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A Note on Clean Abelian Groups.
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To Luigi Salce on the occasion of his 60th birthday

ABSTRACT - Nicholson defined a ring to be clean if every element is the sum of a unit
and an idempotent. A module is clean if its endomorphism algebra is clean. We
show that torsion-complete Abelian p-groups are clean and characterize the
clean groups among the class of totally projective p-groups. An example is given
of a clean p-group which is neither totally projective nor torsion-complete.

Introduction.

The relationship between the general elements of a ring, £, and its
units has been a central topic of interest particularly when the ring in
question is the endomorphism ring (or more generally algebra) of a
module. In Abelian group theory this interest was largely sparked by a
question of Laszlé Fuchs in [3] and subsequently led to the notion of the
unit sum number of an Abelian group; see e.g. [5], [17], [11]. In parti-
cular a great deal of attention has focused on groups and modules
having the property that every endomorphism is the sum of exactly two
automorphisms. Following on from this approach, the first author and
his co-workers have investigated Abelian groups with the stronger
property that every endomorphism is the sum of two automorphisms,
one of which is an involution - see [6]. At the same time Nicholson and
various co-authors introduced the notion of a clean ring: a ring is said to
be clean if every element is the sum of a unit and an idempotent. The
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notion is extended to modules by defining a module to be clean if its
endomorphism algebra is clean in the previous sense. The interest in
this notion derived initially from the fact that clean rings are exchange
rings and, if the ring has central idempotents, then it is an exchange
ring if, and only if it is clean - see [12]. Notice that if 2 is a unit, then the
involution property coincides with the property of being clean. There
are some advantages to working with clean rings in this context: for
example the field of two elements is the only vector space which does not
have the involution property - in fact it doesn’t even have the weaker
property of having finite unit sum number - but it is clean. A rather
surprising development was O Searcéid’s result: the ring of linear
transformations of a vector space (of arbitrary dimension) over a field is
clean - see [14] or [13] for a generalization to vector spaces over a di-
vision ring. Since a vector space over a finite field is just an elementary
Abelian group, it is natural to investigate the endomorphism rings of
torsion Abelian groups. The principal result of the present work is a
classification of totally projective Abelian p-groups having a clean en-
domorphism ring. Recall that there are several equivalent definitions of
the concept of a totally projective p-group, the least technical being that
the group is simply presented in the sense that it can be generated by a
set of elements X = {&;}(i € I) subject only to defining relations of the
form p™wx; = 0 or p"x; = x;(¢ # j), where m,n are positive integers. This
class is of significance since it is the largest class of Abelian p-groups
distinguishable via the so-called Ulm invariants; the class of totally
projective p-groups is well known to include all countable reduced p-
groups. Our final result shows that clean p-groups exist in such abun-
dance that they are unlikely to be classifiable by any reasonable set of
numerical invariants.

Our notation is largely standard and the relevant notions in Abelian
group theory may be found in the texts by Fuchs [4] or Kaplansky [9]. We
specifically note the following two concepts which are used repeatedly. An
Abelian p-group is said to be:

(i) reduced if it contains no divisible subgroups i.e. no copy of the
quasi-cyclic group Z(p™).

(ii) torsion-complete if it is the torsion subgroup of the p-adic
completion of a direct sum of cyclic p-groups. Recall that every p-group
without elements of infinite height may be embedded in a torsion-complete

group.

The notation P is used to denote the set of rational primes, w denotes
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the first infinite ordinal and hg(g) denotes the (generalized) height of an
element g € G; in the last case if no ambiguity results, we drop the re-
ference to G and simply write h(g). The cyclic group of order n will be
denoted by Z(n).

The authors would like to express their thanks to Professor Luigi Salce,
Universita di Padova whose kind invitation to both authors to visit Padova,
led to this collaboration; they would also like to acknowledge his help in the
proof of Theorem 10. The second author would also like to acknowledge the
support of a Dublin Institute of Technology travel grant to visit Dublin for
this joint work.

Main Results.

We begin with a result which is valid for modules over an arbitrary ring;
various versions of this result have appeared in the literature but the proof
given here is direct and simple. It is broadly similar to that first appearing
in [7].

Lemma 1. If A and B are clean modules, then A @ B 1is clean.

Proor. The endomorphisms of A @ B may be regarded as matrices of

the form
XY
M:

where X ¢ End(4), W € End(B), Y ¢ Hom(B,A) and Z € Hom (A, B).
Now as A is clean we can write X = C + U where C'is an idempotent and U
is a unit. Note that ZU~'Y € End (B) and so we may write W — ZU 'Y =
=D + V with D an idempotent and V a unit. Now

c 0 U Y
M = + .
0 D Z V+ZU'Y

Clearly the first term is an idempotent. Moreover the second term is a
unit: pre-multiplying it by

I 0
P= .
(-ZU—1 1)
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and post-multiplying it by

U—l _U—lyv—l
Q =
0 vt

yields the identity matrix and P, @ are invertible. O

Recall that a torsion Abelian group G may always be expressed as the
direct sum of its p-primary components, G = @ G, - see e.g. [4, Theorem
8.4]. per

LeEmMA 2. A torsion Abelian group G is clean if, and only if each of its
p-primary components is clean.

Proor. Since G = @ G, and there are no homomorphisms between

different primary compg%%nts, the endomorphism ring End (G) is just the
ring direct product over p € P of End(G,). However it is clear that the
property of being clean is inherited by ring direct products and ring
homomorphic images and so the result follows immediately. O

Our next result is also more general then we need; it may deduced from
the second author’s forthcoming paper [18] by noting that divisible Abelian
groups are precisely the injective Z-modules but we give here a proof
using standard results from Abelian group theory. It may also be deduced
from a recent paper on continuous modules [1].

LEmma 3. A divisible Abelian group is clean.

Proor. A divisible Abelian group is the direct sum of copies of the
additive group of rationals, Q, and copies of the Priifer quasi-cyclic groups,
7(p>), for various primes p. Since a direct sum of copies of Q is a vector
space, it is clean by O Seare6id’s result quoted in the introduction. It now
follows from Lemmas 1 and 2 that it will suffice to show that a divisible p-
group is clean.

Now if D is a divisible p-group then the Jacobson radical of End (D) is
just pEnd (D) and End (D)/J(End (D)) is isomorphic to the ring of linear
transformations of the Z/p’Z-vector space D[p] - see e.g. [10, Lemma 3.5,
Theorem 3.9]. This latter is, of course, clean. Moreover, since D is torsion,
its endomorphism ring is complete in the p-adic topology — see e.g. [4,
Theorem 46.1] — which here coincides with the J-adic topology. Thus both
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units and idempotents lift from the quotient End(D)/J(End (D)) to
End (D) which is thus clean. O

COROLLARY 4. If G is an arbitrary p-group of the form G = D & Gp,
where D s divisible and Gg is reduced, then G s clean if, and only if Gg is
clean.

Proor. If Gp is clean then the result follows from Lemma 3 and
Lemma 1. Conversely suppose that G is clean. Then, since there are no non-
zero homomorphisms from a divisible group into a reduced group, an en-
domorphism of G may be represented as a matrix of the form

o[ w)

where X € End (D), W € End(Gr), Y € Hom (Gg,D). But then the
mapping sending M to W is a ring epimorphism from End(G) onto
End (Gg) and thus E(Gg) is also clean. O

REMARK. It is clear that the proof of Corollary 4 extends to a much
wider context. For example, it follows mutatis mutandis that if G = A & B
and Hom (4, B) = 0, then G is clean if, and only if both A and B are clean.
In light of Corollary 4 it makes sense to focus our attention on reduced p-
groups.

The determination of the Jacobson radical of the endomorphism of an
Abelian p-group is not easy even when the group is a direct sum of cyclic
groups. It is, however, possible to give an upper bound for the Jacobson
radical. Denote by H(G) the set of endomorphisms of G which are strictly
height-increasing on the socle G[p] of G:

H(G) = {¢ € End (G) | h(x) < oo implies h(¢(x)) > h(x) for all x € Glpl}.

The set H(G) is actually a two-sided ideal in End (G); it was introduced by
Pierce in his seminal paper [15] and is often referred to as the Pierce ra-
dical of G. It was shown in [15, Lemma 14.4] that J(End (&)) C H(G).

LEmMA 5. Let G be a reduced Abelian p-group, then G is clean only if
J(End (@) = H(G).

ProoF. As noted above one inclusion always holds. Suppose that G is
clean and that ¢ € H(G). Then we may write ¢ = n+ u where = is an
idempotent and « is a unit. Since H(G) is an ideal it will suffice to show that
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1 — ¢ is a unit. We claim that for all g € G, n(g) # 0. Suppose for a contra-
diction that n(g) = 0 for some g € G. Since ¢ is a torsion element there is
0 #x € G[p] such that n(x) =0. But then ¢(x)) = h(n(x)+ u(x)) =
= h(u(x)) = h(x) — contradiction. Since n is an idempotent which is never
zero, we conclude that 7 = 1. However this then means that 1 —¢ = —u, a
unit as required. O

LEMMA 6. If the reduced Abelian p-group G is clean, then G does not
have a summand which is a direct sum of cyclic groups whose orders are
unbounded.

ProoF. Suppose that G has a summand of the form B = @ Z(p™) with
<w
n; < n;jforalli < j. Let G = B ® K and choose generators e; lfor each cyclic

summand Z(p™) of B. Next, define a mapping ¢ : G — G by

o) = e;+piteiy ifw =ey;
X ifex e K

Note first, that ¢ is not onto and hence not an automorphism: a
straightforward calculation shows that e; is not in the image of ¢.
Suppose, for a contradiction, that ¢ can be expressed as ¢ = 7 + o, where
7 is an idempotent and o is an automorphism of G. Then pre-multi-
plication by = yields n(¢ — 1) = o and so n(¢ — 1)(G) = nalG) = 7(G).
Hence #(G) =n(¢ —1)(G) C pB, and so, since 7 is an idempotent,
n(G) Cp®B =0. Thus 7 =0 and so ¢ is an automorphism - contra-
diction. O

COROLLARY 7. If G is the direct sum of infinitely many unbounded p-
groups G;, then G is not clean.

PrOOF. Since an unbounded p-group has a cyclic direct summand of
order exceeding any bound, we can construct a summand of G by choosing
cyclic summands of strictly increasing order from the various G;. The result
now follows from Lemma 6. O

In light of Lemma 6 it is reasonable to give some examples of p-groups
which are clean.

LemMa 8. Torsion-complete p-groups are clean. In particular, boun-
ded p-groups (and a fortiori finite p-groups) are also clean.
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Proor. Let B= @ B, be a direct sum of cyclic groups where
n<w —
each B, is a direct sum of cyclic groups of order p"*!. Let B denote

the torsion completion of B. The proof is based on an observation of
Pierce, [15, Theorem 14.3], that the quotient End(B)/J(End(B)) is
isomorphic to a product of full matrix rings over the field
7./p7:End (B)/J(End (B)) m%g [1 End 7,7 (B,[p)). Since each B,[p] is a

n<w
vector space, it is clean and it is easily seen that ring direct products

of clean rings are, again, clean. But then, exactly as in the proof of
Lemma 3, both idempotents and units lift from End(B)/J(End (B)) to
End(B) and so the latter is also clean. Since a bounded group, and
hence a finite group, is torsion-complete, these groups are clean as
well.

THEOREM 9. A countable p-group G is clean if, and only if G = D @ B,
where D s divisible and B is bounded.

Proor. If G =D @ B then the result follows from Corollary 4 and
Lemma 6. (Note that there is no need for countability here.) Conversely,
suppose that G is clean and countable; it clearly suffices to show that the
reduced part of G is bounded and so there is no loss in assuming now that G
isreduced. Suppose, for a contradiction, that G is unbounded. Since G is also
countable we may write G = € G; where the index set [ is countably in-

finite and each G; is unboundeﬁl— this non-trivial fact follows from Zippen’s
Theorem; see [4, Proposition 77.5 and Exercise 77.8(a)]. It follows im-
mediately that G has a direct summand which is an unbounded direct sum of
cyclic groups, contrary to Lemma 6. O

REMARK. It is essential in the proof of Theorem 9 that we can deduce
that the groups G; constructed are unbounded. A direct sum of infinitely
many reduced p-groups may be clean without the group being bounded:
take G = @ A; ® B where each A; is cyclic of order p and B is an un-

bounded tz);aéion—complete group. Then G is clean by Lemmas 1 and 8 but
clearly G is not bounded. This example is, of course, not in conflict with
Theorem 9, since the group G is necessarily uncountable.

It is possible to improve considerably on Theorem 9. As noted in the
introduction, if G is a clean p-group and p # 2, then every endomorphism
of G is the sum of an involution and a unit; in particular G has unit sum
number 2. Thus to find clean p-groups it is enough to restrict attention to
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groups with unit sum number 2. A large and important class of such re-
duced p-groups is the class of totally projective groups — see [4, §82] for
details of these groups and see [8] for their unit sum property.

THEOREM 10. A totally projective p-group G is clean if, and only if, G
18 bounded.

ProoF. Only the necessity needs to be established by virtue of Lem-
ma 8. Inlight of Lemma 6 it suffices then to show that an unbounded totally
projective p-group must have a direct summand which is an unbounded
direct sum of cyclic groups. We establish this by induction on the length,
(@), of G. Since G is unbounded, it has infinite length and if
UG) < w2 = w + w, then it follows from e. g. [16, Corollario 26.3], that G is a
direct sum of countable p-groups. It follows immediately as in the proof of
Theorem 9, that G has the required summand. Suppose then that
U(G) > w2. Since G is totally projective, it certainly is a C2-group — see [16,
§30] — and the cofinality of w2 is clearly w. It follows then from [16, Teorema
30.4], that G has an w2-basic subgroup, B say. By definition B is a totally
projective group of length I(B) < w2, and hence, as noted above, is a direct
sum of countable groups. Moreover B must be unbounded: since it is w2-
basic, it is w-dense and so G = B + p®“G. If B were bounded this would
contradict I(G) > w2. Then, as above, we can decompose B = C & D, where
C is an unbounded direct sum of cyclic groups. But now B satisfies the
hypotheses of [16, Lemma 30.2] with u = @, and so G decomposes as
G=Cao D +p“G). O

The classes of totally projective and torsion-complete p-groups are
essentially the only well-behaving classes of p-groups and we have just
established that clean totally projective groups are bounded and hence
torsion-complete. It is therefore rather natural to look for groups which
are clean but not torsion-complete; existence of such groups would tend
to indicate that it is unlikely that any reasonable classification of clean
p-groups exists. Alas, we can indeed exhibit such groups! Pierce [15]
has exhibited a p-group G which has as basic subgroup the group
B = @ 7(p™*1), and furthermore End (G) = J, ® End 4(G), where End (@)

denoltizus) the (two-sided) ideal of small endomorphisms. Recall that an en-
domorphism ¢ : G — G is said to be small if given any positive integer e,
there exists a positive integer n such that ¢(p"G)[p°] = 0; see Pierce’s ori-
ginal paper [15] or [4, §46] for further details. Pierce’s original example is a
group of cardinality 2%, but it is possible, using recent techniques based on
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the so-called Shelah Black Box Principle, a powerful combinatorial prinei-
ple, to exhibit such groups of arbitrary large cardinality — see for example
[2]. (It is, of course, necessary to choose the basic subgroup as a “large”
direct sum of standard basic groups of the type B above.) Moreover it is
possible to exhibit “essentially-rigid systems” of such groups i.e. a family of
groups G; (i € I), in which the only homomorphisms from G; — G; (i # j)
are small. In particular it is possible to exhibit a family of 22" non-iso-
morphic groups G; all having a standard basic subgroup B = @ Z(p" ). It

<w
is well known and easy to show that any group G with endor;zlorphism ring

End (G) = J, @ End 4(G) is essentially indecomposable in the sense that in
any direct decomposition G = M @ N, one of M, N is bounded.

We begin by showing that such essentially indecomposable groups obey
the condition of Lemma 5: J(End (G)) = H(G).

Lemma 11, If End(G) = J, @ End ((G), then J(End(G)) = H(G) and
each element of H(G) is locally nilpotent.

Proor. As we have already noted the Jacobson radical is always a
subset of the Pierce radical, so to establish equality it suffices to show the
reverse. Suppose that y = r + ¢ belongs to the Pierce radical, where » € J,,
and ¢ is small. Then there is a positive integer N such that ¢(pY G)[p] = 0.
Since, by assumption, v is strictly height increasing on the socle, the p-adic
integer 7 cannot be a unit, so » = pz. But then w and ¢ agree on G[p]. Thus ¢
is both small and strictly height increasing on the socle. Hence for any
x € Gpl, ¢V () = yN () = 0i.e. yis locally nilpotent on the socle, G[p].
We claim that this forces y to be locally nilpotent on G. Suppose by induction
that the result is true for G[p*] and let & € G[p**1]. Now px € G[p*] and so
wNe(pa) = 0 for some Nj.. But then y/Vt(x) € G[p] and so yN 1 (yNe(x)) = 0
i.e. yNe(x) = 0, where Nj..; = Ni. + N + 1 and so v is locally nilpotent on
G[p"+1] and hence by induction, on G. Thus our claim is established and with
it the second statement of the lemma. But it follows immediately that 1 — y
is an automorphism of G, or equivalently that w € J(End (G)). O

The structure of the quotient End (G)/H(G) is known from [15, Theo-
rem 14.3]: it is a subring with 1, lying between a countable direct sum and
direct product of matrix rings over the Galois field of p elements. When the
basic subgroup is standard, or equivalently when each Ulm invariant of
the group is equal to 1, this takes on a particularly simple form:
End(G)/H(G) =2 R, where 1 ¢ R and S < R < P with S = @Z(p) and P
the corresponding direct product.
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LEmMMA 12. If R is a subring with 1 such that @ 7Z(p) < R <[] Z(p),
then R is clean. Ny R

Proor. Note firstly that if « = (21,22, ...) € R has the property that
each «; is nonzero, then x is a unit in R: it follows immediately from the
Fermat theorem that the inverse is #”~2, an element of R. If &(t) denotes
the p th eyclotomic polynomial, then @(x) € R has the property that each co-
ordinate is either 0 or 1, while each co-ordinate of x — @(x) is nonzero.
Hence the decomposition x = (x — @(x)) + (P(x)) expresses & as the sum of
a unit and an idempotent of R. O

THEOREM 13. If G 1is a separable p-group with End(G) =
=J, ® End (@) and each Ulm invariant fg(n) = 1, then G is clean.

Proor. It follows from Lemmas 11 and 12 that End (G)/J(End (@) is
clean. Put J = J(End (®)). Then if ¢ € End (G), we have that ¢ = 7+ u,
with 7 an idempotent mod J and % a unit mod J. The usual method of lifting
idempotents modulo a nil ideal can be adapted to our situation. We shall find
an element o € J which commutes with 7 so that 7’ = 7 + a(1 — 27) is an
idempotent in End (G). Then, since « € J, we see that = — ' € J will follow.
The requirement that 7’ be an idempotent is equivalent (still assuming o
commutes with 7) to o satisfying the quadratic (1 +4p)x® — (1 + 4p)x +p
where p=n*—ncJ. Solving this quadratic yields the solution
%(1 -1+ 4,0)*1/ 2. Using the binomial expansion to compute this, we are
led to seek « in the form of the formal sum

o . 11 /2 )
(%) cx:ZaipZWhereai:(—l)”1§<;>e’Z, 1<1<o0.
)

Note that the coefficients a; are indeed integers. Now we know from
Lemma 11 that each element of J is locally nilpotent and so if g € G, then
p"(g) = 0 for some integer n. Hence we can define an endomorphism o of G
by the power series (%), this is then a well-defined element of End (G). Also,
since p commutes with 7, o commutes with = as well. Moreover, since the
Jacobson radical coincides with the Pierce radical in this situation, to show
that o € J, it will suffice to show that « is strictly height increasing on the
socle G[p]. This however is immediate since the power series defining o has
no constant term and p is strictly height increasing.

We now have that g =n+u=7+n—7'+u=7n"4+u+p with 7’ an
idempotent in End (@), p € J and » a unit mod J. But then it follows from
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standard properties of the Jacobson radical that «' = u + p is also a unit in
End (G). Thus ¢ = 7' + % with 7’ an idempotent and %' a unit in End (G).
O

Note that the p-group described in the theorem above is not torsion-
complete.
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