Compact Subgroups of $GL_n(\mathbb{C})$.

Jean Fresnel (*) - Marius van der Put (**)

1. Introduction.

Let $G \subset GL_n(\mathbb{C})$ be a compact subgroup. Using the Haar measure on G one obtains a positive definite Hermitian form on \mathbb{C}^n which is invariant under G. In other words, G is conjugated, with respect to $GL_n(\mathbb{C})$, to a subgroup of the standard unitary group $U_n(\mathbb{C})$. In particular, every $g \in G$ is semisimple and all its eigenvalues have absolute value 1.

The inverse problem was posed by K. Millet and I. Kaplansky (see [Ba]):

Suppose that the subgroup $G \subset GL_n(\mathbb{C})$ has the property that every $g \in G$ is semisimple and all its eigenvalues have absolute value 1. Is G conjugated to a subgroup of $U_n(\mathbb{C})$?

For n=1,2 the answer is positive. A counterexample for $n\geq 3$ is given in ([Ba], Counterexample 1.10, p. 19). However, using the techniques of Burnside, it is shown in ([Ba], Corollary 1.8, p. 18), that G is isomorphic to a subgroup of $U_n(\mathbb{C})$. The aim of this paper is to present a proof of the following positive result.

THEOREM 1.1. Suppose that the subgroup $G \subset GL_n(\mathbb{C})$ satisfies:

- (i) Every element of G is semisimple and all its eigenvalues have absolute value 1.
- (ii) G is closed with respect to the ordinary topology of $GL_n(\mathbb{C})$. Then G is conjugated in $GL_n(\mathbb{C})$ to a subgroup of $U_n(\mathbb{C})$ and therefore compact.

The theorem has an almost immediate consequence.

- (*) Indirizzo dell'A.: Laboratoire de Théorie des nombres et Algorithmique arithmétique, Université Bordeaux I, 351 cours de la Libération, 33405 Talence, France. E-mail: fresnel@math.u-bordeaux1.fr
- (**) Indirizzo dell'A.: Department of Mathematics, University of Groningen, P.O.Box 800, 9700 AV Groningen, The Netherlands. E-mail: mvdput@math.rug.nl

COROLLARY 1.2. Let E be an n-dimensional affine euclidean space and G a closed subgroup of the group of all isometries of E. Suppose that each element of G has a fixed point. Then the group G is compact and has a fixed point.

PROOF. The action of $g \in G$ on \mathbb{R}^n is given by $X \in \mathbb{R}^n \mapsto gX = UX + A$ with $U \in O_n(\mathbb{R}), \ A \in \mathbb{R}^n$. One associates to $g \in G$ the matrix $M(g) = \begin{pmatrix} U & A \\ 0 & 1 \end{pmatrix} \in \operatorname{GL}_{n+1}(\mathbb{R})$. All eigenvalues of M(g) have absolute value 1. Since U is semisimple, M(g) is semisimple if and only if there exists a vector $X \in \mathbb{R}^n$ such that $M(g) \begin{pmatrix} X \\ 1 \end{pmatrix} = \begin{pmatrix} X \\ 1 \end{pmatrix}$. This property of X is equivalent to X is a fixed point for g. It follows that M(g) is semisimple if and only if g has a fixed point. The theorem implies that $\{M(g)|g \in G\}$ is compact. Then G is compact and has a fixed point.

2. A result on real Lie algebras.

PROPOSITION 2.1. V is a complex vector space of dimension $n \ge 1$. Let \mathfrak{g} be a real Lie subalgebra of $\operatorname{End}_{\mathbb{C}}(V)$ satisfying:

- (a) $\mathbf{i} \cdot \mathbf{1}_V \not\in \mathfrak{g}$
- (b) If $V = V_1 \oplus V_2$ with V_1, V_2 complex vector spaces invariant under \mathfrak{g} , then $V_1 = 0$ or $V_2 = 0$.
- (c) Every element of ${\mathfrak g}$ is semisimple and all its eigenvalues are in ${\bf i}\cdot {\mathbb R}.$

Then the following holds:

- (1) g is a real semisimple Lie algebra, $\mathfrak{G} := \mathbb{C} \otimes_{\mathbb{R}} g$ is a complex semisimple Lie algebra and the canonical map $\mathfrak{G} \to \operatorname{End}_{\mathbb{C}}(V)$ is injective.
- (2) Let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g} . Then $\mathfrak{H} := \mathbb{C} \otimes \mathfrak{h}$ is a Cartan subalgebra for the complex Lie algebra of \mathfrak{G} . Let R be the set of roots for the pair $(\mathfrak{G},\mathfrak{H})$. Then
 - (2a) $a(h) \in \mathbf{i} \cdot \mathbb{R}$ for every $h \in \mathfrak{h}$ and $a \in R$,
- (2b) for every $a \in R$, the real Lie subalgebra of \mathfrak{g} , generated by $\mathfrak{g} \cap (\mathfrak{G}_a \oplus \mathfrak{G}_{-a})$ is isomorphic to \mathfrak{Su}_2 .
- (3) There exists a positive definite Hermitian form F such that for all $x, y \in V$ and $g \in \mathfrak{g}$ one has F(gx, y) + F(x, gy) = 0.

PROOF. (1). Suppose that \mathfrak{g} is not semisimple. Then \mathfrak{g} has a non zero solvable ideal. Let $\alpha \neq 0$ be a minimal solvable ideal, then $[\alpha, \alpha] = 0$. Since the elements of α are semisimple and commute there is a decomposition $V := \mathbb{C}^n = V_1 \oplus \cdots \oplus V_r$ and there are distinct \mathbb{R} -linear maps $\lambda_j : \alpha \to \mathbf{i} \cdot \mathbb{R}$ such that the action of α on V is given by

$$aigg(\sum_{j=1}^r v_jigg) = \sum \pmb{\lambda}_j(a)v_j ext{ for } a \in \mathfrak{a} ext{ and } v_j \in V_j ext{ for all } j \ .$$

Choose an element $a \in \mathfrak{a}$ such that, say, $\lambda_1(a) = \mathbf{i}$ and the $\lambda_j(a)$ are distinct. For $g \in \mathfrak{g}$ one writes $b := [g,a] = ga - ag \in \mathfrak{a}$. Consider for a given $u \in V_j$ the expression $g(u) = \sum_k v_k$ with all $v_k \in V_k$. Now $\lambda_j(b)u = b(u) = (ga - ag)(u) = \lambda_j(a) \sum_k v_k - \sum_k \lambda_k(a)v_k$. This implies $v_k = 0$ for $k \neq j$ and $\lambda_j(b)u = 0$. Thus the spaces V_j are invariant under \mathfrak{g} . Condition (b) implies r = 1. Then $a = \mathbf{i} \cdot 1_V$, which contradicts condition (a). One concludes that \mathfrak{g} is semisimple.

According to [F-H], $\mathfrak{G} := \mathbb{C} \otimes_{\mathbb{R}} \mathfrak{g}$ is semisimple, too. An element of \mathfrak{G} can uniquely be written as $1 \otimes a + \mathbf{i} \otimes b$ with $a, b \in \mathfrak{g}$. If the image of this element is 0 in $\operatorname{End}_{\mathbb{C}}(V)$, then $a = -\mathbf{i}b$. This implies a = b = 0 since a and b have their eigenvalues in $\mathbf{i} \cdot \mathbb{R}$ and are semisimple.

(2). The first statement of (2) is immediate. We recall (see [F-H]) that the Cartan decomposition (or root decomposition) $\mathfrak{G} = \mathfrak{H} \oplus (\oplus_{\alpha} \mathfrak{G}_{\alpha})$ has the following properties: For any non zero linear map $\alpha : \mathfrak{H} \to \mathbb{C}$ one has

$$\mathfrak{G}_{\pmb{a}} := \{g \in \mathfrak{G} \mid [h,g] = \pmb{a}(h)g \text{ for all } h \in \mathfrak{H}\} \ .$$

If $\mathfrak{G}_a \neq 0$ then a is called a root and in that case $\dim_{\mathbb{C}} \mathfrak{G}_a = 1$. If a is a root, then ca with $c \in \mathbb{C}^*$ is a root if and only if $c = \pm 1$.

Fix an element $h \in \operatorname{End}(V)$. The eigenvalues of the linear map $\operatorname{End}(V) \to \operatorname{End}(V)$, defined by $g \mapsto ad(h)(g) := [h, g]$, are the differences of the eigenvalues of h. In particular for $h \in \mathfrak{h}$ and $a \in R$ one has $a(h) \in \mathbf{i} \cdot \mathbb{R}$. This proves (2a).

One writes $a_1, -a_1, \ldots, a_r, -a_r$ for the roots. Any $g \in \mathfrak{g}$ has a unique decomposition $g = g_0 + \sum_{j=1}^r (g_{a_j} + g_{-a_j})$ with $g_0 \in \mathfrak{F}, \ g_{\pm a_j} \in \mathfrak{G}_{\pm a_j}$.

Choose a generic element $h_0 \in \mathfrak{h}$, i.e., the 2r elements $\pm a_j(h_0) \in \mathbf{i} \cdot \mathbb{R}^*$ are distinct. For $m \geq 1$ one has

$$ad(h_0)^m(g) = \sum_j a_j(h_0)^m g_{a_j} + (-a_j(h_0))^m g_{-a_j} \in \mathfrak{g}.$$

Using this relation for m=2n, n=1,...,r and observing that the $a_j(h_0)^2 \in \mathbb{R}^*, j=1,...,r$ are distinct, one finds that all $g_{a_j}+g_{-a_j}$ are in \mathfrak{g} . Then also $g_0 \in \mathfrak{g}$. Similarly, one finds that each $\mathbf{i}g_{a_j}-\mathbf{i}g_{-a_j}\in \mathfrak{g}$.

Now we study the real vector space $T_j := \mathfrak{g} \cap (\mathfrak{G}_{a_j} + \mathfrak{G}_{-a_j})$. As shown above, any element of $\mathfrak{G}_{\pm a_j}$ is nilpotent. Since the elements of \mathfrak{g} are semisimple one has $\mathfrak{g} \cap \mathfrak{G}_{\pm a_j} = 0$. In particular the two projections $T_j \to \mathfrak{G}_{\pm a_j}$ are injective. We conclude from this that T_j has a real basis of the form $X_{a_j} + X_{-a_j}$, $\mathbf{i} X_{a_j} - \mathbf{i} X_{-a_j}$, where $X_{\pm a_j}$ are non zero elements of $\mathfrak{G}_{\pm a_j}$.

The complex Lie algebra generated by $X_{\pm a_j}$ is easily seen to be the complex Lie algebra $\mathfrak{Sl}_{2,\mathbb{C}}$. One easily verifies that the real Lie algebra generated by $X_{a_j} + X_{-a_j}$, $\mathbf{i}X_{a_j} - \mathbf{i}X_{-a_j}$ is isomorphic to \mathfrak{Su}_2 . This proves (2b).

(3). One applies [F-H], Proposition 26.4. The condition (i) of that proposition is (2a) and (2b). The equivalent condition (iii) states that the real Lie algebra associated to $\mathfrak g$ is compact. This implies the existence of a positive definite Hermitian form F on V such that F(gx,y)+F(x,gy)=0 holds for all $x,y\in V$ and $g\in \mathfrak g$.

3. Proof of the theorem.

The case G connected.

Put $g := \{A \in \operatorname{Matr}_n(\mathbb{C}) | \exp(tA) \in G \text{ for all } t \in \mathbb{R} \}$. According to ([M-T], Proposition 3.4.2 and 3.4.2.1.), g is a real Lie subalgebra of $\operatorname{Matr}_n(\mathbb{C})$ and moreover G is generated by $\{\exp(g) | g \in \mathfrak{g}\}$. The elements $g \in \mathfrak{g}$ are clearly semisimple and all their eigenvalues are in $\mathbf{i} \cdot \mathbb{R}$.

Let $V := \mathbb{C}^n = V_1 \oplus \cdots \oplus V_r$ denote a maximal decomposition into (non trivial) complex subspaces invariant under \mathfrak{g} . This decomposition is also invariant under the action of G. It suffices to prove the theorem for the restriction of G to each V_j . In other words we may suppose that r = 1. Thus \mathfrak{g} satisfies the conditions (b) and (c) of Proposition 2.1.

If $\mathbf{i} \cdot 1_V \in \mathfrak{g}$, then one replaces \mathfrak{g} by $\mathfrak{g}^* := \{g \in \mathfrak{g} \mid Tr(g) = 0\}$. The latter is again a real Lie algebra, satisfies (a)–(c) and moreover $\mathfrak{g} = \mathfrak{g}^* \oplus \mathbb{R}\mathbf{i} \cdot 1_V$. The positive definite Hermitian form of part (3) of Propostion 2.1 has clearly the property F(gx,gy) = F(x,y) for all $g \in G$ and $x,y \in V$.

The general case.

Now G is a closed subgroup of $GL_n(\mathbb{C})$ (for the ordinary topology) such that every element of G is semisimple and such that all its eigenvalues have

absolute value 1. Let G^o denote the component of the identity of G. According to the previous case, the group G^o is compact.

Lemma 3.1. G/G^o is a torsion group, i.e., all its elements have finite order.

PROOF. Let g be an element of G. Choose a basis e_1, \ldots, e_n of eigenvectors of g. The group T, consisting of all elements $t \in \operatorname{GL}_n(\mathbb{C})$ such that $te_j = c_j e_j$, $|c_j| = 1$ for all j, is compact. The topological closure $H \subset \operatorname{GL}_n(\mathbb{C})$ of the group generated by g is a closed subgroup of T and therefore compact. The component of the identity H^o of H has finite index in H, since H is compact. Moreover, $H^o \subset G^o$. It follows that the image of g in G/G^o has finite order.

The group G^o is conjugated to a subgroup of $U_n(\mathbb{C})$ and hence compact. One considers the real vector space Herm consisting of the Hermitian forms F on V. The group G acts linearly on Herm by (gF)(x,y):= :=F(gx,gy). The real linear subspace $Herm_{G^o}$ consisting of the G^o -invariant Hermitian forms is not 0 and contains in fact a positive definite Hermitian form. The space $Herm_{G^o}$ is invariant under G, since G^o is a normal subgroup of G. The action of G on $Herm_{G^o}$ induces a homomorphism $G \to \operatorname{GL}(Herm_{G^o})$ with kernel G^+ and image G^+ is a torsion group. G^+ leaves a positive definite Hermitian form invariant and is closed. Therefore G^+ is compact.

We will need the following classical result and refer to ([Fr], p. 209, or [C-R] p. 252, or [S]) for a proof.

LEMMA 3.2 (Schur's theorem). Let H be a torsion subgroup of $GL_n(F)$, for some field F. Then:

Any finitely generated subgroup J of H is finite. As a consequence, H is the filtered union of its finite subgroups.

We apply the lemma to I. Let $J \subset I$ be a finite subgroup. Its preimage $J^* \subset G$ is compact and the subspace $Herm_{J^*}$ of the the J^* -invariant elements of Herm is not 0 and contains a positive definite Hermitian form. For finite subgroups $J_1 \subset J_2$ of I one has $Herm_{J_1^*} \supset Herm_{J_2^*}$. Since the spaces $Herm_{J^*}$ have finite dimension and I is the filtered union of its finite subgroups, there exists a finite subgroup J_0 of I such that $Herm_{J_0^*} = Herm_{K^*}$ for every finite subgroup $K \subset I$, containing J_0 . This implies the existence of a positive definite Hermitian form invariant under G.

REFERENCES

- [Bk] N. Bourbaki, Groupes et algèbres de Lie, chapitre 8, Hermann.
- [Ba] H. Bass, Groups of integral representation type, Pacific Journal of mathematics, vol. 86, No 1, 1980.
- [C-R] C. Curtis I. Reiner, Representation theory of finite groups and associative algebras, Wiley & sons, inc. 1962.
- [Fr] J. Fresnel Algèbres des matrices, Hermann, 1997.
- [F-H] W. Fulton J. Harris, Representation Theory, GTM 129, Springer Verlag, 1991.
- [M-T] R. Mneimné F. Testard, Introduction à la théorie des groupes de Lie classiques, Hermann, 1986.
- [Pa] A. Parreau, Sous-groupes elliptiques de groupes linéaires sur un corps valué, Journal of Lie Theory, 13, no 1 (2003), pp. 271–278.
- [S] I. Schur Über Gruppen periodischer Substitutionen, Sitzber. Preuss. Akad. Wiss. (1911), pp. 619–627.

Manoscritto pervenuto in redazione il 4 luglio 2005.