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Well Posedness Under Levi Conditions for a
Degenerate Second Order Cauchy Problem.

ALESSIA ASCANELLI (*)

ABSTRACT - We consider the Cauchy problem for a second order equation of hy-
perbolic type which degenerates both in the sense that it is weakly hyperbolic
and it has non Lipschitz continuous in time coefficients. Intersections between
the roots of the equation are of a finite order k, and the first time derivative of the
principal part’s coefficients present a blow-up phenomenon at the time ¢ = 0,
behaving as t79, ¢ > 1. The mixture of these two situations gives, under an ap-
propriate Levi condition, C* or Gevrey well posedness of the Cauchy problem,
depending on the dominant between the two behaviors.

1. Introduction and main results.

In this paper we study the Cauchy problem
Pt,x, Dy, D )u(t,x) =0, (,x)€[0,T]xR",
(1.1) w(0,x) = uo(x),
Ou(0, ) = uy (),

for a second order operator of the form

(1.2) P =D? - a(t,x,D,) + b(t,x,D,) + c(t, x),

a/(tv x, é) = Z alj(tv x)élé]v b(ta €, é) = Z b](ta x)é]a
1

t,j=1

1
D = —— 9, which is hyperbolic, i.e.
V1 P

at,x, &) >0, tel0,T],x,¢cR”.

(*) Indirizzo dell’A.: Dipartimento di Matematica, Universita di Ferrara, Via
Machiavelli 35, 44100 Ferrara, Italy.
E-mail: alessia.ascanelli@unife.it
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We are going to allow (1.2) to degenerate both in the sense that its char-
acteristic roots may coincide at some points and that its coefficients are not
regular with respect to the time variable. The purpose of the paper is to
obtain well posedness results for the degenerate problem (1.1). We remind
that (1.1) is said to be well posed in the space X if for every ug, %1 € X there
is a unique solution » € C*([0, T]; X).

We know that the Cauchy problem for a weakly hyperbolic equation
may be not well posed in C*, and that C* well posedness can be achieved
by asking the equation to satisfy some condition (the Levi condition) on the
first order term b. For example, the Cauchy problem for

P =D} D+ t'D,

is well posed in C* if and only if v > ¢ — 1; for v < ¢ — 1, well posedness
holds only in Gevrey classes of index o < (2¢ — v)/({ — v — 1), [12]. In the
particular case of an effectively hyperbolic operator, C* well posedness
holds without assuming any Levi condition, see [16]; notice that if

2
a=a(t, &), (1.2) is effectively hyperbolic if > |8§a(t, OH#0, te[0,T],
1<) = 1. =0

An intermediate situation between effective and non effective hyperbo-
licity is introduced in [9] for (1.2) with coefficients depending only on time: if
there exists an integer k£ > 2 and a y € [0,1/2] such that

k .
S [0jat, o) £0, b, < Cat, &), tel0,T,¢ =1,

j=0

then (1.1) is C* well posed provided y > 1/2 — 1/k, and this choice of y is
optimal; otherwise, (1.1) is well posed in Gevrey classes of index
g<1—=9/I1/2 - (y+1/k)]. Similar results for (1.2) depending also on
space variables are given in [11], [1], [2].

Strictly hyperbolic equations with non Lipschitz continuous in time
coefficients of the principal part have been widely studied starting from [6];
different ways to weaken the Lipschitz regularity produce quite different
effects. Here we are interested in the way considered by [7]: for (1.2) with
coefficients depending only on time, and supposing the singular behavior

C
|Ga(t, O] < o 121 t€ 10,77, 1¢[ =1,

the authors show that (1.1) is C* well posed only if ¢ = 1; otherwise, well
posedness holds in Gevrey classes of index ¢ < q/(q — 1).The index is sharp.
The same results with dependence also on space variables are in [4], [5].
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The purpose of the paper is to study the two different kinds of de-
generation mixed together. We consider (1.2) with the following structure:

P = D? — at)Q(t, x, D,) + b(t, x, D;) + c(t, x),
1.3 "
a3 o€ C®[0,T], Qt,x, &) = Z qij(t, )55
i,j=1

the weak hyperbolicity condition is expressed by:

(1.4) alt) >0, t € [0,T],
' Qt,x,8) > qléf, qo>0, te[0,T]a <R
We assume for (1.3) that:

i) there exist an integer k > 2 and a y € [0,1/2] such that

k
Z @) #0, 08bi(t, )| < Cpalt),
=0

1.5)
j=1,...,n, tel0,TlxecR", fcZ’;
ii) the coefficients of @ satisfy
C ..

e’
We prove that, under these assumptions, (1.1) is:

— C* well posed if ¢ =1 and y > 1/2 — 1/k, see Theorem 2.1;
— well posed in Gevrey classes of index 0 < ¢q/(g—1) if ¢ >1

. q 1—y .
> — >
and y>1/2—-1/k, or 6<mm{q—1’1/2—(y+1/k)} if ¢g>1 and
y < 1/2 —1/k, see Theorem 3.1.

Both results are in line with [7] and [9].
We use an approach as similar as possible to the proofs of these results,
consisting of three steps:

1) factorization of the principal part of P by means of regularized
characteristic roots +/;

2) reduction of Pu =0 to an equivalent 2 x 2 system LU =0
with L = 9 — iA(t,x,D,) + R(t,x,D,), i =v—1, At,x,&) a real diag-
onal matrix having +/ as entries, and R(t,x,¢) such that either

t
[IR(t,x,O)|dt < co + dlog(é), ¢,6>0, te[0,T], (&) =1 +|HY% in
0
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t
the C> case or [|R(z,x,&)|dr < (&)Y, § >0, t €[0,T] in the Gevrey
case; 0

3) application of the energy estimate in Sobolev or in Gevrey-So-
bolev spaces to the operator L.

2. C* well posedness.

This Section is devoted to a result of C* well posedness for (1.1), (1.3).
We denote by H® = H*(R") the usual Sobolev space, and by | — ||, the
Sobolev norm. The usual space of symbols on R¥" is denoted by
S™ = S™(R" x R"). The space B((0, T']; S™) consists of all functions defined
in (0, 7] and with values in S™ that are bounded as functions of time.

We prove the following:

THEOREM 2.1.  Consider the Cauchy problem (1.1), (1.3), under condi-
tions (1.4), (1.5) for y > 1/2 — 1/k, and (1.6) with ¢ = 1. Then, (1.1) is C*
well posed.

This result is consistent with these facts:

— taking k = 2 one can choose y = 0: indeed no Levi conditions are
needed for an effectively hyperbolic operator, [16];

— y=1/2 can be reached for k — oo: under the usual C* Levi
condition there is no need to assume that a = @ has zeros of finite order,
[10], [16].

In the proof of Theorem 2.1 we are going to make use of the following
result [2]:

THEOREM 2.2. Consider the operator
Jat,x, Dy) 0
0 Ja(t, @, Dy)

tel0,7T) x € R", where ;lj(t,ac, 8 eR, :1]- e LY([0,T1;SY) forj =1,2, and R
18 a 2 x 2 matrix satisfying

R € L0, T];SY),
|R(t, 2,0 < t,©), ¢ € LX0,T%S"),

2.1) L=20 - z( ) + R(t,x,D,)

2.2)
T
J18lott, O)ldt < 058 M og 1+ (&), > 0.
0
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Then, there exists 6 > 0 such that the energy estimate

t
||U(t)||,4 = /t <||U(0)||,24+5+/|LU(7)|/2¢+5dT)
0

holds for all U € CX([0, TT; H*+%) N C([0, T1; H**++1).

Theorem 2.2 implies well posedness, with the loss of ¢ derivatives, in
H™>® =N,H® and H > = UsH® of the Cauchy problem for L.

Proor oF THEOREM 2.1. The characteristic roots of P are

+ A, x, &) = £/ a®)QE, x, &)

with @ € C([0,T1;S%), 8,Q € B((0,T1;S?. Given a function p € CX(R),
0<p<1, [p()dr=1, and extended the symbol @ on R; by setting
Qr,x,8) = Q(T,x,&) for t > T, Q(r,x,8) = Q0,x, &) for t < 0, we approx-
imate =+ / by defining new symbols +A(t, x, &) as follows:

@23) A8 = \Ja) + (&) ® / VA, E)p((E)(t — D)(&)dr

Then we use + / to factorize (1.3). In the factorization we need to deal with
the symbols

@) ita,d = ——2O 1m0+ \Jat) + (&) Pt O)
24/ a(t) + (&) 2

and
@.5) At a, &) — Aty x, &) = \Ja(t) + (&) 2t », &)
+( o) + (&) = V) VR, %, )

where

Lt = / VG Z, Op(ENE — (e
Lt &) = / VG O — )& e
Iyt &) = / (VG20 - VQE2.)p((e)t - De)dr

The change of variable (¢)(t — t) = s clearly gives I; € L!([0, T; S'). Using
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[ p/(s)ds = 0 we can rewrite

Bt = [ (V&8 - VAE#0)r(&)t - (o dr

by the hypothesis on @ we get
Iy € C([0,T1;8%), Iy € B((0,T1;SY),
I3 € C(10,T%; S, tI3 € B(0, T];S").

The same arguments give

@6) [t DF = Uit e, DIF = (\/at) + (Do) + ) Lt e, D),
with

Iy(t, %, &) € C([0,T1;S%), I, € B0, T1; Y.
From (2.3), (2.4), (2.6) we come to the factorization

@7 P=(D;—At,x,D,))(D;+ At,x,D,)) +

+(\/ o) + (D)% + a@)Sa(t, , D) + b(t, ¢, Dy) + c(t, %, D),

Sl(ta &L, é) S Ll([07 T]7S1)7
SZ(t; €, é) € C([Oa T];Sz)a tSZ(ta'%'a 5) € B((Oa T]7S1)

with

To perform now the reduction to a first order system, we consider the
operator w(t, D,) with symbol

olt, &) = \/alt) + (&) 4(&),
and we define the vector V = (vg,v1) as follows:

{ Vo = a)(t,D%)u,

2.8) _
v1 = Dy + AE, 2, Dy))u.

By (2.8), and after a straightforward diagonalization of matrix M(t,x, D),
we obtain that the scalar problem (1.1) is equivalent to

LU =0,
2.9
{U@@Um
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where U = M(t,x,D,)V and

_z(tvx,Dx) 0 / t
L= 0—-1 +a—(),2A(t’9€an)

0 it,x,Dy) O+ Da)
(2.10)
b, @, D)D)

a(t) + (D)2

B(t,x,D,)+ C¢t,x,D,) + E¢,x,D,),

with 2 x 2 matrices A, B, C, E such that
A,B,E € L}0,T];S%, C € C(0,T;SY, tC € B(0,T1;S%).
Operator (2.10) has the structure (2.1) for a remainder

_ o (t)
R(t,x,8) = 20+ <é>_2A(t,x,é)+C(t,x, 9)

. b(t, 2, &)(&)
olt) + (&)~

B, x,5) + Et,x,8).

We only have to check that R fulfills condition (2.2); then an application of
Theorem 2.2 will give C> well posedness of (1.1) by usual arguments in the
energy method.

For any N > 2,
o (t) o (t) A, x, &)
—A ta ) = : 5
alt) + (&) 72 0 (@@ + (&) DN (at) + (&) HVN

we know from Lemma 1 in [10] that if f € CN[0, T is real valued and non
negative, then f/V is absolutely continuous on [0, T']; we apply the Lemma
to f(t) = a(t) + (£)* and we obtain

o DA, @, O/ () + (&)%) € L0, T1; 8%, N > 2.
Using the Levi condition, we split

DL, ) 'Bt.ed bt Bt
@O+ @) @O+ )+ (& D

and get
bit, 2, (&) Bt O (att) + (7)€ LM10. 715",

The first condition in (2.2) holds true.
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Now we have to construct ¢ as in (2.2). To this aim we take a smooth
function y, 0 <y <1, w(y) =1 for |y| <1, w(y) =0 for |y| > 2, and we
introduce the function

P, = p(H(E)(E) +§(1 _uHE), 6> 0.

We can choose o so large that |C(¢,x, )| < ¢(t, &), for all (¢,x,&). We
define

o () 1 i
t
at) + (&) T+ (& HE + o, f)> :

K > 0 and large enough to have |R(t,x, &)| < ¢(t, &) for all (¢, «, ©).
We get, from Lemma 1 and Lemma 2 of [9], that

o/ (@)] .
_ O 51
/ o+ (g B < ot ologlo)

0
T

1
/ o + (g By = 0 OleB)

0

for some ¢y > 0, 0 > 0, and thanks to y > 1/2 — 1/k. As to ¢, we have

T 287! T
Jowoas<s [ @avs [ am<ar g,
0

0 27"

Condition (2.2) is fulfilled. Theorem (2.1) is proved.

3. Gevrey well posedness.

In this Section we prove a result of Gevrey well posedness for (1.1),
(1.3). For o > 1, we denote by G° = G°(R") the Gevrey class of index g,
consisting of all functions f such that

|08f (@) < CAPIgY, C,A >0, VpeZ".

In the proof we use Gevrey-Sobolev spaces H**? = H>*°(R"), defined for
e>0and g >1 by

HS,s,J(R%) — {u(%)7 68<D"'>l/ﬂu c HQ(Rn)},



Well Posedness Under Levi Conditions etc. 121

there the norm is [jul|,,, = |eP)"""y)|,.. Notice that H** ¢ G°, &> 0.

A class of bounded pseudodifferential operators in Sobolev-Gevrey
spaces is the class S™7 = S™(R" x R") of Gevrey symbols, defined for
o > 1 as the space of all functions a(x, &) satisfying

tdbat, &) < C,APBIE (" 0, peZt, A, >0,
which is the limit space
§™7 = lim 877, 87 := lim Sy
{—+00 A—+o0

of the Banach spaces SZL , of all symbols such that

@l gae = sup  sup|ofdate, OAVR7(E T < foo.
o || <tpeZ! @&

In what follows, B((0, T]; S™“) will denote the space of all functions defined
in (0, T'] and with values in S”*? that are bounded as functions of time.
We are going to prove the following:

THEOREM 3.1. Consider the Cauchy problem (1.1), (1.3) under condi-
tions (1.4), (1.5) with Cy = CAVIBI7, (1.6).
Ify>1/2 —1/kand q > 1, then problem (1.1) is G° well posed provided

3.1) l<o<—-1_
q—1

If y<1/2—-1/k and q > 1, then problem (1.1) is G” well posed for

. 1-7
3.2) 1<o<op —m‘“{ql’l/z(wl/k)}'

REMARK 3.2. In the proof of Theorem 3.1, we are precisely going to
show that:

2k 1 1—y
- <q < I
Isa<p7z0sr<i- (2 k):>00 12— (+1/k)’

2k 1 1 1 q
-1< — 1- < — .
lsa<zol q(zﬂc) SYSpT o= T
1
q-1
It becomes easy to compare these results with [7], [9] if only we
notice that

2k 1
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1-q(1/24+1/k) <1/2—-1/k, Vg >1, k> 2,
1—-q(1/2+1/k) <0 for g > 2k/(k +2).
In the proof of Theorem 3.1 we apply the following result [2]:
~ THEOREM 3.3. Consider the operator L in (2.2), suppose
A € LY([0,T1;8*) forj = 1,2 and

IR(t,2,0)| < 9(t,0), ¢ € L'([0,T];Sh),
t

/(0(7, &dr € C(0,TL;SY7).
0

Then, there exist iy > 0 and b(t) € L'[0, T], b(t) > 0, such that for

t
w(t, &) = exp </ (f"(fv &) + by (&)Y ”) dr)

0

3.3

the energy estimate

t
lw(t, AU, , < Cl (|U<0>||i,ﬂ,r, + / ||w<nDx>LU<r>||,2,,;.,ﬂdr) :
0

0<t< T, wl*, &)< e
holds for all U € CY([0, T]; H***) N C([0, T1; H*147), 0 < A < A

Proor orF THEOREM 3.1. We define

it @, &) = fx(t)+<f>71%"/\/Q(L%f)ﬂ((@(t*f))(@dr;

then we use the same arguments of the proof of Theorem 2.1 in the frame
of the calculus of Gevrey symbols S™¢ and we come to the following fac-
torization for P:

P= (D~ ilt,e. DDy + iltx. D)+ ——2D _5,(t.2.D)
t) + (Do) ™

+ ( a(t) + (Do) T + a(t)) So(t, 2, D) + Sy(t, 2, D)

+b(t,x,D,) +ct,x,D,),
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where
Sy(t, 2, &) € LA([0, T1; 8'), S5 € L([0, T]; S 757,
So(t, @, &) € C([0, T1; 827), 1985(t, x, &) € B((0, T1; S).
Defining this time

olt, & =\ alt) + (&) THE),

we retrace the reduction to a first order system of Theorem 2.1, coming to
the equivalent Cauchy problem (2.9) for

I at_i(—m,x,pgc) 0 )

0 it,x, D)
! -1
(3.4) +u—(t)_LA(t, x,Dy) + MB(L x,D,)
' O + (Do) alt) + (D) T
Cta, D)+ 288D | gD,

a(t) + (D) T
where

A,B,E € LX[0,T];S%), D € L}([0,T];S* 7+,

C € C([0,T};8%), tC € B(0, T1;8°).
System (3.4) has the structure (2.1) with

/ -1
Rt = — 0 Ao+ 28898 gy g
at) + (&) ™ at) + (&)
wCtw+— 20 a0,
o) + (&)1

We are going to show that there exist 6 > 0and0 < & < 1/0,0asin (3.1) or
(3.2), such that

t
(3.5) / R(s, %, &)ds < 6(&)", t €0, T).
0

Then, an application of Theorem 3.3 with (&) = o (é)h will give Gevrey well
posedness of (1.1) by usual arguments.
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By Lemma 1 in [9] we have again

/Lﬂldt < ¢o + 0log(<), c,9 > 0.
J alt) + (&)

By the Levi condition in (1.5) we split

bt 2, O 'Btw.d) _ btzd@ " Bt
(+@ ™) O+ @0+ @)

and Lemma 2 in [9] gives

T ) c1 +dlog(é), if y >1/2—1/k
: dt <
/ () 4 (&) TH)E S(&W2UR/A=D i 179 1k

for positive constants 9, ¢;. )
As to the new term D(t, x, &)(a(t) + (&) )~V 2 by Lemma 2 we obtain

T
£y / it < (g METIRD 55,
0 \/ Ol(t) +

Finally, if ¢ = 1 we have

T
IC(, e, 9] < (8, O, / ot £t < c3+ 6 log(E), c.5 >0,
0

while if ¢ >1 we need to mix the two estimates C € C([0,T];S%"),
t4C € B((0,T1;8%°) to find an intermediate one. Given any ¢ € (0,1), we
introduce a separation in the phase space:

— for £1-4(&)179/4 < 1 we use C € C([0, T]; S1°),
— for t-¢(&)19/4 > 1 we use t4C € B((0, T1;8*°),

and we obtain
, 1 ~A-9/q-
|aéagc(t7 €, f)| S tl__g <é>1 -l M’ y’ﬁ € ZTL‘r’

that is the global estimate
tl—z:C c B((O, T];Sl—(l—z,‘)/q‘rr)7
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wich under the integral sign becomes
T
/ Ct, x, &)|dt < 6(&) 11 5> 0.
0
Thus:
—if ¢>1 and y>1/2—-1/k, then (3.5) holds true with
h=1 —%; it is possible to choose an ¢ € (0,1) such that & < 1/g,
thanks to (3.1);
—if ¢g=1 and y<1/2—-1/k, then (3.5) is satisfied with
_12-G+1/k)

h T ; clearly h < 1/0, since we are supposing (3.2);
— if¢>1and y < 1/2 —1/k, then we get (3.5) with
3.6) h:max{l—l_g,l/z_(erl/k)},
q 1—y

and condition (3.2) provides & < 1/g. To make precise estimate (3.6), we
compute the crucial exponent

c_q_ 9 (11
r=1 1—8(2+k>’

and notice that y* <0 if ¢ > 2k/(k + 2). This leads us to consider three
cases:

—if 1<qg<2k/k+2) and 0<y<1-—q(1/2+1/k), then
h=1[1/2—-(y+1/k)]A — y), and we get a9 = 1 — »)/[1/2 — (y + 1/k)];

—if 1<q¢<2k/(k+2) and 1-—¢q(1/2+1/k) <y<1/2, then
h=1-(0-¢)/qand g9 = q/(q —1);

- ifq>2k/(k+2),againh=1-(1—¢)/q, and gy = q/(qg — 1).

The proof of Theorem (3.1) is complete via Theorem 3.3.
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