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Compact Subgroups of GL,,(C).

JEAN FRESNEL (*) - MARIUS VAN DER PUT (¥%*)

1. Introduction.

Let G ¢ GL,(C) be a compact subgroup. Using the Haar measure on G
one obtains a positive definite Hermitian form on C" which is invariant
under G. In other words, G is conjugated, with respect to GL,(C), to a
subgroup of the standard unitary group U, (C). In particular, every g € G
is semisimple and all its eigenvalues have absolute value 1.

The inverse problem was posed by K. Millet and I. Kaplansky (see [Ba]):

Suppose that the subgroup G C GL,(C) has the property that every
g € G is semisimple and all its eigenvalues have absolute value 1. Is G
conjugated to a subgroup of U,(C)?

Forn = 1,2 the answer is positive. A counterexample for » > 3 is given
in ([Ba], Counterexample 1.10, p. 19). However, using the techniques of
Burnside, it is shown in ([Ba], Corollary 1.8, p. 18), that 7 is isomorphic to a
subgroup of U, (C). The aim of this paper is to present a proof of the fol-
lowing positive result.

THEOREM 1.1. Suppose that the subgroup G C GL,(C) satisfies:

(i) Every element of G is semisimple and all its eigenvalues have
absolute value 1.
(il) G s closed with respect to the ordinary topology of GL,,(C).
Then G is conjugated in GL,(C) to a subgroup of U, (C) and therefore
compact.

The theorem has an almost immediate consequence.
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COROLLARY 1.2. Let E be an n-dimensional affine euclidean space
and G a closed subgroup of the group of all isometries of E. Suppose that
each element of G has a fixed point. Then the group G is compact and has
a fixed point.

ProoF. Theactionofg € Gon R"isgivenby X € R*"—gX =UX + A
with U € 0,(R), A € R". One associates to g € G the matrix M(g) =

= <l({ ?) € GL,,1(R). All eigenvalues of M(g) have absolute value 1.

Since U is semisimple, M(g) is semisimple if and only if there exists a vector
X € R" such that M(g) <)1( > = ()1( ) . This property of X is equivalent to X

is a fixed point for g. It follows that M(g) is semisimple if and only if g has a
fixed point. The theorem implies that {M(g)|g € G} is compact. Then G is
compact and has a fixed point. O

2. A result on real Lie algebras.

PROPOSITION 2.1.  V is a complex vector space of dimension n > 1. Let
a be a real Lie subalgebra of End(V) satisfying:

(@ i-lyég

) If V=V @V, with Vi,Vs complex vector spaces invariant
under q, then Vi =0o0r Vo =0.

(c) Every element of g is semisimple and all its eigenvalues are
mi-R

Then the following holds:

(1) g is a real semisimple Lie algebra, & := C Qg g is a complex
semisimple Lie algebra and the canonical map & — End-(V) is injective.
(2) Let § be a Cartan subalgebra of . Then  := C ® § is a Cartan
subalgebra for the complex Lie algebra of &. Let R be the set of roots for the
pair (&, D). Then
(2a) a(h) €i- R forevery h € h and a € R,
(2b) for every a € R, the real Lie subalgebra of g, generated by
anN (S, & ©_,) is isomorphic to 31s.
(8) There exists a positive definite Hermitian form F such that for
all e,y € V and g € g one has F(gx,y) + F(x,gy) = 0.
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Proor. (1). Suppose that g is not semisimple. Then g has a non zero
solvable ideal. Let a # 0 be a minimal solvable ideal, then [a, a] = 0. Since
the elements of a are semisimple and commute there is a decomposition
V:=C"=V,@---®V,andthere are distinct R-linearmaps 4; : a —i-R
such that the action of a on V is given by

a(Z vj): Z/lj(a)vj for a € a and v; € V; for all j .

=1

Choose an element a € a such that, say, 4;(a) = i and the 4;(a) are distinct.
For g € g one writes b := [g,a] = ga — ag € a. Consider for a given u € V;
the expression g(u) =) v, with all v, € V. Now A(bu = b(u) =

k
(ga — ag)w) = Aa) > vp — > Ap(@)vy. This implies v, = 0 for k #j and
k k

4j(b)u = 0. Thus the spaces V; are invariant under g. Condition (b) implies
r = 1.Then a = i - 1y, which contradicts condition (a). One concludes that g
is semisimple.

According to [F-H], & := C ®p g is semisimple, too. An element of &
can uniquely be written as 1 ® a + i ® b with a, b € g. If the image of this
element is 0 in End(V), then @ = —ib. This implies ¢ = b = 0 since ¢ and b
have their eigenvalues in i - R and are semisimple.

(2). The first statement of (2) is immediate. We recall (see [F-H]) that
the Cartan decomposition (or root decomposition) & = 9 @ (@, &,) has
the following properties: For any non zero linear map a :  — C one has

®y:={g € | [h,g] = alh)g for all h € H} .

If &, # 0 then a is called a root and in that case dim¢ &, = 1. If a is a root,
then ca with ¢ € C* is a root if and only if ¢ = £+ 1.

Fix an element h € End(V). The eigenvalues of the linear map
End(V) — End(V), defined by g — ad(h)(g) := [k, g], are the differences of
the eigenvalues of /. In particular for 2 € ) and @ € R one has a(h) €i- R.
This proves (2a).

One writes a3, —ay, .. o s =y for the roots. Any ¢g € g has a unique

decomposition g = go + Z (o, + 9-a) With go € D, g4, € Gy

Choose a generic element ho € 0, i.e., the 21 elements + a;(kg) €1 - R*
are distinct. For m > 1 one has

ad(ho)"(@) = 3 (0" gu, + (— 05(ho)" g, € .
J
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Using this relation for m =2n, n=1,...,r and observing that the
oz](ho)2 € R*, j=1,...,r are distinct, one finds that all Ju; + g—q; are in g.
Then also gy € g Slrmlarly, one finds that each ig,, — ig—,; € g.

Now we study the real vector space T :=gnN ((55 + (55 o). As shown
above, any element of ., is mlpotent Since the elements of g are
semisimple one has gn @i% =0. In particular the two projections
T; — ©.,, are injective. We conclude from this that 7; has a real basis of
the form X, +X ,,iX,, —iX ,, where X., are non zero elements of
Gy

The complex Lie algebra generated by X, is easily seen to be the
complex Lie algebra sly . One easily verifies that the real Lie algebra
generated by X,, + X_,;,1X,; — iX_,; is isomorphic to 3uz. This proves (2b).

(3). One apphes [F- H] Propos1t10n 26.4. The condition (i) of that pro-
position is (2a) and (2b). The equivalent condition (iii) states that the real
Lie algebra associated to g is compact. This implies the existence of a
positive definite Hermitian form /' on V such that F(gx,y) + F(x, gy) =
holds for all x,4y € V and g € g. O

3. Proof of the theorem.

The case G connected.

Put g := {4 € Matr,(C)|exp (tA) € G for all t € R}. According to ([M-
T], Proposition 3.4.2 and 3.4.2.1.), g is a real Lie subalgebra of Matr,,(C)
and moreover G is generated by {exp(¢g)| g € g}. The elements g € g are
clearly semisimple and all their eigenvalues are in i - R.

LetV:=C"=V; ®--- ®V, denote a maximal decomposition into (non
trivial) complex subspaces invariant under g. This decomposition is also
invariant under the action of G. It suffices to prove the theorem for the
restriction of G to each V. In other words we may suppose that = 1. Thus
q satisfies the COIldlthIlS (b) and (¢) of Proposmon 2.1.

Ifi- 1y € g, then onereplaces g by g* := {g € a | Tr(g) = 0}. The latter
is again a real Lie algebra, satisfies (a)— (c) and moreover g = q¢* @ Ri - 1y.
The positive definite Hermitian form of part (3) of Propostion 2.1 has
clearly the property F(gx,gy) = F(x,y) for allg € G and ¢,y € V.

The general case.

Now G is a closed subgroup of GL,,(C) (for the ordinary topology) such
that every element of G is semisimple and such that all its eigenvalues have
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absolute value 1. Let G° denote the component of the identity of G. Ac-
cording to the previous case, the group G° is compact.

Lemma 3.1.  G/G° is a torsion group, i.e., all its elements have finite
order.

Proor. Let g be an element of G. Choose a basis ey, ..., e, of eigen-
vectors of g. The group 7', consisting of all elements ¢ € GL,,(C) such that
te; = cjej, |cj| = 1for all j, is compact. The topological closure H C GL,(C)
of the group generated by ¢ is a closed subgroup of 7" and therefore com-
pact. The component of the identity H° of H has finite index in H, since H is
compact. Moreover, H° C G°. It follows that the image of g in G/G° has
finite order. O

The group G° is conjugated to a subgroup of U,(C) and hence compact.
One considers the real vector space Herm consisting of the Hermitian
forms F' on V. The group G acts linearly on Herm by (gF)(x,y) :=
:= F(gx,gy). The real linear subspace Hermg. consisting of the G°-in-
variant Hermitian forms is not 0 and contains in fact a positive definite
Hermitian form. The space Hermg. is invariant under G, since G° is a
normal subgroup of G. The action of G on Hermg. induces a homo-
morphism G — GL(Hermg.) with kernel G* and image I. Since Gt D G°
the group / is a torsion group. G* leaves a positive definite Hermitian form
invariant and is closed. Therefore G* is compact.

We will need the following classical result and refer to ([Fr], p. 209, or
[C-R] p. 252, or [S]) for a proof.

LEMMA 3.2 (Schur’s theorem). Let H be a torsion subgroup of GL,,(F),
for some field F. Then:

Any finitely generated subgroup J of H is finite. As a consequence, H is
the filtered union of its finite subgroups.

We apply the lemma to I. Let J C I be a finite subgroup. Its preimage
J* C G is compact and the subspace Herm,. of the the J*-invariant ele-
ments of Herm is not 0 and contains a positive definite Hermitian form.
For finite subgroups J1 C J; of I one has Herm,;: > Herm,;. Since the
spaces Herm,- have finite dimension and [ is the filtered union of its finite
subgroups, there exists a finite subgroup Jo of I such that Herm,, =
= Hermg- for every finite subgroup K C I, containing Jy. This implies the
existence of a positive definite Hermitian form invariant under G.
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