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On the Greatest Prime Factor of Markov Pairs.

PIETRO CORVAJA (*) - UMBERTO ZANNIER (**)

1. Introduction.

Markov triples appear in several contexts of elementary Number-
Theory. They are defined as the solutions (x,y,2) to the remarkable dio-
phantine equation

e 2% + 9% 4 22 = 3uyz, x,Y,%z positive integers.

The coefficient 3 here is particularly relevant. In fact, by the descent
procedure to be recalled below, one may show the following, on replacing 3
with a positive integer coefficient k: for k = 1 we reduce to k = 3 after
observing that necessarily «, ¥,z must all be multiples of 3; for k¥ = 2 one
finds that a possible solution must have all even entries, and we reduce to
k = 4; finally, for k > 4 there are no solutions (so in fact there are no so-
lutions for k = 2 as well).

The equation on the left of (1) defines an affine surface X which admits a
group I of automorphisms generated by the permutations on «,y,z and
the involution (x,y,2)— (x, ¥y, 3xy — 2). (This comes on viewing the equa-
tion as a quadratic in z; since the sum of its roots is 3y, if 2 is a solution, so
is also 3xy — 2y.)

Naturally I" acts on the set of positive integer solutions, and it may be
shown (see [C] or [M]) that there is a single orbit. This follows by the
descent alluded to above: one proves that, by applying the involution after
suitable permutation of the coordinates, the maximum absolute value of
the entries descreases until we reach the solution (1,1, 1).

It is relevant in the remarks of §4 that these transformations preserve
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the ged of the entries, so this ged is always 1. We also note that this orbit is
Zariski-dense in X. (%)

These triples appear in the theory of continued fractions and there are
many amusing open problems among them; for instance see [W, Conj. 1.9].

The numbers which occur in some triple are called Markov numbers. It
is a question on their arithmetical properties whether the greatest prime
factor of a Markov number tends to infinity; in other words, are there
mfinitely many Markov numbers which are S-units, for a prescribed fi-
nite set S? We have not an answer to this; however if we look at Markov
numbers in the ring of integers of number fields other than @ the answer is
YES (see §4 below, over the Gaussian integers).

On the other hand we can look at Markov pairs, namely pairs of co-
ordinates from some solution; and we can ask whether there are infinitely
many Markov pairs of S-units. These Markov pairs correspond to the S-
integral points for a certain affine surface which we shall later describe. A
well-known conjecture of Vojta (see [L]), applied in our very special case,
predicts now a set of solutions which is not Zariski-dense and from this one
may easily recover finiteness.

The purpose of this note is to prove this statement over Z. (In §4 we
shall point out possible generalizations to number fields.) We formulate it
in the following way:

THEOREM 1. The greatest prime factor of xy, for (x,y,z) a solution of
(1), tends to infinity with max (x,y, 2).

Plainly this is equivalent to the following: Let S be a finite set of prime
numbers. Then the equation x* + y* + 22 = Swyz has only finitely many
solutions with x,y,z € Z and x,y in the group of S-units.

In the next section we shall operate some simple transformations of the
equation and we shall relate the problems to Vojta’s conjecture. Also, we shall
formulate another theorem more general than Theorem 1. In §3 we shall give
the proofs and in the short §4 we shall briefly point out some remarks.

(") In fact, observe e.g. that by composing the automorphisms (x,y,z)—
—(x,y,3xy —2) and (x,¥y,2)— (x,30z —y,z) of I' one gets that (x,y,2)—
— (@, (922 — 1)y — 3wz, 3wy — 2) also lies in I'; for fixed integer « # 0 this has
infinite order, so if the orbit were contained in a fixed curve, the coordinate x
would have only finitely many possibilities; by simmetry the same would then be
true for y and z, a contradiction.
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2. Some reformulations.

Viewing (1) as a quadratic equation in z, if (x, ¥, 2) is an integral solution,
the discriminant 92%y* — 4(x® 4 %?) must be a square and conversely if this
is verified we may solve for z obtaining an integral solution. Therefore we
are led to the equation

2 2 = ax®y? + ba® + cy”

where a, b, ¢ are given nonzero integers (which in the above special case are
given by a =9, b =c = —4). This equation defines an affine surface
Y C an x Al: nameley we consider the solutions (x, y, t) to (2) with xy # 0.
We note that Y contains a finite number of so called special curves to be
described below. Each of these curves may contain infinitely many integer
solutions with x,y being S-units, depending on whether or not a,b,c,S
satisfy certain conditions.

First of all we have twelve special curves obtained by equating to zero
the sum of a pair of terms on the right side of (2); namely, they are the
inverse images with respect to the xy-projection of the linesy = +/—b/a,
x = ++/—c/a, Vbxr = +/—cy. These curves may contain infinitely many
integral points, provided certain obvious conditions on a, b, ¢ are satisfied.

Eight further special curves are obtained by varying the sign for t, after

. ab
setting y = +£2 \/C_x and ¥ = +2—— \/_ y? (after these substitutions the

right-hand side becomes the square of a binomial in a single variable).
Again, there may be infinitely many integral points for large enough S
(actually if and only if a is a square and b or c is a square).

With this description we have the following result, which will im-
mediately imply Theorem 1.

THEOREM 2. Let S be a finite set of prime numbers. Then the equation
(2) has only finitely many solutions with x,y integers in the group of S-
units, outside the special curves.

In particular, the set of integral solutions with S-units «,y is never
Zariski-dense in Y. See the final remarks for the fact that there may
be a Zariski-dense set of integral solutions such that either x or y is an
S-unit.

We pause to establish the alluded relations with Vojta’s conjectures on
integral points on general algebraic varieties. On dividing by %2 and setting
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2

u=ax*, v=ua/y, w=t/y, we find the equation

w—b¥—c=u

to be solved in S-units u, v and S-integer w. This corresponds to the search
of integral points for Py \ D where the divisor D is the sum of a conic and
two lines in general position; one of the lines is at infinity, the other one is
v = 0 and the conic has equation w? — bv? — ¢ = 0.

Vojta’s conjecture for this affine surface predicts a set of integral points
which is not Zariski-dense, working moreover with S-integer points over
any number field. We are not able to prove this for general rings of S-
integers; however here we may deal with the special case of the theorem,
namely restricting to rational integers. In the remarks of §4 we shall point
out how our arguments may be extended to cover some other situations. In
the same remarks we shall also prove the observation after Theorem 2,
namely that the integral points may be Zariski-dense (over suitable
number fields) if we drop the restriction that v be an S-unit. This corre-
sponds to the integral points for Py\(line + conic). The divisor to be re-
moved has now degree 3 so we fall out of the hypotheses for Vojta’s con-
jecture.

3. Proofs.

We shall follow a method introduced in [CZ1], which works on ex-
panding the square root of the right side of (2) by the binomial theorem. By
truncating the binomial series this provides a good approximation to ¢ if the
term ax?y? is “dominant” with respect to the other two terms. This ap-
proximation produces a small linear form to which the Subspace Theorem
may be applied. Here we shall have no need to repeat this argument since a
relevant lemma, to be recalled below, appears in [CZ2], as well as in the
booklet [Z].

If the alluded term is not dominant, either x or ¥y must be small com-
pared to the height of the point. But then we shall see that for a suitable
prime p € S there is a dominant term in the p-adic sense; this allows an-
other application of the lemma, for the p-adic topology.

This proof-pattern, namely using approximating forms with respect to
two different places, according to the relative sizes of «,y, appears in the
paper [CZ1] to deal with certain equations f(a™,y) = b" where f is a
polynomial and a, b are given integers which are not coprime.

As mentioned above, for the reader’s convenience, preliminary to the
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proof we repeat a lemma from [CZ2]; we denote by H(x) the usual pro-
jective Weil height of the vector x = (x1,...,2,), by Og the group of S-
units in @ and by v a fixed place in S.

LEMMA. Let o > 0. Let X be a set of points x = (x1, .. .,x,) € (OF)" such
that:
@ |e1], > (I?;azx\oqj|o)H(x)5.

(i) There exists y = yx € Q with x1 + ...+ x, = y2

Then X is contained in a finite union of algebraic translatesuH C G},
u € (0", HCG,, an algebraic subgroup, such that, for a P = Pyy €
€QIX{1,X,,....X,] and a y=y,z€Q we have X;+...+X, =

=X P(Xy,... ,Xn)z, as functions in QuH].

This is the case d = 2, K = Q of the Corollary at p. 78 of [CZ2]; see also
[Z], Thm. IV.5 and Cor. IV.6.

Proor or THEOREM 2. We first enlarge S to contain all the primes di-
viding abc. We may assume that 0 < x < y are S-units in Z satisfying (2).

We set n:= 4 #S)_1 and split the set of solutions (x,y) in two dis-
joint sets Ai, As, according respectively as x > y” or not. It will plainly
be sufficient to prove the theorem separately for these two sets of so-
lutions.

PROOF FOR THE SOLUTIONS IN A;. We apply the Lemma, with n = 3, to
the solutions (x,%) € A1, setting x; = ax®y?, x2 = ba®, x3 = cy®. Putting
0 := n/4, it is immediately checked that for all but finitely many solutions
we shall have |a;| > max (||, Jac5)) +; clearly it suffices to deal with these
solutions. The condition (i) of the lemma is satisfied with v the archimedean
place of Q.

In view of (2) we conclude by the lemma that for (x,y) € A; the set
(1,2, x3) is contained in a finite union of algebraic translates in an, with

the property in the statement. It will suffice to deal separately with each
translate. By the lemma, on such a translate we shall have an equation

3) ax®y? + ba? + ey = pyP Qe y)’,

for a suitable rational function @ € Q(X,Y) depending only on the trans-
late; if there is some corresponding solution of (2) we see that y is a square
and so we may take y = 1. Since a + bU? + ¢V? is not identically a square,
the equation (3) cannot hold identically, and thus represents a curve con-
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taining our S-unit points (x, ). This already proves that our integral points
are not Zariski-dense in Y.

By a well-known theorem going back to Lang (see e.g. [Z], Thm. I1.5
and Cor.) the Zariski closure in an of our set of S-unit points is a finite
union of algebraic translates. The 0-dimensional translates give rise to
finitely many points. The 1-dimensional translates containing infinitely
many solutions may be parametrized by x = au”, y = fu’, with coprime
integers r,s and nonzero rationals a, . Since our solutions x,y are sup-
posed to be integers we may assume that , s are non-negative and not both
Zero.

Since each relevant translate must be contained in the curve defined by
(3), we have an identity

o+ ﬁ%uzs + %u*%’ = Ry
for a suitable rational function B € @(u). Taking into account all the pos-
sibilities when rs = 0 we easily recover eight of the twelve curves described
above. If s £ 0, a first case occurs with » = s = 1, and we recover the re-
maining four of the twelve alluded curves; if rs > 1, it is an easy well-known
matter to check that r, s are 1, 2in some order so that finally we find that, for
some rational &, either a + bT + cE2T% ora + ¢T + b2 T2is a perfect square
in Q(T) and we find the remaining four special curves.

PROOF FOR THE SOLUTIONS IN Ay. Since ¥ is an S-unit, there exists a
prime power p” dividing y exactly, with p € S and p” > yV/#5 = y# > 24,
We apply the lemma, this time with v equal to the p-adic valuation and
x1 = ba?, xo = cy?, x3 = ax’y?. Assumption (i) is verified for large x, with
d=1/5#8: in fact, |a1|, > [ba?| " > 24, whence max(|2z|,|rs],) <
<p < |c1]|,p~" and the result follows because of our choice for p”.

The lemma leads to an equation entirely similar to (3), namely

3" (mzyz +ba® + cyz = yaczQ(x, y)z.

The same discussion of the preceding case completes now the proof of
Theorem 2.

Proof of Theorem 1. We have already noted that an integer solution of
(1) leads to an integer solution of (2), with the same «,y, where a =9,
b = ¢ = — 4. In view of Theorem 2 it is sufficient to observe that the special
curves do not contain integral points, an easy verification which we leave to
the interested reader.
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4. Final remarks.

The above proof does not extend to general number fields; in fact in
general one cannot guarantee a priori the existence of a “dominant term”
among x%y2, x2, %%, no matter the choice for the absolute value. However, a
dominant term must exist if there is a single archimedean place, so the
same argument as above works for integer solutions over an imaginary
quadratic field.

We finally note that if we only impose that x (or ) is an S-unit, there are
cases in which equation (2) has a Zariski-dense set of solutions. Suppose for
instance that ¢ = h? is a square in K. Taking y to be an integer and (u, v) to
be a solution of the Pell’s type equation

u?— M =1, A=ay®+0b,

we find a solution of (2) by ¢ = uhy, x = vhy. Producing solutions of the
Pell’s equation yields a Zariski-dense set of integral solutions of (2), with y
an S-unit, for instance in the case K = @ and c a perfect square.

For equation (1), we have ¢ = —4, so this procedure gives a Zariski-
dense set of integer solutions with S-unit ¥, over the Gaussian integers.

This argument also shows that P\ (line + conic) has a Zariski-dense set
of S-integral points for sufficiently large number field and finite set S of
places.

An equation slightly more general than (2) is 2 = ax?y® + ba’+
cy? + d; see e.g. [M, Ch. 13]. Our method does not apply to this equation
for d # 0. The solutions in polynomials over a given field have been in-
vestigated in [SZ].

We remark that if we are interested in the solutions to these equations
with x,y in the group of S-units, then we may forget about the squares
(because of finite generation) and replace the equation with 2 = auv + bu +
+cv+d.

Added in proofs: the Markov equation over number fields has been the
object of recent investigation. See for instance the paper by J. Silverman:
«The Markoff equation X2 + Y2 + Z% = aXYZ over quadratic imaginary
fields», Journal of Number Theory 35 (1990), 72-104 or the paper by A.
Baragar «The Markoff-Hurwitz equation over number fields», Roky
Mountain Journal of Mathematics 35 (2005), 695-712.

We are grateful to Prof. Silverman for informing us about these re-
ferences.
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