{(3)}. \text{ In particular } Y_{\alpha'}^{(3)} \leq Q_{\beta} \text{ and, since} \\ \eta(G_{\alpha'},Y_{\alpha'}^{(3)}) &= 1, \quad Y_{\alpha'}^{(3)} \not\leq Q_{\alpha}. \quad \text{Therefore } \ Z_{\beta} = [Z_{\alpha},Y_{\alpha'}^{(3)}] \leq Y_{\alpha'}^{(3)}. \quad \text{But then} \\ V_{\alpha'} &= Y_{\alpha'}^{(3)} \text{ which is impossible. So now we only need consider the possibility} \\ |V_{\beta}Q_{\alpha'}/Q_{\alpha'}| &= |V_{\alpha'}Q_{\beta}/Q_{\beta}| = 2^3. \quad \text{Recalling that } Z_{\alpha'} \leq [V_{\beta},V_{\alpha'}], \quad \text{Proposition n 2.5(ii) implies that} \end{split}$$

$$[V_{\alpha'}, V_{\beta}] \ge Z_{\alpha'}[X_{\alpha'}^{(1)}, G_{\alpha'\alpha'-1}; 2][X_{\alpha'}^{(2)}, G_{\alpha'\alpha'-1}; 2].$$

Since $[V_{\alpha'}, V_{\beta}] \leq C_{V_{\alpha'}}(V_{\beta})$ we see that

$$[V_{\alpha'}, V_{\beta}] = Z_{\alpha'}[X_{\alpha'}^{(1)}, G_{\alpha'\alpha'-1}; 2][X_{\alpha'}^{(2)}, G_{\alpha'\alpha'-1}; 2].$$

Because $[V_{lpha'}:V_{lpha'}\cap Q_{eta}]=2^3$ we have $V_{lpha'}\cap Q_{eta}=\langle x
angle [V_{lpha'},V_{eta}]$ where $x=x_1x_2$ with $x_i\in X_{lpha'}^{(i)}$. Since $[V_{lpha'}\cap Q_{eta},V_{eta}]=Z_{eta}\leq Z_{lpha+2}$, $[x,V_{eta}]\leq Z_{lpha+2}$.

Set $\overline{V}_{\alpha'}=V_{\alpha'}/Y_{\alpha'}$. Then $\overline{V}_{\alpha'}=\overline{X_{\alpha'}^{(1)}}\times\overline{X_{\alpha'}^{(2)}}\cong 4\oplus 4$ and by Lemma 11.3 $\overline{Z}_{\alpha+2}=(\overline{Z}_{\alpha+2}\cap X_{\alpha'}^{(1)})\times(\overline{Z}_{\alpha+2}\cap X_{\alpha'}^{(2)})\cong E(2^2)$. Since $\overline{X_{\alpha'}^{(i)}}\unlhd G_{\alpha'}$, we infer that $[\overline{x}_i,V_{\beta}]\leq Z_{\alpha+2}\cap X_{\alpha'}^{(i)}$ (i=1,2). Without loss of generality we may suppose $\overline{x}_1\not\in[\overline{X_{\alpha'}^{(1)}},G_{\alpha'\alpha'-1};2]$ (because $V_{\alpha'}\cap Q_{\beta}\neq[V_{\alpha'},V_{\beta}]$). So $\langle\overline{x}_1\rangle[\overline{X_{\alpha-1}^{(1)}},G_{\alpha'\alpha'-1};2]\cong \cong E(2^3)$ with

$$\big[V_{\beta}, \langle \overline{x}_1 \rangle \big[\overline{X_{\alpha'}^{(1)}}, G_{\alpha'\alpha'-1}; 2 \big] \big] \leq \overline{Z_{\alpha+2} \cap X_{\alpha'}^{(1)}} \,.$$

But Proposition 2.5(ix) shows this to be impossible and so we have ruled out the possibility $\eta(G_{\beta}, V_{\beta}) > 1$ and b = 3. Therefore we have shown that $\eta(G_{\beta}, V_{\beta}) = 1$. The remainder of the theorem follows from Proposition 2.9(i) and Lemmas 2.2(iv), 11.3.

LEMMA 12.2. Let $(\alpha, \alpha') \in \mathcal{C}$ and $\Delta(\alpha) = \{\lambda_1, \lambda_2, \lambda_3\}$.

- (i) $\Omega_1(Z(G_{\alpha\beta})) = Z_{\beta} \cong \mathbb{Z}_2$ and $\Omega_1(Z(Q_{\alpha})) = Z_{\alpha} = Z_{\lambda_i} \times Z_{\lambda_j} \cong E(2^2)$, $1 \leq i < j \leq 3$.
 - (ii) $G_{\alpha\beta} = Q_{\alpha}Q_{\beta} \ and \ [V_{\beta},Q_{\beta}] = Z_{\beta}.$
 - (iii) $\operatorname{core}_{G_{\alpha}}V_{\beta}=V_{\lambda_{i}}\cap V_{\lambda_{i}},\ i\neq j.$
 - (iv) $Z_{\beta} \leq \Omega_1(Z(Q_{\beta})) \lesssim \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

PROOF. (i) is mostly a restatement of Theorem 12.1; $\Omega_1(Z(Q_\alpha)) = Z_\alpha$ follows since Z_α is a projective G_α/Q_α -module and $\Omega_1(Z(Q_{\alpha\beta})) = Z_\beta \leq Z_\alpha$. Part (ii) follows from Theorem 12.1 and Lemma 11.2.

If $\{i,j,k\} = \{1,2,3\}$, then clearly $G_{\alpha\lambda_k}$ normalizes $V_{\lambda_i} \cap V_{\lambda_j}$. Also,

$$[V_{\lambda_i} \cap V_{\lambda_j}, Q_{\lambda_i}] \leq [V_{\lambda_i}, Q_{\lambda_i}] \leq Z_{\lambda_i} \leq Z_{\alpha} \leq V_{\lambda_i} \cap V_{\lambda_j} \,.$$

Using part (ii) we now see that $V_{\lambda_i} \cap V_{\lambda_j} \unlhd G_{\alpha}$, so proving (iii).

Turning to (iv), we set $M = \Omega_1(Z(Q_\beta))$. Observing that M is a G_β/Q_β -module with $\operatorname{soc}(M) = Z_\beta$ we have $M \hookrightarrow P(1)$. Since $|\Omega_1(Z(G_{\alpha\beta}))| = 2$, Proposition 2.5(i) implies that M doesn't contain submodules of type $\begin{pmatrix} 4 \\ 1 \end{pmatrix}$. Hence $M \lesssim \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ by Lemma 2.4.

We will make frequent use of Lemma 12.2, often without specific reference.

LEMMA 12.3. Let $(\alpha, \alpha') \in \mathscr{C}$ and suppose that $\operatorname{core}_{G_{\alpha}} V_{\beta} > Z_{\alpha'}$. Then V_{β}/Z_{β} is isomorphic to 4 or $\binom{4}{1}$.

PROOF. Since $\mathrm{core}_{G_{\alpha}}V_{\beta}>Z_{\alpha}$, $[\mathrm{core}_{G_{\alpha}}V_{\beta},Q_{\alpha}]\neq 1$ by Lemma 12.2(i). Clearly $[\mathrm{core}_{G_{\alpha}}V_{\beta},Q_{\alpha}]\unlhd G_{\alpha}$ and so Lemma 12.2(i) implies that $Z_{\alpha}\leq \leq [\mathrm{core}_{G_{\alpha}}V_{\beta},Q_{\alpha}]$. Hence

$$Z_{\alpha} \leq [\mathrm{core}_{G_{\alpha}} V_{\beta}, Q_{\alpha}] \leq [V_{\beta}, G_{\beta}]$$

and therefore $V_{\beta} = [V_{\beta}, G_{\beta}]$. Now the lemma is a consequence of Theorem 12.1.

LEMMA 12.4. Let $(\alpha, \alpha') \in \mathscr{C}$. Then

- (i) $[Q_{\beta}, O^2(G_{\beta})] \not\leq Q_{\alpha}$; in particular $Q_{\alpha} \cap Q_{\alpha} \not\leq G_{\beta}$.
- (ii) $G_{\beta} = O^2(G_{\beta})Q_{\alpha}$.

PROOF. (i) Put $R_{\beta}:=[Q_{\beta},O^2(G_{\beta})]$ and assume that $R_{\beta}\leq Q_{\alpha}$. Clearly, $R_{\beta}\leq Q:=Q_{\alpha}\cap Q_{\beta}$ and so $Q \unlhd G_{\beta}$ with $Q=C_{Q_{\beta}}(Z_{\alpha})=C_{Q_{\beta}}(V_{\beta})$. Since $[Q_{\beta}:Q]=2$ we get $2^2\geq |\Omega_1(Z(Q_{\beta}))|\geq |C_{V_{\beta}}(Q_{\beta})|\geq \sqrt{|V_{\beta}|}$ and hence $|V_{\beta}|\leq 2^4$, a contradiction. This proves (i).

(ii) If $L_{\beta} := O^2(G_{\beta})Q_{\alpha} \neq G_{\beta}$, then $[G_{\beta} : L_{\beta}] = 2$ with $Q_{\alpha} \in SyI_2L_{\beta}$; so $Q_{\alpha} \cap Q_{\beta} = O_2(L_{\beta}) \leq G_{\beta}$, but this contradicts (i).

Let $(\alpha, \alpha') \in \mathscr{C}$ and put $Y_{\beta} = C_{V_{\beta}}(O^2(G_{\beta}))$. Assume that $|Y_{\beta}| = 2^2$. We now define

$$F_{lpha} = \langle Y_{\lambda} \mid \lambda \in \Delta(lpha)
angle = \left\langle Y_{eta}{}^{G_{lpha}}
ight
angle$$

and

$$H_{\beta} = \langle F_{\mu} \mid \mu \in \Delta(\beta) \rangle = \langle F_{\alpha}^{G_{\beta}} \rangle.$$

Clearly $F_{\alpha} \unlhd G_{\alpha}$ and $H_{\beta} \unlhd G_{\beta}$. Some less obvious properties of these groups are given in the next lemma.

LEMMA 12.5.

- (i) $n(G_{\alpha}, F_{\alpha}) = 2$: and
- (ii) $\eta(G_{\beta}, H_{\beta}) \geq 2$.

PROOF. (i) First we observe that $Z_{\alpha} \leq F_{\alpha}$ and, as $|Y_{\beta}| = 2^2$, that $\eta(G_{\alpha},F_{\alpha})\leq 2.$ If $\eta(G_{\alpha},F_{\alpha})=1$, then $F_{\alpha}=Y_{\beta}Z_{\alpha}$ and hence

$$[Q_lpha, F_lpha] = [Q_lpha, Y_eta Z_lpha] = [Q_lpha, Y_eta] \leq Z_eta < Z_lpha$$
 .

Since $[Q_{\alpha}, F_{\alpha}] \triangleleft G_{\alpha}$, we then get $F_{\alpha} \leq \Omega_1(Z(Q_{\alpha})) = Z_{\alpha}$, which is impossible. Thus $\eta(G_{\alpha}, F_{\alpha}) = 2$.

(ii) Since $Z_{\alpha} \leq F_{\alpha}$, clearly $V_{\beta} \leq H_{\beta}$. So if (ii) is false, then $H_{\beta} = F_{\alpha}V_{\beta}$. Hence $[F_{\alpha}V_{\beta},Q_{\beta}] \unlhd G_{\beta}$ and

$$[F_{lpha}V_{eta},Q_{eta}]=[F_{lpha},Q_{eta}][V_{eta},Q_{eta}]=[F_{lpha},Q_{eta}]Z_{eta}\,.$$

By $G_{\alpha\beta}=Q_{\alpha}Q_{\beta}$ and (i) $|[F_{\alpha},Q_{\beta}]|\geq 2^2$ and so $[F_{\alpha}V_{\beta},Q_{\beta}]=[F_{\alpha},Q_{\beta}]$. Because $F_{\alpha}/Z_{\alpha}\cong 2$ or $2\oplus 1$, we see that $|[F_{\alpha},Q_{\beta}]|\leq 2^3$ and therefore $[F_{\alpha}, Q_{\beta}]$ is centralized by $O^2(G_{\beta})$. Consequently $Z_{\alpha} \leq [F_{\alpha}, Q_{\beta}]$ and so $Z_{\alpha} \cap [F_{\alpha}, Q_{\beta}] = Z_{\beta}$. Next we consider

$$[F_{\alpha},Q_{\alpha}\cap Q_{\beta}]\leq [F_{\alpha},Q_{\alpha}]\cap [F_{\alpha},Q_{\beta}]=Z_{\alpha}\cap [F_{\alpha},Q_{\beta}]=Z_{\beta}\,.$$

Therefore $[V_{\beta}F_{\alpha}, Q_{\alpha} \cap Q_{\beta}] \leq Z_{\beta}$. So $Q_{\alpha} \cap Q_{\beta} \leq C_{Q_{\beta}}(V_{\beta}F_{\alpha}/Z_{\beta})$. Recalling that $[F_{\alpha}V_{\beta},Q_{\beta}]=[F_{\alpha},Q_{\beta}]$ has order at least 2^2 we deduce that $Q_{\alpha}\cap Q_{\beta}=$ $=C_{Q_{\beta}}(V_{\beta}F_{\alpha}/Z_{\beta})$. But then $Q_{\alpha}\cap Q_{\beta} \unlhd G_{\beta}$, contrary to Lemma 12.4(i). This completes the verification of (ii).

The groups F_{α} and H_{β} will be important in later arguments in, for example, Section 13 and Part VI. Now we return to examine further the situation in Lemma 12.3 in our next lemma, where F_{α} makes a brief appearance.

Lemma 12.6. Let $(\alpha, \alpha') \in \mathcal{C}$, and assume that $\operatorname{core}_{G_x} V_{\beta} = V_{\alpha-1} \cap$ $\cap V_{\beta} > Z_{\alpha}$.

- (i) If $V_{\beta}/Z_{\beta} \cong 4$, then $V_{\alpha-1} \cap V_{\beta} = [V_{\beta}, G_{\alpha\beta}]$ or $V_{\alpha-1} \cap V_{\beta} =$
- $=[V_{\beta},G_{\alpha\beta},G_{\alpha\beta}].$ (ii) Assume that $V_{\beta}/Z_{\beta}\cong \binom{4}{1}$, and set $Y_{\beta}=C_{V_{\beta}}(O^{2}(G_{\beta}))$. Then $Y_{\beta} \not\leq V_{\alpha-1} \cap V_{\beta}$ and $Y_{\beta}(V_{\alpha-1} \cap V_{\beta}) \neq V_{\beta}$. Hence one of the following holds:

Furthermore, in both cases, $[V_{\beta}, G_{\alpha\beta}; 3] = Z_{\alpha}$.

PROOF. Part (i) follows from $V_{\alpha-1}\cap V_{\beta}\unlhd G_{\alpha\beta}$ and the structure of a natural S_6 -module.

(ii) Suppose $Y_{\beta}(V_{\alpha-1}\cap V_{\beta})=V_{\beta}$. Then, employing Lemma 11.1(vii), $Y_{\alpha'}(V_{\alpha'-2}\cap V_{\alpha'})=V_{\alpha'}$. Since $[Z_{\alpha},V_{\alpha'-2}]=1$, this gives $[V_{\alpha'},Z_{\alpha}]\leq Y_{\alpha'}$, contrary to $\eta(G_{\alpha'},V_{\alpha'})=1$. Therefore $Y_{\beta}(V_{\alpha-1}\cap V_{\beta})\neq V_{\beta}$. If $Y_{\beta}\leq V_{\alpha-1}\cap V_{\beta}$, then $V_{\alpha-1}\cap V_{\beta} \leq G_{\alpha}$ implies that $F_{\alpha}=\langle Y_{\beta}^{G_{\alpha}}\rangle \leq V_{\alpha-1}\cap V_{\beta}$. In particular, $[F_{\alpha},Q_{\beta}]\leq [V_{\beta},Q_{\beta}]=Z_{\beta}$ which, as $G_{\alpha\beta}=Q_{\alpha}Q_{\beta}$, yields that $\eta(G_{\alpha},F_{\alpha}/Z_{\alpha})=0$, against Lemma 12.5(i). So we conclude that $Y_{\beta}\not\leq V_{\alpha-1}\cap V_{\beta}$. Since $V_{\alpha-1}\cap V_{\beta}>Z_{\alpha}$ and $Y_{\beta}(V_{\alpha-1}\cap V_{\beta})\neq V_{\beta}$, we obtain the two indicated possibilities.

We now subdivide into the following cases:

Case 1. $V_{\beta}/Z_{\beta} \cong 4$ and $V_{\alpha-1} \cap V_{\beta} = [V_{\beta}, G_{\alpha\beta}]$.

Case 2. $V_{eta}/Z_{eta}\cong \left(egin{array}{c} 4 \\ 1 \end{array}
ight)$ and Lemma 12.6(ii)(a) holds.

Case 3. $\operatorname{core}_{G_{\alpha}}V_{\beta}=V_{\alpha-1}\cap V_{\beta}=Z_{\alpha}.$

Case 4.
$$V_{\beta}/Z_{\beta} \cong 4$$
 and $V_{\alpha-1} \cap V_{\beta} = [V_{\beta}, G_{\alpha\beta}, G_{\alpha\beta}].$

Case 5.
$$V_{eta}/Z_{eta}\cong \left(egin{array}{c} 4 \\ 1 \end{array}
ight)$$
 and Lemma 12.6(ii)(b) holds.

Consulting Theorem 12.1 and Lemmas 12.3, 12.6 we see that Cases 1 - 5 exhaust all the possibilities.

Before confronting Case 1 in the next section, we give one further result. This result is particularly useful in dealing with Case 3.

LEMMA 12.7. Let $(\alpha, \alpha') \in \mathcal{C}$, and put $\lambda = \alpha' - 2$, $R = [V_{\beta}, V_{\alpha'}]$, $W_{\lambda}^* = [W_{\lambda}, Q_{\lambda}]V_{\lambda}$, $L_{\lambda} = O^2(G_{\lambda})$ and $P_{\lambda} = \langle W_{\beta}, Q_{\alpha'-1} \rangle$. Then the following statements hold.

- (i) If L_{λ} normalizes $V_{\lambda}R$, then $R \leq \operatorname{core}_{G_{\alpha'-1}}V_{\alpha'} = V_{\lambda} \cap V_{\alpha'}$.
- (ii) $V_{\lambda}R$ is normalized by L_{λ} if any one of the following conditions is satisfied.
 - (a) $\eta(G_{\lambda}, W_{\lambda}^*/V_{\lambda}) = 0$.
 - (b) $b \leq 5$, $Z_{\alpha'}R$ is normal in $G_{\alpha'-1\alpha'}$ and $P_{\lambda} \geq L_{\lambda}$.
 - (c) $b \leq 5$, $Z_{\alpha'-1}R$ is normal in $G_{\alpha'-1\alpha'}$ and $P_{\lambda} \geq L_{\lambda}$.

PROOF. (i) Put $X = V_{\lambda}R$, $Q_{\lambda}^* = [Q_{\lambda}, L_{\lambda}]$, $Y_{\lambda} = C_{V_{\lambda}}(L_{\lambda})$ and $N = Z_{\lambda}[X, Q_{\lambda}^*]$. Let $\Delta(\alpha' - 1) = \{\lambda, \rho, \alpha'\}$. Note that $N = Z_{\lambda}[R, Q_{\lambda}^*]$.

$$|R(V_{\lambda} \cap V_{\alpha'})/V_{\lambda} \cap V_{\alpha'}| \le 2^{2}$$

If $|V_{\beta}Q_{\alpha'}/Q_{\alpha'}| \geq 2^2$, then Theorem 12.1 and Proposition 2.5(ii) gives $|RZ_{\alpha'-1}/Z_{\alpha'-1}| \leq 2^2$ and, if $|V_{\beta}Q_{\alpha'}/Q_{\alpha'}| = 2$, then $|RZ_{\alpha'}/Z_{\alpha'}| \leq 2^2$ so also giving $|RZ_{\alpha'-1}/Z_{\alpha'-1}| \leq 2^2$. Hence we have (12.7.1).

Since L_{λ} normalizes X by hypothesis and by (12.7.1), $[X:V_{\lambda}] \leq 2^2$, we deduce that $[X, L_{\lambda}] \leq V_{\lambda}$. Hence $N \leq V_{\lambda}$. We next investigate the location and order of $[R, Q_{\lambda}^*]$. By Lemma 12.4(i) $Q_{\lambda}^* = \langle t \rangle (Q_{\lambda}^* \cap Q_{\alpha'-1})$. Clearly

$$[{Q_\lambda}^*\cap {Q_{\alpha'-1}},R] \leq [{Q_\lambda}^*\cap {Q_{\alpha'-1}},V_{\alpha'}] \leq V_{\alpha'}\,,$$

and so

$$[{Q_\lambda}^*\cap {Q_{\alpha'-1}},R]\leq N\cap V_{\alpha'}\leq V_\lambda\cap V_{\alpha'}=\mathrm{core}_{G_{\alpha'-1}}V_{\alpha'}\,.$$

Therefore $[R,Q_\lambda^*] \leq [t,R] \mathrm{core}_{G_{\alpha'-1}} V_{\alpha'}$. Since t acts upon $V_\rho V_{\alpha'}/V_\rho \cap V_{\alpha'}$, which is abelian, we note, using (12.7.1), that $|[t,R] \mathrm{core}_{G_{\alpha'-1}} V_{\alpha'}/\mathrm{core}_{G_{\alpha'-1}} V_{\alpha'}| \leq 2^2$.

Now assume that $\eta(L_{\lambda}, N) \neq 0$. So, by Theorem 12.1(i), $V_{\lambda} = Y_{\lambda}N = Z_{\alpha'-1}N = Z_{\alpha'-1}[R, Q_{\lambda}^*] \leq [t, R]\text{core}_{G_{\alpha'-1}}V_{\alpha'}$. Therefore $[V_{\lambda}: V_{\lambda} \cap V_{\alpha'}] \leq [t, R]$

 $\leq 2^2$. So $V_{\alpha'}/Z_{\alpha'}\cong 4$ or $\binom{4}{1}$ by Lemma 12.3. If $V_{\alpha'}/Z_{\alpha'}\cong 4$, then by Proposition 2.5(ii),(iii), we have (i). While if $V_{\alpha'}/Z_{\alpha'}\cong \binom{4}{1}$, then we are in case (a) of Lemma 12.6(ii), whence $|RZ_{\alpha'}/Z_{\alpha'}|=2$ and then $[V_{\lambda}:V_{\lambda}\cap V_{\alpha'}]\leq 2$, a contradiction. So we may suppose that $\eta(L_{\lambda},N)=0$. Hence $Z_{\lambda}\leq N\leq Y_{\lambda}$, and so $1=[N,L_{\lambda}]=[R,Q_{\lambda}^*,L_{\lambda}]$. Since $[Q_{\lambda}^*,L_{\lambda}]=Q_{\lambda}^*$, the 3-subgroup lemma yields

$$[Q_{\lambda}^*, X] = [Q_{\lambda}^*, L_{\lambda}, X] = [L_{\lambda}, X, Q_{\lambda}^*] \le [V_{\lambda}, Q_{\lambda}^*] \le Z_{\lambda}.$$

Hence $[Q_{\lambda}^*, R] \leq Z_{\lambda} \leq R$, and so Q_{λ}^* normalizes R. Therefore $R \leq V_{\rho} \cap V_{\alpha'}$ by Lemma 12.4(i), giving (i).

(ii) Suppose (a) holds. Since $V_{\beta} \leq Q_{\beta}$ and $V_{\alpha'} \leq W_{\lambda}$, $R \leq [W_{\lambda}, Q_{\lambda}] \leq W_{\lambda}^*$ and hence $V_{\lambda}R$ is normalized by L_{λ} . Parts (b) and (c) follow from the fact that $[W_{\beta}, R] = 1$.

13. Cases 1 and 2.

First we consider Case 1, our main conclusion being contained in

THEOREM 13.1. Suppose that $(\alpha, \alpha') \in \mathcal{C}$, $V_{\beta}/Z_{\beta} \cong 4$ and $V_{\alpha-1} \cap V_{\beta} = [V_{\beta}, G_{\alpha\beta}]$. Then $b \in \{3, 5\}$.

The description of W_{δ} for $\delta \in O(S_6)$ given in Lemma 13.4 plays a significant role in establishing Theorem 13.1. The proof of Lemma 13.4 is itself heavily dependent upon Lemmas 13.3 and 2.16. Use of Lemma 13.4 then enables us to show that $[V_{\alpha+3}, W_{\alpha'}] \leq Z_{\alpha'}$ for $(\alpha, \alpha') \in \mathscr{C}$. This turns out to be a telling blow. Our next step is to rule out the possibility that $[V_{\alpha+3}, W_{\alpha'}] = 1$. Then, knowing that $[V_{\alpha+3}, W_{\alpha'}] = Z_{\alpha'}$, we readily conclude the proof of the theorem.

Let (α, α') be a fixed critical pair of Γ . Until the end of Lemma 13.10 we assume the following

Hypothesis.

- (i) $V_{\beta}/Z_{\beta} \cong 4$;
- (ii) $V_{\alpha-1} \cap V_{\beta} = [V_{\beta}, G_{\alpha\beta}]; and$
- (iii) b > 7.

Note that $V_{\beta} \cap V_{\alpha-1} = [V_{\beta}, Q_{\alpha}] = [V_{\alpha-1}, Q_{\alpha}]$ and $[V_{\beta} : V_{\beta} \cap V_{\alpha-1}] = 2$.

Further, by Lemma 11.1(vii), we have that $[V_{\tau}: V_{\tau} \cap V_{\delta}] = 2$ for all τ , $\delta \in O(S_6)$ with $d(\tau, \delta) = 2$.

LEMMA 13.2. Let (δ, λ, τ) be a path in Γ of length 2 with $\delta \in O(S_6)$. Then $(Q_{\lambda} \cap Q_{\tau})Q_{\delta}/Q_{\delta}$ is contained in the non-quadratic $E(2^3)$ -subgroup of $G_{\delta\lambda}/Q_{\delta}$ acting on V_{δ}/Z_{δ} .

PROOF. Since $[Q_{\tau}, V_{\tau}] = Z_{\tau}$,

$$[[V_{\delta},Q_{\lambda}],Q_{\lambda}\cap Q_{\tau}]=[V_{\delta}\cap V_{\tau},Q_{\lambda}\cap Q_{\tau}]\leq Z_{\tau}$$
 .

Thus

$$[[V_{\delta}, G_{\delta\lambda}]/Z_{\delta}, Q_{\lambda} \cap Q_{\tau}] \leq Z_{\tau}Z_{\delta}/Z_{\delta} = Z_{\lambda}/Z_{\delta} = C_{V_{\delta}/Z_{\delta}}(G_{\delta\lambda}),$$

and the result is now a consequence of Proposition 2.5(vii).

LEMMA 13.3. There exists an involution $y \in G_{\alpha\beta} \backslash Q_{\beta}$ such that $[W_{\beta}/V_{\beta}: C_{W_{\beta}/V_{\beta}}(y)] \leq 2^2$.

PROOF. Suppose that statement is false. So $[W_{\beta}/V_{\beta}:C_{W_{\beta}/V_{\beta}}(y)] \geq 2^3$ for all $y \in G_{\alpha\beta} \backslash Q_{\beta}$ with $y^2 = 1$ and hence, as $\eta(G_{\beta},V_{\beta}) = 1$, $[W_{\beta}/V_{\beta}:C_{W_{\beta}/V_{\beta}}(y)] \geq 2^4$ for all $y \in G_{\alpha\beta} \backslash Q_{\beta}$ with $y^2 = 1$. In particular we have

$$(13.3.1) [W_{\alpha'}: C_{W_{\alpha'}}(x)] \ge 2^4 ext{ for any } x \in V_{\beta} \backslash Q_{\alpha'}.$$

We first show that

$$(13.3.2) W_{\alpha'} \not \leq G_{\alpha+2} .$$

Supposing that $W_{\alpha'} \leq G_{\alpha+2}$ we argue for a contradiction. Now we have either

- (a) $W_{\alpha'} \cap Q_{\beta} \not\leq Q_{\alpha}$ or
- (b) $W_{\alpha'} \cap Q_{\beta} \leq Q_{\alpha}$.

Assume that Case (a) holds. Then $Z_{\beta} = [Z_{\alpha}, W_{\alpha'} \cap Q_{\beta}] \leq W_{\alpha'}$ and hence, as $b \geq 7$, $W_{\alpha'}$ centralizes $Z_{\beta}Z_{\alpha+3} = Z_{\alpha+2}$. Since $W_{\alpha'} \leq G_{\alpha+2}$, we conclude that $W_{\alpha'} \leq Q_{\alpha+2} \leq G_{\beta}$. Because $W_{\alpha'}$ is abelian, $W_{\alpha'}$ acts quadratically on V_{β} and thus $|[W_{\alpha'}, V_{\beta}]| \leq 2^3$ by Proposition 2.5(ii). Hence, for $x \in V_{\beta} \setminus Q_{\alpha'}$, $|[W_{\alpha'}, x]| \leq |W_{\alpha'}, V_{\beta}|| \leq 2^3$ and so $[W_{\alpha'} : C_{W_{\alpha'}}(x)] \leq 2^3$, contrary to (13.3.1).

Therefore $W_{\alpha'}\cap Q_{\beta}\leq Q_{\alpha}$. If $W_{\alpha'}\leq Q_{\alpha+2}$, then $[W_{\alpha'}:C_{W_{\alpha'}}(Z_{\alpha})]\leq$

 $\leq |W_{\alpha'}Q_{\beta}/Q_{\beta}| \leq 2^3$ again contradicting (13.3.1). Thus $W_{\alpha'} \not\leq Q_{\alpha+2}$. Since $W_{\alpha'} \leq G_{\alpha+2}$, this implies $[W_{\alpha'}, Z_{\alpha+2}] \neq 1$. Now $V_{\alpha+3} \cap V_{\alpha+5}$ is centralized by $W_{\alpha'}$ and has index 2 in $V_{\alpha+3}$ and therefore

$$V_{\alpha+3} = Z_{\alpha+2}(V_{\alpha+3} \cap V_{\alpha+5}).$$

Consequently $W_{\alpha'} \cap Q_{\alpha+2}$ centralizes $V_{\alpha+3}$ and, in particular, centralizes $V_{\beta} \cap V_{\alpha+3} = [V_{\beta}, Q_{\alpha+2}]$. Hence $|(W_{\alpha'} \cap Q_{\alpha+2})Q_{\beta}/Q_{\beta}| \leq 2$ and so, as $[W_{\alpha'}: W_{\alpha'} \cap Q_{\alpha+2}] \leq 2$, we obtain $[W_{\alpha'}: W_{\alpha'} \cap Q_{\alpha}] \leq 2^2$ once again contradicting (13.3.1). Thus we have proved (13.3.2).

$$(13.3.3) V_{\beta} \cap V_{\alpha+3} \neq V_{\alpha+3} \cap V_{\alpha+5}.$$

If $V_{\beta} \cap V_{\alpha+3} = V_{\alpha+3} \cap V_{\alpha+5}$, then $P = \langle G_{\alpha+2\alpha+3}, G_{\alpha+3\alpha+4} \rangle \neq G_{\alpha+2}$. Now $W_{\alpha'}$ centralizing $V_{\alpha+3} \cap V_{\alpha+5}$ and Proposition 2.5(viii) yield $W_{\alpha'} \leq O_2(P) \leq G_{\alpha+2\alpha+3}$, which is impossible by (13.3.2). So (13.3.3) holds.

- (13.3.4) (i) $W_{\alpha'} \cap Q_{\alpha+3} \le Q_{\alpha+2}$
 - (ii) $|(W_{\alpha'} \cap Q_{\alpha+3})Q_{\beta}/Q_{\beta}| = 2^2$
 - (iii) $W_{\alpha'} \cap Q_{\alpha+3} \cap Q_{\beta} \not\leq Q_{\alpha}$

Suppose that $W_{\alpha'}\cap Q_{\alpha+3}\not\leq Q_{\alpha+2}$. So, since $W_{\alpha'}\cap Q_{\alpha+3}\leq G_{\alpha+2}$, $[W_{\alpha'}\cap Q_{\alpha+3},Z_{\alpha+2}]\neq 1$. Hence, as $Z_{\alpha+2}=Z_{\beta}Z_{\alpha+3}$, $[W_{\alpha'}\cap Q_{\alpha+3},Z_{\beta}]\neq 1$ and so $Z_{\beta}\not\leq W_{\alpha'}$. This then yields that $W_{\alpha'}\cap Q_{\beta}\leq Q_{\alpha}$. Now, just as in the proof of (13.3.2), $V_{\alpha+3}=(V_{\alpha+3}\cap V_{\alpha+5})Z_{\alpha+2}$, whence $[W_{\alpha'}\cap Q_{\alpha+3}\cap Q_{\alpha+2},V_{\alpha+3}]=1$. Therefore $|(W_{\alpha'}\cap Q_{\alpha+3}\cap Q_{\alpha+2})Q_{\beta}/Q_{\beta}|\leq 2$ and so $[W_{\alpha'}:W_{\alpha'}\cap Q_{\beta}]\leq 2^3$ which, as $W_{\alpha'}\cap Q_{\beta}\leq Q_{\alpha'}$, contradicts (13.3.1). Thus $W_{\alpha'}\cap Q_{\alpha+3}\leq Q_{\alpha+2}$, and we have (i).

Because $W_{\alpha'}\cap Q_{\alpha+3}$ acts quadratically on V_{β} and, by (i), $(W_{\alpha'}\cap Q_{\alpha+3})Q_{\beta}/Q_{\beta}\leq (Q_{\alpha+3}\cap Q_{\alpha+2})Q_{\beta}/Q_{\beta}$ we see that $|(W_{\alpha'}\cap Q_{\alpha+3})Q_{\beta}/Q_{\beta}|\leq 2^2$. In view of (13.3.1) and $[W_{\alpha'}:W_{\alpha'}\cap Q_{\alpha+3}]=2$ (by (13.3.2)) we must have $|(W_{\alpha'}\cap Q_{\alpha+3})Q_{\beta}/Q_{\beta}|=2^2$ and $W_{\alpha'}\cap Q_{\alpha+3}\cap Q_{\beta}\not\leq Q_{\alpha}$, so giving (ii) and (iii).

$$(13.3.5) \quad V_{\beta} \cap V_{\alpha+3} \geq [W_{\alpha'} \cap Q_{\alpha+3}, V_{\beta}] \geq Z_{\alpha+2} \quad \text{with } |[W_{\alpha'} \cap Q_{\alpha+3}, V_{\beta}]| = 2^3 \,.$$

Since $W_{\alpha'} \cap Q_{\alpha+3} \leq Q_{\alpha+2} \leq G_{\beta\alpha+2}$, we clearly have $[W_{\alpha'} \cap Q_{\alpha+3}, V_{\beta}] \leq V_{\beta} \cap V_{\alpha+3}$. From (13.3.4)(iii) we observe that $Z_{\beta} \leq [W_{\alpha'} \cap Q_{\alpha+3}, V_{\beta}]$. By (13.3.1), (13.3.4)(ii) and Proposition 2.5(ii) we have that $(W_{\alpha'} \cap Q_{\alpha+3})Q_{\beta}/Q_{\beta}$ is $Z(G_{\beta\alpha+2}/Q_{\beta})$ or is $G_{\beta\alpha+2}/Q_{\beta}$ -conjugate to $\langle s_1, t \rangle$. In either case we obtain $|[W_{\alpha'} \cap Q_{\alpha+3}, V_{\beta}]| = 2^3$ and $[W_{\alpha'} \cap Q_{\alpha+3}, V_{\beta}] \geq Z_{\alpha+2}$, as required.

$$[W_{\alpha'} \cap Q_{\alpha+3}, V_{\beta}] = Z_{\alpha+2} Z_{\alpha+4} \,.$$

From (13.3.5) we see that $\langle W_{\alpha'}, G_{\alpha+2\alpha+3} \rangle$ is a parabolic subgroup of $G_{\alpha+3}$ which normalizes $Z_{\alpha+2}/Z_{\alpha+3}$. Hence $\langle W_{\alpha'}, G_{\alpha+2\alpha+3} \rangle$ also normalizes $[V_{\alpha+3}, Q_{\alpha+2}]/Z_{\alpha+3} = V_{\beta} \cap V_{\alpha+3}/Z_{\alpha+3}$. Using (13.3.3) we deduce that

$$[V_{\alpha+3}, W_{\alpha'}] = [(V_{\beta} \cap V_{\alpha+3})(V_{\alpha+3} \cap V_{\alpha+5}), W_{\alpha'}]$$

= $[V_{\beta} \cap V_{\alpha+3}, W_{\alpha'}] \le V_{\beta} \cap V_{\alpha+3}$.

Since $W_{\alpha'}$ acts as a central transvection on $V_{\alpha+3}/Z_{\alpha+3}$ (by (13.3.2)), it follows that $Z_{\alpha+4} \leq V_{\beta} \cap V_{\alpha+3}$. If $Z_{\alpha+4} \not \leq [W_{\alpha'} \cap Q_{\alpha+3}, V_{\beta}]$, then, by (13.3.5), $V_{\beta} \cap V_{\alpha+3} = Z_{\alpha+4}[W_{\alpha'} \cap Q_{\alpha+3}, V_{\beta}]$. But then $W_{\alpha'} \cap Q_{\alpha+3}$ centralizes $V_{\beta} \cap V_{\alpha+3}$, contradicting (13.3.4)(ii). Thus $Z_{\alpha+4} \leq [W_{\alpha'} \cap Q_{\alpha+3}, V_{\beta}]$. If $Z_{\alpha+2} = Z_{\alpha+4}$, then $\langle W_{\alpha'}, G_{\alpha+2\alpha+3} \rangle = \langle G_{\alpha+3\alpha+4}, G_{\alpha+2\alpha+3} \rangle$ which in turn implies $V_{\alpha+3} \cap V_{\alpha+5} = V_{\alpha+3} \cap V_{\beta}$, against (13.3.3). So $Z_{\alpha+2} \neq Z_{\alpha+4}$ and now (13.3.5) gives (13.3.6).

We now show that $Z_{\alpha+4} \leq V_{\alpha'}$, from which we will derive our final contradiction. Since $[V_{\alpha+3},W_{\alpha'}\cap Q_{\alpha+3}]=Z_{\alpha+3}$ (else $W_{\alpha'}\cap Q_{\alpha+3}$ centralizes $V_{\beta}\cap V_{\alpha+3}$, contrary to (13.3.4)(ii)), it is clear that $[V_{\alpha+3},W_{\alpha'}]=Z_{\alpha+4}$. Let $\alpha'+2$ be such that $d(\alpha',\alpha'+2)=2$. By the minimality of b, $V_{\alpha+3}\leq G_{\alpha'+2}$ and $V_{\alpha+3}$ centralizes $V_{\alpha'}$. Hence $[V_{\alpha+3},V_{\alpha'+2}]\leq Z_{\alpha'+1}\leq V_{\alpha'}$. Consequently $[V_{\alpha+3},W_{\alpha'}]\leq V_{\alpha'}$, and thus $Z_{\alpha+4}\leq V_{\alpha'}$. Combining this with (13.3.6) gives

$$egin{aligned} [V_eta,(W_{lpha'}\cap Q_{lpha+3})/V_{lpha'}] &= Z_{lpha+2}Z_{lpha+4}V_{lpha'}/V_{lpha'} \ &= Z_{lpha+2}V_{lpha'}/V_{lpha'} &= Z_eta V_{lpha'}/V_{lpha'} \ . \end{aligned}$$

So for $x = V_{\beta} \setminus Q_{\alpha'}$, $|[x, W_{\alpha'} \cap Q_{\alpha+3}/V_{\alpha'}]| \le 2$, whence $[W_{\alpha'}/V_{\alpha'} : C_{W_{\alpha'}/V_{\alpha'}}(x)] \le 2^2$, contrary to our supposition. This completes the proof of Lemma 13.3.

For the next result we require the following notation. Let $\delta=O(S_6)$ and $\gamma\in\varDelta(\delta)$. Then we put

$$\Lambda(\delta, \gamma) = \{ \tau \in \Delta(\delta) \mid Z_{\tau} \not \leq [V_{\delta}, Q_{\gamma}] \}.$$

LEMMA 13.4. For any $\gamma \in \Delta(\beta)$,

$$W_{\beta} = \langle U_{\tau} \mid \tau \in \Lambda(\beta, \gamma) \rangle U_{\gamma}.$$

PROOF. Let $\gamma \in A(\beta)$. By Lemma 2.10(iii) $|\{Z_{\tau} \mid \tau \in A(\beta, \gamma)\}| = 8$ and so we have $V_{\beta} = \langle Z_{\tau} \mid \tau \in A(\beta, \gamma) \rangle$. We now investigate the sections $W_{\beta}/[W_{\beta},Q_{\beta}]V_{\beta}$ and $[W_{\beta},Q_{\beta}]V_{\beta}/V_{\beta}$. From $[V_{\beta}:V_{\beta}\cap V_{\alpha-1}]=2$ it follows that $U_{\alpha}/V_{\beta}\cap V_{\alpha-1}\cong 2$ or $2\oplus 1$ and so $[W_{\beta},Q_{\beta},Q_{\beta}]\leq V_{\beta}$. So these two sections are modules for G_{β}/Q_{β} . By Lemma 13.3 we may find an involution

 $x \in G_{\alpha\beta} \backslash Q_{\beta}$ such that

$$[W_{eta}/[W_{eta},Q_{eta}]V_{eta}:C_{W_{eta}/[W_{eta},Q_{eta}]V_{eta}}(x)] \leq 2^2 ext{ and }$$
 $[[W_{eta}\ ,\ Q_{eta}\]\ V_{eta}\ /V_{eta}\ :\ C_{[W_{eta}\ ,\ Q_{eta}\]V_{eta}\ /V_{eta}}\ (x)] \leq 2^2\ .$

Furthermore, $W_{\beta}/[W_{\beta},Q_{\beta}]V_{\beta}$ is generated by $U_{\alpha}[W_{\beta},Q_{\beta}]/[W_{\beta},Q_{\beta}]V_{\beta}$ which has order 2 and is centralized by $G_{\alpha\beta}$. Similarly, $[W_{\beta},Q_{\beta}]V_{\beta}/V_{\beta}$ is generated by $[U_{\alpha},Q_{\beta}]V_{\beta}/V_{\beta}$ which has order at most 2 and is centralized by $G_{\alpha\beta}$. Applying Proposition 2.15 to each section yields that $W_{\beta}/[W_{\beta},Q_{\beta}]V_{\beta}$ is a quotient of $\begin{pmatrix} 4\\1 \end{pmatrix} \oplus 1$, as is $[W_{\beta},Q_{\beta}]V_{\beta}/V_{\beta}$. Proceeding as in Lemma 5.17 gives the lemma.

LEMMA 13.5. $[V_{\alpha+3}, W_{\alpha'}] < Z_{\alpha'}$.

PROOF. By Lemma 13.4 $W_{\alpha'} = \langle U_{\tau} \mid \tau \in \varLambda(\alpha', \alpha'-1) \rangle U_{\alpha'-1}$. The minimality of b implies $[V_{\alpha+3}, U_{\alpha'-1}] = 1$. Now let τ be an arbitrary element of $\varLambda(\alpha', \alpha'-1)$, and let $\delta \in \varLambda(\tau) \setminus \{\alpha'\}$. Since $V_{\alpha+3} \leq Q_{\tau} \leq G_{\delta}$ and $[V_{\alpha+3}, V_{\alpha'}] = 1$, $V_{\alpha+3}$ acts as at most a central transvection on V_{δ}/Z_{δ} . Hence $[V_{\alpha+3}, V_{\delta}] \leq Z_{\tau}$. Also, as $[V_{\alpha+3}, V_{\delta}] \leq V_{\alpha+3}$, Z_{α} centralizes $[V_{\alpha+3}, V_{\delta}]$. Since $\tau \in \varLambda(\alpha', \alpha'-1)$. $Z_{\tau} \leq [V_{\alpha'}, Q_{\alpha'-1}] = V_{\alpha'} \cap V_{\alpha'-2} = C_{V_{\alpha'}}(Z_{\alpha})$. Hence $[V_{\alpha+3}, V_{\delta}] \leq C_{V_{\alpha'}}(Z_{\alpha}) \cap Z_{\tau} = Z_{\alpha'}$. So $[V_{\alpha+3}, U_{\tau}] \leq Z_{\alpha'}$, which completes the verification of the lemma.

LEMMA 13.6.

- (i) If $[V_{\alpha+3}, W_{\alpha'}] = 1$, then $[V_{\beta}, W_{\alpha'}] = Z_{\alpha+2}$ and $\eta(G_{\alpha'}, W_{\alpha'}) = 2$.
- (ii) If $\eta(G_{\beta}, W_{\beta}) = 2$, then $[U_{\alpha}, Q_{\beta}]V_{\beta} = [U_{\gamma}, Q_{\beta}]V_{\beta}$ for all $\gamma \in \Delta(\beta)$.

PROOF. (i) From $[V_{\alpha+3},W_{\alpha'}]=1$ it follows that $W_{\alpha'}$ acts upon V_{β}/Z_{β} as at most a central transvection of $G_{\beta\alpha+2}/Q_{\beta}$. Hence $[V_{\beta},W_{\alpha'}]\leq Z_{\alpha+2}$ and so, as $\eta(G_{\alpha'},W_{\alpha'})\geq 2$, part (i) follows. The assumption $\eta(G_{\beta},W_{\beta})=2$ implies that $\eta(G_{\beta},[W_{\beta},Q_{\beta}]V_{\beta}/V_{\beta})=0$, which gives (ii).

LEMMA 13.7. Let $\tau \in \Delta(\alpha', \alpha' - 1)$ and $\gamma \in \Delta(\tau)$. If $\eta(G_{\beta}, W_{\beta}) = 2$, then $[W_{\gamma}, V_{\alpha+5}] = 1$; in particular $W_{\gamma} \leq G_{\alpha+3}$.

PROOF. Using Lemma 13.4 gives $W_{\gamma} = \langle U_{\rho} \mid \rho \in \Lambda(\gamma, \tau) \rangle U_{\tau}$. Clearly $[U_{\tau}, V_{\alpha+5}] = 1$. Now let $\rho \in \Lambda(\gamma, \tau)$. Since $V_{\alpha+5}$ acts as at most a central transvection of $G_{\rho\omega}Q_{\omega}$ on V_{ω}/Z_{ω} for $\omega \in \Delta(\rho)$, we conclude that $[U_{\rho}, V_{\alpha+5}] \leq Z_{\rho}$.

Our present situation is as indicated.

Suppose that $[U_{\rho},V_{\alpha+5}]\geq Z_{\gamma}$. Then, since $b\geq 7$, Z_{α} centralizes $Z_{\gamma}Z_{\alpha'}=Z_{\tau}$ and hence $Z_{\tau}\leq C_{V_{\alpha'}}(Z_{\alpha})=[V_{\alpha'},Q_{\alpha'-1}]$, contrary to $\tau\in \varDelta(\alpha',\alpha'-1)$. Therefore $[U_{\rho},V_{\alpha+5}]=Z_{\omega'}$ for some $\omega'\in \varDelta(\rho)\backslash\{\gamma\}$ or $[U_{\rho},V_{\alpha+5}]=1$. Suppose that the former possibility holds. Then because $\rho\in \varDelta(\gamma,\tau)$ we have

$$V_{\gamma} = (V_{\gamma} \cap V_{\alpha'})Z_{\omega'} = (V_{\gamma} \cap V_{\alpha'})[U_{\rho}, V_{\alpha+5}].$$

Noting that $[U_{\tau}, Q_{\alpha'}]V_{\alpha'}$ has index 2 in U_{τ} and $V_{\gamma} \not\leq [U_{\tau}, Q_{\alpha'}]V_{\alpha'}$, we obtain

$$U_{\tau} = [U_{\tau}, Q_{\alpha'}]V_{\alpha'}V_{\gamma} = [U_{\tau}, Q_{\alpha'}]V_{\alpha'}[U_{\rho}, V_{\alpha+5}].$$

By hypothesis $\eta(G_{\beta}, W_{\beta}) = 2$ and thus $[U_{\tau}, Q_{\alpha'}]V_{\alpha'} \unlhd G_{\alpha'}$ by Lemma 13.6(ii). Since $b \geq 7$, $[Z_{\alpha}, [U_{\rho}, V_{\alpha+5}]] = 1$, whence

$$[U_\tau, Z_\alpha] = [[U_\tau, Q_{\alpha'}] V_{\alpha'}, Z_\alpha] \leq [U_\tau, Q_{\alpha'}] V_{\alpha'} \leq U_\tau \,.$$

Consequently U_{τ} is normalized by $\langle Z_{\alpha}, G_{\alpha'\tau} \rangle = G_{\alpha'}$, using Lemma 2.10(v). This is impossible, and so $[U_{\rho}, V_{\alpha+5}] = 1$ must hold. Since ρ was an arbitrary vertex in $\Lambda(\gamma, \tau)$, $[W_{\gamma}, V_{\alpha+5}] = 1$.

LEMMA 13.8. Suppose that $[W_{\alpha'}, V_{\alpha+3}] = 1$, and let $\tau \in \Lambda(\alpha', \alpha' - 1)$ and $\gamma \in \Lambda(\tau) \setminus \{\alpha'\}$. Then $[W_{\gamma}, V_{\alpha+3}] = 1$ and, in particular, $W_{\gamma} \leq G_{\beta}$.

PROOF. From Lemma 13.6(i) we have $\eta(G_{\alpha'},W_{\alpha'})=2$. Because $[V_{\alpha+3},W_{\alpha'}]=1$ by hypothesis, $[V_{\alpha+3},V_{\gamma}]=1$ and $V_{\alpha+3}\leq Q_{\rho}$ for all $\rho\in\varDelta(\tau)$. Let $\rho\in\varDelta(\gamma,\tau)$. So $V_{\alpha+3}$ acts as at most a central transvection on each V_{ω}/Z_{ω} for $\omega\in\varDelta(\rho)$. Hence $[V_{\alpha+3},U_{\rho}]\leq Z_{\rho}$. If $[V_{\alpha+3},U_{\rho}]\geq Z_{\gamma}$, then, as in Lemma 13.7, we obtain $\tau\not\in\varDelta(\alpha',\alpha'-1)$ (note that $W_{\gamma}\leq G_{\alpha+3}$ by Lemma 13.7). Thus $[V_{\alpha+3},U_{\rho}]\leq Z_{\omega'}$ for some $\omega'\in\varDelta(\rho)\backslash\{\gamma\}$. If $[V_{\alpha+3},U_{\rho}]=Z_{\omega'}$ holds,

then arguing as in Lemma 3.7 we first obtain $U_{\tau} = [U_{\tau}, Q_{\alpha'}]V_{\alpha'}[U_{\rho}, V_{\alpha+3}]$ and thence $U_{\tau} \leq \langle Z_{\alpha}, G_{\alpha'\tau} \rangle = G_{\alpha'}$. So we conclude that $[V_{\alpha+3}, U_{\rho}] = 1$ and consequently $[V_{\alpha+3}, W_{\gamma}] = 1$ by Lemma 13.4. Now Lemma 13.7 and $[V_{\alpha+3}, W_{\gamma}] = 1$ yield $W_{\gamma} \leq G_{\beta}$.

LEMMA 13.9.
$$[W_{\alpha'}, V_{\alpha+3}] = Z_{\alpha'}$$
.

PROOF. If the lemma is false, then $[W_{\alpha'},V_{\alpha+3}]=1$ by Lemma 13.5. So, for $\tau\in\varLambda(\alpha',\alpha'-1)$, Lemma 13.8 implies that $G_{\tau}^{\ [4]}\leq G_{\beta}$ with $G_{\tau}^{\ [4]}Q_{\beta}/Q_{\beta}$ at most a central transvection of $G_{\beta\alpha+2}/Q_{\beta}$ on V_{β}/Z_{β} . Using Lemma 13.6(i) we see that

$$[G_{\tau}^{[4]}, V_{\beta}] = [W_{\alpha'}, V_{\beta}] = Z_{\alpha+2} \le W_{\alpha'} \le G_{\tau}^{[4]},$$

whence $G_{\tau}^{[4]} \subseteq \langle V_{\beta}, G_{\alpha'\tau} \rangle = G_{\alpha}$, a contradiction. Hence Lemma 13.9 holds. In our next result our attention switches to W_{β} .

Lemma 13.10.

- (i) $[W_{\beta}, V_{\alpha'-2}] = 1$.
- (ii) $V_{\alpha'} \leq Q_{\beta}$.

PROOF. (i) Suppose that $W_{\beta} \not\leq C_{G_{\alpha'-2}}(V_{\alpha'-2})$. Using Lemma 13.4 again gives

$$W_{\beta} = \langle U_{\tau} \mid \tau \in \varLambda(\beta, \alpha + 2) \rangle U_{\alpha + 2} = \langle U_{\tau} \mid \tau \in \varDelta(\beta), (\tau, \alpha') \in \mathscr{C} \rangle U_{\alpha + 2}.$$

So there exists $\tau \in \Delta(\beta)$ with $(\tau, \alpha') \in \mathscr{C}$ and $\rho \in \Delta(\alpha'-2)$ such that $[U_{\tau}, Z_{\rho}] \neq 1$. Hence $[V_{\tau-1}, Z_{\rho}] \neq 1$ for some $\tau - 1 \in \Delta(\tau) \setminus \{\beta\}$. If $Z_{\rho} \leq Q_{\tau-1}$, then $Z_{\tau-1} = [V_{\tau-1}, Z_{\rho}] \leq V_{\alpha'-2}$, contrary to $(\tau, \alpha') \in (\mathscr{C})$. Thus $(\rho, \tau - 1) \in \mathscr{C}$. But then applying Lemma 13.9 to $(\rho, \tau - 1)$ gives the contradiction

$$Z_{\tau-1} = [W_{\tau-1}, V_{\alpha'-4}] \le V_{\alpha'-4} \le Q_{\alpha'}$$

since b > 5. Therefore we have verified (i).

(ii) Suppose that $V_{\alpha'} \not \leq Q_{\beta}$ holds. Then there exists $\tau \in \varDelta(\alpha')$ such that $(\tau,\beta) \in \mathscr{C}$. Lemma 13.9 applied to (τ,β) gives $[W_{\beta},V_{\alpha'-2}]=Z_{\beta}$, contradicting part (i). Thus $V_{\alpha'} \leq Q_{\beta}$.

PROOF OF THEOREM 13.1. Supposing the result false, we seek a contradiction. So the previous lemmas in this section are available to us. Let $\alpha - 1 \in \Delta(\alpha) \setminus \{\beta\}$.

$$[W_{\alpha-1}, V_{\alpha'-4}] = 1$$

Suppose (13.1.1) is false. Then, by Lemma 13.4, there exists $\alpha-2\in \varLambda(\alpha-1,\alpha)$ such that $[U_{\alpha-2},V_{\alpha'-4}]\neq 1$. Since $[V_{\alpha'-4},V_{\alpha-1}]=1$, we may find $\alpha-3\in \varLambda(\alpha-2)\backslash\{\alpha-1\}$ such that $[V_{\alpha-3},V_{\alpha'-4}]\neq 1$. Moreover $V_{\alpha'-4}$ acts as at most a central transvection of $G_{\alpha-3\alpha-2}/Q_{\alpha-3}$ on $V_{\alpha-3}/Z_{\alpha-3}$, and so $[V_{\alpha-3},V_{\alpha'-4}]\leq Z_{\alpha-2}$. Since $Z_{\alpha-1}\not\leq Q_{\alpha'}$ and b>5, we deduce that $Z_{\alpha-1}\not\leq [V_{\alpha-3},V_{\alpha'-4}]$ whence, as $\alpha-2\in \varLambda(\alpha-1,\alpha)$,

$$V_{\alpha-1} = (V_{\beta} \cap V_{\alpha-1})[V_{\alpha-3}, V_{\alpha'-4}].$$

Combining $[V_{\alpha'}, [V_{\alpha-3}, V_{\alpha'-4}]] = 1$ and $[V_{\beta}, V_{\alpha'}] = Z_{\beta}$ (by Lemma 3.10(ii)) we obtain $[V_{\alpha-1}, V_{\alpha'}] \leq Z_{\beta} \leq V_{\alpha-1}$ and then $V_{\alpha-1} \unlhd \langle V_{\alpha'}, G_{\alpha-1\alpha} \rangle = G_{\alpha}$, a contradiction. Thus we have (13.1.1).

$$[W_{\alpha-1}, V_{\alpha'-2}] = 1$$

From Lemma 13.10(i) $[W_{\beta},V_{\alpha'-2}]=1$ and so $[U_{\alpha},V_{\alpha'-2}]=1$. Therefore $V_{\alpha'-2}\leq Q_{\alpha-2}$ for any $\alpha-2\in \varDelta(\alpha-1)$ and $V_{\alpha'-2}$ acts as at most a central transvection of $G_{\alpha-3\alpha-2}/Q_{\alpha-3}$ on $V_{\alpha-3}/Z_{\alpha-3}$ $(\alpha-3\in \varDelta(\alpha-2))$. Thus $[V_{\alpha'-2},V_{\alpha-3}]\leq Z_{\alpha-2}$ and once again we deduce that either

- (a) $[W_{\alpha-1}, V_{\alpha'-2}] = 1$ or
- (b) there exists $\alpha 2 \in \Lambda(\alpha 1, \alpha)$ and $\alpha 3 \in \Lambda(\alpha 2) \setminus \{\alpha 1\}$ such that $[V_{\alpha'-2}, V_{\alpha-3}] \neq 1$. (Here we use (13.1.1) to get $[V_{\alpha'-2}, V_{\alpha-3}] \leq V_{\alpha'-2}$).

In case (b), just as in (13.1.1), we obtain

$$V_{\alpha-1}=(V_{\alpha-1}\cap V_{\beta})[V_{\alpha'-2},V_{\alpha-3}],$$

and then $V_{\alpha-1} \unlhd \langle V_{\alpha'}, G_{\alpha-1\alpha} \rangle = G_{\alpha}$. So (a) must hold, as required.

Combining (13.1.1) and (13.1.2) gives $W_{\alpha-1} \leq G_{\alpha'}$ with $W_{\alpha-1}Q_{\alpha'}/Q_{\alpha'}$ acting as a central transvection on $V_{\alpha'}/Z_{\alpha'}$. Now, by Lemma 3.10(ii) and $\eta(G_{\alpha}, U_{\alpha}) = 2$, we have $|[U_{\alpha}, V_{\alpha'}]| \geq 2^2$. Hence

$$[W_{\alpha-1},V_{lpha'}]=Z_{lpha'-1}=[U_lpha,V_{lpha'}]\leq U_lpha\leq W_{lpha-1}$$

and so $W_{\alpha-1} \triangleleft \langle V_{\alpha'}, G_{\alpha-1\alpha} \rangle = G_{\alpha}$. With this contradiction we have completed the proof of Theorem 13.1.

We now tackle Case 2, and will prove the following

Theorem 13.11. Suppose that $(\alpha, \alpha') \in \mathscr{C}$, $V_{\beta}/Z_{\beta} \cong \begin{pmatrix} 4 \\ 1 \end{pmatrix}$ and $(V_{\alpha-1} \cap V_{\beta})Y_{\beta} = [V_{\beta}, G_{\alpha\beta}]$ (where $Y_{\beta} = C_{V_{\beta}}(O^2(G_{\beta}))$). Then b=3.

PROOF. Let $(\alpha, \alpha') \in \mathcal{C}$. Referring to Lemma 12.6(ii) we have

We shall show that the assumption $b \ge 5$ leads to a contradiction - the observations in (13.11.1) and (13.11.2) hold the key to doing this.

(13.11.1) Let $x\in G_{\alpha\beta}$. If x acts as the central transvection of $G_{\alpha\beta}/Q_\beta$ on V_β/Z_β , then

- (i) $[V_{\beta}, x] \not\leq Z_{\alpha}$; and
- (ii) $[V_{\beta}, x] \not\leq V_{\alpha-1} \cap V_{\beta}$.

Because $Z_{\alpha} = [V_{\beta}, G_{\alpha\beta}; 3]$ part (i) is a consequence of Proposition 2.5(i), (iii). Now if $[V_{\beta}, x] \leq V_{\alpha-1} \cap V_{\beta}$, then by part (i) $Y_{\beta} \leq [V_{\beta}, x]Z_{\alpha} \leq V_{\alpha-1} \cap V_{\beta}$, contrary to Lemma 12.6(ii). Hence (ii) holds as well.

$$\eta(G_{\alpha}, U_{\alpha}) = 3.$$

Put
$$N=V_{\alpha-1}\cap V_{\beta}$$
 and ${U_{\alpha}}^{(1)}=\langle [V_{\beta},G_{\alpha\beta}]^{G_{\alpha}}\rangle$. If $\eta(G_{\alpha},{U_{\alpha}}^{(1)}/N)=1$, then
$$U_{\alpha}^{\ (1)}=[V_{\beta},G_{\alpha\beta}]N=[V_{\alpha-1},G_{\alpha\beta}]N\leq V_{\alpha-1}\cap V_{\beta}$$

which is impossible since $[V_{\beta}, G_{\alpha\beta}] \not\leq V_{\alpha-1} \cap V_{\beta}$. Thus $\eta(G_{\alpha}, U_{\alpha}^{(1)}/N) = 1$ and so, using Lemma 1.2(v), we see that $\eta(G_{\alpha}, U_{\alpha}) = 3$.

(13.11.3) $V_{\beta}Q_{\alpha'}/Q_{\alpha'}$ is the central transvection of $G_{\alpha'-1\alpha'}/Q_{\alpha'}$ on $V_{\alpha'}/Z_{\alpha'}$.

Since V_{β} centralizes $V_{\alpha'-2} \cap V_{\alpha'}$, V_{β} acts as the central transvection of $G_{\alpha'-1\alpha'}/Q_{\alpha'}$ on $V_{\alpha'}/Y_{\alpha'}$, and now (13.11.3) follows by Proposition 2.5(iii).

$$(13.11.4) V_{\alpha'} \not \leq Q_{\beta}.$$

Suppose $V_{\alpha'} \leq Q_{\beta}$ holds, and choose $\rho \in \varDelta(\alpha')$ such that $Z_{\rho} \not \leq Q_{\alpha}$. Now suppose that we have $\gamma \in \varDelta(\alpha'-2)$ for which $(\gamma,\alpha-1) \in \mathscr{C}$. Because $b \geq 5$, Z_{ρ} centralizes $[V_{\alpha'-2},V_{\alpha-1}]$ and hence, since Z_{ρ} is transitive on $\varDelta(\alpha) \setminus \{\beta\}$, $[V_{\alpha'-2},V_{\alpha-1}] \leq V_{\alpha-1} \cap V_{\beta}$. Applying (13.11.3) to $(\gamma,\alpha-1)$ we obtain a contradiction. Therefore $V_{\alpha'-2} \leq Q_{\alpha-1}$. Furthermore, since $b \geq 5$, $Z_{\alpha-1} \not\leq V_{\alpha'-2}$ and so $[V_{\alpha-1},V_{\alpha'-2}]=1$. Thus $[U_{\alpha},V_{\alpha'-2}]=1$. Consequently $U_{\alpha} \leq G_{\alpha'}$ and $|U_{\alpha}Q_{\alpha'}/Q_{\alpha'}|=2$. But then $[U_{\alpha}:C_{U_{\alpha}}(Z_{\rho})] \leq 2^2$, against (13.11.2). This proves (13.11.4).

(13.11.5)
$$V_{\alpha'} \cap Q_{\beta} = [V_{\alpha'}, V_{\beta}](V_{\alpha'} \cap V_{\alpha'-2})$$
 and, in particular, $[V_{\beta}, V_{\alpha'} \cap Q_{\beta}] = 1$.

This is an immediate consequence of (13.11.1)(i), (13.11.3) and (13.11.4). We recall, from Section 12, the definition of F_{α} and H_{β} .

$$F_{\alpha} = \langle Y_{\lambda} \mid \lambda \in \Delta(\alpha) \rangle$$

$$H_{\beta} = \langle F_{\mu} \mid \mu \in \Delta(\beta) \rangle$$

$$[F_{\alpha},V_{\alpha'-2}]=1 \quad \text{and} \quad F_{\alpha}Q_{\alpha'}=V_{\beta}Q_{\alpha'}.$$

By the minimality of b $V_{\alpha'-2} \leq G_{\alpha-1}$ for $\alpha-1 \in \Delta(\alpha) \setminus \{\beta\}$ and thus $[V_{\alpha'-2}, Y_{\alpha-1}] \leq V_{\alpha'-2} \cap Z_{\alpha-1} = 1$. So $[F_{\alpha}, V_{\alpha'-2}] = 1$ and (13.11.6) follows.

(13.11.7) There exists $\delta \in \Delta(\beta)$ such that $(\delta, \alpha') \in \mathscr{C}$ and $\langle G_{\alpha\beta}, V_{\alpha'} \rangle = G_{\beta}$.

By (13.11.4) we may find a $\delta \in \Delta(\beta)$ for which $\langle G_{\delta\beta}, V_{\alpha'} \rangle = G_{\beta}$. If $(\delta, \alpha') \notin \mathcal{C}$, then $Z_{\delta} \leq V_{\beta} \cap Q_{\alpha'} = [V_{\beta}, V_{\alpha'}](V_{\beta} \cap V_{\alpha+3})$ whence $[Z_{\delta}, V_{\alpha'}] = 1$. But then $Z_{\delta} \subseteq G_{\beta}$, a contradiction. So $(\delta, \alpha') \in \mathcal{C}$ and we have (13.11.7).

Since the results in (13.11.2) - (13.11.6) hold for any critical pair we may suppose (α, α') is chosen so as $\langle G_{\alpha\beta}, V_{\alpha'} \rangle = G_{\beta}$.

(13.11.8)
$$[(F_{\alpha}V_{\beta}) \cap Q_{\alpha'}, V_{\alpha'}] \neq 1.$$

From (13.11.6) we see that $F_{\alpha}V_{\beta}=V_{\beta}((F_{\alpha}V_{\beta})\cap Q_{\alpha'})$. Thus, if $[(F_{\alpha}V_{\beta})\cap Q_{\alpha'},V_{\alpha'}]=1$,

$$[F_{\alpha}V_{\beta},V_{\alpha'}]=[V_{\beta},V_{\alpha'}][(F_{\alpha}V_{\beta})\cap Q_{\alpha'},V_{\alpha'}]=[V_{\beta},V_{\alpha'}]\leq V_{\beta}.$$

Then $F_{\alpha}V_{\beta} \leq \langle G_{\alpha\beta}, V_{\alpha'} \rangle = G_{\beta}$ and so $H_{\beta} = F_{\alpha}V_{\beta}$ with $\eta(G_{\beta}, H_{\beta}/V_{\beta}) = 0$, contrary to Lemma 12.5(ii). Thus (13.11.8) holds.

In view of (13.11.8) we may choose $\lambda \in \Delta(\alpha')$ such that $(F_{\alpha}V_{\beta}) \cap Q_{\alpha'} \not\leq Q_{\lambda}$.

- (13.11.9) (i) $(\lambda, \beta) \in \mathscr{C}$.
 - (ii) $[U_{\tau}, V_{\alpha+3}] = 1$.
 - (iii) $U_{\tau}Q_{\beta}=V_{\alpha'}Q_{\beta}$.
 - (iv) $[U_{\tau}, V_{\beta} \cap Q_{\alpha'}] = 1$.

Suppose that $(\lambda, \beta) \notin \mathcal{C}$. Then $Z_{\lambda} \leq V_{\alpha'} \cap Q_{\beta}$ and so $[Z_{\lambda}, V_{\beta}] = 1$ by (13.11.5). Hence $Z_{\lambda} \leq Q_{\alpha} \leq G_{\alpha-1}$ for $\alpha - 1 \in \Delta(\alpha) \setminus \{\beta\}$ and so $[Z_{\lambda}, Y_{\alpha-1}] \leq V_{\alpha'} \cap Z_{\alpha-1} = 1$. Thus we have $[F_{\alpha}V_{\beta}, Z_{\lambda}] = 1$, contrary to the choice of λ . Therefore $(\lambda, \beta) \in \mathcal{C}$.

The minimality of b implies that $[V_{\alpha'},V_{\alpha+3}]=1$ and thus, for $\lambda+1\in \varDelta(\lambda)\backslash\{\alpha'\}$, either $V_{\alpha+3}Q_{\lambda+1}/Q_{\lambda+1}$ is the central transvection of $G_{\lambda\lambda+1}/Q_{\lambda+1}$ (on $V_{\lambda+1}/Z_{\lambda+1}$) or $V_{\alpha+3}\leq Q_{\lambda+1}$. Suppose the former holds. By (13.11.1)(ii) $[V_{\alpha+3},V_{\lambda+1}]\not\leq V_{\lambda+1}\cap V_{\alpha'}$. Now, if $b\geq 7$, then $F_{\alpha}V_{\beta}$ centralizes $V_{\alpha+3}$, while when $b=5,\ \alpha+3=\alpha'-2$ and (13.11.6) gives us the same conclusion. Hence we have that $(F_{\alpha}V_{\beta})\cap Q_{\alpha'}$ centralizes $[V_{\alpha+3},V_{\lambda+1}]$ and then $[V_{\alpha+3},V_{\lambda+1}]\leq V_{\lambda+1}\cap V_{\alpha'}$ by the choice of λ . So $V_{\alpha+3}\leq Q_{\lambda+1}$ and thus $[V_{\alpha+3},V_{\lambda+1}]\leq V_{\alpha+3}\cap Z_{\lambda+1}\leq Q_{\beta}$. Now (i) yields $[V_{\alpha+3},V_{\lambda+1}]=1$ which completes the proof of (ii), and so of (iii). While part (iv) follows from $V_{\beta}\cap Q_{\alpha'}=[V_{\beta},V_{\alpha'}](V_{\alpha+3}\cap V_{\beta})$.

We now exhibit the desired contradiction. Noting that $Y_{\beta} \leq V_{\beta} \cap Q_{\alpha'}$ and $V_{\beta} = Z_{\alpha}(V_{\beta} \cap Q_{\alpha'})$, (13.11.8)(iv) implies that U_{λ} centralizes Y_{β} and $U_{\lambda} \cap Q_{\alpha}$ centralizes V_{β} . Also, since $Z_{\alpha-1} \not\leq Q_{\alpha'}$, $U_{\lambda} \cap Q_{\alpha}$ centralizes $Y_{\alpha-1}$ for $\alpha-1 \in \varDelta(\alpha)\backslash \{\beta\}$. So we have $[U_{\lambda} \cap Q_{\alpha}, F_{\alpha}V_{\beta}] = 1$. Then by (13.11.8)(iii) $[U_{\alpha}: C_{U_{\alpha}}((F_{\alpha}V_{\beta}) \cap Q_{\alpha'})] \leq 2^2$ and so $\eta(G_{\lambda}, U_{\lambda}) \leq 2$, contradicting (13.11.2) and hence completing the proof of the theorem.

REFERENCES

- [1] W. Lempken C. Parker and P. Rowley, (S_3, S_6) -amalgams I, II, III. Nova J. Algebra Geom., 3 (1995), pp. 209–269, 271–311, 313–356. *IV*. Rend. Sem. Mat. Univ. Padova, 114 (2005), pp. 1–19.
- [2] W. LEMPKEN C. PARKER and P. ROWLEY, The structure of (S₃, S₆)-amalgams, I, II, Comm. Algebra 22, no 11 (1994), pp. 4175–4215, 4217–4301.

Manoscritto pervenuto in redazione il 19 settembre 2006