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The Extremal Ranks of A; — B, X, subject to a Pair
of Matrix Equations.

YONGGE T1AN (*) - YONGHUI L1U (*%*)

ABSTRACT - For a given linear matrix expression A; — B1XC1, where X is a variable
matrix, this paper gives two formulas for the maximal and minimal ranks of
A; — B1XC; subject to a pair of consistent matrix equations BoXCy = Ay and
B3XC3 = As. As a consequence, we give necessary and sufficient conditions for
the triple matrix equations B1XC; = A;, BoXCy = Az and B3XC3; = A3 to have a
common solution.

1. Introduction

Let
(1.1) pX)=A — BXC

be a linear matrix expression over an arbitrary field I, where A € """,
B e "™ and C € F" are given, and X € FP*? is a variable matrix. In
this case, the matrix p(X) varies with respect to X. Of interest for us will be
properties of p(X) when X varies. One of the basic properties on p(X) is the
maximal and minimal possible ranks of p(X) when X running over 7, or
a subset of [?*9, Because the rank of a matrix is an integer between zero
and the minimum of the row and column numbers of the matrix, the
maximum and minimum of the rank of (1.1) with respect to X must exist.
Theoretically, any matrix expression has the maximal and minimal ranks
with respect to its variable entries. The extremal ranks of matrix expres-
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sions have close links with many problems in matrix theory and applica-
tions. For example,
(a) the matrix equation BXC = A is consistent if and only if

min rank (A — BXC) = 0;
Xerra

(b) the matrix equation B1X;C; + B2X2Co = A is consistent if and
only if
min rank (A — B1X;C; — B2 X0y ) = 0;
X, €FPLX0L X, P22
(¢) the two consistent matrix equations B;X;C; =A; and
By X>Co = Ay, where X7 and X, have the same size, have a common solution
if and only if

min rank(X; —X,) =0,
B1X1C1=4;
ByXyCo=Ag

or equivalently, B )I(ninA rank (A; —B1XC;) = 0; all solutions of BoXCs = As
2 2=£42
are solutions of B1XC; = A; if and only if max rank(A; — B1XCy) = 0;

BoXCo=A,

(d) there is a matrix X € I’?*? such that the square block matrix

C X C X
{AB

{A B} of order n is nonsingular if and only if Jax, rank [A B] =n;
clFPx

C X} is nonsingular for any X eFP*? if and only if

min rank 4 B =n
AT o x| =

In general, for any two matrix expressions p(Xi,...,X;) and
q(Y1,...,Y;) of the same size, there are Xi,...,X; and Yi,...,Y; such
that p(Xy,...,X;) = q(Yy,...,Yy) if and only if

r)pl}p ’Ytrank[p(Xh v Xg) —q(Y, . Y) 1= 0;

pX1,...,Xs) and q(Y7,...,Y;) are identical if and only if

Xlwr)rf?é,m,Yt rank [ p(X1,...,Xs) —q(Y1,...,Y)]1=0.

Moreover, the rank invariance and the range invariance of matrix expres-
sions with respect to variable matrices can also be derived through the
matrix rank method. The essential part in solving these problems is to give
explicit formulas for the extremal ranks of the matrix expressions with
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respect to their variable matrices. This topic was studied in the late 1980s in
the investigation of matrix completion problems; see, e.g. [1, 2, 3, 4, 13].
Some recent work on extremal ranks of matrix expressions and their ap-
plications can be found in [8, 9, 10, 11, 12].

Throughout this paper, the symbols A7, 7(A) and .72(A) stand for the
transpose, the rank and the range (column space) of a matrix A, respec-
tively. A matrix X € ™™ is called a generalized inverse of a matrix
A € ™" denoted by A, if it satisfies AXA = A. The symbols £ 4 and F4
stand for the two oblique projectors K4 =1, —AA~ and Fy =1, — A"A.

It was shown in [10, 12] that p(X) in (1.1) satisfies the following two rank
identities

A A B B
(1.2) V(A—BXC):V[A,B]+T[C}—V[C O]+V[ET1(X+TM S)F, 1,

(1.3) (A—BXC)=1[A, B]+7{g} r{g §:|+7"(E’QAFPEQBXCFP),

where M= |4 Bl r-10.1,1 s=|°|, 7 =TFy, S =Eys,
c 0 I,

P =FERA and Q = AF¢. 1t is easy to verify that the two matrix equations
Er(X+TM S)Fs, =0 and EgBXCFp = EyAFp

are solvable for X. Based on (1.2) and (1.3), it was shown in [10, 12] that

(1.4) max (A — BXC) _min{r[A, B, T{A} },
Xelw<a C

L5 in HA—BXC)— A, Bl+r|] —[2 B

a9 in ra =830 =t Bl | o[ )

Moreover, Tian [11] showed that if the matrix equation B:XCy = A, is
consistent, then

(16) max T'(Al — BlXCl)
BQXCZZAZ

Ay 0 B; A

=min< | 0 —Ay By | —7(Bs) —r(Cy), V{Cl

:|7 T[Ah Bl] )
Ci C 0

1
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(17  min (A —BXC) = 1Ay, By ] w[Al]

ByXCo—A, C
Ay B A 0 B
A, B 0 1 B 1 1
-7 C 0 C —r| C 0 +7r|{ 0 —As Bs
! ? 0 B, Ci C 0

A variety of consequences and applications of these two rank formulas are
given in [11], for example, necessary and sufficient conditions for
B1XC; = A; and B2XCy = Az to have a common solution, necessary and
sufficient conditions for all solutions of BsXCs = Ay to be solutions of
B1XC; = Aj, and the extremal ranks of the generalized Schur complement
D — CA~ B with respect to A~. As extensions of (1.4)—(1.7), we give in this
paper two formulas for the maximal and minimal ranks of A; — B1XC,
subject to a pair of consistent matrix equations Be2XC; = Ay and
BgXCg = Ag

In order to simplify various matrices involving generalized inverses, we
need the following rank equalities for partitioned matrices due to Marsa-
glia and Styan [5].

LEMMA 1.1. Let A € ™" B € F™P and C € F". Then

(1.8) A, B1=1(A) + 1EAB) = (B) + r(EpA),
A

(1.9) P { C} =1rA) +r(CFy) = r(C) + r(AF ),
A B

(1.10) 7{0 0} — 1(B) + 1(C) + r(EpAFy),

where the ranks do not depend upon the particular choice of generalized
mwerses in K, Fya, Eg and F¢.

2. The extremal ranks of A — B1XC; subject to B:XC> =As and
B3XCy = As

A direct motivation for finding the extremal ranks of A — B1XC; sub-
ject to a pair of consistent matrix equations BeXCs = Ay and B3 XCs = Ag
arises from investigating common solutions of a triple matrix equations
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B1XCy = Ay, BoXCy = Ay and B3XCs = Az. To do so, it is necessary to
know the general common solution to the pair of matrix equations
BzXCz = A2 and BgXCg = A3

LEMMA 2.1. Let A; € ™% B, € B™*P and C; € F™ be given for
1 =2, 3, and suppose that each of the two matrixz equations BoXCo = Ay
and BsXCs = Ag is consistent, i.e.,. 72(A;) C 72(B;) and 7/(AT) C 2(CT) for
1=2,3. Then:
(@) [6, 7] The pair of matrixz equations have a common solution if
and only if

A, 0 By 5
2.1) r| 0 —A; By =r{82}+7’[02, Cs 1.
C C3 0 ’

(b) [8] Under (2.1), the general common solution of the pair of
equations can be written as

(2.2) X =Xo+ FgVi+ Vol + Fp,V3E¢, + Fp,Vill,,
where X is a special common solution to the pair of equations, B = [gz } ,
C=1[Cs, Cs],and Vy,..., Vi € FP* are arbitrary. 3
Substituting (2.2) into A; — B1XC; gives
(23) A1 — B1XC, = Ay — B1XyCy — B1FpV1Cy — B1VeECy
— B1Fg,V3Ec,Cy — B1Fp,ViE(,(h,

which is a linear matrix expression with four variable matrices V1, ..., V4.
To find the extremal ranks of (2.3) with respect to the four variable matrices
Vi,..., V4, we need the following result.

LEMMA 2.2. Let

(24) pXi, Xz, X3, X4) =A — B1X1C1 — B2X2Cy — BsX3C3 — B4 X4Cy

be a linear matrix expression, where A € F"" B; € F"™*Pi and C; € T4
are given, and X; € P9 qre variable matrices for i =1,...,4. Also
suppose

(25) (B C.2(By) and A(C])C 2(C]), i=1,3,4, j=23,4.

Then the maximal and minimal ranks of p(X1, Xeo, X3, X4) are given by
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A B
(2.6) max 7[pXy, X2, X3, Xg) ]=min< 7[A,Bz ], 4 r C; 0
X1, Xy ’ ’ ’ ’ ’ Cl ’ Cg 0 ’
Cy O
A Bl Bg A Bl B4
rg%1%3%4],7”6'200,1”0200 ,
2 Cs 0 0 C; 0 0
A B
. o CQ 0 A Bl B3 B4
(2.7) XT}%4T[]0(X17X2, X3, X)l=7r G 0 +7[Cz 0 0 0}
Cy O
A A B A By
+T[CJ+7’[A,B2]—T[CI 0]—7{02 0}+ma,x{sl, S2t,
where
_ - _ - A B; Bs]
A B B A B, B; By L
C;c 0 O
si=r|Cs 0 0| —=7|Cs 0 0 O —7"C o ol
3
Csy 0 O Csy 0 0 O
- -t - las 0 o)
_ - _ - (A B; B4l
A B, B A B, By By o 01 04
ss=7[Co 0 O0|—7[C. 0 0 0]|—» c2 0 o
3
Cs 0 0 Cs 0 0 O
L3 4L o o 0

Proor. The two rank equalities (2.6) and (2.7) are derived from the
following two rank formulas in Tian [11]

(28) max V(A — BleCl — BngCg )
X1, Xz

A

. A B A By
= A, By, B C )
minq r[A, By, Bz2], r|Cy |, T[CZ 0}, T[Cl 0}
Co
A
(29) min ’V‘(A — Blecl — BQXQCQ) =7r C1 +T[A,Bl,B2]+maX{t1,t2},

X1,X5

Ce
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where
‘A B (A B B |4 P
ti=7r C 01 —7r C 01 02 -r|Cy 0],
L C2 | L C2 i C o]
_ . ] - [A By
, A By A By Bs c o
2 =T -7 -7 1
Ci; 0 C; 0 0
& | 1 C1 i C o]

If 72(B1) C 7%(Bg) and .2(CY) C 72(CT), then (2.8) and (2.9) reduce to

(2.10) max (A — B1X1C; — BoXoCo ) =minqr[ A, Bs |, r 4 ,F 4 B ,
X1,Xp C; Cy 0

(2.11) min "A —BiX1C1 — BsXoCs) = r{ A, BZ]H{A} —H”[A Bl]
X0, X; C

Cy 0
A B _[A B
Ci 0 C: 0]

Recall that elementary matrix operations for a matrix do not change the
rank of the matrix. Under (2.5), applying (2.11) to the two variable matrices
X; and X; in (2.4) and simplifying by elementary matrix operations gives

(2.12) )I(Yll)f(l r[pXy, Xo, X3, X4) 1 =1[A — BsX3C3 — B4X4Cy, Bz ]
1,42

[A — BngCg — B4X4C4} [A — BngCg — B4X4C4 By }
+7r +7r
Ci Cs 0

[A — B3X3C3 — B4yX,Cy B; } [A — B3X3C3 — B4X4Cy Bz}
—7r —7r
Cl 0 Cz 0

=114, Bz ] 4
=71lA, by +7{CJ+T[

{2182
Ci 0 Co 0]

A— BngCg — B4X4C4 Bl :|
Cs 0

Notice that

[A—BngCg —B4X4Cy Bl} B { A B

BSX[C 0] B4X[C 0]
Cy e OHO] o _M e
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Co 0 0
place of X1, X», A, By, Bs, C; and Cq, respectively) to the expression and
substituting the corresponding result into (2.12) yields (2.7). Formula (2.6)
is derived by applying (2.8) and (2.10) to p(X7, Xz, X3, X,). The details are
omitted. O

Applying (2.9) (with X3, Xy, [A Bl], [Bﬂ, [%4],[03, 0]and[Cy, 0]in

For convenience of representation, rewrite (2.3) as
(213) A1 —B1XCi =A —Gi1ViH; — G2VeHs — G3V3Hs — G4V4Hy,
where
A=A, -B1X)Ci, Gi=B1Fp, Gz =B, G3=DB1Fp,, Gy=B:iFp,,

Hy=Ci, Hy=EcC,, H3=EC), Hy=EC;.
It is easy to verify that the above matrices satisfy the conditions
(2.14) 2(Gy) C 2(Gy) €. (Go), and Z(Hy) C 2(H]) C.72(H), i= 3,4,

where the range inclusions do not depend upon the particular choice of
generalized inverses in G; and H;. In this case, applying (2.6) and (2.7) to
(2.13) yields the main results of this section.

THEOREM 2.3. Let A; € B B; € F"*? and C; € F*" be given for
1 =1, 2, 3, and suppose that the pair of matrix equations BoXCo = Ay and
B3 XC3 = A3 have a common solution. Then
A
(2.15) max r(A; — B XCy) = min{fr[Al, B1], T[Cl]’ U1, Uz, U3, m},
1

ByXCy=Ay
B3XC3=Ag

where

Ay 0 0 B;
0 -A 0 By B
wi=r|0 0 —A; B3| —r [BZ} —1(Cs) — 1(Cy),
C, G 0 0 ’
Cy 0 C3 O

A 0 0 B B
0 —A2 0 Bg 0
= —1[Cy, C31— 1(B2) — (B
ug=r| 0 A, 0 B 1 Cy, C31— v(B2) — r(Bs),

Ci C C 0 0
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A 0 B
ug =1r 0 —Az Bg
i G 0]
(A7, 0 By
Uy =T 0 —Ag Bg
i G 0]
Proor.
(216) max T(Al — BlXcl )
ByXCo=Ay
B3XCy=Ag
= max

Vi

A
=min{ 1A, Gz ], 7’[ }, r|Hs 0 |, ’V[
H,

63

—1(B2) — r(Cy),

—1(B3) — r(Cs).

Under (2.14), by (2.6) we first find that

(A — G1ViH1 — G2VoHy — G3VsHs — G4VaHy)
4

A
G A Gy Gﬂ

H, 0 0
H, 0 z

o)l ]
r , T .
Hy 0 H; 0

Simplifying the ranks of the block matrices in (2.16) by (1.8), (1.9) and (1.10),
the conditions B2X(Co = Ay and B3X(Cs = Ag, and elementary matrix op-

erations leads to

A, G2l =1[A1 — BiXoCi, B1]1=7[44, B1 ],

A
r =7
Hy |
A Gy
riHy 0 | =r
Hy 0 |
=7

(A1 — B1XoCq
G

[A; — B1X,C
Ec,C
Ec,Cy

_Al — B1X,C1
Ci
C1
0
0

|-l

B{F'p

0

0

B 0 0

0 C3 0
By

0 0 G —7{ }—V(Cz)—V(C?,)
Bs

By, 0 0

Bs 0 0
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Ay By 0 0
Ci 0 C; 0
By
o0 0 o —T{B}—r(@)—r(cg)
0 By 0 —Ay ’
| 0 By —-A; 0 |
[A; 0 0 Bi]
0 -4 0 By
B
=7r| 0 0 —A3 Bg el |:B :| — 7"(02) — 7"(03)
c, C, 0 0 K
|Gt 0 Cz3 0|
Similarly, we can find that
[A Gs G4] [A; — B1XoC1  BiF, BlFBS}
7 =
Hy, 0 0 FoCy 0 0
rA; 0 0 B B
0 -4 0 By
= —1[Cq, C3]1— r(Bg) — 7(Bs),
"o o A4 0 B [ Ce, C3]— r(Bz) — r(B3)
LC1 G Cs 0 0
{ A G3] (A1 — B1XoCh B1FBZ}
=7
Hy, 0 Ec,C 0
(A, 0 B
=r| 0 —-Axy By | —rBz)—rCy),
i C 0
T[ A G4] ., [A; — B1X,C1 B1F33}
Hs 0] Ec,Cy 0
(A, 0 B
=7r| 0 —A3 Bg — T(Bg) — T(Cg).
Ci C3 0

Substituting these rank equalities into (2.16) yields (2.15).

O

THEOREM 2.4. Let A; € ™" B; € F"*? qnd C; € FT*" be given for
1 =1, 2, 3, and suppose that the pair of matrix equations BoXCo = Az and
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B3XCs = A3z have a common solution. Then

(217) min r(A; - BiXCy)
BEX(S?A;

A 0 0 B

A, 0 0 B, B A, B
0 A, 0 B 1 1 1 1 1
0 0 A Blis 0 A0 B0 C, 0

=7 — r -7
o . s 03 0 0 —A; 0 B 0 B
v C, C C; 0 0 0 B

C; 0 C;s 0

A B 0 0 A
1 1 ]+T[ 1]+T[A1731]+max{v1,772}7

“Tley 0 o G ¢
where
) . TA; 0 By Bil TA; 0 By 07
A1 0 Bl 1 1 1 1 1
N 0 —A, By 0 0 —A, By 0
v =7 - -7 -7
! oG 2 02 C, C 0 0 C, C 0 0
v 2 o lo 0o 0o Bl ey 0o 0 o
) _ TA, 0 By Bil T[A; 0 By 07
Al 0 Bl 1 1 1 1 1
0 —A; By 0 0 —A; By 0
vo=7r|0 —-As B3| —r —r
o o o c, C 0 0 C, C 0 0
L 3 1o o 0o Bl |l o o ]

Proor. Under (2.14), applying (2.7) to (2.13) yields

(2.18) min 7(A; — BiXCy)

ByXCy=Ay
B3XC3=Ag
= Vmir%/ (A — G1ViH1 — G2VoHe — G3V3H3 — G4V, Hy)
(A &y
A Gy G A
=r|Hs 0 +1{H 03 04}“[14, G2]+7’[H]
H, 0 2 1
A G A G
_T_H1 01}—7[112 02}+max{v3,v4},
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where
A G
A G3 A GS G4 °
BTy o] e, 0 o) T O
4 4 H 0
A G
A G4 A GS G4 !
V=7 oo —-r o0 0 —r|Hg 0
3 3 H 0

Simplifying the ranks of the block matrices in (2.18) by (1.8), (1.9), (1.10), the
conditions BsX,Co = Ay and B3X(C3 = Az, and elementary matrix opera-
tions leads to (2.17). The details are omitted. O

COROLLARY 2.5. Let A; € F"" B; € B"P and C; € FT™ be given
for i =1,2 3, and suppose that each of the three matrix equations
B XC, = Ay, BoXCy = Ay and B3 XCs = Az is consistent and that any
two of the three equations have a common solution. Then
(219) I;gin ’V'(Al — BlXCl)

By XCy=Ay
B3XC3=Ag

A 0 0 B
0 -4 0 By
=r| 0 0 —Ag Bs| +r
C: Cs 0 0
Cy 0 Cs 0

A4, 0 0 By B
0 -4 0 By 0
0 0 -A4; 0 Bj

Cy Co Cs 0 0

By By B
C; Cy 0
— »|By| —#[Cy, Co, C51—7|By 0 —'I"|:Cl 02 c}
Bs 0 B ! 3

ProoF. Since any two of the three matrix equations have a common
solution, it turns out from Lemma 2.1 that

A C 2By, AAD)C.2CH), i=1,2,3,

A 0 B "
r| 0 —A]‘ Bj :7‘|:B1:| + [ C;, Cj], 1<i<j<3.
c ¢ 0 i
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In this case, the ranks of the block matrices in (2.17) reduce to

(A, By B,
Ci 0] Ar By 0 0]
"0 By =r(Cy)+r gz},v{a 0 G Cg]—T(Bl)‘f‘T[ChClaCS]a
|0 B 3
- B, B
P[4 2o, rlAL B=rB) o =ve = —r [ By 0 |-G G2 O
Ci Ci 0 Cs
L 0 Bs
Substituting these results into (2.17) leads to (2.19). O

Under the assumption of Corollary 2.5, it can be derived from (2.19)
that

min 7(A; — B1XC;)= min r(As — B2XC5)
ByXCo=Ay B1XCy=4;
BgXCg:Ag BSXC:;:A3
= min r(As — B3XCs).
B XCy=A;
ByXCy=Ag

A direct consequence of (2.19) is given below.

COROLLARY 2.6. [8] Let A; € B> B, € B">? and C; € F™" be
gwen for i =1,2,3. Then the triple matrix equations B XC; = Ay,
ByXCoy = Ay and B3 XC3 = Az have a common solution if and only if
any pair of the triple equations have a common solution, meanwhile the
Sfollowing two rank equalities hold

A 0 0 B; Bi]
B, B
0 -4 0 B 0 By, 0 |+1Cy, Oy, Cy]
T :T r b b b
0 0 —A; 0 By ’ b
0 Bs
C: Gy Cs 0 0 |
A 0 0 B
0 -A 0 B B
2 2 1 c O 0
r| 0 0 —-A3 By|=r|B|+r :
Ci 0 Cs
Cl CQ 0 0 BS
¢o0 0 0]

Letting A; =0, By = I, and C; = I, in (2.15) and (2.17), we obtain the
following result.
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COROLLARY 2.7. Suppose that the pair of matrix equations
ByXCy = A and B3XCs;=A; have a common solution, where
X € FP*Y Then:

(@) The maximal rank of the common solution to the pair of
equations is given by

max r(X) =min{ p, ¢, wy, ws, w3, wy},

ByXCo=Ay
B3XC3=Ag
where
(A 0
B
wi=7r|0 A3 —T[B]—T(Cz)—r(03)+]0+q’
G G ?
Az 0 Bz] [Ca, C3]1—7(Bg) — r(Bs) +p +
2 0 A B 2, L3 2 3) TP T4,

w3 = 1(Ag) — r(B2) — r(Cs) + p + q,
ws = r(As) — r(Bs) —r(C3) + p +q.

(b) The minimal rank of the common solution to this pair of
equations is given by

Ay 0
. ? A 0 B
min *X)=r| 0 Az |+7r + max{ ws, ws },
BpXCo=As 0 Az B3
B3XCg=Ag CZ CS
where
As Bs Ay 0
= r(Ay) — -
s =) T{o BJ T{Cz 03]’
By, 0 Cs Cs
= 1r(A3) — - )
=T T{Bg AJ 7{0 Ag]

In the theory of generalized inverses, it is of interest to consider com-
mon generalized inverses of two matrices of the same size. Some previous
work can be found in [6]. From Corollary 2.7, we obtain the following result
on the extremal ranks of common generalized inverses of two matrices.

COROLLARY 2.8. Let A, BeF™? be given, and suppose that
AXA = A and BXB = B have a common solution X € FP*9 1.e, A and
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B have a common generalized inverse. Then

gl?.:)i r(X) = min{p, Q}a gl}g r(X) = max{ r(A), r(B) }

BXB=B BXB=B
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