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Factorization of Mappings and General Existence
Theorems in Locally Convex Spaces.

TuLLIO VALENT (*)

0. Introduction.

Here, we need a notion of transpose for an arbitrary map u: X — Y,
with X, Y two sets. The (real) transpose of u will be the (linear) map

by RY - RX

defined by putting ‘u(f) =f ou Vf € RY.
All linear spaces considered in this paper are over the real field RR.
This work starts from a simple algebraic remark: given two maps
uy : X — Xq, ug : X — Xp, with X7, Xp linear spaces and X a set, the in-
clusion "y (X%) C tus(X%), where X7 and X denote the duals of X; and X,
implies that there is a linear map ¢ : Xo — X7 such that ;1 = pous.
Then we suppose that X, X» are Hausdorff locally convex (topological,
linear) spaces and consider inclusions of the type

0.1) “un(X7) C "up(F)

where F' is some linear subspace of Lip (u2(X), R) (= the space of Lip-
shitzian maps from u»(X) into R) containing the dual X}, of X5 .

Evidently, (in view of the Hahan-Banach theorem) a first consequence
of the inclusion (0.1) is that there is a unique map ¢ : u2(X) — Xj such that
U1 = @ oug. In the case F' = X, we prove that (0.1) implies that ¢ has a
weakly continuous, linear extension to the subspace (u2(X)) of X» gener-
ated by u2(X); this extension of ¢ is econtinuous if (u2(X)) is a Mackey space
(Theorem 3.1). If F is the space of all bounded, linear forms on (u(X)),
then condition (0.1) assures that ¢ has a bounded, linear extension to
(u2(X)) (Theorem 3.7), while if (0.1) holds with F' = Lip (ua(X), R) then ¢ is
Lipschitzian (Theorem 4.1).

(*) Indirizzo dell’A.: Dipartimento di Matematica Pura ed Applicata dell’Uni-
versita di Padova, Via Trieste 63 - 35121, Padova.
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Successively, we replace (0.1) with a (weaker) inclusion of the type
0.2) "ug(H®) C tus(F),

where H is a fixed linear subspace of X, and H° is the polar of H, (i.e.
HY = {«} e X] :2{(h) =0Vh € H}). An important choice of H is
H = (u1(Ker up)) (see Remark 3.6). Sometimes, in concrete situations, it
occurs that H is the kernel of a continuous, linear map defined in X; (see
section 6).

Stronger properties of the function ¢ can be deduced from the inclu-
sions (0.1) and (0.2) when X; and X, are Fréchet spaces. (See Corollaries
5.2, 5.3, Theorem 6.1, and Corollaries 6.2, 6.3). The well-known “Theorem
on the surjections of Fréchet spaces”, together with its generalizations, are
contained, as particular cases, in Theorems 3.5 and 6.1. Corollary 5.5
provides a useful necessary and sufficient condition for a Lipschitzian map
between Fréchet spaces to be bijective with inverse which is Lipschitzian.

We observe that, in the case when X is a linear space and the maps u,
ug are linear, Corollary 3.4 extends to the locally convex spaces an im-
portant theorem which was proved by G. Fichera for Banach spaces (see G.
Fichera [1] and [2]). We also remark that Corollary 6.2 was obtained, in a
different way, by G. Zampieri, who used such result in proving that
semiglobal C*-solvability in an open subset of R" for overdeterminated
systems Pu = f, Qu = 0 with constant coefficients and @ elliptic, implies
the global C*-solvability. (See G. Zampieri [5] and [6]).

1. An algebraic remark.

REMARK 1.1. Let X be a set, let X1, Xo be linear spaces, and let
uy: X —Xq, ug: X —Xo be two maps. The following statements are
equivalent:

(@) 'ur(X7) C tup(X3),
(b*) there is a unique linear map ¢:(ue(X)) —X; such that
Uy = ¢ o Uz,

where X’ and X5 are the duals of X1 and Xz, and (u2(X)) denotes the linear
subspace of Xo generated by uz(X).

PRrROOF. Property (a*) says that for each 27 € X7 thereis 25 € X% such
that a3 ou; = 3 o ug. Then it is evident that (b*)= (a*), because if
¢ : (u2(X)) — X; is a linear map such that u; = ¢ o ug, and x3 is a linear
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extension of &7 o ¢ to Xz, then a7 o u; = x3 o uz. Now, let us prove that
(a*) = (b*). Obviously, if (a*) holds then

(1.1) uz(x) = u2(8), @, ¢ € X = uy(x) = 01(8),

and thus we can consider the map ao(u) — u; (x), from uz(X) into X; . By (a*)
this map has a linear extension to (up(X)); this is the (linear) map
¢ : (u2(X)) — X; defined by putting

12 ¢ (Z ﬂjuz(aqj)> => Jym(),  (with 4; € R and ; € X).
J J

This definition of ¢ has a sense, from (a*) it follows that if

A3) > husw) = mus(&),  (with g € R and & € X),
Jj k

then

(1.4) > hun() = pur(&).
j k

In order to prove this observe that, in view of (a*), for each 2} € X7 there is
x5 € X% such that 7 (u; (®)) = x5(uz(x)) Vo € X: in particular

{ o (@) = wuz(x)
2 (&) = w5 (ua(Er))

for all j and k, which implies
7 (S dyina) = a5 (T yuatay)
J J
21 (3 (@) = o8 (3 pea(E)).
T &
Then, if (1.3) holds, then
7 (Z Aj Ml(ﬁﬁj)) - ( Z My, ul(fk)) =0
j ke
for all % € X7%, and so (1.4) holds. O

Observe that, if X is a linear space and the mappings w1 and ug are
linear, then (b*) is equivalent to

Ker us C Ker u;.
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2. Testing with continuous linear forms.

For any locally convex (topological, linear) space X the usual notation
will be used: in particular ¢(X, X") and (X, X") will denote the weak and the
Mackey topologies on X with respect to the natural duality between X and
its dual X’. X is called a Mackey space if its topology coincides with 7(X, X”).
X* will denote the set of all linear forms on X, while X* will denote the set
of those linear forms on X that are bounded; so we have X' C X* C X*.

The following proposition is well-known (see, for instance, A. Gro-
thendieck [3, 2.16], or H. Jarchow [7, 8.6]).

ProOPOSITION 2.1.  Let X, Y be Hausdorff locally convex spaces. For any
linear mapping ¢ : X — Y the following three statements are equivalent:

(I) for each y' € Y' the map y' o ¢ is continuous [i.e. 'p(Y") € X'];
D) ¢ is weakly continuous [i.e. ¢ is continuous for the topologies
o X, X)on X and oY, Y') on Y7;
(ITI) ¢ s Machey continuous [i.e. ¢ is continuous for the topologies
X, XYon X and 1Y, Y")on Y.

It is also well-known that the bounded subsets of a Hausdorff locally
convex space are the same for all locally convex Hausdorff topologies on X
which are compatible with the natural duality between X and X'. So, the
following proposition holds.

PROPOSITION 2.2. A subset B of a Hausdorff locally convex space X is
bounded if and only if every element =’ of X' is bounded on B (namely, if
and only if B is bounded for the topology o(X, X")).

COROLLARY 2.3. Let X, Y be locally convex spaces, with Y a Hausdorff
space. A mapping f: X — Y is bounded [i.e., f maps each bounded subset of
X to a bounded subset of Y] if and only if foreachy’ € Y', y' o f is bounded.

When X is a Hausdorff locally convex space, Y is a topological linear
space and U is a subset of X, we say that a map f: U — Y is Lipschitzian
(respectively, locally Lipschitzian) if for each absolutely convex, bounded
subset B of X the set {(f(x1) — f(x2))/||x1 — %2||5: %1,02 € UNXp, 21 # 2o}
is bounded in Y (respectively, locally bounded in Y'). Here Xz denotes the
linear subspace of X spanned by B, equipped with the norm || - ||z defined
by |||z = inf {4 > 0: € AB}. The set of all Lipschitzian maps from U into
Y will be denoted by Lip(U,Y).
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Let us emphasize the following consequence of Proposition 2.2.

PrOPOSITION 2.4.  Let X, Y be Hausdorff locally convex spaces, and let
U be a subset of X. A map f: U—Y s Lipschitzian if and only if for each
y' €Y' the (scalar) map y' o f: U— R is Lipschitzian.

Proor. If f: X —Y is Lipschitzian and y’ € Y’ then, obviously, the
composite y’of is Lipschitzian. Conversely, suppose that for each
y' oY’ the map y’ of is Lipschitzian; then for each y' € Y’ and each
absolutely convex, bounded subset B of X there is a number ¢ > 0 such
that |y'(f(x1) —f@2))|/||x1 — a2l < ¢ Var, a2 € UNXp with ¥ # s,
namely y’ is bounded on the subset {f(x1)—f(x2)/|%1 — x2l/5:%1,
xs € UNXp,x1 # a2} of Y. Then, in view of Proposition 2.2, such
subset of Y is bounded, thus f is Lipschitzian. O

3. Surjectivity criteria.

THEOREM 3.1. Let X be a set, let X1, Xo be Hausdorff locally convex
spaces, and let ui: X — X1, ug: X — Xz be two maps. The following state-
ments are equivalent:

(@) tuy (X)) C lup(X}), (ie. Vi € X; Juh € X}, such that ) ouy =
= Xy 0 Up);

(') there is a unique weakly continuous, linear map ¢: (uz(X)) — X
such that uy = ¢ o us.

Moreover, if the subspace (u2(X)) of Xa, spanned by u2(X), is a Mackey
space then the properties (o) and (b') are equivalent to

(¢') there is a unique continuous, linear map ¢: (ux(X)) — X; such
that UL = @PoUy.

Proor. (') = (&) because if ¢: (ua(X)) — X is a weakly continuous,
linear map such thath u; = ¢ o uy, then for each x| € V] then linear form
x} o g on (up(X)) is continuous, and hence (by the Hahn-Banach theorem) it
has a continuous, linear extension &, on X, which evidently is related to «
by the equality «} o u; = &}, o us. Let us prove that (a') = (b'). Proceeding
as in the proof of Remark 1.1 and using the Hahn-Banach theorem one
shows that if (a’) holds then there is a unique linear map ¢: (u2(X) — X; such
that u; = ¢ o us. Note that from (') it follows also that for each &} € X7 the
linear form & o ¢ on (u2(X)) is the restriction to (u2(X)) of some element x}
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of X7, and so it is continuous; thus we have
2y o € (ue(X)) Vo € X,

which means, in view of Proposition 2.1, that ¢ is weakly continuous. It
remains to prove that, if (u2(X)) is a Mackey space, then (b') is equivalent to
(¢'). To do this it suffices to observe that if ¢ is continuous it is also weakly
continuous, and that, in view of Proposition 2.1, ¢ is weakly continuous if and
only if it is Mackey continuous. O

REMARK 3.2. Thefactthat Xz is a Mackey space does not imply that the
subspace (uz(X)) of Xz is a Mackey space. However, the subspace (uz2(X)) of
Xz 1s a Mackey space provided one of the following conditions is satisfied:

(1) X5 1s metrizable;
(i) Xz is barrelled, and (ux(X)) is a countable codimension linear
subspace of Xo;
(i) Xz is bornological, and (u(X)) is a finite codimension linear
subspace of Xs.

Proor. If X, is metrizable then (u2(X)) is a Mackey space, because any
metrizable locally convex space is a Mackey space. If (ii) holds then (u2(X))
is a Mackey space, because a countable codimension subspace of a barreled
space is barrelled (see J. C. Ferrando - M. Lopez Pellicer - L. M. Sanchez
Rui [8, Prop. 1.1.15]), and so it is a Mackey space. Finally, (iii) implies that
(u2(X)) is bornological (see H. Jarchow [7, Theorem 13.5.2]), and hence it is
a Mackey space. O

Taking, in Theorem 3.1, X C X, and » = identity map, we obtain the
following

COROLLARY 3.3 (Continuous, linear extension). Let Xi, Xo be Haus-
dorff locally convex spaces, and let X be a subset of Xo such that the
subspace (X) of Xy generated by X is a Mackey space. A map u: X — X,
has a continuous, linear extension to (X) if and only if for each | € X
the (scalar) map x| o u has a continuous, linear extension to (X).

Inthe case when Xis alinear space and u1, ug are linear, Theorem 3.1 yields

COROLLARY 3.4 (The linear case). Let X be a linear space, let X1, X5 be
Hausdorfflocally convex spaces, let uy: X — X1, ug: X — Xo be linear maps,
and let P be a family of seminorms on X defining the topology of X1 and P,
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a filtering family of seminorms on X, defining the topology of Xs. If the
subspace (uy(X)) of X5 s a Mackey space, then (') is satisfied if and only if

3.1) for each p1 € Py there is ps € P2 and a number ¢ > 0 such that
p1(ui(x) < cpa(uz(x)) Vo € X.

Proor. It suffices to observe that, when X is a linear space and 1, us
are linear, the property (¢’) can be expressed in the form

Ker ug C Ker uy, and the map uz(x)—ui(x), x € X, from the
subspace uz(X) of Xz into X, is continuous,

namely, in the from (3.1). O

We recall that the statement of Corollary 3.4 was proved by Valent [4].
It generalizes to the case of locally convex spaces a theorem proved by G.
Fichera for Banach spaces (see G. Fichera [1], [2]). Note also that no
completeness hypothesis on X; or X, is required in Corollary 3.3. (The
proof by Fichera needs the completeness of X; and X», because it makes
use of the closed graph theorem).

In the following theorem condition (a’) is replaced by the (weaker)
condition (ag).

THEOREM 3.5. Let X, X1, Xo, U1, ug be as in the statement of Theorem
3.1, and let H be a linear subspace of X1. The following statements are
equivalent

(ag) tui(H®) Clug(Xy), (ie., for each x| € X| such that xj(h) =0
Vh € H there is xy € X}, such that &} o uy = x5 o uz );

() there is a unique weakly continuous linear map ¢y : (u2(X)) —
— X /17 such that mg ouy = gy oug, where ny denotes the
canonical projection of X1 onto X, /H.

Moreover, if the subspace (u2(X)) of Xz is a Mackey space, then (ay) and
(br) are equivalent to

(cyy) there is a unique continuous linear map gy: (us(X)) — X1 /H
such that my o Uy = g o ug.

Proor. It suffices to apply Thorem 3.1 with 7y o %; instead of %, and
observe that

Yy o un (X1 /H)') = 'uy (H?)
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REMARK 3.6. A remarkable choice of H in the statement of Theorem
3.5 1s

H = (u(Ker uyp)).
Forthis choice of H the property (am) becomes: for each xy € X| satisfying
3.2 uy(Ker ug) C Kerx)

there is xy € Xy such that & o w1 = x5 o ug. Note that (3.2) is a necessary
condition on ) € X{ in order (a') to be satisfied.

THEOREM 3.7. Let X, X1, X2, u1, ug be as in the statement of Theorem
3.1. The following statements are equivalent:
(@) Tuy(X]) C 'ua((ue(X)));
(b*) there is a unique bounded, linear map ¢: (ux(X)) — X1 such that
Uy = @ouz.

Proor. Obviously (b*) implies (a*). In order to prove that (a*) implies
(b*) one can essentially proceed as in the proof of Remark 1.1 in showing
that if (¢*) holds then there is a unique linear map ¢: (u2(X)) — X such that
u1 = @ o ug . Then it suffices to observe that, by Corollary 2.3, (a*) implies
that the linear map ¢ is bounded. O

REMARK 3.8. From Theorem 3.7 a bounded, linear extension result
like Corollary 3.3 can be deduced.

4. Other surjectivity criteria. The Lipschitzian case.

THEOREM 4.1. Let X, X1, X2, u1, ug be as in the statement of Theorem
3.1. The following statements are equivalent
(az) "ur(X}) Clup(Lip (up(X), R));
(br,) there is a unique map f € Lip (ue(X), X1) such that u1 = f o us.

Proor. (b) = (az) because X| C Lip (X, R) and the composed of two
Lipschitzian map is a Lipschitzian map. In order to prove that (az,) = (bz)
we first observe that (by the Hahn-Banach theorem) (a;,) implies that (1.1)
holds and hence one can define a map f: u2(X) — X7 by putting

fus@) =u@)  VeelX;
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moreover, from (ay,) it follows that ] o f € Lip (u2(X), R) V| € X7, and by
Proposition 2.4 this implies that fis Lipschitzian. |

A consequence of Theorem 4.1 is the following

COROLLARY 4.2. Let X, Xy, X, u1, ugz be as in the statement of
Theorem 3.1, and let P be a family of seminorms on Xi defining its
topology. Then the condition (ap) in the statement of Theorem 4.1 is
satisfied if and only if
4.1) for each absolutely convex, bounded subset B of Xz and eachp € P

there is a number cg , > 0 such that

pur(@) — u1(d) < cp pllus@) —u2d|p Vo, & € uy (Xz ),

where X p ts the linear subspace of Xp spanned by B, equipped
with the norm || - || defined by ||x||z = inf {1 > 0: x € AB}.

Proor. A subset of X; is bounded if and only if every element of P is
bounded on it; then it is easy to see that the condition (b;,) in the statement
of Theorem 4.1 is equivalent to (4.1). O

A result of type Theorem 3.5 for Lipschitzian maps is the following

THEOREM 4.3. Let X, X1, Xo, u1, ug, H, ny be as in the statement of
Theorem 3.5. The following statements are equivalent:
(ag) fur(H) C uz(Lip (u2(X), R)); -~
(by) there is a unique Lipschitzian map fy: us(X) — X1 /H such that
T OUL = f o U .

Theorem 4.3 follows from Theorem 4.1 in the same way as Theorem 3.5
follows from Theorem 3.1.

REMARK 4.4. The statements of Theorems 4.1 and 4.3 hold also when
one replace Lipschitzian maps with locally Lipschitzian maps.

5. Some particularizations of Theorems 3.5 and 4.1.

Let X, Y be Hausdorff locally convex spaces, and let u: X —Y be a
weakly continuous linear map. So Ker u is weakly closed, namely closed in
X. (Recall that the closure of a convex subset of X is the same for all
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Hausdorff locally convex topologies on X which are compatible with the
natural duality between X and X’).

Let us denote by u: X/Keru — w(X) C Y the natural bijection (asso-
ciated with u) such that « = n o % where n is the projection of X onto
X /Keru. Let ¢p:u(X) — X /Ker u be the inverse of .

Clearly, u is open if and only if ¢ is continuous; furthermore, » is weakly
open if and only if ¢ is weakly continuous. From Theorem 3.5 (applied to
the case when H = (Keru), u is the identity map id: X — X and ug = ) it
follows that ¢ is weakly continuous if and only if *id((id (Ker w)?) C bu(Y"),
ie.,

(5.1) (Keru)® C 'u(Y'),

where (Keru)’:= {o' € X": Keru C Ker '} is the polar of Ker u. As
(Ker u)° coincides with the weak closure of ‘u(Y’) in X’ , we get that u is
weakly open if and only if ‘u(Y”) is weakly closed in X’. From Theorem 3.5 it
also follows that, if the subspace u(X) of Y is a Mackey space, then ¢ is
continuous if and only if (5.1) is satisfied. Thus the following result holds.

COROLLARY 5.1. A weakly continuous linear map u : X — Y, with X,
Y Hausdorff locally convex spaces, is weakly open if and only if ‘u(Y") is
weakly closed in X'. If the subspace w(X) of Y is a Mackey space, then u is
open if and only if 'u(Y") is weakly closed in X'.

If X, Y are Fréchet spaces and u is continuous, then (in view of the open
mapping theorem) u is open if and only if «(X) is complete (namely closed)
in Y. Therefore a consequence of Corollary 5.1 is

COROLLARY 5.2. If X, Y are Fréchet spaces and u:X —Y 1is a con-
tinuous linear map, then w(X) is closed in Y if and only if 'w(Y") is weakly
closed in X'.

It is well-known that #(X) is dense in Y if and only if the mapping
‘u: Y' — X" is one-to-one. Then Corollary 5.2 yields immediately the following
result which is known as the “theorem on the surjections of Fréchet spaces”.

COROLLARY 53. If X, Y are Fréchet spaces, and u:X —Y is a
continuous linear map, then u is onto if and only if ‘u is one-to-one
and 'u(Y") is weakly closed in X'.

Let us now consider a particularization of Theorem 4.1 (concerning the
Lipschitzian case).
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COROLLARY 5.4. Let X, Y be Hausdorff locally convex spaces, and U a
subset of X. For any map u: X — Y the following statements are equivalent:

(G) foreach &' € X' there is I € Lip (uw(U), R) such that ' =l o u;
(i) uis one-to-one and its left inverseu': w(U) — U is Lipschitzian.

This corollary can be obtained by applying Theorem 4.1 to the case
when X; = X, Xo =Y, u; = the identity map id: U — X, and us = u.

Let us now denote by Lipy(X,Y) [respectively Lipo(Y,X), and
Lipo(Y,R)] the set of elements f of Lip(X,Y) [respectively Lip (Y,X),
and Lip (Y, R)] such that f(0) = 0.

COROLLARY 5.5. Let u € Lipo(X,Y), with X, Y Hausdorff locally
convex spaces, and suppose that X is complete. The following statements
are equivalent:

(9o for each ' € X' there is a unique | € Lipg(Y,R) such that
' =1lou;
(J)o u 1s bijective, and u~' € Lipy(Y,X).

Proor. Evidently (jj)o = (j). Suppose that (j)y holds. Then, by
Corollary 5.4, u is one-to-one and its left inverse u': u(X)— X is Lip-
schitzian. It follows that %(X) is complete and so it is closed in Y. It remains
to prove that w(X) is dense in Y. This is true, because if %' € Y’ and
y ou = 0then i’ = 0in view of (j)y, and so «(X) is dense in Y by the Hahn-
Banach theorem. O

6. Other consequences of Theorem 3.5.

In this section we emphasize some consequences of Theorem 3.5 in the
case when the subspace H of X; is the kernel of a continuous, linear map
v1: X7 — Y, with Y a Hausdorff locally convex space. Let us denote by
t1(Y") the closure of ‘vy(Y’) in (X}, o(X], X1)).

Since

6.1) 1 (Y') = (Ker vy)°,

from Theorem 3.5 it follows that, if the subspace (u2(X)) of X, is a Mackey
space, then the inclusion

(ap) ‘uq(Co1(Y")) C lua(X})

is equivalent to the property
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(cy,) there is a unique continuos, linear map ¢: (u2(X)) — X1 /Ker v,
such that m ouy = @ o ug, where n; denotes the canonical pro-
jection of X1 onto X1/Ker v;.

Observe that, if v is one-to-one, then ‘v;(Y’) = X{; thus in this case the
conditions (a,,) and (c,,) coincide with (a') and (¢’) respectively, and so they
does not involve the map v;.

THEOREM 6.1. Let X1, X5, Y be Hausdorff locally convex spaces, let X
be a set, let ui: X — X1 and ug: X — Xz be two maps, and let vi: X1 — Y be a
continuous, linear map. If X1 and Xy are metrizable and complete, then
(an,) s satisfied if and only if

(dy,) there is a continuous linear map ve: (u2(X)) — v1(X1) such that
VioUL =V20Up.

Proor. Let X; and X, be metrizable and complete. Since the subspace
(u2(X)) of X, is metrizable and hence a Mackey space, from Theorem 6.2 it
follows (as we have remarked above) that (a,,) is equivalent to (c,,). Then, in
order to prove the equivalence of (a,,) and (d,,), we shall show that (c,,) is
equivalent to (d,,). We have (c,,) = (d,,) because (under our hypotheses)
Xi/Ker v, is complete, and hence the continuous linear map
@: (ua(X)) — X3 /Ker v1 can be extended to a continuous linear map from
(u2(X)) into X7 /Kervi. We now prove that (d,,) = (c,,). Accordingly, we
denote by v1: X /Ker v; — v1(X) C Y the bijection (associated with v;) such
that v; = 71 o 91, and consider the map

o7t ovr: (ue(X)) — X1/ Ker vy .

Note that the subspace (u2(X)) of X, and the quotient space X /Ker v, are
both metrizable and complete. Moreover (using the fact that the map v, is
continuous) it is easy to prove that the graph of the map 97! o v is closed.
Thus, in view of the closed graph theorem, the map 9;! o v; is continuous.
Then (c,,) is satisfied with ¢ the restriction on (u2(X)) of the continuous
linear map 97! o 0. O

Often, in concrete cases, two continuous linear maps v1: X; — Y and
ve: Xy — Y are assigned such that v o %3 = vz o ug; thus condition (d,,) in
the statement of Theorem 6.1 becames

v2((u2(X))) C v1(Xy).

Therefore the following corollary of Theorem 6.1 can be useful. It fourn-
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ishes another generalization of the “Theorem on the suriections of Fréchet
spaces” (see Corollary 5.3).

COROLLARY 6.2. Let X be a set, let Xy, X2, Y be Hausdorff locally
convex spaces, let uy: X — X1, ug: X — Xo be two maps, and let v1: X1 — Y,
v9: Xo — Y be continuous linear maps such that vy o uy = ve o ug. If X7,
Xy are metrizable and complete, then the following statements are
equivalent:

1) fuy(tor (Y)) C tua(XD);

@) va((u2(X)) C v1(Xy).

We observe that, if v; is one-to-one (i.e., if v;(Y’) is weakly dense in X7)
and (ug2(X)) is dense in Xy, then (1) and (2) reduce respectively to

B) u (X)) C lus(X})
and
4) v2(Xp) Cv1(Xy).

We also remark that, taking in Corollary 6.2: X =X;, Y = Xp,
uy = idy, ug = v1(=u), and v2 = idy, one immediately obtains the state-
ment of Corollary 5.2. Hence the so called “Theorem on the surjections of
Fréchet spaces” is generalized by Corollary 6.2.

COROLLARY 6.3. Let X, X1, Xo, be Hausdorff locally convex spaces, let
v1: X1 — Y be a continuous linear map, and let ug: X1 — Xz be a map. If X3
and Xo are metrizable and complete, then the following statements are
equivalent:

(5) (Ker )’ C fug(X}), (i.e., for each xy € X such that xj(h) =0
Vh € Ker vy there is &, € X}, such that x] = w o x});

(6) there is a continuous linear map va: (u2(X)) — v1(X1) such that
V1 = V2 O U2.

Proor. It suffices to take X = X; and u; = identity map in the state-
ment of Theorem 6.1, and recall (6.1). O
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