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Proof of the Existence of Certain Triples of Polynomials.
(after a question of L. Vaserstein and E. Wheland)

UMBERTO ZANNIER (¥)

ABSTRACT - Let a, b, ¢ be complex coprime polynomials with a + b + ¢ = 0 and de-
note by M > 0 their maximum degree and by v(a), v(b), v(c) the numbers of their
respective distinet roots. These integer data are relevant in the context of the
Stothers-Mason “abc-theorem for function fields”; for instance such theorem
implies that v(a) + v(b) 4+ v(c) > M. Actually, L. Vaserstein and E. Wheland
[VW] have explicitly raised the question to describe all the possibilities for the
data. Here we show that essentially there is no restriction other than the above
inequality. Our method relies on Riemann Existence Theorem, applied to con-
struct certain covers of the projective line with suitable ramification conditions.
Though this method works only over C, we shall point out that the result remains
true in positive characteristic p > M.

1. Introduction.

The present paper has been inspired by a question raised in [VW],
which we now explain using a notation similar to that paper.

Let F' be an algebraically closed field of characteristic 0 and let
a,b,c € F[t] be (pairwise) coprime polynomials, not all constant and such
thata+b+c=0.

Let us put M := max(dega,degb,degc) > 0 and let us denote by [
(resp. by £, k) the number of distinct roots of a (resp. of b, ¢). As in [VW], let
us also assume that s := dega < M (). Note that, in viewof a + b + ¢ = 0,
this implies degb = degc = M.

(*) Indirizzo dell’A.: Scuola Normale Superiore, Piazza dei Cavalieri, 7, 56126
Pisa - Italy.
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() It turns out that this assumption is really a normalization, essentially
irrelevant for our purposes. In fact, it just means that “co is a zero of a/c”. Now,
in any case we may perform a projective linear transformation ¢ +— (ot + f)/(yt + J)
to map a finite zero of a/c to co. This device allows one to reformulate in complete
generality (i.e. without the restriction s < M) our existence result proved below.
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In this setting, we have some obvious restrictions on these quantities,
namely:

1) 0<i<s<M, 0<h k<M,

which just say that the number of roots cannot exceed the degree. Observe
that another restriction is that

) l=0&5s=0.

These inequalities represent constraints in order that the 5-tuple
(s,M,l, h, k) may come from actual polynomials a, b, c.

A further, subtler, restriction comes from the well-known Stothers-
Mason “abc-theorem for polynomials” (see e.g. [L] or [VW] or [Z1]) which
in this context reads:

3) l+h+k>M+1.

Now, in the paper [VW] (see p. 3) the authors explicitly raise the question of
describing all the possibilities for these quantities s, M, [, h, k, in both cases
of zero and positive characteristic. (They also add that “This seems to be a
difficult problem, even when char(¥) = 0.”)

The object of this paper is to show that (1), (2), (3) represent the sole
restrictions in characteristic 0, when F' is algebraically closed. An argu-
ment involving good reduction shows that the same is true in characteristic
> M. More precisely, we shall prove the following

THEOREM. Let F be an algebraically closed field of characteristic 0
and let s, M, 1, h,k be integers satisfying (1), (2), (3) above. Then there exist
coprime polynomials a, b, c € F[t] with a + b + ¢ = 0, having respectively
degrees s, M,M and I, h, k distinct roots.

The same existence conclusion is true if char(F) > M.

Our method goes back to our papers [Z1], [Z2]: the sought polynomials
correspond to a cover P; — P; of the projective line with certain condi-
tions on the ramifications above 0,1, co. By Riemann Existence Theorem
the desired cover exists if and only if suitable permutations on M letters
may be found. This translates the problem into a purely combinatorial
condition, which we shall explore.

The result in positive characteristic will follow just by observing “good
reduction” for the corresponding covers over Q.

Acknowledgments. 1 wish to thank Prof. L. Vaserstein for drawing my
attention to the paper [VW].
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2. Two lemmas on permutations.

We start by proving some results about permutations, which we shall
then relate with the main problem.

In the sequel we shall denote by Sj; the permutation group on
{1,2,...,M}. We shall denote permutations by greek letters, and let them
act on the right of integers, so for o, f € Sy the product «f will mean f o «.
We shall say that a permutation o € Sy has type (rq,...,7) if a is the
product of disjoint cycles of lengths 7y,...,7; (with ; + ... +7; = M). Fi-
nally, we shall put v(x) :=j.

Welet s, M,l, h,k € N be integers satisfying (1), (2), (3). We write (3) in
the form

4) l+h+k=M+1-+d, d>0.

We also suppose, as we may, & > k > 0 and we introduce a little further
notation. We let n := M — [+ 1 > 2 and we define the integer m so that
2m > n and so that the set {m,n —m} equals {M —s,s — [+ 1}. Note that
0<m<n (Wehave m =max(M —s,s —1+1).)

If I =0we have s =0 (by 2)) and m =M, n =M + 1.

LemMmA 1. Suppose d = 0. Then there exist permutations o, € Sy
such that:

() o has type (m,n —m,1,...,1), sov(x) =1+ 1.
(i) oB) =h, v(apf) = k.

(iii) The group generated by o, [ in Sy is transitive.

REMARK. Here and in the sequel we tacitly mean that if m = M (i.e. if
s =1=0), ais an M-cycle and the n — m as well as the 1’s do not appear in
its type. In other words, we forget any permutation which moves some-
thing > M.

Proor. Weseta:=(1,...,m)(m +1,...,n),soindeed o has the stated
type; namely, its disjoint cycles have lengths m,n — m and 1; in turn, this
implies that v(0) =24+ M —n) =2+ M - M -1+ 1)=1+1.

Note that h+ k=M —1+1=mn (by (4) and d = 0). Since k < h we
have k < n/2 < m.

Suppose first that £k <m —1 and that m +1 <n. Now we set
=, ...,Dimm+1)n,..., M). By the supposed inequalities, this
formula gives the cycle decomposition of [ and it follows that
f)=1+m—-1-k+1+m-m—-2)+1=n—-k=nh.
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Also, we have
ofp=Q,....m)k,...,Dm+1,... n)m,m+ n,... M) =
=k,.... m(m+1,.... n)m,m~+1)n,... M) =
=W),....m—1m+1,....n,m)n,...,M)

(omitting “k,...,)” in case k =m — 1). In turn, this equals (k,...,m —1,
m+1,...n—1,n+1,.... M n).

Hence in this case we find that v(ef) = (k- 1)+ 1 =k.

Also, the cycle decompositions that we have found show that no proper
nonempty subset of {1,..., M} is left invariant by the cycles of both « and
B, so a, f generate a transitive subgroup.

The “extreme” cases k = m and/or m + 1 = n are dealt with similarly.
If both equalities hold, then k = 1,7 = 2, since k < n/2. Hence M = [ + 1.
Now we may take o to be the identity and f to be an M-cycle.

Ifk = mandm + 1 < nwe define f with the same formulae, and the only
difference with the above is that now this need not express the disjoint cycle
decomposition. If k¥ = m we have (k,...,D)(m,m +1) = (m,...,1,m+ 1);
now n>m+1, and again we have v(f)=1+n—-1-m—-1)+1=
=n—-—m=n—k=nh.

If n =m + 1 and k < m we again define

B=k, ..., Dm,m+Dm+1,.... M=k, ..., Don,m+2,....Mm+1),

whence v(f) =1+ (m —k—1)+1=m+1—k=mn—k=h, as required.
(As remarked above, we forget permutations moving numbers > M.)
This completes the proof. QED

LEmMA 2. For arbitrary d as in (), there exist permutations o, f and
transpositions ty, ..., tq in Sy such that:

i) o has type (m,n —m,1,...,1), sov(e) =1+ 1.
@) v(B) =h, v(aft; - -tg) = k.
(iii) o, p,t1,...,tq generate a transitive subgroup of Sy.

Proor. We argue by induction on d > 0. The case d = 0 is the content
of Lemma 1, so we assume d > 1 and the result true up to d — 1.

Suppose first that # > k + 1. Then 2* := h — 1 > k and we may apply
the inductive hypothesis with the same data, except that we replace h with
h* and d by d — 1.

Let o*, %, ¢, ..., t;_, be permutations as in the conclusion. In particular
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p* is a product of &* disjoint cycles. Since 2* < h < M one of the cycles is
has length ¢ > 1, and after renumbering we may assume it is (1,...,q).

We have (1,...,¢)1,2)=1)2,...,q) so °(1,2) is a product of
h* 4+ 1 = h disjoint cycles, i.e., v(f*(1,2)) = h.

We then set o:=0ao* f:=1,2), t; =(1,2) and, for i =2,...,d,
ti :==t! ;. Since afity - - - tq = "'t} - - - t;_,, plainly these new permutations
satify the sought conclusion (note that they generate a group containing
o, Bt ).

Suppose now that & = k. Since 2k =h +k =n+d > 3 we have k > 2.
We write k = k* + 1 and apply the inductive hypothesis with the same
data, but this time replacing k with k* and d with d — 1.

Again, let o, f*, t;,...,t;_, be permutations as in the corresponding
conclusion. So, o*f*t;---t;_; is a product of k* disjoint cycles. Again,
k* < M, so one of the cycles will have length ¢ > 1 and as before we denote
itwith (1,...,q). Then o*f*t; - - - ¢} ,(1,2) is the product of k disjoint cycles.
It suffices then to define o :=o*, f:=f", t; :=t; for i =1,...,d — 1 and
finally t; := (1, 2), to obtain the sought conclusion.

This completes the proof. QED

3. Proof of Theorem.

We let s, M, [, h,k be integers satisfying (1), (2), (3) above and we pro-
ceed to prove the existence of coprime polynomials a, b, ¢ € C[t] such that

(5) dega=s, degb=degc=M, vla)=1 vb)=h vc)=k,

where we have denoted by v(q) the number of distinet roots of a polynomial q.
We define d by (4) and take permutations «, 8,11, ... ,t; as in Lemma 2.
We also put y:= afit; ---t;. We also choose distinct points Q1,...,Qq €
e P1\{0,1,00}.
By Riemann Existence Theorem (see e.g. [Vo] or [Z1,2]) there exist a
compact Riemann Surface & and a non-constant holomorphic map
f: 8§ — Py, unbranched outside {0,1,00, @y, ..., Qq} and such that:

(i) The map f has degree M.

(ii) The ramification above 0 has cycle structure as o, above 1 as f3, above
oo as y, above Q; as t;. (We mean that the ramification indices equal the
cycle lengths.)

In fact, we may prescribe that the monodromy above the branch points
is given respectively by «, 8,771, 11, ..., 14, after we have chosen suitable
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loops going around the points 0,1, 00, Q1, . . ., Q4 (based at some other point
Q € P,) to define the monodromy by lifting these loops to S. The condition
that afit; - - - gy~ ! is the identity corresponds to the only relation of these
loops in 7;(P1 \ {0,1,00,Q1,...,Qq}). (See [Vo] for a detailed modern ex-
position of all of this together with the proofs.)

We may compute the genus g of S with the Riemann-Hurwitz formula.
The ramification contribution above 0 is M — v(x), above 1 is M — v(f),
above co is M — u(y) and above ); is 1 (since ¢; is a transposition).

Therefore the formula reads

20 -2=-2M+WM—-1-D)+WM-h)+M—-k)+d=
=M-1-1-h—k+d=-2

where we have used (4) for the last equality; hence g = 0. Therefore we may
assume that S is P; and that f is a rational function in C().

Since the ramification indices above 0 are given by the cycle-lengths of
the permutation o, it follows that f has a zero of order M — s > 0. After an
automorphism of P; we may then assume that this zero is oc.

Write then f = —a/c where a, ¢ are coprime polynomials in C[t]. Since
oo is a zero of f of multiplicity M — s and since degf = M, we have
dega = s and degc = M. The number of distinct roots of a is the number
of finite zeros of f, so is v(x) — 1 = [. Similarly, the number of zeros of ¢ is
the number of poles of f, which in turn is v(y) = k.

Put b = —a — ¢, s0f — 1 = b/c. Now we see that the number of zeros of
b is the number of zeros of f — 1, i.e. is v(f) = h, as required.

This achieves our construction and proves the theorem for F = C.
However the general case of algebraically closed F' of characteristic zero
follows from the complex case by a standard argument. The coefficients
and roots of the involved polynomials generate a certain finitely generated
field over @. This is the function field of a certain algebraic variety over @
(possibly a point). By the Nullstellensatz we may take a point of this variety
such that under specialization to this point the distinet roots of the poly-
nomials remain distinct and the leading coefficients do not vanish. The
resulting polynomials have algebraic coefficients and still the same in-
tegers s, M, [, h,k attached to them. Since F' contains the algebraic num-
bers we are done.

To conclude the proof we deal with the case char(#') =: p > M. To start
with we take the above points @1, . . ., Q¢ in a number field K, actually lying
in some Discrete Valuation Ring O of K, with maximal ideal P above p. We
may also assume that the reductions of the @; at P remain distinct and
distinet from 0,1, co.
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Now, by the above method we may realize the construction over @, and
by enlarging K and O we may assume that a,b,c have their roots and
coefficients in K. As in the above proof, the polynomials a, b, c define a
cover of Py with certain ramification conditions at 0,1, 00, @y, ..., Qqg, and
unramified outside these points. By a result of S. Beckmann [B] (which
traces back to Fulton and Grothendieck) the cover has good reduction
modulo P, provided p does not divide the order of the monodromy group.
Since p > M this is certainly the case.

It suffices then to take a model of the cover having good reduction; its
reduction modulo P gives polynomials with the required properties over
the residue field, which is a finite extension of F),.

This concludes the proof of the Theorem.

4. Final remarks.

We observe that the proof gives the more precise conclusion that the
polynomial @ may be taken with at most one multiple root.

A more precise requirement would be to find simple necessary and
sufficient existence conditions for a, b, ¢, prescribing not just the degrees
and numbers of roots but also the respective multiplicities. This has been
carried out in special cases in [Z2], for covers unbranched outside 0, 1, cc.
(See also [Z1] for other, simpler, examples in positive genus.)

The problem appears very difficult in positive (small) characteristic p.
Certainly the conditions (1), (2), (3) are not themselves always sufficient for
existence; for instance it may be shown that (3) cannot hold with equality if
M — s is a multiple of p. In [Z3] some sufficient conditions for good re-
duction appear which go beyond [B], but certainly not sufficiently general
to cover the wider natural questions which arise here.

We have left aside all questions of rationality, when F is not assumed to
be algebraically closed. The methods of this paper give a bound for the
degree of a number field over which the construction can be realized (see
also the paper [Z2]). However it seems unlikely that this leads to precise
informations on the minimal field of definition.
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