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On the Dimension of an Irrigable Measure.

G. DEVILLANOVA (¥) - S. SOLIMINI (*¥)

ABSTRACT - In this paper the problem of determining if a given measure is irrigable,
in the sense of [4], or not is addressed. A notion of irrigability dimension of a
measure is given and lower and upper bounds are proved in terms of the minimal
Hausdorff and respectively Minkowski dimension of a set on which the measure
is concentrated.

A notion of resolution dimension of a measure based on its discrete approx-
imationsis alsointroduced and its relation with the irrigation dimension is studied.

Introduction.

In the paper [4] the authors have introduced a cost functional to the aim
of modeling ramified structures, such as trees, root systems, lungs and
cardiovascular systems. A very similar functional (even if the variable
employed has a different form) has been introduced in [10]. The aim of the
functional is to force the fibers to keep themselves together penalizing, in
this way, their branching. The necessity of keeping the functional low
competes with a boundary condition which, on the other hand, forces the
fibers to bifurcate prescribing that the fluid they carry must reach a given
measure spread out on a volume. The result of this competition is that the
fibers take advantage in keeping themselves together as long as possible
and then branching, always into a finite number of branches, while ap-
proaching the terminal points, giving rise to the ramified structure. In [10]
the problem consisting in determining the cases, depending on an index, in
which all the probability measures can be reached by a system of fibers (an
irrigation pattern) of finite cost, i.e. are irrigable measures, is formulated
and solved in a very close setting.

(*) Indirizzo dell’A.: Laboratoire du CMLA, Ecole Normale Supérieure de
Cachan, France.

(**) Indirizzo dell’A.: Dipartimento di Matematica, Politecnico di Bari, Via
Orabona, 4 - 70125 Bari, Italy.
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In this work we shall investigate a more general question consisting in
characterizing, for a given value of the index, what probability measures
are irrigable or not. The answer to this question will clearly show, in
particular, what are the cases in which all the probability measures will
turn out to be irrigable, giving in this way a different proof of the already
mentioned result in [10]. The fact that a measure spread on a set of high
dimension forces the fibers to a more frequent branching, and therefore
needs a higher cost, seems to suggest that the higher it is the dimension on
which a measure is spread the more difficult it becomes to irrigate it. For a
better formalization, we introduce the notion of irrigability dimension of a
measure and then we equivalently express the above stated problem in
terms of giving some estimates on the irrigability dimension of a given
positive measure which is always supposed to be Borel regular, with a
bounded support and a finite mass (by normalization we shall suppose it to
be a probability measure). We shall show, with some examples, that the
intuitive and conjecturable idea that the irrigability dimension of a mea-
sure coincides with the Hausdorff dimension of its support is groundless in
spite of the fact that both the two values express how much the measure is
spread out. On the other hand, we shall give some lower and upper bounds
for the irrigability dimension d(u) of a probability measure u by means of
the minimal Hausdorff and respectively Minkowski dimension of a set on
which the measure is concentrated.

This result will be overproved. Indeed, we shall prove it directly,
getting some further meaningful information and introducing some tools
which will be also used in other parts of the paper but we shall also be able
to deduce it from a deeper estimate of d(x) which will need the in-
troduction of new notions. More precisely, it will need the notion of re-
solution dimension of a measure which, affected by an index, expresses
the possibility to describe the measure by means of discrete approxima-
tions. When the measure is suitably regular, the value of the resolution
dimension does not depend on the index, while for a generic measure, as
will be explained by some examples, the resolution dimension is “out of
focus” in the sense that different indexes give different values. We shall
show that, in any case, it is always possible to find an index, suitably
characterized, which gives a resolution dimension which coincides with
the irrigability dimension.

The paper is organized as follows: In Section 1 we shall introduce the
notion of irrigability dimension and we shall state the main results which
do not make use of the notion of resolution dimension of a measure.
Sections 2 and 3 are respectively dedicated to the lower and upper esti-
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mate given for d(x) by means of the minimum among the Hausdorff and
the Minkowski dimension of the sets on which the measure is con-
centrated. In Section 4 remarks and examples, mainly based on the
compactness results stated in [4], which show that the estimates are, in a
certain sense, sharp are collected. In Section 5 we shall introduce the
notion of resolution dimension of a measure and we shall state some
fundamental properties. The proof of the irrigability and nonirrigability
results which can be deduced from conditions on the resolution dimension
will be respectively shown in sections 6 and 7. In Section 8 we shall show
how the irrigability dimension of a measure can be seen as a resolution
dimension with respect to some index p > 1 and how to chose such a
suitable value of p. Then we shall give another proof of the main result in
Section A (Theorem 1.1).

Since we are dealing with notions introduced for the first time in [4]
and [3], which will be used without any explanation, in order to help the
reader we have gathered up in Appendix A the notation and the results
in [4] and [3] which are essential for the understanding of this paper. In
Appendix B we give the proof of the propositions stated in Section 5 with
some examples which justify the required assumptions. Finally, in Ap-
pendix C we give the index of the main notation.

1. Dimensions of a measure and irrigability results.

We just recall the definition of irrigation pattern while, as said in the
introduction, we have gathered up in Appendix A the notation and the
results in [4] and [3] which will help the reader for the understanding of
this paper.

Let (Q, | - |) be a nonatomic probability space which we interpret as the
reference configuration of a fluid material body. We can also interpret it as
the trunk section of a tree, this trunk being thought of as a set of fibers
which can bifurcate into branches. A set of Q with source point S € RY is a

mapping
11 QxR —>RY
such that:

C1) For a.e. material point p € Q, y,(t) : t+ x(p,?) is a Lipschitz
continuous map with a Lipschitz constant less than or equal to one.
C2) Fora.e.peQ: 1p(0) = S.
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The condition || = 1is of course assumed by normalization in order to
simplify the exposition. In some cases this normalization will be impossible
(we can, for instance, work with two different spaces and assume an in-
clusion), then we shall consider all the notions trivially extended to the case
|2| < + oc. We shall consider the source point S € RY as given and we
shall denote by Cg(22) and Pg(Q) the set of all the set of fibers of Q and
respectively the set of all the measurable set of fibers of Q2 and we shall call
the elements of Pg(Q) irrigation patterns.

We shall introduce some definitions which will be used to formalize the
irrigability problem.

DEFINITION 1.1. For a fixed real number o € 10, 1[ we shall call critical
. . 1 . .
dzmenswn/of the exponent o the constant d, = 14 > 1, i.e. the conjugate

: 1 : 1 e
ndex M of the index M > 1.

DEFINITION 1.2. Let o € 10, 1[ be given and let 1 be a probability mea-
sure on RY. We shall say that pis an irrigable measure with respect to o (or
that u is a-irrigable) if there exists a pattern y € Pg(Q2) of finite cost
L,(;) < + oo such that w, = p.

It is clear that two approaches are possible and equivalent: one can fix a
constant o € ]0, 1[ and investigate the irrigable measures with respect to
this constant or fix a measure u and find out the constants « € ]0, 1[ with
respect to which u is irrigable. This second point of view leads us to in-
troduce the following definition.

DEFINITION 1.3. Let u be a positive Borel measure on RY , then we shall
call wrrigability dimension of u the number

d(w) = inf{d, |1 is irrigable with respect to «}.

REMARK 1.1. For any probability measure u, by definition, the irrig-
ability dimension d(u) of u is greater or equal to 1.

REMARK 1.2. If u is an irrigable measure with respect to o, then u
18 also 1rrigable with respect to every constant f € [o, 1[. Indeed, let
1 € Ps(Q) such that 1,(y) <+oo and p,=u then for all > o
Is(n) < L(p).
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REMARK 1.3. By the definition of d(1) and by Remark 1.2 it follows that
for a given o € 10, 1[ and for a given measure w

1) if d(w) < d, then uis a-irrigable;
2) if d(u) > d, then u is not a-irrigable.

As we shall show in Section 4, both cases can occur when d, = d(u), see
examples 4.4 and 4.5.

The aim of the first part of this paper is to give operative estimates of
d(g) in terms of geometrical properties of the measure x. So we introduce
the following two definitions.

DEFINITION 1.4. We shall say that a positive Borel measure i on RY is
concentrated on a Bovel set Bif u(RN \ B) = 0 and we shall call \cd of uthe
smallest Hausdorff dimension d(B) of a set B on which u is concentrated
i.e. the number

de(1) = nf{d(B) | u is concentrated on B} .

DEFINITION 1.5. We shall denote by supp (u) the support of 1 in the sense
of distributions and shall call support dimension of u, ds(w), its Hausdorff
dimension.

REMARK 1.4. The support of a measure can be characterized as the
smallest closed set on which u is concentrated and the existence of such
a set a priori follows by the separability of RY, precisely by the Lin-
delof property. While, as stated above, the existence of the smallest
closed set on which u is concentrated is granted, it is clear that the
smallest set on which u is concentrated, in general, does not exist. This
18 the reason for which the infimum is taken in Definition 1.4, even if a
set B of minimal dimension on which u is concentrated can always be
fixed. Moreover being supp (1) a set on which u is concentrated, it fol-
lows that

dc(ﬂ) < ds(ﬂ)~

These two geometrical dimensions are not sufficient to study the ir-
rigability of a measure, as we shall show later in examples 4.1 and 4.3.

DEFINITION 1.6. Let X C RY be a bounded set. We shall call Minkowski
dimension of the set X (see [8)]) the constant

(1.1) dyX)=N — liréniglflog(;|N(;(X)|
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where, for all 6 > 0,
Ns(X) = {y € R¥|d(y, X) < o}
It is useful to remark that
(1.2) 0<dyX) <N VX #(.

Moreover the Minkowski dimension of a set X ¢ RY can be char-
acterized by the following two properties:

(1.3) VB < dy(X) limsup |N;X)|& Y = +
(;*)0

and

(14) W > dy(0) lim [N, =0.

Lemva 1.1, Let X ¢ RN and P > dy(X). Then we can cover X by using
077 balls of radius o for all § sufficiently small.

Proor. Being f > dy(X), we have, by (1.4), that for all C > 0 and for
0 > 0 sufficiently small

INyXO| < €5V

We consider any family of disjoint balls (B;);c; of radius g contained in

N
N%(X ). We know that, being, for all ¢ € I, |B;| = by (g) (by stands for the

6 N
measure of the unitary ball of RM), card (Iby (i) < |Ng_~(X)\ < O8N so,

taking as C the constant 12)—%,
2N
(15) card () < Cb_a—/f _5".
N

We have shown that the number of elements of any family consisting of
disjoint balls contained in N, %-(X ) is bounded by 67", This allows us to find a
family of such balls which is maximal by inclusion. The corresponding fa-
mily of balls with the same centers but with double radius, by maximality,
turns out to be a covering of X. Inequality (1.5) gives the thesis. O

Lemva 1.2. Let X ¢ RY and B < dy(X). It is not possible to find a
constant C > 0 such that one can cover X with only C5~* balls of radius 6
Sfor all o sufficiently small.
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Proor. We shall proceed by contradiction assuming that there exists a
constant C > 0 such that for J sufficiently small it is possible to cover X
using Co~” balls of radius 8. It is useful to remark that doubling the radius of
these balls we get a covering of Ns(X), so we have

INs(X)| < COPby@0)N < cost N7 |
which gives f > dy(X) by (1.3). O
REMARK 1.5. Collecting the last two lemmas, we can say that for a set
XcRrY
(1.6) dyX) =inf{f > 0|X can be covered by C/;é’/j balls of
radius o for all 6 < 1}.

DEFINITION 1.7. Let i be a probability measure, we shall use the no-
tation

(1.7) dy () = inf{dy(X) | 1 is concentrated on X}
and we shall call it Minkowski dimension of u.
REMARK 1.6. Fgr any subset X of RY the Minkowski dimensions of X
and of its closure X are the same. Therefore
dy(p) = dpy(supp (1) -

Moreover the Hausdorff dimension d(X) of a set X is less or equal to
dy(X). So for any probability measure u

(1.8) ds() < dy(p) -

REMARK 1.7. Let u be a probability measure, then collecting Re-
mark 1.4 and (1.8) we have that the following inequalities hold for ds(u)

(1.9) de(u) < ds(u) < dy(p) .
A similar estimate is enjoyed by d(u). Indeed, we shall prove the fol-

lowing statement.

THEOREM 1.1. (Lower and Upper bound on d(u)). Let i be a prob-
ability measure then the following bounds hold for d(u)

(1.10) de() < d(u) < max{dy (), 1} .

The first inequality in (1.10) is a straightforward consequence of a
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deeper and more precise result stated in the following theorem, whose
proof is in Section 2.

THEOREM 1.2. Let o € 10, 1[ and let u be an o-irrigable probability
measure, then p is concentrated on a d,-negligible set, in particular,

(1.11) do(w) < d.

Theorems 1.1 and 1.2 widely answer the question considered in [10]
about the values of « which make every measure of bounded support ir-
rigable. Indeed, we can deduce the following corollaries.

COROLLARY 1.1. Leto €10, 1[, o > % Then any probability measure
1 with a bounded support is a-irrigable.

: 1. : 1\’
Proor. Remarking that o > N is equivalent to d, = <&> > N, com-

bining (1.2) with (1.10), we have, for every u,
d, > N > max{dy(w), 1} > d(u) ,

8o every probability measure x with a bounded support is a-irrigable by
Remark 1.3,1. O

COROLLARY 1.2. Let a € 10, 1[ be such that any probability measure u

with a bounded support is o-irrigable, then o > %

Proor. From Theorem 1.2 we have that any probability measure u
with a bounded support is concentrated on a d,-negligible set. So, N < d,,

namely o > % O
In spite of inequalities (1.10) and (1.9) it is not possible to establish some
general inequality between d(u) and ds(u), as shown in Section 4 by ex-
amples 4.1 and 4.3.
By the following lemmas we shall make the estimates on the dimension
d(u) more precise in the case in which the probability measure x enjoys
some regularity properties.

DEFINITION 1.8. Let i be a probability measure and f > 0. We shall say
that u is Ahlfors regular in dimension ff if

(AR) 3C;,Cy > 0s.t. Vre0,1], Vo € supp(u) : Crv? < u(B(x,7)) < Car.
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We shall separately consider the two bounds in (AR). So for a prob-
ability measure u and a real number f > 0 we shall consider the two con-
ditions

(LAR) 3C > 0s.t. vr e [0,1], Vo € supp(u) : CrF < u(B(x,7)).
and

(UAR) 3C > 0s.t. vr e [0,1], Vo € supp(u) : u(B(x,7)) < CrP.

In (UAR) the restriction « € supp (1) can be removed, this could make the
value of Cs increase at most of 2. It is useful to recall the following defi-
nition.

DEFINITION 1.9. A probability measure v : RN — R, satisfies the
uniform density property (in short u.d.p.) in dimension § > 0on a set M if

3C; > 0s.t. Ve e M, Vre[0,1]: Cir’ < w(B(x, 7).

LeEmMA 1.3.  Let v be a probability measure which satisfies the u.d.p. in
dimension ff > 0 on a subset B. Then

(1.12) dyB) < f.

Proor. Leté us fix & > 0 and let us consider any family (B;);c; of disjoint
balls of radius 5 with centers on B. By hypotheses, v(B;) > C2%6" and

v(B) < 1, therefore card (I) < 26C-167". So we can consider a family (B;);cr
as above maximal by inclusion. The maximality of (B;);c; guarantees that,

for any other point« € B, d(x, U B;)< gholds. Therefore the family (B;);c;
el

which is obtained by doubling the radius of the balls B; is a covering of B. So

we have proved that B can be covered by const 0 # balls of radius o arbi-

trarily small and so by Remark 1.5 dy(B) < . O

COROLLARY 1.3. Let u be a probability measure. Let f > 0 such that u
satisfies (LAR) (i.e. u satisfies the uniform density property in dimension
f on supp (u)). Then

(1.13) dy() <.

REMARK 1.8. The thestis of Corollary 1.3 still holds true if one as-
sumes the existence of a probability measure v which satisfies the
uniform density property in dimension f on a set B on which u is
concentrated.
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LEmMa 1.4. Let u be a probability measure concentrated on a set
A C RY. Let B > 0 such that u satisfies (UAR). Then

(1.14) HA(A) > 0.

Proor. Let (X;);c; be any countable covering of A. Every X; is con-
tained in a ball B; with a radius equal to (X;). So, by (UAR)

1= p(RY) = p(4) <> uB) <CY X,

i€l iel
from which we have

Y&y =ct>o.
icl O

COROLLARY 1.4. Let u be a probability measure. Let f > 0 such that u
satisfies (UAR). Then

(1.15) de(w) > B.

COROLLARY 1.5. Let u be an Ahlfors regular probability measure
i  dimension f>1. By Corollary 1.3 and Corollary 1.4, being
p=max{f, 1} > max{dy(w), 1}, the lower and wupper bounds stated
m Remark 1.7 and Theorem 1.1 for ds;(u) and d(w) respectively, give

de() = dy(p) = d(u) = dp() = p.

This guarantees that, in the case of an Ahlfors regular probability
measure, all the geometrical dimensions d (1), ds(u) and dy (1) and the
wrigability dimension d(u) are equal to the Ahlfors dimension f.

COROLLARY 1.6. An Ahlfors regular probability measure u of dimen-

ston B > 1, is a-irrigable for all o € 10, 1[ s.t. d,, > [ i.e. for all o € ]/)7, 1[
. .o . 1
and is not 1rrigable for all o € 10, 1[ s.t. d, < f t.e. for all o € ]0, F].
Proor. Let o €10, 1[. If d, # f = d(u), the thesis follows from Re-
mark 1.3. Moreover, when d, = f§, by Theorem 1.2 it is clear that an Ahlfors
regular probability measure of dimension f = d,, is not «-irrigable. Indeed
by Lemma 1.4 it cannot be concentrated on a d,-negligible set. O

We shall make use of this last argument when in Section 4 we shall
show that, in general, d(x) = inf{d, | 1 is a-irrigable} is not a minimum,
see Example 4.4.
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2. Lower bound on d(u).

This section is devoted to the proof of Theorem 1.2 from which
de(u) < d(u) trivially follows.

Lemma 2.1.  Let y € Pg() be an irrigation pattern of Q and r > 0, then

(21) 1,(RY \ B,(S) < (M)

r

Proor. Taking into account that the less expensive way to carry some
part of the fluid out of B,.(S) is to move it in a unique tube in the radial
direction and to leave the other part in the source point, we have

[, (RY \ B.(S)Ir < L(r) .

from which the thesis follows. O

COROLLARY 2.1. Let y € Ps(Q) be an irrigation pattern of Q. If
r > (LG)' 7, then

(2:2) 1, (RN \ B.(S) < L().

In [3] the following lemma has been proved.

LEmMMA 2.2.  Let y € Ps(Q) be a simple irrigation pattern of Q without
dispersion and ¢ > 0, then there exists a finite number k € IN of points
x; € F, such that, denoting by y; the branch of y with source point x;,

k
(2.3) S LG <e
i=1
k
(2.4) (ﬂx -3 ,uli)(RN) <e.

i=1

LeEmMmA 2.3.  Let y € Ps(Q) be a simple irrigation pattern of Q without
dispersion and ¢ > 0, then A C RY such that

1) A can be covered by a finite number of balls B; = By, (x;), s.t.
Y )" <g;
Yo uRY\A) <.
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Proor. By Lemma 2.2 we can find a finite number k € IN of points
x; € RY such that, by denoting by z; the branch of y starting from w; and by
& = I,(x;), we have

k
(2.5) Z g <e&.
=1

Calling, for all ie{1,...,k}, as suggested by Corollary 2.1,
i = L)' ™" = (&) " we have,

S =Y s <
i i
Moreover, from (2.2), we can deduce that

'u}{i(RN \Bm(xi)) <g.
k
Applying (2.4), (2.3) and (2.5) we get, for A = |J By, (x;), that

i=1

k k k
1 (RYNA) < (u, = > i RN+ ", RV\ B @) <e+ > e < 2¢.
i=1 i=1 i=1

Replacing ¢ by % we complete the proof. O

Proor oF THEOREM 1.2. By hypotheses there exists an irrigation pat-
tern y € Pg(€) of finite cost I,(y) < + oo, such that 4 = x,. By Lemma A.2
we know that d(F",) = 1 < d,, therefore we can reduce ourselves, as Re-
mark A.3 suggests, to a pattern y without dispersion. Moreover, if one
considers a pattern which is optimal with respect to the cost functional, the
pattern can also be supposed to be simple (see Definition A.7), see [3,
Theorem 6.1].

So, for every n € N, we can apply Lemma 2.3 to the pattern y and to
¢ =2"" > (. Therefore for all n € N\ there exists A, C RY which satisfies
1) and 2) of Lemma 2.3 for ¢ = 27", For a fixed » € N we shall denote by
D), = ﬂ An

n>h

Then
! 1 1
26) 1, RN\ D) =, (| B\ A,) < D iR\ 4) < 3 o =g
n>h n>h n>h
Moreover, being D), C A, for all n > h, by Lemma 2.3,1), Dj, is covered by
k

a finite number & of balls of radius »; verifying > T;-i“ < 27" from which
i=1
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H%*(Dy,) = 0 follows by the definition of Hausdorff outer measure. For all
1eN

1
1, (RN U i) < ¥\ Dy <
heN
therefore we have
1, (RN Di)=0
heN
and so u is concentrated on |J Dy, Since, forall 2 € N, H*(Dy,) = 0 we get

heN
that u is concentrated on a d,-negligible set. O

Proor oF THEOREM 1.1 (lower bound d.(x) < d(x)). By Theorem 1.2 we
have proved in particular that, for every o € 10, 1[, if x is a-irrigable then
dc(u) < d,. By the definition of d(u), taking the infimum on d, in the above
inequality, the thesis follows. O

3. Upper bound on d(u).

The main goal of this section is the proof of the following theorem, from
which the upper bound on d(u) stated in Theorem 1.1 easily follows.

THEOREM 3.1. Let u be a probability measure and o € 10, 1[, then u is
a-irrigable provided dy(u) < d,.

To this aim, we need to introduce some definitions and to establish some
preliminary lemmas.

DEeFINITION 8.1. Let I = {1,2,...,n} C N be a finite set of indexes. We
shall say that (P;, y;)icr s a hierarchy of collectors if
o Viel : Pjisafinite subset of RN with k; elements 90]’:, 1<5<k;;
o Vieli#mn, y maps P; in Py while y, is a map on P, of
constant value S (which is the “head” of the hierarchy and will be the source
S in the applications).

In the following we shall_ call each map y; the “dependence” map of the
points «} € P; from those x"! € P;.



14 G. Devillanova - S. Solimini

REMARK 3.1. For a given hierarchy of collectors (P, y;)icr, every time
we fix a point x = x]l € Py, we find, using the dependence maps, a chain of
points {x, y;(x), yz(yl (®)), . .., S} which allows us to reach the source S “in a
hierarchical way”. We can conszder the elements of such a chain as the
vertices of a polygonal which runs with unitary speed. Reversing the time,
we get a path which starts from the source S and arrives in x. We shall call
by 9. : Ry — RY this path, parameterized in the whole of R, by con-
sidering it constant after reaching .

In what follows, let us set, V& € Py, y'(x) = 1 (), P(x) = yz(yl(x)) and
recoursively

Y (@) =5/ @) € Py .

For a given hierarchy of collectors (P;,y;)ic;, We shall deal with a
probability measure z; concentrated on Pj, namely 7i; = Z m; 15, : is the

sum of a finite number of Dirac masses centered on the pomts 90 of P;.

Being 2 a non atomic probability space, by Lyapunov Theorem we can
split  into k1( = card(Py)) sets ©; such that |Q;| = m;, i.e. we can split Q
into k; sets whose measures are Just the masses m we find in the points
(ac )jck, at the base of the hierarchy.

DEFINITION 3.2. Let (Py, 7)1 be a hierarchy of collectors and
k
21: m; 5%1 a probability measure concentrated on the base Py of the

hzemrchy
We shall say that y : 2 x R, — RY is a distribution pattern relative to
Iy and to the hievarchy (P;,y,)icr if Vp € Q, and vt > 0:

xp)=ga®  forpeQ,
where the paths gwl and the partition (1< <k, are as above.

REMARK 3.2. Let (P;, y;)icr be a hierarchy of collectors and fi; = Z m; 5

a probability measure concentrated on the base Py of the hwmrchy Let y
be a distribution pattern relative to 1i; and to the hierarchy (P, y;)icr-
Then, by construction, being i,(2;) = {9071 }, we have

Ky
_ 1 ——
j=1
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DEFINITION 3.3. Let (P;, y;)1<i<n be a hierarchy of collectors. For any
discrete probability measure ii; concentrated on P we shall recoursively call
foralli € {2,...,n}, i the image measwre of [i;_; through the function y;_;.

Each one of these measures can be considered as a discrete measure
defined on the whole of the space and concentrated on P;.

LEmMma 3.1.  Let (P;,7;)icr be a hierarchy of collectors and 1y be a dis-
crete probability measure concentrated on the base level Py of the hier-
archy. Let y be a distribution pattern relative to f; and to the hierarchy,
then
(3.1) L) =Y > (mi@) |z — @),

i€l xeP;
where, for all ¢ € I, and for all x € P;
mi(x) = f;({x}) .

Proor. We shall proceed by induction on n = card (/). The thesis is
obvious in the case n = 1. Let us suppose that the statement is true for
card(l) =n — 1 and let us prove that the statement is also true for
card (/) = n. Let us remark that each one of the k,, = card (P,,) elements of
the last level set P,, can be seen as the head of a hierarchy of n — 1 levels,
given by the sets P;(x), where forall1 <i <mn — 1:

Pi@) ={y € Pi | 7,-10—2((;)) = x} .

and by the suitable restrictions of the maps y;,1=1,...,n — 1.

Therefore we can apply the induction hypotheses to the &, branches J,,
of y which start from the point « € P,,. So each one of these patterns has a
cost which can be estimated by

L) =Y Y mi@)Y|e - ).

n—1
1 yeP;(x)

1=

To bring 7, back to the source S obtaining the pattern y,, restriction of

xto U £, we must add to 1,(7,) the cost necessary for the connection
aleP;(x)

of x to the source S. Therefore we have
L(yz.) = (my, ()" — S| + L,(x,.)
n—1

= M @) = p,@| + > Y @) | — 3w)) -

i=1 yeP;(x)
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Since the whole y can be regarded as a multiple branch starting from the
source S which has the patterns y, as the corresponding single branches, by
additivity we have

n—1

L) =Y L) =Y my@)e — 7, @[+ > > Y @)z =y,

xeP, xePy, xeP, =1 yeP;(x)
n
=33 @) | — y,@)].
i=1 xeP;

Lemma 3.1 admits the following corollary.

COROLLARY 3.1. Let (P, 7,);cr be a hierarchy of collectors and i, be a
probability measure concentrated on the base level Py of the hierarchy. Let
x be a distribution pattern relative to 1, and to the hievarchy, then

LG <> ki,
i€l
where for alli € {1,...,n}

l; = max |x — y;()] .
xeP;

Proor. The thesis follows because for all ¢ € I:

Z (mi@)* < (o).

xeP;

Indeed, by Hélder inequality, being, for all i € I, >~ m;(x) = 1, we have:

xeP;

o 1—o
Z(mi(x))“ < <Z mi(x)> <Z 1) — K

xeP; xeP; xeP;

O

PrOOF OF THEOREM 3.1. If dy;(1) < d,, we can fix a constant f such that
dy() < f < d,.

Given n € N, n > 1, let us consider a covering of supp () consisting
of balls with radius 27". Let us call X,, the set made of the centers of
such balls and let us set Xy = {S}. We introduce for n > 1 the map
@, : Xn — Xu—1 which chooses, for every point « € X,,, one of the closest
points ¢, (x) € X,,_1. It is easy to see that for » > 2 (and for » > 1, with a
suitable choice of S and a normalization of the diameter of the support



On the Dimension of an Irrigable Measure 17

of 1)
(3.2) Ve e Xy @ o —g,@)] <3-27".

Moreover, by Lemma 1.1, being d (1) < f, we can choose X, and a
constant C > 0 so that

(3.3) card(X,) <C@ ™ F=c2".

Let us now put a total order on X,,. On each center x € X,, we shall put
the mass

mt = p(By@)\ | B2+ @) .

Yy<r

In this way we get a probability measure 1, = > m!J, such that u, — .
xeX,
Now, for afixedn € N, alll <¢ <n,letuscall P; = X,,_; . and y; = ¢, _; 1.

By (3.3) we have:
(34) Vie{l,....n}:k;=card(P;) = card(X,_; 1) < C @ @ H#D)F
while, by (3.2),

(8.5) vie{l,...,n}: §; :maﬁx|x—yi(gc)|: max =, ;41 @)| < 3@ "HD),
xer;

CEXy—i41

If we denote by y,, a distribution pattern relative to the hierarchy of
collectors (P;, y;)1<i<, and to fi; = u,, by Corollary 3.1, using also (3.4) and
(3.5), we have

L) <Y )™ < €1 Y [@ ) g ih)
i=1 i=1

n . n X 301_“
_ 301—1 Zz—(w/—l+l)(—/)’(l—(x)+1) — Scl—zx Zz—jb < 2b : ,
i=1 j=1 o

where, being f < d,, is
b=-p1—-a)+1>0.

The independence on % of the above bound allows us to build a se-
quence of patterns (y,,),cn to which we can apply the compactness theo-
rem [4, Theorem 8.1] and to get, in this way, the existence of a limit
pattern y of finite cost such that u, = . O

It is worth remarking that the measure x4, taken in the proof of The-
orem 3.1 could be replaced by any probability measure centered on the
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points of X,, such that the Kantorovitch-Wasserstein distance between f,,
and u (see Definition 5.3) is less or equal to 27",

Proor oF THEOREM 1.1 (upper bound d(x) < max{dy(w), 1}). Ar-
guing by contradiction, let us suppose d(x) > max{dy(«), 1}. Then there
exists a constant o € ]0, 1[ such that dy(u) < d, < d(x). From one side
dy(p) < d,, so we have from Theorem 3.1 that u is a-irrigable; on the
other side d, < d(u), so we get from Remark 1.3 (2) that u cannot be -
irrigable. O

4. Remarks and examples.

DEFINITION 4.1. Let o € 10, 1[ and let u be a finite measure on RY. We
shall call a-cost of the measure u the value of the functional I, on the op-
timal patterns y which 1rrigate the measure .

LEmmA 4.1, Let o € 10, 1[, v and u be two finite measure on RN such
that v < p If wis a-irrigable then also v is a-irrigable, moreover the o-cost to
wrrigate v is less expensive than the o-cost for .

Proor. For any n € IN| let us consider a countable borel partition
Ay = (AY)jer of RY made of sets of diameter less or equal to % foralle e 1.
By hypotheses there exists an irrigation pattern y, defined on Q x R,
where Q is a probability space, s.t. I,(y) < +oc and p, = u. Let us call, for
all i, Q;,, = i,'(A}). By construction we get

|Qin| = 11, AN = 1, (A]) = WA} > vAY).

Therefore, being any €;, a non atomic set, by Lyapunov Theorem, ©;,
admits a subset ©;, such that 2], | = v(4}). Let us consider 2, =2},
and let us denote y,, = ViR ¢

By construction x, — v and

Therefore, by compactness, we get a limit pattern ¥ such that y5; = v.
Moreover, being I, a lower semicontinuous functional, (4.1) gives
L@ < liminf L(z,) < LG 0

The following corollaries easily follow.
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COROLLARY 4.1. Let 2 €10, 1, c € R and v and u two finite Radon
measures on RY such that v < cu. Then

d(v) < d(w).

COROLLARY 4.2. Let u and v be finite Radon measures such that
c it < v < cop for some positive constants cy, co. Then we have

d@v) = d(w) .

REMARK 4.1. The pattern ¥, found in the proof of Lemma 4.1, is the
limit pattern, modulo equivalence, of a sequence of subpatterns of y but it
18 not a subpattern in general. So one could wonder if it is always possible
to find a subpattern of y which irrigates v.

The answer to this question is negative. For instance, one can consider
Q = [0, 1] and, for a.e. p € [0, 1] and for all t > 0,

It is clear that y irrigates the Lebesgue measure u;, on [0, 1]. On the other

side, it is not possible to find a subpattern of y which can irrigate v = SHu
1
Indeed, in such a case, one should find a subset A C [0, 1] of density 5

1
everywhere and this is not possible. A pattern ¥ : [O,é} x Ry — R, pro-
vided by the proof of Lemma 4.1 is, for instance,

L 1
which trrigates SHL:

The simple idea that the irrigability of a probability measure x depends
only on the dimension of the support is false. Indeed, d(«) and d(x) are not
comparable in general, even if the dimensions d.(«) and dy;(x) which re-
spectively give a lower and an upper bound on ds(x) are also bounds for
d(u), as stated in Remark 1.7 and Theorem 1.1.

It is easy to see that, in general, ds(1) £ d(u), as stated in the following
example.

ExXAMPLE 4.1. There exist probability measures u such that d,(u) = N
(maximum possible value) and d(u) =1 (minimum possible value) i.e.
which are a-irrigable for all o € 10, 1[.

ProOF. Let us call B the unit ball of RY, S=0 and let B =
= {x1, ®2,...,%y, ...} bethe countable set consisting in the points of B with
rational coordinates.
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. 1\" . .
Let us consider p= > (§> 0, Where, Vn € N, J, is a Dirac mass
n>1

centered in x,,. By construction, d;(«) = N. Moreover we shall prove that u
is o - irrigable for all o € 10, 1[, i.e. d(u) = 1. Let x be the pattern which at

. . . . = 1
unitary speed carries from S in the n-th point of B the mass o Then for

1 on 1

any o € 10, 1[ we have: I,(y) < > <§> =51 < + co. Therefore, being
n>1 -

by construction y, = u, u is a-irrigable. O

In order to show that also the converse inequality is, in general, not
true, we shall point out the following property.

PROPOSITION 4.1.  Let o € 10, 1[ and u be a probability measure which
1s not a-irrigable. Then for all n € N it is possible to find a discrete
approximation i of w1, of sufficiently high resolution (see Definition 5.1),
such that any pattern y which irrigates it has a cost 1,(7) > n.

ProOF. Assume by contradiction that we can find a sequence (i1,,)en
of discrete approximations of x weakly converging to x and a sequence
(T nen of patterns, where, Vn € IN, 7, irrigates j,, such that, vn € N:
1,(7,) < c. Then we could apply the compactness theorem [4, Theorem 8.1]
obtaining a limit pattern 7 of finite cost which irrigates u. O

ExXAMPLE 4.2. There exists a probability u with a countable support

Lo L 1
which is not o-irrigable for o = R

Proor. 1Let Bbe the unit ball of RY, let 41, be the Lebesgue measure on
B and = N Being, by Theorem 1.2, y; not o-irrigable, by Proposi-

tion 4.1, we can consider a discretization y; of y;, such that for any pattern
71 Which irrigates p: I,(x;) > 1. Analogously, let i, be a discretization of
% 1, distributed on %B (ball of radius %) such that for any pattern y, which
irrigates 15 I,(xs) > 2. Recoursively, for any n € N let 4, be a discretiza-

1 1 Sy .
tion of o L restricted to ﬁB such that for any pattern y,, which irrigates it,

(4.4) 1,() =2 m
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holds true. Let = Y p, (normalized, if we really want to produce a
n>1
probability measure) and let us remark that supp (@) = J supp (,,) U {0}

n>1
and therefore, being for all » > 1 supp (u,,) a finite set, supp (#) is countable.

Let us show that u is not o-irrigable. Indeed, the o-irrigability of u
would imply, by Lemma 4.1 (being u,, < @ for all » > 1), that any y,, is a-
irrigable with a bounded cost and this is in contradiction with (4.4). O

A measure as in the above statement satisfies, in particular, the con-
dition in the following one and shows that, in general, d(1) £ ds(w).

ExaMPLE 4.3. There exist probability measures  such that ds;(u) =0
(manimum possible value) and d(u) = N (maximum possible value).

We have stated in Section 1 that the information that, for a probability
measure x and a real number o € ]0, 1[, the critical dimension d, coincides

with the irrigability dimension d(u), (i.e. = L) does not allow to de-

@y

cide whether the measure is irrigable or not. Examples 4.4 and 4.5 will
motivate this claim.

EXAMPLE 4.4. Let u be an Ahlfors probability measure in dimension
f > 0. Then u s not a-irrigable if d, = f = d(w).

Proor. The thesis follows from Corollary 1.6. O

REMARK 4.2. One has Ahlfors regular measures for every dimension
p < N. Indeed, let C be a selfsimilar (Cantor) set of RY with dimension
f > 0. Let us call H/EC the Hausdorff measure distributed on C, i.e. the
measure on RY defined setting VX C RY

M) =H&X o).

Then ch 18 Ahlfors regular with dimension f.

ExaAMPLE 4.5. There exist some measures u for which d(u) is a mini-
mum, 1.e. there exist some measures u and some exponents o € 10, 1[ such
that d(u) = d,, and u is a-1rrigable.

Proor. Indeed,letusfix o € ]0, 1[ and let (C,,),cx be a sequence of self
similar (Cantor) sets in RY with dimension d,, where (o), IS a sequence
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converging to o from below, by Corollary 1.5 and Remark 4.2 we know that
d(Hf&) =d,, < d, and, by Remark 1.3 (1), we get that chi is a-irrigable.
Let us consider a suitable sequence (g,),ex of positive real numbers, suf-

ficiently small to allow us to consider u= ) gnH'féz. We know, by Cor-
neN
ollary 4.2 that also enH ;. are irrigable and we call y,, an irrigation pattern

which irrigates anH (1 e such that I, (y,) < +ooand , = enH ”“) Under
the choice of a suff1c1ently infinitesimal sequence of coefficients (8n)n€;\', we
have > I,(x,) < + .

nelN
Now let us consider the bunch y of the sequence of patterns y, (see

(A.1)) so that by Remark A.1 we have

(4.5) Iy = i

and

(4.6) L) < L(x,) < +00.
nelN

Equality (4.5) and inequality (4.6) give the o-irrigability of u
and therefore d(/l) <d,. Moreover d(u) > d,. Indeed being, for all
n € N, ﬂ>enH " we get, by Corollary 4.1 and Remark 4.2 that
dw) > d(enH o) = d(H ’“) =d,, — d,. O

5. Discretizations and resolution dimensions of a measure.

DEFINITION 5.1. We shall say that a measure u is a discrete
measure if

card(supp (1) < oo
and we shall call card(supp (w) “resolution” of .
DEFINITION 5.2. For every n € N we shall denote by D,, the set con-
taining all the discrete probability measures whose resolution is less or

equal to n. Equivalently, D,, is the set of all the convex combinations of n
Dirac masses.

For any p > 1 we recall the definition of Kantorovitch-Wasserstein
distance of index p.

DEFINITION 5.3. Let p > 1 and let 1, v be two probability measures.
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We define the Kantorovitch-Wasserstein distance of index p between u

and v by
dp(p, v) = (main / |gcy|1’da) ,

QxQ

where the minimum s taken on all the transport plans o which lead 1 to v,
1.e. measures on Q x Q such that their push forward measures by the first
and the second projection on £2 respectively are u and v (nipo = 1 and
mu0 = v) (see [1] for more details).

DEFINITION 5.4. Let 1t be a probability measure. For every n € N, given
p > 1, we shall denote by w,, (or, when necessary, by i) one of the elements
of D, of minimal distance with respect to the Kantorovitch-Wasserstein
distance of index p from u. We shall refer to u,, as to a discretization of
resolution n of u (with respect to the index p).

ProPOSITION 5.1. Let 1 < p < q and let i, v be two probability mea-
sures. Then

(5.1) (1, ) < dy(ut, v)
and
(52) (e, ) < d" 5 (dyln, )7

where the constant d is the diameter of supp (1) U supp (v).

Proor. Let 7 be an optimal transport plan from u to v with respect to
the Kantorovitch-Wasserstein distance of index g. Then, by Holder in-
equality,

[d, (1, WP < / & — ylPdr < ( / |acy|er> ( / dr) — [dy(, WP

QxQ QxQ QxQ

To prove (5.2) we shall consider an optimal transport plan ¢ from x to v
with respect to the p distance. Let us call d = (supp (¢) U supp (v)), then

[dy(u, W]? < / v —y|’de < di7P / |z —ylPde = d"Pld,y(u, I,

QxQ QxQ

from which the thesis follows. O
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In the following, for any n € IN and p > 1, we shall use the Kantor-
ovitch-Wasserstein distance of index p of u from D,

(53) 52 = dp(ﬂ,ﬂﬂ) = dp(/la Dn) 5

to test “how good” a discretization of resolution » can be. When we shall deal
with more than one measure we shall use the more detailed notation
52(/‘) = dp(ﬂa Dn)

In [3] the following proposition, which gives a relation between the cost
of an irrigation pattern y and the Kantorovitch-Wasserstein distance ¢} (u,)
of the irrigation measure y, from a Dirac delta, has been proved.

PRrROPOSITION 5.2.  Let y be an 1rrigation pattern, with a source point S,
then

1
01w < dilpy, 93) < LI(y).

REMARK 5.1. Let 1 <p <q, neN, n>1and let u be a probability
measure. Then from (5.1) and (5.2), applied for v = 1 and v = 1, we get

(54) o < al
and
(55) o1 < dH (a7,

where the constant d is the diameter of supp ().

It is clear that, increasing the number #, the discretizations x,, become
more accurate, therefore it is rather natural to make some decay hy-
pothesis on J}.

DEFINITION 5.5. Let 1 be a probability measure and p > 1, then we shall
call resolution dimension of u of index p the constant db (1) defined as fol-
lows

Nn—+ 00

-1
(5.6) db(w) = (— lim sup log,, 5{;) .

REMARK 5.2. Let 0 < a < (dP(n) ", then there exists @ such that

Vn>m o o <m e,
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Conversely, if a > (olff(,u))*1 then for any C > 0 we have

D —a
o >n

Sfor arbitrarily large values of n € \.

Proposition 5.1 allows us to state the corresponding properties of d? (1)
in terms of the index p.

ProposITION 5.3. Let 1 < p < q and u a probability measure, then

(5.7) dP(w) < di(w)
and
(5.8) di(p) < %dﬁ?w.

Proor. Taking into account (5.6), both inequalities easily follow from
(5.4) and (5.5). O

REMARK b5.3. It is useful to remavk that, by (5.7) and (5.8), db ()
changes with continuity with respect to the index p. Moreover, if there
exists a index p > 1 for which db(u) = 0, then for all ¢ < + oo di(u) = 0.
This means that, in such a case, we can not change the resolution di-
mension of u acting on the index p as far as it is finite.

In Appendix B we shall prove the following propositions.

PrOPOSITION 5.4.  Let 1 be a probability measure, then
a0 () = dpy () -
PRrOPOSITION 5.5.  Let i be a probability measure. Then

de(w) < dw) <dP(w)  Vp>1.

REMARK 5.4. Since in the case p = + oo the dimension db(u) agrees
with dy(u) we shall use the notation d2° in order to denote a weaker case,
according to Proposition 5.3, of the dimension of index + oo, defined as

d;°(u) = sup d(u) .
p>1
Example B.1 will show how for p = + co the “strong” and the “weak” di-
mensions dy (1) and d2°() are, in general, distinct.
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By the following lemmas we shall estimate the resulution dimension
d? (1) in the case in which the probability measure x enjoys some regularity
properties, beginning by considering a probability measure which satisfies
the lower Ahlfors regularity (LAR). As a consequence of Corollary 1.3,
taking into account that, by Proposition 5.4, dy (1) = d°(1) we have the
following corollary.

COROLLARY 5.1.  Let u be a probability measure which satisfies (LAR)
m dimension § > 0.
Then

(5.9) E@W<p =1

Proor. Indeed, by Corollary 1.3, we have df;o(u):supdﬁf(ﬂ)g
dy(u) < p. p=1 O

In the case in which a probability measure u satisfies the upper Ahlfors
regularity (UAR), by Corollary 1.4 Proposition 5.5 admits the following
corollary.

COROLLARY 5.2.  Let u be a probability measure such that (UAR) holds
true. Then

(5.10) B < du).

From Corollary 5.1 and Corollary 5.2 we easily get the following pro-
position.

PROPOSITION 5.6.  Let u be an Ahlfors reqular probability measure of
dimension f > 0. Then

(5.11) =4 Vp>1.

REMARK 5.5. So, when the measure is Ahlfors reqular, the value of the
resolution dimensions s does not depend on the index, while for a generic
measure, as it will be shown i the Appendix B by some examples, the
resolution dimension is “out of focus” in the sense that different indexes
give different values. We shall show that, in any case, it is always possible
to find an index, suitably characterized, which gives a resolution di-
mension which coincides with the irrigability dimension of the measure
(see Theorem 8.1 below).
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6. Irrigability results via resolution dimension.

In this section we shall establish some irrigability estimates, in parti-
cular we shall prove the following proposition.

ProposiTION 6.1. Let u be a probability measure and p > 1. If
p' > db(u), then u is a-irrigable, with o = »

The idea of the proof consists in fixing % € IN and in using the dis-
tribution pattern introduced in Section 2, induced by a hierarchy related to
the measures g, in order to irrigate x,. An estimate of the cost and a
passage to the limit will then ensure the irrigability of .

More precisely, let us fix an integer k¥ > 1 (we shall assume that k is
large enough to have the estimate

(6.1) 2% <1,

1
where we choose a number a suchthat0 <1 — o = 17 <a< (dff(,u))_l, such

a bound will be useful later on). Then we shall denote by X, the support of
e for any h <n. Let X1 = {x1, @2, ..., X } and let m; = 0 ({2 }).
We would like to have a map ¢, : X;.1 — X, such that dp(u., ) =

Jeh+1
(Z m;l; ) where [; = |x; — ¢, (x;)|- However such a formula would re-

quire the Kantorowich-Wassernstain distance between g1 and . to be
achieved by a transport map, while the discrete nature of y+1 guarantees
only the existence of an optimal transport plan, see [1]. Roughly speaking,
if we want to carry in an optimal way the masses m;, given on X}, |1, to the set
X), in order to reconstruct sy, we cannot bring each m; to a unique point
@, (@;) but we must split it in several parts and bring each piece to a different
point. To avoid this problem, we shall replace the measures 14, by other
measures [i,, recoursively defined taking i, = 1, and proceeding back-
ward by choosing, for & < n, a measure ji;; which gives an optimal ap-
proximation of ji;..1 on Dy

For h<mn, let X) =supp (@), X;={a}, of, ..., al} and m} =
= [y ({x!}). Now, for b < m, it is not difficult to choose fi, in such a way
that an optimal transport plan for the Kantorowich-Wassernstain distance
of index p between fy;. and iy, can be induced by a transport map
o s X1 — X

Indeed, if an optimal transport plan splits a mass m?“ bringing each
piece to a different point of Xj,, we just need to modify the values of the
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masses m]h in the points of X;, of minimal distance from xﬁ’/“ in such a way
to let the mass mﬁ‘“ fully carried to one of such points, arbitrarily chosen,
which we shall chose as wh(x?“). Such a modification does not affect the
minimality of ji;..

Therefore, by letting

Z_Hl _ |x;z+1 _ wh(x?ﬂ)‘ 7
we can be sure that
s g
(6.2) (g fgin) = (Z m§+1(ig+1)p> .
i=1

In the following, for p > 1 and for all # € {0,1,...,n}, we shall set
O = dp(u, ya)
beside the already introduced notation
dZn = dp(,u7 1) -

The following metric lemmas, which are only based on the optimality of
Iy asked in the recursive choice, will provide an estimate of the left hand
side of (6.2).

LEmMMA 6.1. Forallp > 1
~ n_h .
(6.3) Vh<m: O, <Y 20,
i=0

ProoF. In the following we will forget the index p. The result easily
follows from an iteration of the following inequality

Yh <mn: Skh < d(ﬁkh s Bygin) + d(ﬁk}z+1,ﬂ) < d(ﬂkh,ﬂkh+1) + Skml

6.4 - -
( ) < d(ﬂkh, W+ du, ﬁk}wl) + Opii1 = Opp + 2001
which just uses the triangular inequality and the optimality of .. Then
(6.3) follows by induction on 7 — k. It holds true for & = n (being fi.. = 1)
then, if we assume it true if & is replaced by % + 1, taking into account (6.4)
we have

n—h—1 n—h—1 n—h
Sklz < O +25kh+1 <2 Z 2i5kh+i+l +5Z = Z 2i+16kh+i+1 + 0 = Zziékhﬂ' .
=0 =0 i=0
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LEMMA 6.2. Given p > 1, a < (d2(1)"". Then 3C > 0 such that
(6.5) Vh<n: & <CEY".

Proor. By Lemma 6.1 and Remark 5.2, we have

n—h

n—h n—h
o, <N 206, < CY 2T = kMY @k
=0 =0 =0

+ 00
<O @k = 0tk
1=0

where for the last inequality we have used (6.1). O
By the triangular inequality and (6.5) we get the following corollary.

COROLLARY 6.1. Let p>1 and let a < (d?(w)~". Then 3C > 0 such
that

(6.6) Vh <mn:  dp(iy, i) < CHM™.

Combining (6.2) and (6.6) we have

Jh+1 P
(67) (Z m?+1d§z+l)?) < C(kh)fa .

i=1

Now let us call y, a distribution pattern relative to the hierarchy
((Ps, yVier, I =1{1,...,m}, (where, for 1 <i<mn, P;= )NQH-H and, for
1 <1< n,y; =¢,_; while y, is the constant map on P,, of a constant value
given by the source S) and to the measure i; = ;.. defined on the basic
level P; = X,,. Lemma 3.1 allows us to prove Proposition 6.1.

Proor OFlPROPOSITION 6.1. Since p’ > dl(u), we can fix a such that
O0<l—a= 2? <a< (olf(,u))_1 and k € N satisfying (6.1). Given n € N, we

get the existence of a sequence (i)o<p<, such that Corollary 6.1 holds
true. The cost 1,(x,) needed to irrigate 1. can be estimated with the use of
(3.1) in Lemma 3.1. Taking into account (6.7) and callingb =a —1+ 0o > 0
we get by Holder Inequality
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n kn—Hl n k»z—Hl

IM(Xn) _ zl: Zl: (m]?_zfi+l)a|x;ri+l _ yi(ac]ﬂfi+1)| _ 21: 21: (m}zfiJrl)o:l;@fiH
i=1 j= i=1 j=

n [ke—i+t «
n—i+1jn—i+1\L n—i+1yl—a
SZ[ G )1 ")

1=1

J

n + o0 .
< Cke Z (k1z—i+1)—(a—1+o<) < Ck* Z (k—b)l < 400,

=1 i=1

Therefore we get a bound on the cost to irrigate 1, which does not
depend on n. Therefore there exist a constant C = Ck® > 0 such that we
~ T o0 .
can irrigate every discretization spending at most C > (k~°)", where
i=1
b=a—1+ o> 0. So, by the compactness theorem [4, Theorem 8.1], we
have, passing to a subsequence, a limit pattern modulo equivalence y such
that 7,(y) < +occ. By construction, its irrigation measure wx, is just the
measure u which is therefore o-irrigable. O

1 /
Taking into account that d, = (—) , we can also restate Proposition 6.1
in the following way. i

PROPOSITION 6.2.  Let 1 be a probability measure for which there exists
a constant o € 10, 1[ such that

&) < d, .

Then u 1s a-irrigable.

COROLLARY 6.2. Let u be a probability measure and let p > 1 be a
solution to

(6.8) d2(p) < p'.
Then
(6.9) dw <p'.

1
Proor. Leta € ]0, 1[ be such that d, > p’. From d, > p’ we get 5 <p,
t}llerefore, applying (5.7) and taking into account (6.8), we have
d(uw) < d(u) < p' < d,. So, by Proposition 6.2, we know that x is a-irrig-
able, therefore d(u) < d,. Letting d, — p’ we get the thesis. O
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7. Nonirrigability results via resolution dimension.

The aim of this section is to prove Proposition 7.1, or equivalently
Proposition 7.2, which gives the counterpart of the results stated in Pro-
position 6.1 (and respectively of Proposition 6.2).

ProrosiTION 7.1. Let u be a pmbabilitf/ measure and p > 1. If
p’ < dP(u), then u is mot a-irrigable, with o = .

. 1\’ .
Taking into account that d, = (—) , Proposition 7.1 can be also re-
. . o
stated in the following way.

PROPOSITION 7.2.  Let 1 be a probability measure for which there exists
a constant o € 10, 1[ such that

&) > d, .

Then u is not o-irrigable.

Proposition 7.2 admits the following corollary whose proof is similar to
the proof of Corollary 6.2.

COROLLARY 7.1. Let u be a probability measure and let p > 1 be a
solution to

(7.1) & >p'.
Then
(7.2) d(w) >p'.

The proof of Proposition 7.1 is based on the semicontinuity properties
of two functions which we are going to introduce and which, time by time,
give the maximum cost of the single or multiple branches (see Definitio-
n A9).

DEFINITION 7.1. Let y be an irrigation pattern, then we shall consider
the following two functions W, and S, defined on R by setting, for all
t>0,

(7.3) W, () = max{L,(V) |V € Vi()}
(7.4) S, = max{I,(V)|V € Vi(n)}.
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We state some properties enjoyed by the above defined functions.

PROPOSITION 7.3.  Let y be an irrigation pattern of finite cost. Then

(75) VE>0: S, < W)
and
(76) Vi, < to: Sz(tl) > Wz(tz).

So, in particular, S, and W, are decreasing functions.

ProoF. The proof of the statement relies on the definition of strict
equivalence relation (see Definition A.4). Indeed, a strict vessel at time ¢
contains a multiple vessel at a bigger time. O

PROPOSITION 7.4.  Let x be an irrigation pattern of finite cost. Then S,
18 a lower semicontinuous function.

Proor. In view of Proposition 7.3, the statement is equivalent to the
right continuity of S,,.

Let (¢,).ex be a decreasing sequence of real positive numbers such that

lim t, =% € R,. We shall prove that nkgnoc S, () =8S,@). Let V e Vi(0)

n—+ 00

such that S,(#) = I,(V) and fix p € V. Let us consider V,, = [p1;, € Vi (0
The sequence (V,,),ex is monotone increasing under inclusion, moreover
Uv.=V.

neN

Let us set, for any ne N, A, =V, x[t,, +oo[, then using Re-
mark A.11 we have

S, = I,V) = I“<U Vi, z): v( U An): Tim v(4,) =

nelN neN
= lim Iac(ana tn) < lim Sy(tn)- O
N—+00 n—+oo ~

PROPOSITION 7.5.  Let y be an irrigation pattern of finite cost. Then W,
1S an upper semicontinuous function.

Proor. In view of Proposition 7.3, the statement is equivalent to the
left continuity of W,,. Let (£,),<x be an increasing sequence of real positive
numbers less or equal to ¢ such that lim ¢, =% € R,.

N——+ 00
Let us consider, for any n € N, V,, a vessel at time £, such that

Ia(‘]n) = W}((tn)~
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Let us set, for any n e N, A, =V, x[t,, + <[, then using Re-
mark A.11 we have

(77) v4,) =1,V,, t,) > 11(77 I_f)

We can assume that nlir+n v(A,) = . 1ir+n W,(@.) > 0 (otherwise we have

nothing to prove), therefore (4,),cn admits a subsequence, still denoted
by (Ay)nen, With a nonempty intersection.

By using Lemma A.1 we get that the sequence of the vessels V,, is
decreasing. Let us set V.= () V,. By construction, we have that V is a

- neN
vessel at time t. Consequently, being (f,),cn increasing, it follows that
(AN, is decreasing. Therefore, by (7.7), we have

LV, D =v((A)= lim wd)= lim LV, t)= lm W,t)
Nn——+ oo N——+ 00 Nn—-—+ oo

neN

and so
lir+n W, () = L(V) < W,@).

Propositions 7.4 and 7.5 allow us to give the following proposition.

PRrROPOSITION 7.6. Let y be an irrigation pattern, with a finite cost
I,(y) < +o00. Let 0 < a < I,(y). Then there exists a multiple branch y' of y
such that I1,(y') > a which is the bunch of single branches (x,); such that
L((x));) < a for all j.

ProoF. Let t = sup{t|W,(t) > a}. Using Proposition 7.5 we get the
existence of avessel V' € V;(x) such that I,(V) > a. On the other hand, being
S, ) < W,(#), by Proposition 7.4 we know that can not exist any vessel
V* € Vi(x) such that 1,(V*) > a. Indeed, on the contrary, by using the right
continuity of S,, we would get a time ¢ > ¢ such that W,(¢) > S,(¥) > q, in
contradiction to the maximality of 7. O

THEOREM 7.1. Let y:Q x[0,+ oo — RN be an wrigation pattern
with a finite cost ¢ = 1,(y). Then for n > 1 there exist n source points for a
finite number of patterns y; such that

. C
1) VZ Io:(Xz) S %

2) u, = Z’uli'
1
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PRrooF. Let us fixn € N, n > 1, and let us apply Proposition 7.6 to the
constant @ = — < ¢, where ¢ = I,(y) < + oc. Then there exists ¢t,, > 0and a

multiple branch x of x such that I ()() >— and x' is the bunch of single
branches whose cost is less or equal to < e We can regard y’ as the union of a
finite number of (not necessarily single) branches with a cost less or equal to
%. If we consider the pattern y\ 4’ of y stumped of the branch y’ (see
Definition A.8), according to Lemma A.3, we have that I,(y\ ) <
<I (;() I,(y’) < ¢ ——. Let us apply Proposition 7.6 with the same con-
stant < " to the stumped pattern yx \ ¥’ and proceed recoursively in this way
At every step, the cost of the iteratively stumped pattern loses at least .
So we can do at most # — 1 stumps of this kind. At the end of this pro-

cedure we get at most n sources, which are the cut point in the stumping
procedure, which globally give rise to a finite number of patterns each one
with a cost which is less or equal to % The second part of the statement is
easily obtained by iterating (A.10). O

PROPOSITION 7.7. Let i be a probability measure which is a-irrigable.
Then 3C > 0 such that for all n € N

(7.8) 5 < O~

ProOOF. Let y be an irrigation pattern such that 7,(y) < +oo and
w, = w. Let us apply the decomposition Theorem 7.1 to the pattern y, so we
get, for afixed n € N, % source points S; and a finite number of subpatterns
x; verifying 1. and 2. of the thesis of the theorem.

n
Let i, = > ,uXi(RN )os, € D,. By Proposition 5.2 we have
i-1

1

3] <[de] <

(S S, 0|

< Z(lx()fi))% < Sl;p ([1()(2,))%—1 Z[%(Xi) < (2)710 ’

from which we get

1
&, < Cn~ 19
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PrOOF OF PROPOSITION 7.2. Assuming, by contradiction that y is o-ir-

rigable, by (7.8) it would follow, by Remark 5.2, (1 — ) < (di) and so

1 . . . .
d:. < d,, in contradiction to our assumptions. O

8. The irrigability dimension as a resolution dimension.

In this section we show that the irrigability dimension of a measure can
be seen as a resolution dimension with respect to an appropriate choice of
the index p.

We shall prove the following theorem.

THEOREM 8.1. Let u be a probability measure. Then

a) if dX(w) <1then d(w) =1,
b) if d>°(w) > 1 then Ip > N’ such that d(u) = dy(w).

Moreover, an exponent p for which the above inequality holds true is
the unique solution of the equation

(8.1) i) =p'.
ProOF. In the case a) we have that for all p > 1,
db(u) < dX(u) <1<p,

so by applying Corollary 6.2 we have that d(x) < p’. The thesis follows
taking the limit for p — + oc.

For the proof of the remaining part of the statement, it is sufficient to
show that equation (8.1) admits a (unique) solution p > N’. Indeed, by
applying Corollaries 6.2 and 7.1 one gets d(u) = p’ and therefore b) fol-
lows.

We can get a solution to (8.1) since by means of Proposition 5.3, the map
p—db(u) is a continuous map and by Proposition 5.4, being
d(w) < dy(w) < N, for p; = N’ we have d)' () < p}. On the other side, by
(5.7) we get d*(u) = pLirglw dP(w) > 1= pLHJPOC p'. So for py large enough we
have dﬁ?’”(,u) > ph. Moreover equation (8.1) admits a unique solution be-

cause the map p+— d}(u) is increasing and the map p+— p’ is strictly de-
creasing. |

REMARK 8.1. The uniqueness of the solution to (8.1) does not guarantee
n any way the uniqueness of the exponent p for which db(u) = d(u). In-
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deed, by Proposition 5.6 for a measure p which s Ahlfors reqular in di-
mension f = d(u) any exponent p > 1 gives d(u) = d(u).

As we have said in the introduction, Theorem 1.1 can be deduced from
the previous result.

ALTERNATIVE PROOF OF THEOREM 1.1. If d>°(1) < 1, by Theorem 8.1 we
have d(u) = 1 and so

de() < d2(w =1=dw < max{1, dy(w}.
On the other hand, by propositions 5.4 and 5.5, we have for a suitable p
de(u) < dP(u) = d(u) < dy(u) = max{1, dy(u)} . O

A. Appendix A - Fundamental notions, remarks and notation.

In this appendix we shall introduce some terminology which has been
used in this paper, in particular we shall recall the same notation as in [4],
introducing the notion of irrigable measure and referring to that paper for
more details. Then we shall give some new definitions and useful tools.

Let (2, | - |) be a nonatomic probability space and y : 2 x R, — RY an
irrigation pattern, as defined in Section 1. When we shall deal with subsets
Q' c Q we shall use X instead of x|y, g, to denote the restriction of y to
Q' x R, and we shall call 7y the subpattern of y defined on €.

Letbe (€1, | - |;) and (€2, | - |;) two disjoint probability spaces, let.S € RY
and let y; € Pg(Q1) and y, € Ps(£22) be two irrigation pattern with the same
source S. Let us consider the set Q = Q; U 2y endowed with the finite
measure defined by setting for allA C Q, |A| = |A N 21|, + |A N Qz],. Then
we can consider y; and y, as subpatterns of a pattern y € Ps(€2) defined by
setting for a.e. p € Q and for allt € R,

(A1) ( t):{xl(p,t) if peQ

rp,t) ifpes.

The above defined pattern will be called bunch of the patterns y; and y,. Itis
clear that the definition of bunch of patterns can be extended to a sequence
of patterns, see [3].

We recall that every set of fibers of @, time by time, defines an
equivalence relation ~; on Q by relating two points p and ¢ € Q at the time
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tif Ip and Xq coincide on [0, t]. So every set of fibers at every time ¢ divides
Q into equivalence classes which we shall call y-vessels. For any p € Q, we
shall denote by [p]; the y-vessel at time ¢ which contains p, while for any
t > 0 we shall denote by Vi(y) the set of all the y-vessels at time ¢. The
following lemma can be trivially proved, see [4].

LEmMA A.1.  Let y be an wrrigation pattern. Then for all 0 < t; < to and
SJor all Vi, € Vi, (x) and Vi, € Vi, (x) we have the following two alternatives:

1) Vi, CcVy
2) Vi,nVy, =10.

For a set of fibers y € Cs(2), we introduce the following function
g, : 2 — R, which gives the absorption time of a point defined as follows

VpeQ : o,p) =inf{t € R, |y,(-)is constant on [¢,+ oc[} ,

which will be called stopping or absorption function for x.

We shall say that a point p € Qs absorbed when g,(p) < + co. A point
p € Qs absorbed at the time t if o,(p) < t. Analogously we shall say that a
set X C 2 is an absorbed set at time ¢ if 6,(p) < ¢ for a.e. p € X, in par-
ticular when the set X is a y-vessel we shall say that X is an absorbed y-
vessel. We shall denote by A;(y) the set of the points of Q which are ab-
sorbed at time ¢, and by A, = |J A+(x) the set of the absorbed points. On
the contrary, the set =0

MG ={p € 2|o,(p) >t} =2\ Ay

is the set of the points that, at time ¢, are still moving. We shall call y-flow

at time ¢ any not absorbed y-vessel, and we shall denote by F;(x) the set of

the y-flows at time ¢ and by F(y) the union of all the y-flows at time £.
For every pattern y € Cg(2) we introduce the irrigation function

i)( :AX — RN ,
defined by setting
Vped, : 4,(p)=xp,o,p)

and giving, point by point, the absorption position of the absorbed points.
In the case in which we deal with an irrigation pattern y € Pg(Q), the
absorption time function g,, and, for all ¢ > 0, the vessels and the set A;(y)
of the absorbed points at time ¢ are both measurable (see [4]).
We remark that ¢,(p) = tlirglo 2(,t) and so also ¢, : A, — RY is a mea-
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surable function, as a pointwise limit of a sequence of measurable func-
tions, when y € Pg(Q).

The function %, induces on RY the image (push-forward) measure u,
defined by the formula

w4 = i A,

for any Borel set A C RY. We shall refer to L, as to the irrigation measure
induced by the pattern y.

For a fixed cost exponent o € ]0, 1[, we introduce the functional cost 7,
in [4], defined on the set Pg(Q) of the irrigation patterns y, by the following
formula

um:/wmu

R,

where

(A.2) ¢, = / LI dp
My(x)

is the relative density cost function.

REMARK A.1. Let (x,)nex be a sequence of patterns y, : Qn, X Ry — RY
all with the same source S € RY, let y be the bunch of the sequence (1, nen-
Then it is easy to show that for any o € 10, 1[ we have

(A3) LG) <> LG,
and
(A4) W=D My,

We introduce some more definitions.

DEFINITION A.1. Let y € Ps(Q) be an irrigation pattern of Q, we will
say that

F,={xeRY|[3t>0 34 c Fi(y) st. x = yp, 1), pc A}

18 the flow zone of y.

The following lemma has been proved in [3].
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LEMMA A.2. For any pattern y of finite cost, I, is a Borel set and
dir,) =1

DEFINITION A.2. Let y € Ps(Q) be an irrigation pattern of Q, then the
set

(A.5) D, ={peQ|peFs,p}
will be called dispersion of the pattern y. Moreover we shall say that

e yhas a complete dispersion (or equivalently y is totally dispersed)
ifl2\D,| =0

ey is a pattern with dispersion if |D,| > 0

ey is a pattern without dispersion if |D,| = 0.

REMARK A2. Let y be an irrigation pattern. Then the irrigation
Sfunction sends the dispersion D, in the flow zone F, i.e.

(A.6) iD,) CF,.

As a consequence, by the definition of irrigation measure induced by y, we
have

(A7) D] < 1,(F)).

Therefore to get a pattern without dispersion it is sufficient to check that
w,(Fy) = 0.

Hence, when a pattern y has a complete dispersion, every point is ab-
sorbed just because it stops its motion while it still belongs to a flow.

REMARK A.3. Let y € Ps(Q) be an irrigation pattern of Q, then the
subpattern of x restricted to Q\ D, is a pattern without dispersion.

DEFINITION A.3. Let y be an irrigation pattern, p, q € Qandt > 0. We
shall introduce the separation time s,(p,q) of the two points p and q
defined as

(A.8) s,(p,q) = 1inf{t > 0| x(p,t) # x(q,t)}

DEFINITION A4. Let y be an wrrigation pattern, p € Q and t > 0. We
shall say that two points p, q € Q2 are strictly equivalent at time t, and we
shall write p ~ q, if there exists ¢ > 0 such that p ~.. q. We shall call [p];
strict equivalence class defined by p at time t or equivalently strict vessel of
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the point p at time t, the following set
[p); ={geQlp~q}

and we shall denote by Vi(y) the set of the strict vessels at time t according to
the pattern y.

REMARK A.4. Let y be an irrigation pattern, p € Q and t > 0. Then the
strict equivalence class defined by p at time t coincides with the union of
the equivalence classes [ply defined by p at times t' > t, i.e.

(A.9) [p}; = Ul = J ok -

>t >t
REMARK A.5. Fora.e. p, q € Q and for all t > 0:

o pyq forallt <s,(p,q)
o piq forallt <s,(p,q).

DEFINITION A.5. Let y € Ps(Q) be an irrigation pattern of Q. For any
pair (p, 1) € Q x Ry the function yg, p : [pl x Ry — RY, defined, for all
(g, 8) € [ple X Ry, Y x5,6(q, 8) = x(q, s + V) is the branch of y starting from
1, ?).

REMARK A.6. Let y € Pg(Q) be an irrigation pattern of Q. Then for any
(p, ) € 2 x R the branch of y starting from x(p, t) does not depends on p
but only on the y-vessel [pl;. Moreover to get nontrivial (constant) bran-
ches one must require the vessel [p]; to be a flow.

DEFINITION A.6. Let y € Ps(Q) be an irrigation pattern of Q. For any
pair (p, t) € 2 x R, the function )dp_’ p Pk x Ry — RY, defined, for all
(g, s) € [p]; x Ry, by ;(Ep,t)(q, s) = x(q, s + t), where [pl; is the strict y-vessel
of p at time t, is the single branch of y starting from y(p, t).

Where [pl; # [p]; we shall have branches which are not single ones and,
in order to point out that the point y(p, t) give rise to more than one single
branch, we shall call [p]; multiple branch.

We introduce the notion of a simple pattern which will allow us to ex-
tend Definitions A.5 and A.6 to any point x € F,.

DEFINITION A.7. Let y € Ps(2) be an wrrigation pattern of 2, we will
say that yx is a simple pattern if:
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e for a.e. point p € Q the y-fiber of the point p, i.e. the function
Ip Ry — R¥ is a simple curve up to the stopping time g,(p), i.e. once re-
stricted to the interval [0, g,(p)]

e fora.e. pair of points p and q of ©: y,,(s) # x,(0) for all s, t > s,(p, @)

It is easy to show that any subpattern of a simple pattern is simple too.
Moreover, when we deal with an irrigable measure g, it is always possible
to irrigate u by means of a simple pattern, see [3, Lemma 6.15]. Lem-
ma A.2 and remarks A.2 and A.3 allow us to assume that the restriction of
1 out of a 1-dimensional set can be irrigated by a simple pattern without
dispersion.

REMARK A.7. It is worth to remark, see [3, Lemma 6.15], that one can
say that a pattern y is simple if

Ve € Fy, 3t >0, 3|V =[pl; € F,() s.t. . = x(p, D).

The above remark allows us to give, for simple patterns y, the definition
of branch of y which starts from a point ¢ € F,, according to definitions A.5
and A.6, applied to any pair (p, t) such that x = y(p,?).

DEFINITION A.8. Let y be a simple wrrigation pattern with source
point S. For any branch y' from x = y(p, t) of x, we shall call pattern y
“stumped” of the branch y/, the restriction of y to Q\ [pl; and we shall
denote it by x \ x.

The following lemma can be trivially proved.

LEMMA A.3. Let y be an irrigation pattern and let y' be a branch of y.
Then

(A.10) By = Hy + Hopy
moreover
(A.11) L) > LG + LG\ 1)

DEFINITION A.9. Given a pattern y and a vessel V = [pl; at a time t, we
shall call cost of the vessel V and we shall denote it by 1,(V, t) or, when
there is no doubt about the time at which one refers, by 1,(V) the cost I,(y),
where y’ is the branch of y which starts from y(p, ).
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REMARK A.8. Let y be an irrigation pattern, then for all t > 0

(A.12) S L) = | c9ds.

+ 00
Vevi(y) t

The analogous property also holds true for the strict vessels.

We recall the definition of y-vessel evolution introduced in [4]

DEFINITION A.10. Let I C R,. We shall say that the one-parameter
family of sets Vi = (Vi)ier s a x-vessel evolution if:

e 1t 1s decreasing under inclusion
o Ve V(y) foreveryt el

REMARK A.9. Let V; be a x-vessel evolution, then the family (I,(Vi))er,
which, time by time, gives the cost of the vessel Vi, is decreasing but it is, in
general, not continuous because of the possible “multiple branching” of the
pattern y at some time.

The function ¢, : 2 x Ry — R is defined by setting for a.e. p € Q and
forallt e R,

(A.13) 9,, 1) = lIpl|" L)) .
so that ¢,(t) = [, (p, H)dp.
2

DEFINITION A.11. Let y be an irrigation pattern. Then y induces on
Q x R, a positive measure v defined in the following way:

)= [ 14 u@apdt = [ o,p. tdpat.
A A

REMARK A.10. Let y be an irrigation pattern. Then

/ ¢, (Ot = WQ x Ry) = L() .

R+

REMARK A.11. Let y be an irrigation pattern, then for all t > 0 and for
all vessel V; € Vi(y) at time t

L(Vy) = (Vi x [t, +o0l).
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B. Appendix B.

This second appendix is devoted to the proof of some tools and propo-
sitions stated and used in Section 5.

LEMMA B.1.  Let i be a probability measure. Then for all d' > dX(u) and
forall e > 03A, ¢ RN such that

(B.1) u(RY\ A,) < & and dy(A,) < d'.

Proor. Let us call d = dl(x) and let us fix d’ > d and ¢ > 0. For any
ke N let us set ¢ =2 %. Fix k € N, since lir+n di(u, D) = 0 there
exists n, € N and y,, € Dy, such that e

(BZ) dl(,u, ,unk) < & .

o 4
Let {x1, a2,...,%,,} = supp (u,,) and Uy = |J B(w;, el). By (B.2)
i=1

—d
(B3) HR¥\ U < e ¥
Letuscall 4, = ﬂ U,. Then, by (B.3), being d < d’, we have
feN
1-4
ﬂ(RN \Aé) < Zﬂ(RN \ Uk) < Zglt-id/ gl—di, Z(z k)l & dlii .
e keN feeN — @)

!

1 (1’_7d d'—d
Replacing ¢ by ((1 — (§> ! )s) we get the first inequality in (B.1).

Let us remark that, for all k € IN large enough, we can fix n;, in order to
have

(B.4) e <&

Indeed, belngd < d', by (5.6), we have, for large enough #, logné ; ie.
51 <nT , hamely

(B.5) n< @)

Then set n, =min{n | 0, <&} we have 5“,6 1> ¢ and so, by (B.5),
ny, < ak " + 1, from which (B 4) follows by the arbitrariness of d’'.

Now let us consider k¥ = min{k € N | & < d}, Where 0 >0 is a fixed
real positive number small enough to have lc >10< a7 is enough), then

d
(B.6) s<dl =2
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Being A, C Uy, A, can be covered by using 7y, balls with a radius gf <.
Combining (B.4) with (B.6) we have

ng < 2d,5_(d;)2 .
: : Lo (d)? :
This last inequality gives, by Lemma 1.2, dy(4,) < 7 By the arbi-
trariness of d’ the thesis follows. O

PROOF OF PROPOSITION 5.5. We shall prove that, for any d’ > dl(x) we

1
have d.(u) < d'. Let d’ > d.(«), then by applying Lemma B.1 to ¢ = — we
get the existence of a sequence of sets (4,),<x such that "

+ 00
(B.7) uRY\ | JA) =0
n=1
and
+ 0o
(B.8) d( U A,) < sup(d(4,)) < sup(dy(4,) <d'.
n=1 nelN neN

By (B.7) and (B.8) we get that d.(x) < d’ and therefore the thesis. O

We shall now prove Proposition 5.4 which states that the resolution
dimension of index p = + co coincides with the Minkowski dimension dy,
introduced in Definition 1.7. This circumstance explains why we have used
the notation d>°(x) to refer to supd? () which is, according to Proposi-

>
tion 5.3, a weaker option see Rergéllﬂk 5.4. However in the following part of
this appendix, to the aim of proving the equivalence with the Minkowski
dimension, we shall need to use the notation d2° according to Definition 5.5,
taking p = + oo in (5.6).
By the definition of Kantorowich-Wasserstein distance we can easily
deduce the following remark.

REMARK B.1. Let i be a probability measure, then for all n € N 077 is
the infimum of the numbers 6 > 0 such that there exists a d-net of supp (1)
of cardinality n.

Proor OF ProposITION 5.4. Let f > dy(w). Given n € N large enough,
let 6 = n 7. By Lemma 1.1 we can cover supp (1) by using 6 = » balls of
radius ¢ and so, by Remark B.1, J;° < d. Therefore lim suplog,d,” <

o Nn—+ o0 o ﬁ,
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namely d;° < f8. By the arbitrariness of §, d° < dj follows. Conversely, let

1 1
f > d°, namely — B > limsuplog, d,°. Then J;” < n ¥, namely n < (J,° )#
Nn—+ 00
for n large enough and, by Remark B.1, supp () has a 6, -net of cardinality

n. Since n < (J,° y# , we can deduce from Lemma 1.2 that dy; < ff and, by
the arbitrariness of f, that dy, < d2°. O

We know by Proposition 5.8 that sup dy' (1) < d2°(1) = dp(w). We shall

p>1
show by the following example that, in general, the two values are differ-

ent, so the weaker definition of d° gives a different dimension.

ExampLE B.1. There exist probability measures u such that dy () = N
and sup d2(u) = 0.

p>1

PROOF. Let uu= 3 m,d,, where, for all n € N, z, € OV N By(S) and

n=1
m, = ce~™ > 0, where the constant ¢ > 0 is a normalization constant which
allows > m,, = 1. By construction dy; (1) = dp(supp (1) = dM(B%(S)) =N.

n>1
For any p > 1 we shall bound o2 by considering as an element of D,, the sum
of the first » masses of u.

So
n 00 117 x %
" _and
A, < dp (ﬂvzmk%k)ﬁ ( Z mk> < (/ce“dx) = (ce ™).
k=1 k=n+1 Y
Therefore

1 n 1
IOgn(ég) < 2_910gnc - 5 log, e = Z_? log,, ¢

)

~ plogn -
which, taking into account (5.6) easily leads to d(u) = 0 forallp > 1. O

In the following example we shall show a probability measure (which
cannot be Ahlfors regular, see Proposition 5.6) for which there is a real the

dependence of d¥(x) on the index p > 1. In particular, we shall show that El

p
is the best possible constant in (5.8) while any Ahlfors regular u shows the
optimality of (5.7).

ExamprLE B.2. For any p < q, the constant 9in (5.8) of Proposition 5.3
cannot be improved. p
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Proor. LetN =1,S = 0and let us considera yu = Z m;o,, where, for

all 7 € N, J; denotes the Dirac mass concentrated in a pomt x; € R. Let us
fix two exponents y, f > 1 and take Vi € I\,

(B.9) 7 = X1 — ; = dist(ax;, {96']' lj#£ipH) =17
and
(B.10) mi=1".

By using the triangular inequality, we get that

(B.11) Ve € R 3 at most one 7 € N s.t. |x — ;] < % .

For a given p > 1 and for a fixed n € N let us evaluate ¢/. Let us set
n

=Y m!d,. where for Pall i < n, m; = m;, while m/, = > m;. Then we
. 1% 1 n 7

=1 1 i>n
can bound J2 by C nl_}'_ﬁT. Indeed, by (B.10) and (B.9)

00 0 p %

i=n+1 i=n+1

1

= . p ? 1— X_/’_1
= Z 1 Z 17 <Cn
i=n+1 i=n+1

Fix now an arbitrary discretization yx, € D,, of 1. By (B.11) for any point x

of supp (1) we find at most a point x; such that |x — x;| < % So we can

find at most » points «; which are at a distance less or equal to % from

supp (u,). We can assume, being (m;);en and (r;);cn decreasing se-
quences, that such points x; are the first » ones. Therefore we have

1

1 1
o0 . p o0 P .
(B13) & =dy(u,1,) > < 3wy (9,0) > c< 3 z"ﬁi‘””> >en 7.

i=n+1 i=n+1

From (B.13) and (B.12) we have the existence of two positive constants,
c and C such that for all p > 1 and » € I\:

p-1

(B.14) en T <6 P <CntT
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Taking the log, and then taking the lim sup of the three members of (B.14)
as in (5.6), we have for all p > 1

R N
(B.15) PO L o

and therefore

QPG -D+B-1_diw ¢ pr+p-1
p @+p-1 ~“dw pey-D+f-1"

Taking into account that, for a fixed value of y > 1, both the bounds in (B.16)

(B.16)

go to % as i — + oo we conclude the proof. |

C. Appendix C - Index of the main notation.

The order first follows the exposition in Appendix A and then the ex-
position of the paper:

(2, | - |) a nonatomic probability space
12 xR — RN = set of fibers
2(p,t) € RY position of the point p € Q at the time ¢
1p =t x(p,t) = fiber of p
Cs(2) = set of sets of fibers of Q

o Pg(Q) = set of all irrigation patterns, i.e. the set of all the mea-
surable sets of fibers of

e [pl; = equivalence class of p under the equivalence p ~; q if
xp(s) = xq(s) for all s € [0, 1]

e y-vessels = class of equivalence at time ¢ under ~;

o Vi(y) = Q/~; = set of y-vessels at time ¢

o g,(p)=inf{te R, | Zp(s) is constant on [t,+ ool}: absorption
(stopping) time of p, p is absorbed at time t if g,(p) < ¢

e X C Qis an absorbed set at time ¢ if 5,(p) < tfora.e.p € X
x-flow = non absorbed y-vessel (has positive measure in 2)
Fi(y) = set of y-flows at time ¢
Ay(y) = set of the points of Q which are absorbed at time ¢
A, = | Ai(y) = set of the absorbed points

t>0

o Mi(y) = Q\ Ai(y) = set of the points of Q that at time ¢ are still
moving

e Fi(y)= |J A = union of the y-flows at time ¢
AeFi(0)
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o A, — RY = irrigation function defined by 1, (p) = x(p, 0,(p))
e u, = irrigation measure induced by the pattern y by setting
1,(A) = |i,}(A)| for any Borel set A ¢ RY
o ¢c,)= [ |[p]t|“71dp = density cost function see (A.2)
Mi(0)

o I,(x) = [ ¢, (t)dt = cost of the pattern y

Ry

o F,={xecRY|3t>0,34 € Fi(y) st.x = x(p, t),p € A} = flow
zone of y, see Definition A.1

o D,={peQ|peF,p(} = dispersion of the pattern y, see
Definition A.2

o s,(p, @) =inf{t > 0] x(p, ¥) # x(q, 1)} = separation time of the two
points p and g, see Definition A.3

e [pl} = equivalence class of p under the equivalence p ~; ¢ if there
exists ¢ > 0 s.t. p ~,. q, see Definition A.4

o strict y-vessels = class of equivalence at time ¢ under ~, see De-
finition A.4

o Vi(y) = Q/~f = set of the strict y-vessels at time ¢, see Definitio-
n A4

o /:pk xRy — RY = branch of y starting from y(p, t) defined by
setting y'(q,-) = x(q,- +t), see Definition A.5

e y\ ' = pattern y stumped of the branch y/, see Definition A.8
I,(V,t) = I1,(V) = cost of the vessel V at time ¢, see Definition A.9
9,0, V) = [P Ly (), see (A.13)
WA) = [, (p, t)dp dt, see Definition A.11

A

!
e d,= 7 i L= (&) = critical dimension of the exponent o, see
Definition 1.1

e d(u) =inf{d, | u is irrigable with respect to «} = irrigability di-
mension of g, see Definition 1.3

e d(B) = Hausdorff dimension of the set B
d.(u) = inf{d(B) | 1 is concentrated on B}, see Definition 1.4
ds(u) = Hausdorff dimension of the supp («), see Definition 1.5
dy(X) = Minkowski dimension of the set X, see Definition 1.6
Ns(X) = {y € R¥ | d(y, X) < 6}, see Definition 1.6

o dy () = inf{dy(X) | is concentrated on X} = Minkowski dimen-
sion of u or equivalently strong resolution dimension of index + oo, see De-
finition 1.7, Definition 5.5 and Proposition 5.4

e resolution of u = card(supp (1)) < oo, see Definition 5.1

e D, = set of all the convex combinations of # Dirac masses, see
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Definition 5.2 i
o dy(u,v) = (min I |e—yl da)p = Kantorovitch-Wasserstein dis-
7 0oxQ

tance of index p between x and v, see Definition 5.3
hd 550 = dp(,uy Dn), see (5.3)

o df(u)= (— lim sup logn(éﬁ)) . resolution dimension of x of in-
dex p, see Definit:ionngﬁ+ .

o dX(w) =sup d? (1) = weak resolution dimension of index + oo, see
Remark 5.4 p=1

o W, =max{L,(V)|V € Vi(n)}, see (7.3)

e S,(t) =max{L,(V)|V € Vi()}, see (7.4).
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