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On a Variational Theory of Image Amodal Completion.

SIMON MASNOU (¥) - JEAN-MICHEL MOREL (¥*)

ABSTRACT - We study a variational model for image amodal completion, i.e., the
recovery of missing or damaged portions of a digital image by technics inspired
by the well-known amodal completion process in human vision. Representing
the image by a real-valued function and following an idea initially proposed
in [32], our approach consists in finding a set of interpolating level lines which is
optimal with respect to an appropriate criterion. We prove that this method is
theoretically well-founded and we show the equivalence with a more classical
approach based on a direct interpolation of the function.

1. Introduction.

Digital images can be represented as gray level functions u(x,y) de-
fined on a simple open subset of R? (usually a rectangle) called “image
domain”. Of course, digital images are given as a discrete set of samples,
but there are standard interpolation methods to get back to a smooth
image, e.g. a trigonometric polynomial by Shannon interpolation (also
called zero-padding [39]). There is no substantial difference between di-
gital images and what we know of retinal images as rough data: in both
cases, images are band-limited by an optical device and then sampled on a
grid. So most questions in visual perception theory are easily translated
into “computer vision” problems. This opens the way to a mathematical
formalization and numerical experiments.

We shall deal in this paper with the counterpart in image processing of
the “amodal completion” phenomenon that arises in human vision. This
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phenomenon has been widely studied by the phenomenologist Gaetano
Kanizsa [28], who tried to give a consistent answer to one of the major
enigmas of visual perception. Its understanding starts with the straight-
forward observation that the objects that we see in all day life are partially
occulting each other, so that we only see parts of them. Georges Matheron
[33] actually proved that, under a simple and realistic stochastic model of
object occultation, the so called “dead leaves model”, we only see half of the
objects in sight. To be more explicit, in any all day life image or photo-
graph, whenever we distinguish some object, we only see, on the average,
half of it. Mathematically precise versions of this statement can be found in
the aforementioned book and in [25, 1]. So we only see (significant) pieces
of all shapes we perceive, but these pieces change constantly according to
our position with respect to all objects present in the scene. Our percep-
tion, however, does not even notice this problem: we perceive objects as
though they were complete. The mechanism of this visual illusion was
formalized by Kanizsa who formulated two geometric laws, under the
names of “amodal completion” and “good continuation”.

The amodal completion principle applies when a perceived curve stops
on another perceived curve, entailing the perception of a “T-junction”. The
stopped curve is the leg of the T and the other curve is represented by the
horizontal bar of the T. In such a situation, our perception tends to in-
terpret the interrupted curve as the boundary of some object undergoing
an occlusion. The leg of the T is then mentally extrapolated and, whenever
possible, connected to another leg in front. This fact is illustrated in figure
1 and is called “amodal completion”. The connection of two T-legs in front
obeys the “good continuation” principle, according to which the re-
constructed amodal curve must be similar to the pieces of curve it inter-
polates (same direction, curvature, etc.)

In figure 1 we see first four black butterfly-like shapes. By superposing
to them four rectangles, the butterflies get amodally completed into disks.
By adding instead to the butterflies a central white cross, the butterflies
contribute to the perception of an amodal black big square. In all cases, the
reconstructed amodal boundaries obey the good continuation principle,
namely they are as homogeneous as possible to the visible parts (circles in
one case, straight segments in the other case).

The work of Kanizsa and his collaborators was directed at proving that
this completion mechanism can be fully formalized as an automatic geo-
metric mechanism that we will call “amodal completion algorithm”. An
amodal completion algorithm proceeds as follows: given a homogeneous
gray level or color region Q bounded by a smooth Jordan curve, it detects
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Fig. 1. — T-junctions entail an amodal completion and a completely different
interpretation of the image.

“T-junctions”, namely points of 9Q at which other contours stop, thus
forming a typical T-shaped singularity. The leg of the T is understood as
the boundary of some object in back, while the upper bar of the 7" is un-
derstood as the occulting contour. For instance, in the case of figure 2, the
boundary of the disk stops on the boundary of the square, thus forming two

Fig. 2. — A square above a disk seen by amodal completion: Kanizsa showed that the
T-junctions were crucial for the perception of a full circle where only an arc of circle
is actually present in the image.
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T-junctions. The amodal completion phenomenon happens whenever two
T-junctions turn out to face each other: in that case, both legs of both
junctions tend to be perceptually connected by a “good”, smooth curve.
How to decide the shape of this interpolating curve ? Several models have
been proposed (see an exhaustive review in [24]); most suggest more or
less explicitly that the interpolating curve must offer a compromise be-
tween the good continuation of the visible edges and the length minimality.
In other words, the curve must be as smooth and as short as possible. A
generic enough model proposed in [35, 36] defines the completion curves as
minimizers of the Euler elastica energy

L)

EG) = / (a+ 3" (s)) ds,
0

given the positions of the extremities and the associated tangent vectors.
Here, a is a positive parameter and y is a parameterization by length of the
curve so that |y/(s)] = 1 a.e and »"(s) coincides with the curvature. By ex-
tension, one can define the completion curves as minimizers of the more
general energy

L)
M B)) = [ @+ 1/Pe)ds,

0

where a > 0 and p > 1. There is no particular reason to choose one value or
another for the parameters a, p because they are highly context-depen-
dent, i.e., they depend on the position of T-junctions, the edge orientation,
the convexity of the shape, ete., see [24, 37]. Since all results below are
valid for any a > 0, there is no loss of generality to let a = 1.

Let us see now how Kanizsa’s amodal completion principles can be
translated into an image processing framework — we shall speak of image
amodal completion — and can be used to tackle the problem of re-
covering missing parts in an image. This approach was initially devel-
oped in [32, 29, 30], following a previous work of Mumford and Nitzberg
in a different context [36]. We shall present here a mathematical ana-
lysis of the image amodal completion problem that completes the results
obtained in [32, 29, 30, 4].

Let us first proceed to some mathematical notation. The occlusion shall
be represented as an open, bounded and simply connected subset 2 c R?
with C* boundary. For the sake of simplicity, the original image u, is
supposed to be known on R® \ Q2 but one could as well assume that it is



On a variational theory of image amodal completion 215

known only on Q\ @, where Q 5> Q is open, bounded and has Lipschitz
boundary. In addition, let us assume that u, is the trace on R? \ 2 of an
analytic function Uy of BV(RZ). This regularity assumption finds a rather
natural justification in Shannon interpolation theory but is of course much
stronger than the only Uy € BV(R?) that has been used in recent years to
model the image geometry (see the excellent discussion on this topic
in [34]). We actually make this assumption to simplify the proofs but it is
worth noticing that the existence of an optimal solution to the image
completion problem, as stated in Theorem 2, can be proved as well under
the weaker hypothesis that U, € BV(R?).

Our second assumption on Uy is F'(Uj) < +oo where the functional 7,
whose link with the mean curvature of sets has already been examined
in [6] in the context of I"-convergence, is defined as:

/ V|1 + |div(ﬂ)\i’)dx if u € CA(R?%)
|Vul
Fu):={ 5
+00 if u € LY(R%)\ CA(R?),

with the convention that the integrand is zero wherever |Vu| = 0. Be-
fore justifying the use of this energy, recall a well-known property of
the curvature along level lines, namely that for almost every ¢t € R and
for every x € {u =t}, the curvature x(x) of the level line {u =t} at «
satisfies

. Vu
Kx(x) = dlvw(x).

From this and a call to the change of variables formula, one gets that for
any u € C3(R?)

+o0
Fu) = / / (A + [x")dH )
-0 QNo{u>Ai}

when both terms are finite. This leads to define a broader version of F' as

+00
(2) Fu) = / / A + |x[")dH da,
-0 Qna{u=i}
this definition making of course sense only when, for almost every level 4,

the restriction to Q of the level lines are a countable set of smooth enough
curves.
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Fig. 8. — Two T-junctions and a possible amodal completion.

The regularity assumption F(Uy) = F(Uyp) < oo implies that for almost
every /€ R, E(0{Uy > A} N Q) < oo, thus the level lines of U, have a
“good continuation” behavior.

Following the model proposed in [32, 30], we can reinterpret Kanizsa’s
amodal completion in a functional framework, where all missing level lines
of the image wy = U 0|-R2\Q have to be interpolated inside Q2 according to the
good continuation principle. To this aim, let us call “T-junction” every
point x € 92 where VU, does not vanish, which means that there is a level
line passing by . Let us parameterize the trace of this line on R? \ @ near
x as yN(t), t € [ — &, 0], with y1(0) = «. This is a first 7-junction leg. This leg
has to be matched to another one of the same level and arriving elsewhere
at some y € OUy. Let us denote as y?(t), t € [1,1 + ¢], with y2(1) = y this
second one and assume that both T-junctions are compatible, i.e.
det(VUy(x), »1)'(0)) and det(VUy(y),(3?)(0)) have the same sign (see
figure 3). This compatibility condition is necessary to ensure that we will
not reconstruct a “twisted” level line that could not be considered as the
level line of a function. Our problem is to connect y! with }* by a smooth
curve y: [0,1] — Q, with the condition that the concatenated curve
y:te[—e 14 ¢] — H(t) coinciding with 9! on [ — &, 0], with y on [0, 1] and
with 92 on [1,1 + ] is in W2P( — ¢,1 + ¢) or, equivalently, that E(7) < co.

We finally define an amodal completion as a set of interpolating curves
v, associated with almost every T-junction x on 0Q. Each y, joins a
junction x to a junction y (so that Uy(x) = Uy(y) and, up to a repar-
ameterization, y, = y,). The interpolating curves must fill some require-
ments making them fit to become level lines, namely
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e VUjy(x) and VUy(y) have the same orientation along the curve y,
(see figure 3);

e if y, arrives at y, the curves y, and y, coincide up to repar-
ameterization;

e two curves y, and y, can meet only tangentially and never cross
each other, i.e., at every point of intersection there exists a neighborhood in
which y, and y, form an upper graph and a lower graph (see figure 4);

e a curve y, may have self-intersections but only tangentially and
without crossing; in addition, y, may touch 02 out from x and y but only
tangentially (see figure 4).

Fig. 4. - y, and y, intersect tangentially without crossing; y, self intersects
tangentially without crossing, and also intersects 92 tangentially. For clarity, 7,
is shown decomposed into two arcs.

We call D the set of all amodal completions of Uy inside Q. With each
curve y, of an amodal completion is associated a gray level Uy(x) and the
non crossing constraint makes the curves y, fit to be level lines of a function
u, that shall be called the amodal completion of Uy inside Q. There is a
standard way to construct such a function u, inside £ from y, so that all
level lines of u are contained in a countable or finite union of curves y, (see
Theorem 1). The fact that there is not necessarily identity between level
curves of the reconstructed w, and the y, is illustrated in figure 5, where
two level lines of the same level coincide on some interval. Since the piece
of curve where they coincide shows no contrast, the reconstructed function
u, loses this part of the level curve. This possibility that a singularity is
created was pointed out in [7] and shall be called the curve gluing phe-
NOMENON.
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Q uY

Fig. 5. - The gluing phenomenon: the curves y,, 7, of an amodal completion and the
level lines of the associated function u, may have totally different structures.

Introducing the measure y := |[VUy|H! L 02, the energy of the amodal
completion is defined as the sum of all energies of all interpolated level
lines, namely,

€)= / EG,)du),
oR

where E(y,) has been defined above in (1). The factor % recalls that we

count the energy twice, since E(y,) = E(yy) when x and y are two matching
T-junctions. A numerical theory and experiments for minimizing £ when
p = 1 was developed in [29]. In that case, an absolute minimum was the-
oretically and computationally attained. Actually there are two kinds of
numerical theories dealing with the same problem, namely the ones which
minimize either F'(u) or F(u) and the ones which minimize £(y). Now, the
gluing phenomenon explains why it may be expected that sometimes

3) EG) £ Flu,).

We shall prove, however, that with any amodal completion y and for every
h € N* we can associate a function u,; so that u,;, = Uy outside £,
l|loe, — uMHLl(Q) < 1/h and |E(y) — F(u, ;)| < 1/h (see Lemma 7).

All the same, (3) suggests that we cannot just solve the amodal com-
pletion problem by looking for % minimizing F(u) with the constraint
u = Uy on R?\ Q. Indeed, there is not necessarily a solution to either
problems

(4) min  F(u).
u=Uy on IRZ\Q

or

(5) min _ F(uw).

u=Up on R\Q
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We shall instead prove that there is a solution to

(Py) min £(y)
yeD

The fact that (4) and (5) are ill-posed led the authors of [4] to adopt a
slightly different strategy which is very classical in the calculus of varia-
tions. First, in order to incorporate an explicit reference to the good con-
tinuation requirement, they define the energy on a domain slightly bigger
than Q. More precisely, given an open and smooth subset Q such that
Q oD Q, the authors consider the energy F¢ defined by

Vu
[Vu| <1 + |div <—)
Fe(%) _ Q/ ‘V/M/|

+00 if u € L(R?)\ C*(R?)
with the convention that the integrand is zero wherever |Vu| = 0. The
minimization process is not performed directly on F¢, for the same reason

why (5) is ill-posed, but rather on the lower semicontinuous envelope F¢ of
F® whose sequential definition is (see [19])

P
)dac it uw e C3(R?)

Fe(u) := inf{li}rbniane(uh) -y, — u in LI(RZ)}.

Then it is proved in [4] that the problem
min  Fe(u)
u=Uy on RZ\Q
is well-posed.

We should work with a different definition of the relaxed functional
associated with F' in order to reintroduce the good continuation require-
ment that does not appear in F'. Given a function u € LI(R2) that coincides
with Uj outside 2, we define

F(u) := inf {lim inf F(;) = w, — w in LY(R?), w;, = Up on R?\ Q}

Of course, this relaxed functional is still the largest lower semicontinuous
functional less than F', when restricted to the class of functions that coin-
cide with Uy outside Q. Under the crucial assumptions that Uy is smooth
and F(Uj) < oo, all results of [4] remain true when particularized to the
class of functions that coincide with Uy outside Q and one gets that

(P3) min  F(w)
u=Uy on R2\Q

is well posed.
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For every u € LY(R?) such that u = Uy on R? \ ©Q, we can also define
the relaxed funectional associated with F as

Flu) = inf{li’minf]-“(uh) -y — u in LAR2), uy = Uy on R2\ Q}
N— 00

It will be established in Theorem 3 that

(Ps) min  F(u)
u=Uy on R2\Q
is also well posed.

Our main results in this paper are, first, that problem (P;) is well posed
(Theorem 2) and, second, that problems (P;) and (Pg) are equivalent
(Theorem 6). More precisely, it is shown that (P;) and (Ps) have same
minimal energy and that there is a solution « of (Pp) satisfying u = u,,
where y is a solution of (P;). Conversely, given any % minimizing (P2), there
is an amodal completion minimizing £ whose curves contain all level lines of
. The amodal completion problem therefore yields a very intuitive geo-
metric interpretation (£) of a relaxed functional (F).

We were not able to determine whether (P2) and (P}) also have the
same minimizers because we actually do not know whether F(u) = F(u)
for any u € S, a class of — non necessarily smooth — functions in the domain
of F (see section 2).

To end this section, let us briefly describe the state-of-art relative to the
subject of this paper.

The first adaptation of amodal completion’s principles to image pro-
cessing can be found in [36]: in order to reconstruct partially occulted ob-
jects, the authors propose to interpolate their boundaries below the occlu-
sions using curves that minimize the Euler elastica energy f (a + K2)ds,
where « is the curvature.

This idea was adapted in [32, 29, 30] to the level lines framework in
order to solve the problem of recovering missing areas in an image,
following the strategy that we previously described. Figure 6 illustrates
the kind of results that can be obtained with this approach. The bottom
left image is the result of a global minimization of £ by dynamic pro-
gramming with p =1 (see [32, 29, 30]) whereas the bottom right image
is obtained by a global minimization of £ with p = 2, still by dynamic
programming, among the collection of all amodal completions made of
Euler spirals, i.e. curves whose curvature depends linearly on the arc-
length [31].

The problem of recovering missing areas in an image is addressed in a
completely different way in [11]. The proposed method is inspired by the
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Fig. 6. — Top: original image with missing area shown in white. Bottom left: after
amodal completion by minimization of £ in the case p = 1 (see the description of the
algorithm in [32, 30]). Bottom right: after amodal completion by minimizing £ for
p = 2 in the class of amodal completions made of Euler spirals [31].

technics employed by professionals for the restoration of old paintings. It
consists in a progressive diffusion of the information from the boundary of
the domain towards the interior by means of a partial differential equation
that aims at transporting along the isophotes a specific criterion of image
smoothness. The connections of this model — the so-called inpainting
model — with the classical Navier-Stokes equation of fluid dynamics are
shown in [10].

In [15], the authors propose a denoising/interpolation model based
on the joint minimization of a quadratic fidelity term outside the oc-
culting domain and a total variation criterion within a domain slightly
bigger than the occlusion (see also a variant of the equation associated
with this model in [16]). The model proposed in [14] aims at recovering
a piecewise smooth function inside the occlusion by minimizing the
classical Mumford-Shah functional with the additional constraint that
the discontinuity set, whenever it exists, has minimal Euler elastica
energy — concerning the minimization of the elastica energy, see also
the recent approach of [22] based on a convolution-thresholding scheme
for the Willmore flow proposed in [26]. Finally, the authors of [23] in-
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troduce a numerical scheme for the fourth order nonlinear flow asso-
ciated with F' and perform image completion by computing local mini-
mizers of F.

A more sophisticated criterion is derived in [5] (see also [38] based on a
similar idea), where the authors propose a joint interpolation of image
intensity and level lines directions using a functional that can be seen as a
clever relaxation of F. The resulting model offers many advantages both
from a theoretical and a practical viewpoint.

This is also the case of the approach followed in [17, 27], where a geo-
metrical model of the functional architecture of the primary visual cortex is
proposed after the work of [37]. This approach amounts to replacing the
minimization of the Euler elastica’s energy in the Euclidean space with the
minimization of the horizontal perimeter of surfaces in the roto-translation
group endowed with an appropriate graded differentiable structure.

All these methods are essentially dedicated to the reconstruction of the
geometric information and usually perform badly for the interpolation of
texture. Recently, a new class of methods have appeared that perform very
well in many situations. All these methods rely on a very simple “copy-
paste” procedure that was introduced for the first time in [20] in the
context of texture synthesis. The first adaptations to image interpolation
can be found in [13, 18]. They perform remarkably well in most situations,
except when the information to recover requires some large scale inter-
pretation, which indicates that these methods could be advantageously
combined with the approach of this paper.

Let us finally mention two recent variational models based on a linear
decomposition of the image into a geometric component and a texture
component and the use of two different reconstruction methods, one for
each component. The decomposition/reconstruction process is performed
either independently [12] or, more interestingly, jointly [21].

1.1 — Anterior work, novelties.

Whatever is being done here can be derived from anterior works in the
particular case where u is the characteristic function of a measurable set
A C R? Inthat case, G. Bellettini, G. Dal Maso and M. Paolini in [7] and G.
Bellettini and L. Mugnai in [8, 9] studied the relaxation of

Flra) = / (1 + kP,
0A
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where y4 denotes the characteristic function of A. In particular, it is shown
in [8] that if A satisfies F(x4) < oo then A essentially coincides with the
7

o m
interior set of a limit system of curves (I';)g<i<n, and F(xy) = >, E(I). In

the particular case where A is piecewise W2” with finitely lri%my cusps
then I” consists in adding to dA an appropriate collection of smooth curves
that connect the cusps pairwise (see also a representation with varifolds
in [9]) and give them a “good continuation”, thus realizing a kind of “amodal
completion” like in figure 5.

The following additional results are provided in this paper:

e the slight changes necessary to deal with the amodal completion
problem (which amounts to treating the mixed Dirichlet-Neumann
boundary conditions given by T-junctions);

e a geometric characterization though amodal completion of the
relaxation of F, i.e. the translation of the abstract F(u) into the intuitive
W)

e now, these functionals deal with all level sets A, = {u > 1} to-
gether instead of just one. The extension is not trivial as one can judge from
section 4;

e the existence of a minimal amodal completion is proven for every
p > 1. This completes [29, 30] where the existence was proven in general
for p = 1 but, for every p > 1, with the additional constraint that the trace
of the function on 02 takes finitely many values. The extension to the
general case as stated in Theorem 2 is not straightforward; taking a
minimizing sequence of amodal completions, it is indeed not difficult to
prove the existence of limit curves for countably many points by an ex-
tensive use of diagonal extraction. But the treatment of the remaining
points requires a control of the energy for sequences of amodal completion
curves that we were able to prove only by a specific averaging process and a
call to the theory of martingales.

e we show the equivalence between the minimization of £ on curves
and the minimization of F on functions, i.e., between a model designed to
imitate the physiological amodal completion process and a derived model
obtained by mathematical interpretation.

1.2 — Reader’s guide.

The definition of T-junctions is given in section 2.1. We precisely in-
troduce, in section 2.2, the amodal completions and the amodal energy &.
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The main point is to impose the non intersection constraint on the curves of
the amodal completion. This allows to uniquely define from an amodal
completion y a function u, so that, if £(y) is finite and y has no contact,
F(u,) = E(y) (section 3, Theorem 1). In section 4, Theorem 2, we prove the
first main result of the paper, namely the existence of a solution to the
amodal completion problem

(Py) min {£(y) : y € D}.

The solution y to this problem yields an amodal completion image u,
with bounded variation. In order to identify the bridges between the
functional viewpoint and the amodal completion viewpoint, it is proven
in Lemma 6 that every amodal completion can be approximated by a
sequence of amodal completions without contact, from which we con-
struct a sequence of continuous functions () converging to u, and
whose energy F(uy,) is arbitrarily close to £(y) (Lemma 7). Conversely,
from any u € C* one can define an amodal completion 7, obtained by a
selection of the level lines of u, such that £(y) < F(u) = F(u) (Lem-
ma 8).

Our main second result is the equivalence of (P;) with (P3). We prove
it in section 5, Theorem 6 and show the close relationships between the
minimizers of (P;) and those of (Ps). In particular, if y minimizes (P;)
then w, minimizes (Ps) and ?(u},) = &(y). Conversely, if % is a minimizer
of (P2) then there exists an amodal completion y, such that y, is a
minimizer of (P;) and its associated function u, coincides with » almost
everywhere.

2. Notations and definitions.

It is assumed once for all that p > 1. As mentioned in the in-
troduction, the occlusion domain will be represented as an open,
bounded and simply connected subset 2  R? with C* boundary. The
original image is supposed to be known only outside 2. We assume that
it is the trace on R*\Q of an analytic function U, such that
Uy € BV(RZ) and F(Uj) < oo. The interpolation within Q being trivial if
Uy is constant on 0Q, we can exclude this case. Then it is a straight-
forward consequence of Sard Lemma and the coarea formula that there
exists a non empty subset 4 C R with H}(Uy(Q) \ A) = 0 such that, for
all 1 e 4,
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(H1) {Up = A} is an analytic curve of finite length;
(Hs) HO({UO|aQ = /1}) < 0Q;

Observing that the function 1 +— [{Up|,, > A}| is monotone and there-
fore admits countably many discontinuities, A can be chosen so that for all
AE A,

(Hs) {Uslpg = 7} = liLT}{U0|aQ > 1}

where the convergence is meant as the convergence in measure.

DEFINITION 1. A pair (Uy, A) satisfying conditions (Hy) — (Hs) is
called an admisstble occlusion data.

We recall that, given a function » of bounded variation (see [3] for a
survey on BV functions), its level sets {u > A} are sets of finite perimeter
for almost every 4 € R and we can define their reduced boundary as the set

D )
o>} = dawe R vpon@ = lim U2 (B () exists
- rl0 |DX{uz/1}|

and satisfies |vg,>; (@) = 1},

i.e. the set of all points where a generalized inner normal to {u# > A} exists.

The space S defined below is the set of all functions « of bounded
variation in R? that coincide with U, outside @ and such that, for almost
every A, 0*{u > 1} N Q2 essentially coincides with a finite union of curves
that all join two points of 0Q and properly extend outside Q. Clearly, S is
the space of the functions that follow Kanizsa’s good continuation principle.

DEFINITION 2. We call S the space of all functions u € BV(R?) such
that w = Uy on R? \ Q and for almost every ). € Uy(0Q), 0" {u >} NQ
coincides, up to a H -negligible set, with the trace of a finite union of curves
00,11 — Q i =0,...,n, with the following properties:

o H(0), 7/(1) € 9

o ¥} € W2(0,1) and |dy}/dt| is constant almost everywhere on [0, 1];

o there exists an extension yﬁ’e € W*(—¢,1+¢) of y} such that
yﬁ"*’([ —¢,0])) and yf’*’([l, 1+¢]) are (possibly overlapping) subsets of
{x: Uplx) =21} N (R? \ Q) with positive length;

o Vi,7j, yé and y;: may mtersect but only tangentially and without
crossing each other.
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Then one defines the functional F acting on LI(RZ) by

400
A+ [kP)ydH dr  ifueS
Fu) =9 "% onouzi
+00 if w e LAR?\ S.

where, for almost every 1 € Uy(9Q), it is meant

n
A+ drt =3 / (1 + [")dH.
ono-{u>7} = 7

In figure 7 below, we show an example of a piecewise constant element « of
S such that F(u) < oo but F(u) = + oo.

Fig. 7. — A piecewise constant function % € S such that F(u) < oo but F(u) = + occ.

2.1 — Defining T-junctions.

DEFINITION 3. [Occlusion’s boundary measure]. The boundary mea-
sure assoctated with the occlusion domain Q and an admissible occlusion
data (Uy, A) is defined by

wi=|VUH L oQ.

DEFINITION 4. [T-junctions]. We call T-junction any element of the
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set
T :={xecoQ: J1ed,xecd{U>1},

and we shall denote by 7, the set of all T-junctions associated with the
level 1 € R, i.e.

T, := {90 eT: Uylx) = ;L}.

ProPOSITION 1. p-almost every x € 02 is a T-junction, i.e. w(0R\T) = 0.

Proor. By the coarea formula for Lipschitz functions,
+o00
IDU|02\ T) = / H@Q\ T) 1 {Us = £))dt.

Since, for almost all ¢,
H(OR\T)N{Uy=1t})=0

by definition of 7, we conclude that |[DU,|(02 \ 7) = 0 and the proposition
follows. o

2.2 — Defining amodal completions and their “amodal energy”.

DEFINITION 5. (Amodal completion on Q associated with Uy) We call
amodal completion of class W>P associated with Uy a map y from T to
W2P([0, 11, R?) that associates with every x € T a function 7, describing a
curve in Q with distinct endpoints on 0Q. In addition:

o for p-almost every x € T, there exists a WP parameterization of
v, (still denoted by y,.) on [0, 1] with positive and constant velocity. The
endpoints conditions rewrite y,(0), y,(1) € T and y,(0) # y,(1);

e iftwo curves y, and y, have a common endpoint then y,(s) = y,(s)
forevery s € [0,1], or y,(s) = 71— s) for every s € [0,1];

e each curve may have tangential self-contacts but without crossing;

o two curves may intersect tangentially but without crossing;

o for p-almost every x €T there exists an extension Y. €
W2P[ — g, 1+ ¢l of v, such that y.([ —¢,0]) and ¥5([1,1 + ¢]) are (possibly
overlapping) subsets of {y : Up(y) = Up(x)} N (R? \ Q) with positive length
and the orientation of VUy on these subsets can be continuously extended
to the whole curve y, (see figure 3).

The set of all such amodal completions will be denoted by D.
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REMARK 1.  Since, for every (x, 1) € 7T, |y,(t)| is assumed to be constant
almost everywhere on [0, 1], the arc-length parameter of the curve is
s(t) = tL(y,), where L(y,) denotes the curve total length. We let 7, re-
present the curve by are-length. Clearly, for every s € [0, L(y,)], 7,(s) =
= y,(s/L(y,)). Therefore

750
(LGP

Pi(s) =

Now, it is well known that the curvature along the curve satisfies, as a
function of arc-length,

K(s) = 7(s)
and we deduce

L(y,) L) 1

(6) / (1 + [7(s)")ds = / (1 + [ref")ds = / (171 + LGOI dt
0 0

0

Assuming that y, € W2P(0,1) is therefore equivalent to saying that Ve
belongs to W2”(0, £(y,)) and that 7, has finite E energy. For the seek of
simplicity, we shall in the sequel also denote by y,, the representation of the
curve by arc-length.

DEFINITION 6. (Amodal completion without contact]. An amodal
completion y € D is said to be without contact if’

o for u-almost every xc 0K, 7y, is simple and (y,)NOQ =

{2:00), 7.1}
o for p-almost every x,y € 0Q such that x # y, (y,) N (y,) = 0.

DEFINITION 7. The amodal energy of an amodal completion vy is de-
fined as

€)= 5 / EG,)du@),
00

where
L(y,)
EG,) = / A+ [ (s)) ds
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3. From amodal completions to functions, and back.

THEOREM 1. (Function associated with an amodal completion]. Let
(Uy, A) be an admissible occlusion data. Any amodal completion y on Q of
class WP satisfying E() < oo can be associated with a function
Uy € BV(R?) such that u, = Uy on R? \ Q and, for almost every 1 € R,
O {u, >2yNQc U 7, up to a H'-negligible set. If, in addition, y has no

xeT;

contact, then u, € S and F (u,) = E).

Proor. The proof is essentially based on a straightforward filling up
algorithm, permitting to define uniquely from the amodal curves at level 4 a
set A, bounded by them and 0Q. This set will be the A-upper level set of u;
inside Q. A consistency check must then be performed, namely that
u>i=A,,CA,.

Step 1. From amodal completion curves at level 4 to a level set A;.

0L is provided with an orientation so that we can talk of arc intervals
[x,y] C 02 without ambiguity. Let 4 € 4 such that 7, be not empty. By
definition of 4, it is also finite. The upper level set of U, on 9Q,
{x € 0Q, Uy(x) > 1} is a finite union of disjoint arcs of 9Q. Let us call
[x1,22] any of these ares and set (see figure 8)

() 2 =7,0)
P i @ = 5,0,

Take for x4 € 7, the unique point such that [x3,x4] is a connected compo-
nent of the upper level set {x € 9Q, Uy(x) > 1}. This construction can be
iterated and, after a finite number of steps, one gets a series of intervals
[%2i11, X2i12], © = 0,7 such that xs;,; = ;. Since each T-junction is the tip of
a single amodal curve, no shorter cycle is possible in the mentioned se-
quence. Besides, since the arcs [x2;,1,%2;12] are disjoint and the curves
Vai,, CANNOL cross, we can concatenate them all into a rectifiable image of
the circle into the plane, with no crossing but possibly self-contacts. We call
Iy this generalized Jordan curve. Using the usual index with respect to a
curve, one defines the interior ©2; of Iy as the set of points with index 1.
Notice that, by construction, £, is contained in Q and £, is not empty due
to our assumption (H3) at the beginning of section 2. In addition, due to the
regularity of 002 and all amodal curves, every point of [x1, x2] is the limit of
a sequence of points in Q with index one with respect to Q;.
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Fig. 8. — Construction of the function associated with an amodal completion.

This construction can be iterated until all T-junctions at level 4 have
been exhausted. The successive generalized Jordan curves Iy, ..., I, thus
obtained do not cross. Thus, the sets 21, - -, Q; are disjoint.

We finally define

k
(7) A=
h=1
and remark that, by construction,
k
(8) oA, c|Jricoeu | r.
h=1 xeT;
and

H ({x € 0Q: Uplx) > 2} \ 84,) = 0.

Besides, since each curve I, is a finite union of C! curves that do not cross
each other, if follows that

(9) 9*A;, = 0A, up to a H'-negligible set.

The same construction is performed for every A€ A (recall that
HUUH(09) \ 4) = 0). Then let A; = Q for every A < min,cso Up(x) and
A; = () for every / > mg}){ Uy(x), in order to ensure that a set A; is asso-

xre

ciated with almost every 4 € R.
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Let us prove now that for any 4, u € 4,
A<u=A4;>5A, (upto a Lebesgue negligible set).

Let I'f = 92 be one of the generalized Jordan curve defining A, and
[y1,y2] its first interval. By the inclusion of upper level sets property, this
arc is contained in {x € 92 : Uy(x) > A} and therefore in some maximal
interval of this set which we denote by [x1, x2]. Consider I {, the unique
generalized Jordan curve in the preceding construction containing [x;, x2].
The curves I} and I'% do not cross. Indeed, their intersections with 9Q are
nested and their other parts are amodal completion curves which do not
cross each other. Thus, their associated sets Q’l1 and Qf are either disjoint,
or Q) C .Qf Now, the first possibility is ruled out because [y1, y2] C [%1, 22]
and every point of [y1, y2] (resp. [x1, 22]) is the limit of a sequence of points
in Q with index 1 with respect to €] (resp. Qi). Therefore, we have proved
that Q] C Q} and, by extension, that

Viped, A<u=A;D0A4A,

The same result is obviously true whenever 1 or u are either less than

inf,c90 Up(x) or larger than sup Uy(x) and one can conclude that
xeoR

forae. L,uelR, A<u=A4A,D0A,.

Step 2. From level sets to a function.

We now have a nested family of measurable sets (4,) C Q defined for
almost every 1 € R, actually for all 1 € AU (R \ Up(992)). Let us see how
they can generate an essentially unique function u, defined on Q. Under
the notations of Lemma 1 below, let D be the set of discontinuity points of
(4,). Let D' ¢ AU R\ Up(0RQ)) be countable and dense and define for
every x € Q

uf(x) =sup{ieD: xeA,}.

We now prove that {uf >} =4, (up to a Lebesgue-negligible set) for
any 1¢ D, . € AU(R\ Uy(0R)). By definition of uf,

A, c{uf >} CA,

forany 5, v € D', n > A > v. Choose sequences 7, | 2and y, T 2in D'. Then,
by Lemma 1,

(10) A = {uf >} (up to a Lebesgue negligible set).
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In particular, {uf > 1} is measurable for any A¢ D, 1 € AU (R \ Uy(0Q)).
By approximation, the same property extends to any real number /4 and uf?
is measurable.

The uniqueness of uf follows by a similar argument: if two functions
Uy, ug are such that {u; > A} = {ug > 1} (up to a Lebesgue negligible set)
for a dense set of A’s, then u; = us almost everywhere in Q.

Step 3. Properties of the new function.

First remark that it follows from (8) and the finiteness of 7 ; that for
every / € A, H'(9A;) < H'(9Q) + 1 ( > ’Hl(ym))< 0. Thus A; has finite

ﬂ?ET,’_
perimeter and, by (9) and (10), also {uf,2 > A} has finite perimeter and its
essential boundary satisfies

(11)  o{uf =i} =04, C0Qu | 7. up to a H'-negligible set.

xeT;

In particular, Hl(ﬁ*{ufzi}):Hl(aAi). Since A; =0 for all

A< 1rgfg Upx) and A, =0 for all 1> supUyx) and Dbecause
RIS reOQ
HYU(0RQ) \ 4) = 0 we can conclude that {uf2 >/} has finite perimeter

in 2 for almost every / € R. Then,

xeT ;

+00 +00

1 1
| e zynons; [ <Z lex))ousé | Bo)dua
—0 —00 0Q

It follows from Lemma 2 that uf) € BV(Q). In addition, since
Uy € BV(R? \ Q) and 0RQ is smooth, the usual properties of the trace op-
erator in BV (see for instance Corollary 3.89 in [3]) imply that the function

u, defined by
u$(x) on Q
() = )
Up(x) on R\ Q

is in BV(R?). Then, it is a direct consequence of (11) that for almost every
AER,

0{u, >2}NQ C U 7. up to a Hl-negligible set.

xeT;
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Step 4. Case where the original amodal completion has no contact.
In this situation, it follows from our construction in Step 1 that (8) re-
writes
oA,ne= ] nne
xGT/j
thus, for almost every 1 € R,

(12) O{u, >N = U 7, N2 up to a H-negligible set.

xeT;

It follows that u, € S and, as a direct consequence of the definition of the
energies,

Flu,) = EG).
]

LemMa 1. For any monotone family of sets (X));cr C R, there exists a
finite or countable set D such that
limX, =X, Vie R\ D,
H— A
where convergence means convergence in measure. We shall call D the set
of discontinuity points of (X;);cr.

Proor. It is enough to notice that the map 1+ |X;| is monotone, thus
has at most countably many discontinuity points, and to choose D as the set
of these discontinuity points. |

LEMMA 2. Let o C R? be bounded, commnected and with Lipschitz
boundary. If u : @ — [ — oo, +00] 1s a Borel function such that u £ +oo
andu # —oo up to a Lebesque negligible set, then J.— H (0" {u > 1} Nw)is
in LY(R) if and only if u € BV(w).

Proor. See [2, Lemma 1] O

LEmMA 3. Let w € S. There exists an amodal completion y, naturally
associated with w such that, in view of Theorem 1, u = u, almost every-
where in R? and

E(yy) = Fu).

Proor. Recall from the definition of S that for almost every
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A € Uy(022), 0"{u > 2} N Qis a finite union of simple curves y,i =0, -, n;
with good properties. For every x € 7 such that 0" {u > Uy(x)} N Q satisfy
this decomposition, let us define y, . as the unique curve yf that passes
through «x. Clearly, {y,,% € T} satisfies all the properties of an amodal
completion. In addition, the map y,:x€7wy,, maps T into
W2P([0,1], R?). Tt follows from the definition of S that 7, is an amodal
completion on Q. Observe now that, up to a H'-negligible set,
{u>2ynQ) = ?’1% U{u > 1} NndQ). Let (I"A) *, denote the asso-
ciated family of closed curves as given by Step 1in the proof of Theorem 1
and let A; be the associated set. Then 0*A; = 9*({u > A} N Q) up to a HE-

negligible set thus A; = {u > 1} N Qup to a Lebesgue-negligible set. Since
we already know that A, = {u,, > A} N Qup to a Lebesgue-negligible set,
the uniqueness of the representation implies that u = u,, almost every-
where in R% The claim about the energy is a direct consequence of the
definitions of S and F. O

4. Minimizing the amodal energy of an amodal completion.

We recall our assumption that the data to interpolate within Q is the
trace of an analytic function Uy such that F(Uy) < + oo. We assume that
(Uy, A) is an admissible occlusion data. Thus, the set of T-junctions 7 is not
empty and one can define a canonical amodal completion associated with
Uy in the following way: for every x € 7, let y, denote the connected
component of {Uy = 4} N 2 containing x and remark that, by (H1), 7, is an
analytic curve. It is then easily seen that the map y,: x € 7+, is an
amodal completion. Since 7, is made of the trace on Q of all level lines of U,
that intersect 0Q, it is a straightforward consequence of the change of
variables formula that

E(yy) < F(Up) < 0.
Then the following result can be established.
THEOREM 2. The problem.
(P1) min{&(y) : y € D}

has at least one solution y € D that can be associated with a function
u, € BV(R?).

ProoF. The canonical amodal completion associated with Uy has finite
energy thus we may consider a minimizing sequence of amodal completions



On a variational theory of image amodal completion 235

(7")¢en and assume, without loss of generality, that

supEGY) = C < oo,

reN
so that the functions
fix) = E(L)

are uniformly bounded in Ll((?Q, 0.

Step 1. Convergence of the energies f,(x) = E(3%).

Since U is assumed to be nonconstant on 02, one can without loss of
generality renormalize the measure u so that ©(9Q2) = 1. Since u has no
atoms, any point on 92 can be associated with a unique value in [0, 1[. More
precisely, given an origin xy on 92 N 7, we associate with any & € 7 the
unique 7 € [0,1[ such that n = u([xy,«]) and denote f;(n) := fy(x). Con-
versely, almost every n € [0, 1] is associated with a unique « € 7 such that
n = u([xo, x]) and one shall write x = x1(n) for simplicity.

Let us now consider for k, N € IN the dyadic intervals on [0, 1[:

Injg = k27, (k + 127,

and define the functions

7 menn-2 [ fod=2" [ f@due
Iy p iy )

where Iy is the unique dyadic interval containing 7. Remark that the
functions f/N are constant on each interval Iy and, for every m € [0, 1],

1
fNm)| <2V [fi(n)dn < 2¥(C. Using a diagonal extraction argument, we
can find a subosequence of (fp), still denoted by (f), such that

YN, k), fNom)— fNim) for every m € Iy,

For every N € N, the limit function £ is positive and piecewise constant
on the Iy,'s. Moreover, remark that Iyj =[k27N, 2k +127V-1[u
[(2k +1)27 V-1 (k 4+ 1)27¥ and

Vm e [k27N, 2k + 1)2-V-1[ Nt () = 2N+1 / fin)dn
Inj12k
vm € [k + D27V (k+ 12N N (m) = 2N ! / fim)dn

Ini12ki1
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thus

/ N ydn = / fin)dn
Iny Iy

and finally, for every m € Iy,
gN(m) _ 2N / féNJrl(TL)dTL
Ing

By the Dominated Convergence Theorem, it follows that

i =2 [ i,
Ing
which proves that (fV)ycx is a martingale. In addition, remark that

1 1
[r¥ain =" [ fiovin = [ siwan <,
0 k I

Nk 0

so that, by Fatou’s Lemma
1
/ fNm)dn < C < oo,
0

Since, in addition, /¥ > 0, it follows that (fN)yecx is a bounded positive
martingale. By Doob’s martingale convergence theorem, there exists
f € L([0,1]) such that

fN —f  almost everywhere on [0,1].

Step 2. Definition of a limit amodal completion.
Let N,k € NN and recall from above that the sequence ( ﬁN )ren satisfies

sup supf(n) < co.
”VLEINJG LeN

LemvMa 4. Let I:=1Iy, and Aj:=3xecu')NT: filx) <

< 2N / fim)dn + % } Then there exists some ¢ > 0 such that u(Ay) > ¢ for

1
every ¢ € .
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Proor. By definition and since (0Q2\ 7) =0, w i) \ A, essentially

coincides with {x e\ HNT: fiw) >2N /ﬂ(n)dn + % }, hence
1

/ F@du@) > uGe @)\ Ay (2N fimydn + %)
I

wHID\A,

Assume that for all ¢ > 0 there exists ¢ € IN such that u(A,) < ¢. Then,

/ filmdn > @7 o) (ZN / fem)dn + %) :
I 1

and therefore

N 11
2 /fe(n)dn > e D),
I

which gives a contradiction for ¢ small enough since supf¥ < +oco on I.
teN
O

LEmMma 5. Under the notations above, there exists a T-junction
x € uYI) N T such that, possibly passing to a subsequence of (A¢)en,

rxedAy, WVelN.

Proor. {U Ak} . is a decreasing family of sets such that, by
ASIN

k>n

Lemma 4, ,u( U Ak) > ¢, Vn € N, and therefore

u(ﬂ UAk) -

neN k>n
from which the lemma follows. O

We are now in position to finish the proof of Theorem 2. Denoting by x
the T-junction given by the previous lemma and choosing the appropriate
subsequence, we have

EG) = filw) < 2¥ / fnydn + }\, =1 @) +% < 0.

Ing
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By the weak compactness of the unit ball in W?” there exists a further
subsequence, and a limit are y¥* € W*? such that

o 7L — YN weakly in W22([0, 1], R?) (thus strongly in C!).
o E(GNK) < lizn inf fy(x), using (6), the lower semicontinuity of the

W2? norm and the fact that LY *) = ()lirn LGL).

Since Ho(a{ Uy > A}) is finite, the limit arc yﬁy * passes through another
T-junction y € 7y, Thus Y can be extended outside Q using ares of
{y € R? \ Q: Up(y) = Up(x)}. Let us prove that the extended curve, de-
fined for example on [ — &, 1 + ], is globally of class W**. We already know
that it is W?® on each interval [ — g,0],[0,1]and [1,1 + ¢]. In addition, each
arc y', extends outside Q into a globally C! are. Since Uy is analytic outside
Q and since the convergence of (y%) holds also in the strong topology of ct,
we infer that yV ¥ is in C'([0, 1], R?) and admits a globally C' extension. By
the usual properties of Sobolev functions, it follows that y* is of class W2P
in(—¢1+e).

Since the Iy}’s are countably many, we can again use a diagonal ex-
traction to get a subsequence, still denoted as f;, and for each (N, k) a limit
are of class W27 ([0,1]), denoted as yV**, such that

EQNf) <2V / N mydn +% <2N lim / fi)dn +i7>
Iy Inve

Moreover, the limit curves (M%) ~ - do not cross by construction and can be
extended outside @ into globally W curves.

Let us now see how a limit curve can be defined for any T-junction.
Given x €7, there exists for every N € N some ky such that
w([xo,2]) € Iy, Considering the family of ares (¥*)y . defined above, it
holds by definition

1

1
ke N N __ ¢N
EQNfy <2 /f (n)dn—I—N——f (90)+N—

Injy
which converges — for u-almost every a — to f(x). Using the weak com-
pactness of WP, there exists a subsequence, still denoted by (N4 ¥)ycx,
that weakly converges in W2”, thus uniformly in C', to a limit arc y,. By the
lower semicontinuity of the W2 norm and the fact that L£(y,) =
= lim LN it follows that

.. Jy .. N l N
EG,) < liminf 56 >shN@£f(f (@) + N) — ).
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This procedure can be applied for gx-almost every T-junction and thus
one can define a limit amodal completion y. In particular, two different arcs
7z, and y,, cannot cross (but may intersect tangentially) since they are
uniform limits of ares (" ‘r’“)NJC that do not cross by construction.

There are two technical points that must be checked in this construction
process:

1) Given x € 7, and its associated limit curve y, € WP (0,1), one
has y,(1) € 7,. Thus y, can be extended outside 2 using arecs of
{y e R2\ Q: Uy(y) = Up(x)} into a curve 7. defined on [—e¢1+¢l
Following the same argument as above, one proves that ) is of class
W2 on (—e¢,1+¢);

2) One must control whether the curve y, passing through another T-
junction y € 7 () coincides with y,. The answer is positive because there
are finitely many T-junctions per level and because the convergence of the
curves is meant in the strong topology of C.

Finally, we have built a limit amodal completion y defined for x-almost
every ¥ € 7 and such that each curve y, is of class W2? and can be ex-
tended outside Q into a globally W?? curve whose restriction to R? \ Q2
coincides with arcs of {y € R? \ Q: Uyly) = Up(x)}. Moreover,

E@y,) <f(), u—ae xecT.

It follows from Fatou’s Lemma that

1
&y = E@)du@) < | fl)dux) = | f(n)dn
J o< [ o= |

1 1 1
< ligln inf / fN n)dn < li]sninf lizn inf / ij (n)dn = 1i§n inf / fin)dn
0 0 0
Thus
£() < liminf £G) = inf £6)
{—00 yeD
which proves that the limit amodal completion is optimal. O

REMARK 2. The previous theorem involves a definition of convergence
in the class of amodal completions, namely, (y,)pen — 7 if

1. for each dyadic interval [ky27V,(ky + 1)27V), there exists an
appropriate point &y, x in the interval such that y, (xy, ) converges weakly
in W2P to Y@y N) as . — o0;
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2. for p-almost every x € 09, y, is the weak limit in W2 of a se-
quence (y(®k, N))Nex Where &, y — & as N — oo.

In other words, for p-almost every x € 902, there exists a sequence
(hpr, kyr)pren such that

Tpym — %, hy — oo and yy, (@, m) — V88 M — .
Wv

COROLLARY 1. Let (y,)nen be a sequence of amodal completions with
uniformly bounded energies, i.e.
sup () < 00.
heN
Then, possibly extracting a subsequence, there exists a limit amodal

completion y such that (y,)nen converges to y in the sense of Remark 2
above.

The example of figure 5 shows that the function u, associated with an
amodal completion y, as defined by Theorem 1, may have level lines that
are not curves of y. Consequently, the relationship between F(u,) and £()
is not clear. The purpose of Lemma 7 is to provide a continuous function
uj, € S whose level lines are arbitrarily close to the curves of y and such
that F(uy) is arbitrarily close to £(y). We start with a lemma providing a
way to separate the curves of an amodal completion.

LEMMA 6. Let y be an amodal completion with finite energy E(y). Then
Sforevery n > 0there is another amodal completion y" without contact such
that |EGT) — E()| < i and for u-almost every x € 0Q,

sup [y(s) — 7.(8)| < n.
s€[0,1]

Proor. The proof is tedious, but not deep. Let us consider a dense set
{21}, of T-junctions in 7 such that all the curves y, =y, have finite
energy E(y,) < oc. The idea of the proof is to move all curves of the amodal
completion smoothly and slightly in such a way that they all fall apart from
the 9,’s. In other terms, we shall create around each y, an open security
region — that can be seen as a dilation of y,, — where no other curve can pass.

Given two curves y, and y, with x # y, there always exists a curve 7,
that separates them in wide sense. After the dilation, y, and y, will not
touch anymore. In that way, any two distinct curves y, and y, will be se-
parated by an open domain and have therefore a positive distance to each
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other. This argument needs some detail. Indeed, notice that a curve y, may
meet the boundary and that it may meet itself. Thus, one must be careful to
move the curve away from the boundary and to move it apart from itself at
points where it is tangent to itself. The dilations of y, will be done by
smooth diffeomorphisms close enough to identity, which will increase very
little the energy of the curves.

Step 1. Dividing all curves y, into graphs.

Let us start by covering the domain (0, L,,) of y,, with a finite set of open
intervals (s}, t}), ¢ € [0, N, ] such that

1

1) sf <sj <ty <tl,s5=0,ty =Ly,

2) y, restricted to [s}, }]is a graph,
3) the restriction of y, to [s}, '] meets 0£2 at most on one side.

For simplicity, let us index by ¢ € IN all the pieces of curves of all y,,.

Step 2. Defining a diffeomorphism dilating locally y,.

On the interval [s;,t;], the curve y, is represented as a graph
Iy = {(x,fi(x)), © € [0,2;]} in local coordinates (x,¥). The third condition
implies that if I'; touches 0 at several points, then it is only from above or
only from below. Assume that it is from above, the other case being similar
(the case where I'; does not touch 92 can be treated using indifferently one
or the other way). There exists a C™ function y = y;(x) such that
w; (@) > fi(x) on (0,x;), w;(0) = f:(0), w;(x;) = fi(x;) and the open domain
D; ={(@,y), 0 <x <y, filx) <y <y,(x)}is contained in Q (see figure 9).

Fig. 9. — The operator &; differs from the identity in D;. It is designed to move the
curves 7, and y, apart from y, and to move y, itself apart from €.
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We consider the diffeomorphism of R? defined by

1

1 1
O, y) = { (@, y+eMie Vv -e = EoT) if 0<w < @y, file) <y <y;(@),
Z (@, y) otherwise

with

1
M; < inf .
"7 o<esa 1+ yP() + (@)
Obviously, &; is C* and there exists a constant C > 0 independent of ¢ and
independent of the curve y, such that:

o DEO; =Id + ¢&;, where Z; is C* and uniformly bounded on [0, x;]
by C;
o D’ = ¢d;, where &; is C* and uniformly bounded on [0, 2;] by C.

This follows immediately from the chain rule and the fact that s — i
is a C*° function with all derivatives bounded on R.

Step 3. Using the diffeomorphism to separate all curves from y, and
7n from 0Q.

Let us define the following operation, indexed by ¢ € IN. For every
curve y, of the amodal completion, let us consider all maximal intervals
(s,t) such that y,(s,t) C D; and replace y, on (s, t) by the new curve & o y,.
In the particular case of the curve y, from which D; has been defined, we
rather replace y,, on (s;, ;) by @j o y,- Now, the curve y, may have multiple
points on (s;,t;), like on figure 10; in this situation, y, will be no more a
degenerate simple curve (i.e. a curve that becomes simple after an arbi-

Fig. 10. — 9, has autocontact on a maximal proper subset of y,,([s;, t;]).
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Fig. 11. — There exists an autocontact set that strictly contains y,([s;, t;]) and the
curve folds back “from above”.

Yo)=1,

n

Fig. 12. — There exists an autocontact set that strictly contains y,([s;,?;]) and the
curve folds back “from below”.

trarily small deformation) if only y,(s;, ?;) is moved. So one must define a
specific rule.

Let (s,t) be a maximal interval not intersecting (s;,?;) and such that
(8,0 C Dy If (s, 1) # 9,(s;:,t;) (see figure 10), let us consider that this
part of y,, is “above” the restriction to (s;, ?;) and move it as are moved the
other curves y,, i.e. replace y, on (s,t) by &; o y,.

If instead y,([s,t]) coincides with y,([s;,¢;]) (figures 11 and 12), we
consider the maximal intervals [o;, 7;] D [s;,t;] and [0, ] D [s,t] on which
both ares coincide. Assume for instance that y,(o;) = y,,(¢v) (these pieces of
curves can also have same orientation, i.e. y,(g;) = y,(0)). Consider the
continuous unit normal 7(s) along y, such that on (s,?), n(s) has an acute
angle with the coordinate axis (0, ). Consider two neighborhoods V(s;) and
V(7) such that y,(V(a;)) and 7, (V(1)) are graphs with respect to the re-
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ference frame (y, (gy), y,,(g:),7(g;)). If in these coordinates, the graph of y,
around t is above the graph of y, around ¢; (figure 11), we move y,,(s, t) like
the other curves y,, i.e. we replace y, on (s,t) with &% o y,. If, instead, the
graph of y, around 7 is below the graph of y, around o; (figure 12), then
7,,(s,t) is not moved. Doing this ensures that y,(s,?) will be properly se-
parated from y,(s;, ;), i.e., without creating any new self-crossing.

An analogous procedure applies when y,,(g;) = 7,,(9).

Step 4. Checking that the moving apart does not increase much the
energy of the amodal completion.

By construction, there exists C > 0 such that ||D®: — Id|| < Ce and
|D?6|| < Ce. It is easily checked that the energy of a curve y, deformed by
O satisfies

(1 — De)E(y,) < E(Oi(y,)) < (1 + De)E(y,)

for some constant D > C independent of y,. Thus, taking » such that
De = 527" and setting 0; = 6%, we can ensure that the energy of the whole
amodal completion, denoted by ©;(y), satisfies

(13) EO:() — G| < 27"

This also entails that for any pair of points z; and 22 belonging to some
curves 7, and y,,

(14) (1472721 — 22| > |0i(z1) — Os(z2)| > (1 — 27|21 — 2.

One moving apart operation therefore defines a new amodal completion
with energy arbitrarily closed to the original and curves arbitrarily closed
to the originals. The moving apart operation has then to be performed
recursively at step ¢ on the amodal completions resulting from the i — 1
former operations. To formalize this, we set T; = @;_1060;0...0020 O,
and 7'(z) = hm T;(2). So at the i-th step, all operations descrlbed in steps 1

to 5 are apphed to the curves T;_1(y,) (Tp = Id). From (14) follows that T is

a bilipschitz map for # < =, so that open sets are mapped onto open sets.

2
Step 5. The moving apart operation isolates y, from all other curves
and eliminates its self-contacts on (s;, t;).

Indeed, the fact that we move y, only halfway at step ¢ implies that
Ti(y,((s;,t;))) is contained in the open set O; = D; \ 0;(D;), which contains
no piece of no other curve of the amodal completion. Now, by the same
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argument as for 77, T; = hm O 0 ...0;, also is a bilipschitz map. So the

final position of y,,((s;, t; )) 1s 1n the open domain T; (0;). This being true for
all ¢, we deduce that every curve 7'(y,,) is contained (except its endpoints) in
an open set C, which does not contain any other curve 7'(y,).

Step 6. Iteration of the moving apart operation.

The image of each curve y, at step ¢ is given by Ti(y,) =
=0;00; 10...002006:(y,). By (14), the sequence of curves T;(y,) con-
verges uniformly to a curve 7T(y,) and by (13),

sup |T(y,)(s) — y.(8)| < 7.
s€[0,1]

Thus, by Fatou’s lemma,
1ET ) —EO| <.

Letting y" = T'(y), the theorem ensues if we can prove that 7'(y) is without
contact.

Step 7. The final amodal completion is without contact.

Given two curves y, and y, of the amodal completion, there exists a
curve y, which separates y, and y,, namely 7, and y, do not belong to the
same connected component of Q2 \ y,,. Thus 7'(y,) and 7'(y,) are contained in
two different connected components of Q\ C,, and therefore stand at a
positive distance from each other.

Let us now deal with curves y,, which have at least one self-meeting. Call
loops of y, the open connected components of @\ y, whose boundary is
fully contained in y,,. If at least one loop of y,, does not contain any piece of
any other curve 7, — which means that the previous procedure will let the
loop unchanged - this is equivalent to saying that it does not contain any
piece of any other curve y,. Since loops have positive measure, only a
countable set of curves y, can have such empty loops. So we are allowed to
add them up from the start to the curves y,. Thus, one may assume from
now that all curves y, having a loop are such that the loop contains some
piece of y,. This implies that the self-meeting points of y, also are self-
meeting points for some y, and we conclude that the moving apart op-
eration have moved them apart too. O

LEMMA 7. Lety € D be an amodal completion with finite energy and w,
the associated function in BV(R?). For every h € N* there exists a con-
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tinuous function wy, € S such that |E(y) — Fuy)| < 1/h. In addition, w,
tends to u, in Ll(Rz) as h — oo.

ProoF. Inview of Lemma 6, for every 7 € IN* there exists an amodal
completion without contact y;, such that |£(y;,) — £(»)| < 1/h. By Theorem 1,
7, can be associated with a function u;, € S such that £(y,) = F(uy,) thus
|EQ) — F(uy)| < 1/h. In addition, uy, is continuous because its level lines are
disjoint by construction. From the construction procedure of Theorem 1
and the fact that the curves of y are uniform limits of curves of y,, we also
deduce that u;, tends to u, almost everywhere on Q. Remark now that, by
construction, for every h € N* and for almost every x € Q, |u;(x)| <
< ?é%é |Uo(y)|. It follows by the Dominated Convergence Theorem that u,,

tends to u, in LY(R?) as h — oo. O

LEMMA 8. Let u € C3(R?) such that F(u) < oo and u coincide with U 0
outside Q. Then there exists an amodal completion y whose trace is con-
tained in the topographic map of u, e for almost every I € 4,

U O, € {u = 1} N Q. Consequently,

xeT;
E@) < Fu) = F(u).

ProOF. This amodal completion will be constructed as a selection of
level lines of » inside Q. By Sard Lemma we can find a set A C A of full
measure such that {u = 1} N Q2 is a union of C* curves. Of course we also
have u({x € 0Q, w(x) ¢ /I})) = 0. For every T-junction x € 7 such that
w(x) € 4, the level line L, of u passing by « is by definition of A a C% Jordan
curve and intersects 0€2 at some other T-junctiony € 7). We take y, to be
a C? parameterization on [0, 1] of the arc of L, between x and y. The map
y:xeT Nu (A7, is clearly an amodal completion whose trace is
contained in the topographic map of u. The inequality £(y) < F(u)is then an
obvious consequence of the coarea formula, as y is obtained from « by a
restriction to the levels of /1 and a selection of pieces of level lines at these
levels. O

5. Comparison with the direct variational approach.
This section is devoted to the proof that the problems (P;) and (Ps) are

equivalent. We do not know whether they also are equivalent with LP’Z),
which would actually be true if one could prove that for u € S, F(u) = F(u).
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Let us start with the proof that (Pg) is well posed.

THEOREM 3. The problem.
(P3) min{F(u) : u = Up on R*\ Q}

has at least one solution u € BV(R?). In addition, for almost every 1 € R,
there exists a finite family I'* = { yf'}le 1, Of regular curves of class W2 such

that 0*{u > 1} NQ C U oH up to a Hl-neglzgzble set and any two curves

of I'* may intersect but only tangentially and without crossing each other.

Proor. Let (u),en be a minimizing sequence. Without loss of gen-

erality, let us assume that sup F(uy,) < +oo.
heN

Observe that, by the sequential characterization of relaxation [19], ev-
eryv e L (Rz) such that F(v) < co and v coincides with Uy, outside Q is the
limit in L'(R?) of a sequence (v)pc~ in S such that F(v) = hm Fp).

Since, by the coarea formula, F(vy) > |Dvg|(Q), it follows from the lower
semicontinuity of perimeter that F(v) > |Dv|(Q).
Thus, sup F(u;) < +oo implies that sup |Duy, |(£2) < +o0. Since every uy,

helN

coincides with U, € BV(R?) outside Q, 1t follows that sup |Duh\(R2) < + 00

hel

and the generalized Poincaré inequality in Theorem 5 11.1 of [40] shows

also that sup lunll11 2y < +oc. Hence, by the relative compactness of BV
hel

in L! [3], there exists a subsequence, still denoted by (uh)he\, and a limit
function % € BV(R?) such that (up)pen converges to u in L Y(R?) and u
coincides with Uy outside Q. Furthermore, by the lower semicontinuity of
relaxed functionals [19],

Fu) < liminf Fu) = inf{F(u) : u = Uy on R%\ Q},

thus u is a solution of (Ps).

Since F(u) < oo and u coincides with Uy outside @, there exists a se-
quence of functions {v;},. C S converging to u in L!(R?) and such that
Fu) = hm F(vp,). By definition, for every 72 € N and for almost every

h—o0

A€ R, 0{v, > A} N Q2 essentially coincides with a finite union of curves of
class W27, Tn addition,

+00

Flo) = / / (1 + )K" d.

“oo Qo {u, >}
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By Fatou’s lemma we get that

+00 +00
/ lim inf / (1 + |xP)dH  di < lim inf / / 1+ |x|")dH! dA < + oo.

Qﬂ@*{vh ZA} —00 Qﬁ(‘)*{vhzi}

Thus, for almost every 4 € R,

lim inf / (1 + |x")dH! < co.

Qo {uy >0}

Since v, — u in L'(R?), the Cavalieri’s principle implies that, possibly
taking a subsequence and reindexing by £, the sequence of characteristic
functions (x(,, >,y nex converges to yy,, in L'(R?) for almost every A € R.

Then the lower semicontinuity of F shows that, for >almost every 1 € R,

f(x{uzi}) < li}rbninff()({vhz,:}) = li]m inf / 1+ |K|p)dH1 < 0.

Qo {v),>7}

The theorem ensues by a straightforward application of Theorem 4.1
in [7]. O

REMARK 5. An interesting consequence of the next result is that it
provides an explicit integral formulation for F(u) when « is a minimizer of
(Pg). Such a formulation could also be obtained, under a slightly different
form, by combining the direct method developed in [4] with Theorem 8.6
in [8]. Indeed, by passing to a subsequence for which there is convergence
in L' of the characteristic functions of almost every level set, it can be
easily proved that almost every limit set has finitely many singularity
points. Then, Theorem 8.6 in [8] provides an explicit formula for the re-
laxed energy of the limit set, from which an expression of F(u) is easily
deduced when « is a minimizer of (Ps).

THEOREM 6. Problems (P1) and (Pg) are equivalent, i.e.
min{&() : y € D} = min{F () : u = Uy on R*\ Q}
In addition, if y € D ts a mintmizer of (P1) then u, is a minimizer of (Ps)

and, in particular, ?(u;,) = E(y). Conversely, if u is a minimazer of (Ps)
then there exists an amodal completion v, that minimizes (P1) and whose
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assoctated function u., cotncides with u almost everywhere. In particular,
Fw) = &@y,) = F(u,) and for almost every 1 € R,

{u>1NQ=0u,>1nNQcC U 7. up to a H'-negligible set.
.TET[

Proor. Let % be a minimizer of (Py). Because F(u) < oo and % coin-
cides with Uj outside 2, there exists a sequence (u;,),en of functions in S
such that u;, tends to % in LY (R?* and F (uy,) converges to F(u). According to
Lemma 3, we can associate with each %;, an amodal completion y, such that
Fluy) = E(y,). Since sup E(yy) < oo, there exists by Corollary 1 a limit

amodal completion y such that (y,,) converges to y (in the sense of Remark 2)
and £(y) < hlgn inf £(y;,) = F(w). It follows that

min{&() : y € D} < min{Fu): u = Uy on R*\ Q}.

Conversely, let y be a minimizer of (P;). By Lemma 7, for each k € N*
there exists a continuous u; € S such that |E(y) — F(u)| < 1/k and, in
addition, % tends to u, in LY(R?) as k — oo, where u, is associated with y
through Theorem 1. The lower semicontinuity of F shows that
Flu,) < li}rbrl irclf F(up) = £(y), therefore

min{&() : y € D} > min{F @) : u = Uy on R*\ Q}
thus
(15) min{&() : y € D} = min{F(u) : u = Uy on R*\ Q}.

In particular, F(u,) = min{F(u): v = U, on R*\ Q} = £(7) and there-
fore u, is a minimizer of (Py).

Take now again a minimizer u of (Pg). Like above we may find a se-
quence (uy) of functions in S and their associated amodal completions (y;,)
such that u;, — » in L (Rz) Fu) = hm Fup), Fluy) = E®y,) and ()

converges (in the sense of Remark 2) to a hmlt amodal completion y, such
that £(y,,) < h;?llor.}f E(y) = h/?llorolf Fluy) = F(w). By (15), £(y,) = F(u) and
7,, 18 a minimizer of (P1).

Let u, denote the function associated with y, according to Theorem 1.
By (12), by the fact that curves of y are uniform limits of curves of y,,, that
all functions coincide with Uy on 92 and by the construction procedure of
Theorem 1, it follows that u;, tends to u, a.e. on . Since, by definition, (u;,)
also tends to w in LI(RZ), it ensues that « and u, coincide almost every-
where on @, thus on R? because both functions coincide with Uj outside Q.
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Finally, (15) shows that F(u) = £(y,) = F(u,) and Theorem 1 yields that
for almost every 1 € R,

{u>1nNQ=0u,>1}NQ2cC U 7,(*) up to a H!-negligible set.
%GT;'
|
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