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A Septic with 99 Real Nodes.

OLIVER LaBS (*)

ABSTRACT - We find a surface of degree 7in P3(R) with 99 real nodes within a family
of surfaces with dihedral symmetry: First, we consider this family over some
small prime fields, which allows us to test all possible parameter sets using
computer algebra. In this way we find some examples of 99-nodal surfaces over
some of these finite fields. Then, the examination of the geometry of these
surfaces allows us to determine the parameters of a 99-nodal septic in char-
acteristic zero. This narrows the possibilities for 4(7), the maximum number of
nodes on a septic, to: 99 < u(7) < 104. When reducing our surface modulo 5, we
even obtain a 100-nodal septic in P3(IF5).

Introduction.

The study of surfaces in P3(C) of some degree d w.r.t. the possible
combinations of singularities on them is one of the most classical subjects
in algebraic geometry. Schléfli [17] already established a complete classi-
fication for the case of cubic surfaces (i.e., d = 3) in 1863. It took more than
130 years until the corresponding problem was solved for quartics (d = 4)
using K3 lattice theory. Most of this work was done by Nikulin, Urabe, and
finally Yang [19].

For surfaces of higher degree, we cannot hope to establish an analogous
classification at the moment, even for d = 5, because the knowledge on
surfaces of general type is still far from sufficient for such a purpose.
Kummer [10] had a similar problem for the case of d = 4 in 1864. So, he
restricted himself to the question on the maximum number u(d) of nodes
(i.e. singularities of type A;, also called ordinary double points, locally
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given by a? + »? + 22 = 0) which can occur on a surface of degree d in
P3(C). Kummer proved x(4) = 16 by noticing that Fresnel’s Wave Surface
actually had 16 nodes and that one could use a formula for the degree of the
dual of a surface to show that there could not be more such singularities.

Dispite many attempts to determine wu(d) in the 20th century, this
number is only known for d < 6 until now (for a historical overview of about
50 pages, see [13]). All restrictions established so far are summarized in the
table below:

degree | 1 | 2 | 3 |4 | 5|6 |7 |8 |9 |10|11 |12 d
wd)> | 0| 1| 4 |16 |31|65|93|168|216 345 (425|600 |~ 5d?
ud)< | 0 | 1 | 4 |16 |31 |65 |104|174|246 | 360 | 480 | 645 z%d?’

In the present article we show:
(1) w(?) > 99.

The best known upper bound in the case of septics is given by
Varchenko’s spectral bound [18]: w(7) < 104. Notice that Miyaoka’s
bound [14] yields 112, but Givental’s bound [6] also computes to 104. The
previously known septic with the greatest number of nodes was the ex-
ample of Chmutov [2] with 93 nodes: Chmutov’s construction works for
any degree d. For d <5 and the even degrees d = 6,8,10,12 there are
examples exceeding Chmutov’s lower bound: [1], [4], [16]. These had
been obtained by using some beautiful geometric arguments based on
the idea to globalize the local equation of a node. This method goes back
at least to Rohn who constructed quartics with 8,9,...,16 nodes in the
19th century [15].

In the present note, we consider a family of surfaces depending on some
parameters which is based on Rohn’s construction and whose generic
member has 63 nodes. Given an explicit equation of a family of nodal hy-
persurfaces, there is in fact an algorithm in characteristic zero to find those
examples with the greatest number of nodes: We applied this succesfully in
[12], but we cannot use this technique in the present case because of
computer performance restrictions.

Here, we choose a more geometric approach to study the family:
The main obstacle towards the construction of the recent examples
which achieve the currently greatest number of nodes (d = 6,8,10,12)
was to have a good intuitive idea about the geometry of a potentially
existing surface. Our starting point is to replace this intuition by a
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computer search over all possible parameters over some finite fields of
prime order. Once we have found some examples of septics with many
nodes over these fields explicitly, we study their geometry and use
this to construct the corresponding septic in characteristic zero. The
99-nodal septic which we find in this way is the first surface of odd
degree greater than 5 that exceeds Chmutov’s general lower bound.
Moreover, the idea to use the geometry of prime field experiments can
certainly be applied to many other problems in constructive algebraic
geometry.

I thank D. van Straten for his permanent motivation and many valu-
able discussions. Furthermore, I thank W. Barth for his invitation to Er-
langen which was a good motivation to complete this work. I thank S. Cynk
for helpful discussions. Finally, I thank St. Endra for discussions, moti-
vation and his Ph.D. thesis which is a great source for dihedral-symmetric
surfaces with many singularities.

1. The Family

Inspired by many authors (see in particular: [15], [1], [3], [4]), we look
for septics with many nodes in P?(C) within a 7-parameter family of sur-
faces So, ay,..0r =P — Uqy g,...0; Of degree 7 admitting the dihedral sym-
metry D7 of a 7-gon:

pP.=25. H_?:O [cos (@)x + sin (@)y — z]

=x- (28 -3 T-a'? +5-T-2y* — 79

+7-2- [(902 +y2)3723 22 (902+y2)2+24 FCa +y2)} —20.27,
Uns a0 =2+ a5m) (a12° + 22w+ agzu? + age® + (agz + anw)@® + 1)°.
P is the product of 7 planes in P*(C) meeting in the point (0: 0: 0 : 1)
and admitting D7-symmetry with rotation axes {x =y = 0}: In fact, P is
invariant under the map y+— —y and PN {z =2y} is a regular 7-gon for
zo # 0. U is also Dr-symmetric, because x and y only appear as a2 + 3.
A generic surface S has nodes at the 3 - 21 = 63 intersections of the
(3) =21 doubled lines of P with the doubled cubic of U. We are
looking for parameters az,ag, ..., ar, s.t. the corresponding surface has
99 nodes.
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As Su .0/ (@Y, 2, AW) = Sal‘MZJzag,iga“’%’aﬁ’m?(907y7z,w) Vie C*, we
choose a7 := 1. Moreover, experiments over prime fields suggest that the
maximum number of nodes on such surfaces is 99 and that such examples
exist for ag = 1. As we are mainly interested in finding an example with 99
nodes, we restrict ourselves to the sub-family:

S =84, 0205000511 = P — Usy a5.05.04.051.1-

Some other cases, e.g. ag = 0, also lead to 99-nodal septics (see [13]).

2. Reduction to the Case of Plane Curves

To simplify the problem of locating examples with 99 nodes within our
family S, we restrict our attention to the {y = 0}-plane and search for
plane curves S |y:0 (we write S, for short) with many nodes. This is moti-
vated by the symmetry of the construction:

LEMMA 1 (see [3]). A member S = Sy, as,05.01.05,11 Of our family of sur-
faces has only ordinary double points as singularities, if 1:1:0:0)¢ S
and the surface does only contain ordinary double points as singularities
wn the plane {y = 0}. If the plane septic S, has exactly n nodes and if ex-
actly n., of these nodes are on the axes {x =y = 0} then the surface S has
exactly My + 7 - (n — ngy) nodes and no other singularities. Each singu-
larity of S, which is not on {x = y = 0} gives an orbit of T singularities of S
under the action of the dihedral group Ds.

ProOF. Because of the D7-symmetry of the construction, we only have
to show that there are no other singularities than the claimed ones. It is
easy to prove (see [3, p. 18, cor. 2.3.10] for details) that any isolated sin-
gularity of S which is not contained in one of the orbits of the nodes of S,
would yield a non-isolated singularity which intersects the plane {y = 0}.
But this contradicts the assumption that the surface S does only contain
ordinary double points on {y = 0}. O

So, we first look for septic plane curves of the form S, with many nodes,
then we verify that these singularities are indeed also nodes of the surface.
Via the lemma, we are then able to conclude that the surface has only
ordinary double points. In order to understand the geometry of the plane
septic S, better we look at the singularities that occur for generic values of
the parameters. First, we compute:
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P|y:0:x7+7-x62—7~23-x4z3+7~24-x2z5—26-z7
(x—2)
-

. (904—(—/))z)2 . (2x+(p2+4p)z )2 . (290+(—p2—2p+8)z)2,
=L =:Lo =:L3

2
Ul,—o =@+ asw)( & + w)a? + a12° + as2”w + aszw” + a0’ )",
—C

where p satisfies:
(2) PP+ 227 —22p —23 =0,

The three points Gj; of intersection of C with the line L; are ordinary
double points of the plane septic S, = P|y:0 -U |y:0 for generic values of
the parameters, s.t. we have 3 - 3 = 9 generic singularities (see fig. 1).

Sy,l

Fig. 1. — The three doubled lines L; and the doubled cubic C intersect in 3-3 =9
points G;;. These are the generic singularities of the plane septic S,,.

3. Finding Solutions over some Prime Fields

By running over all possible parameter combinations over some
small prime fields I, using the computer algebra system SINGULAR [§],
we find some 99-nodal surfaces over these fields: For a given set of
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parameters ap,dg,...,as, we can easily check the actual number of
nodes on the corresponding surface using computer algebra (see [7,
appendix A, p. 487]).

As indicated in the previous section, we work in the plane {y =0}
for faster computations. It turns out that the greatest number of nodes
on S, is 15 over the small prime fields I¥,, 11 <p < 53: See table 1 on
the next page. The prime fields [), 2 <p <7, are not listed because
they are special cases: These primes appear as coefficients or exponents
in the equation of our family. In each of the cases we checked, one of
the 15 singular points lies on the axes {x = 0}, such that the corre-
sponding surface has exactly 14 -7+ 1 = 99 nodes and no other singu-
larities.

4. The Geometry of the 15-nodal septic Plane Curve

To find parameters ai,ag,...,a; in characteristic 0 we want to use
geometric properties of the 15-nodal septic plane curve S,. But as we do
not know any such property yet, we use our prime field examples to get
some good ideas:

OBSERVATION 1. In all our prime field examples of 15-nodal plane
septics Sy, we have:

1) S, splits into a line Sy and a sextic Sye: Sy =Sy1-Sys. The
plane curve Sy¢ of degree 6 has 15 — 6 =9 singularities. Note that this
property is similar to the one of the 31-nodal Ds-symmetric quintic in
P3(C) constructed by W. Barth: See [3, p. 27-32] for a description.

The line and the sextic have some interesting geometric properties (see
fig. 3):

2) Sy1 N Sys = {R, Gy, Gaj,, G35, 01,02}, where R is a point on the
axes {x = 0} and the Gy, are three of the 9 generic singularities Gi; of Sy,
one on each line L;, and O1,O2 are some other points that neither lie on
{x = 0}, nor on one of the L;.

3) The sextic Sy has the six gemeric singularities Gy, (4,5) €
{1,2, 3}2 \ {(1,41), 2,752),3,53)}, and three exceptional singularities:
E\,Es,Es.

In many prime field experiments, we have furthermore:

4) In the projective x,z, w-plane, the point R has the coordinates
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(0:—1:1), s.t. the line Sy 1 has the form Sy1: 2 +t-x+w = 0 for some
parameter t (see also table 1).

The other cases (R=(0:c:1),c# —1) lead to more complicated
equations and will not be discussed here.

TABLE 1. A few examples of parameters giving 15-nodal septic plane curves (and
99-nodal surfaces) over prime fields.

Field ay as as ay as Sy o

i 2 3 5 2 -5 zZ=x—w o=—3
9 -7 -2 7 1 8 z2=8c—w a="17

Fig 2 0 1 7 z2=9¢ —w o=—4
Fig 5 -9 7 -3 -1 z2=20—w o=—3
Fog -5 11 10 1 7 2=—-9¢r—w =2
Fsy -15 | =13 -5 13 -10 2=—2c—w o=—13
gy 1 -2 14 -9 11 z2=1bx —w o=—11
gy 14 -10 | =13 | =14 | -11 z=—13v—w o=-"
Fys -11 15 0 -13 -6 z2=—6xr—w a="T

Fys 20 16 -1 -14 10 2=—-12x —w o=14
Fag -9 3 -3 -11 5 2=18¢ —w o=—21
Fs3 -8 20 14 18 11 2 =2bx —w a=4

53 -2 -10 | =14 | -26 16 z2=—9¢r—w o=24

53 10 25 -4 22 25 z=—16x —w o=25

Using this observation as a guess for our septic in characteristic 0, we
obtain several polynomial conditions on the parameters. Using SINGULAR
to eliminate variables, we find the following relation between the para-
meters a4 and ¢:

3) t-(a?+1)°+t—1=0,

=0

which can be parametrized by «: t = —ﬁ7 ay = (1 + 02) — DA + o2)%.
Further eliminations allow us to express all the other parameters in terms
of oz

ay = o’ +T70° — ot + 70 — 202 — To — 1,

as = (o2 + 1)Bo® + 140 — 302 + 7o — 3),

az = (02 4+ 1*(3% + 7o — 3),
s = 1402
5= "2 -
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5. The 1-parameter Family of Plane Sextics

Once more we use our explicit examples of 15-nodal septic plane curves
over prime fields to finally be able to write down a condition for « in
characteristic 0.

First, note that we can now easily obtain the equation of S, ¢ by dividing
the equation of our septic curve S, by the equation of the line
Syi=z+te+w==z- 1+1a290 +w. Sy, 6 is a sextic which has 6 nodes for
generic «, but should have 9 double points for some special values of .. One
idea to determine these particular values is to find a geometric relation

between the 6 generic singular points and the 3 exceptional ones.

5.1 — Three Conics

Looking at the equations describing the singular points of our examples
of 9-nodal sextics S, ¢ over the prime fields, we see the following:

OBSERVATION 2.  For all our 9-nodal examples of plane sextics over
prime fields, there are three cowics through six of these points each (see

fig. 2):

Fig. 2. — Three conics relating the 9 double points of the sextic S, 4. E1, Es, and Ej
(black) are the exceptional singularities (i.e. they do not lie on one of the lines L;,
see fig. 1). The white points are the generic singularities, coming from the
intersection of the doubled cubic C with the three doubled lines L;.
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1) one conic Cy through the 6 generic singularities,

2) one conic Cy through the 3 exceptional singularities and 3 of the
generic ones,

3) one conic Cy through the 3 exceptional singularities and the other
3 generic ones.

Moreover, over the prime fields the three conics have the following

properties:

4) Cy has the form:
(4) Cr: o® + k2% + (k + Dzw = 0,
where k is a still unknown parameter. In particular, C; is symmetric with
respect to & +— — x and contains the point (0 : 0 : 1).

5) Cy intersects the other two conics on the {x = 0} -axes (see fig. 2 on
the preceding page):
(5) X1:=C()ﬁclﬁ{x=0}, Xg::CoﬂCzﬁ{x:O}.

To determine the new parameter k in equation (4), we will use (5). We
compute the two points of Cy on the {x = 0}-axes explicitly using SIN-
GULAR: First, the ideal Igj’z describing the six generic singularities of Sy ¢
can be computed from the ideal Ige” := (C, L1L3yLs) describing the 9 gen-
eric singularities of S, by calculatlng the following ideal quotient:
Ige" = Ige" : Sy1. Now, the equation of Cy can be obtained by taking the
degree-Z—part of the ideal I%™":

Co : oae® + (03 + 5o — Dacz + (o +a — Dacw
(6) (0 + 603 — 02 + a0 — 1)22 + (20° + 80 — 202 + 60 — 2)zw
+(@+208 -2 +a—Du? =0.

2(e5 4603 —02+o—1)

Thus, {P*,P~} :=Cyn{x =0} = {(0 ; 243 DA+ 1) }, where

(7) By = 160(205 + 403 — o2 + 20 — 1).

C; intersects the {x = 0}-axes in exactly two points: (0: 0: 1) and Xj.
Hence, we can determine the two possibilities for the parameter
k € Q(a, f()) in equation (4) for C;: Together with the z and w-coordinates
of the points P*, C; N {x = 0} = {kz(z +w) + 4zw = 0} leads to the fol-
lowing two possibilities:

+

N —4P;
(8) Ci: Pii(Pi Jr1)z(z+w)+4zw 0.
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5.2 — The Condition on «

The equations of the conics Cy and C; will allow us to compute the
condition on ¢, s.t. the sextic S, ¢ has 9 singularities, using the following
(see observation 2 and fig. 2):

e () intersects the three doubled lines L; exactly in the six generic
singularities.

e () intersects the three doubled lines L; exactly in three of these six
generic singularities and the origin (which counts three times).

Thus, the set of z-coordinates of the three points (Ci N LiLoLs) \
{(0:0: 1)} has to be contained in the set of z-coordinates of the six points
Co N LiLyLs. This means that the remainder q of the following division
(res; denotes the resultant with respect to x)

1
(9) resy(Co, L1L2L3) = p(2) - (2—3 -resy(Cr, L1L2L3)> +q@)

should vanish: ¢ = 0.

Syﬁ

Fig. 3. - The 15-nodal plane septic S,

Yag

= S:I/«h[\, . Sj,,ﬁyR (see (11)); the singularities of
the sextic Sy.% are marked by large circles: The three exceptional singularities
E), E,, E5 are marked in black, the generic singularities in white. The five left-most
nodes are real isolated ones. Only five of the six intersections of the line 5, and
the sextic Syﬁik are visible because we just show a small part of the whole (z, 2)-plane.
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As the degree of the remainder is deg (¢) = 2, this gives 3 conditions on
o and f(«), coming from the fact that all the 3 coefficients of q(z) have to
vanish. It turns out that it suffices to take one of these, the coefficient of 22,
which can be written in the form c(x) + f(o)d(«), where c(o) and d(x) are
polynomials in Q[«]. As a condition on « only we can take:

cond(@) := (¢(@) + f)d(@)) - (c(@) — fd(@) € Ofal,

which is of degree 150.

This condition cond(x) vanishes for those o for which the corresponding
surface has 99 nodes and for several other «. To obtain a condition which
exactly describes those o we are looking for, we factorize cond(x) =
fi-for-fi (e.g., using SINGULAR again). Substituting in each of these fac-
tors our solutions over the prime fields, we see that the only factor that
vanishes is: 7o + 7o+ 1 = 0.

6. The Equation of the 99-nodal Septic

Up to this point, it is still only a guess — verified over some prime fields
— that the values « satisfying the condition above give 99-nodal septics in
characteristic 0. But we have indeed:

THEOREM 1 [99-nodal Septic]. Let o € C satisfy:
(10) T +Ta+1=0.

Then the surface S, in P3(C) of degree T with equation S, := P — U, has
exactly 99 ordinary double points and no other singularities, where

Pi=x-[a°—3-T-a'y* +5-7-2%y" — 7-9°]
+7-2- {(xz + y2)3—23 (o 4 B) 2t (R yz)] — 2627,
U, =z + azw)((z + w)@® + y®) + a12® + agz®w + agzw® + a4w3)2

)

12, 88 8 32 , 24

ay 12—7{)( 490(—5, ag 12_705 +4_9OC—4,
24 8 8 8

= —4 2 —_— —4 = 2 rS T
ag o +490( a4 7oc +49a R

a5 = 4902 — 7o + 50.
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There is exactly one real solution ar € R to the condition (10),
(11) AR ~ —0140106857

and all the singularities of Sy, are also real.

Proor. By computer algebra. The total tjurina number (i.e., 99) of S,
can be computed as follows:

ring r = (0, alpha), (x, y, w, z), dp; minpoly = 7*alpha” 3 + 7*alpha + 1;
poly S_alpha = ...;

ideal sl = jacob(S_alpha); option(redSB); sl = std(sl);

degree(sl); /Il gives: proj. dim: 0, mult: 99

Using the hessian criterion, we can check in a similar way that the
singularities are all nodes:

matrix mHess = jacob(jacob(S)); ideal nonnodes = minor(mHess,2), sl;
nonnodes = std(nonnodes); degree(nonnodes); /I gives: proj. dim: -1

See [11] for the complete SINGULAR code and for more information
which may help you to verify the result by hand. Using the geometric
description of the singularities of the plane septic given in the previous
sections, it is straightforward to verify the reality assertion (see fig. 4 for a
visualization). O

7. Concluding Remarks

The existence of the real ag allows us to use the program SURFEX [9]
(which uses SURF [5]) to compute an image of the 99-nodal septic S,,
(fig.4 on the following page). When denoting the maximum number of
real singularities a septic in P](R) can have by xR(7), we get, with the
remarks mentioned in the introduction:

COROLLARY 2.

99 < uf(7) < w(7) < 104.

Note that the previously known lower bounds were reached by
S. V. Chmutov (93 complex nodes: [2]) and D. van Straten (84 real nodes: a
variant of Chmutov’s construction using regular polygons instead of fold-
ing polynomials).
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Fig. 4 — A part of the affine chart w = 1 of the real septic with 99 nodes, see [11] for
more images and movies.

As it can be computed using deformation theory and SINGULAR that the
space of obstructions for globalizing all local deformations is zero — this is
based on ideas of D. van Straten, details will be published elsewhere — we
obtain:

COROLLARY 3. There exist surfaces of degree 7 in P*(R) with exactly k
real nodes and no other singularities for k=0,1,2,...,99.

Recently there has been some interest in surfaces that do exist over
some finite fields, but which are not liftable to characteristic 0. The re-
duction of our 99-nodal septic S, modulo 5 (note: 1 € I'5 satisfies (10):
7-13 +7-1 + 1 = 0 modulo 5) neither gives a 99-nodal surface nor a highly
degenerated one as one might expect because the exponent 5 appears
several times in the defining equation. Instead, we can easily verify the
following using computer algebra:

COROLLARY 4. For as := 1 € 5 the surface S,, C P*(I's) defined as in
the above theorem has 100 nodes and no other singularities.
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Of course, not all the coordinates of its singularities are in 5, but in
some algebraic extension. The septic has similar geometric properties as
our 99-nodal surface; in addition it has one node at the intersection of the
{x = y = 0} axes and {w = 0}. Until now, we were not able to determine if
this 100-nodal septic defined over I5 can be lifted to characteristic zero.

We hope to be able to apply our technique for finding surfaces with
many nodes within families of surfaces to similar problems. E.g., it should
be possible to study surfaces with dihedral symmetry of degree 9 and 11
with many ordinary double points using the same ideas. Another applica-
tion could be the search for surfaces with many cusps. We already studied
families of such surfaces succesfully using computer algebra in simpler
cases [12].
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