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A ¢-logarithmic analogue of Euler’s sine integral (*)

NOBUSHIGE KUROKAWA (**) - MASATO WAKAYAMA (*%*)

ABSTRACT - We study a g-logarithmic analogue of Euler’s sine integral proved in
1769. It is evaluated by the quantum dilogarithm function.

1. Introduction.

In [E] 1769, Euler calculated the famous integral
(1.1) /log (sina)dx = —glogz
0

This appears frequently in calculus texts as an example of somewhat tricky
calculation. We remark that a refined formulation of (1.1) is given by the
formula

72

g
(1.2) / log (1 — *™)dax = -5
0

(*) Partially supported by Grant-in-Aid for Scientific Research (B) No. 15340012,
and by Grant-in-Aid for Exploratory Research No. 15654003

Mathematics Subject Classification 2000: 11M36

(**) Indirizzo dell’A.: Department of Mathematics, Tokyo Institute of Technol-
ogy, Oh-okayama Meguro, Tokyo, 152-0033 JAPAN. e-mail: kurokawa@math.ti-
tech.ac.jp

(***) Indirizzo dell’A.: Faculty of Mathematics, Kyushu University, Hakozaki
Fukuoka, 812-8581, JAPAN. e-mail: wakayama@math.kyushu-u.ac.jp



52 Nobushige Kurokawa - Masato Wakayama

In fact, taking the real part of (1.2), we have (1.1) because

2 2
Re / log (1 — )y = / log |1 — ezm|dx
0 0
= / log (2 sin x)dx

z

= / log (sin x)dx + g log 2

by noticing that Re(— %) =0.
We formulate a slightly generalized version. We use Euler’s diloga-
rithm function

Lia@) = Yo

and the double sine function

F(x) = exﬁ{<

n=1

Slce §Ie
\_/
H/—/

due to Holder [H]. We define
Fi(x) = F(x) 21 — eriey2rizgr ()

for Im () > 0. Then we have the
THEOREM 1.1. ForO0<a <1
2ix 1 : :
/log A — ae“™)dx = — Z_i{LIZ( —a) — Liz(a)}
1
1 ()
= 277, log 71(%01 .
Fy ( Zm')
In the case of a =1 in Theorem 1.1 we obtain (1.2) from the facts

F1(0) = ™% and 3= ¢%. We can easily show these values are obtained
from the definition of F'(x). Actually, the value of F1(0) is obvious from
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F(0) = 1. Also, using the result F(}) = V2 of Hélder in [H], we have

—27i
r(§)-r() e

Now we present a g-analogue of Theorem 1.1 or (1.2). Let ¢ > 1. We put

Eﬁo

ly(®) = (g 1) Z

m= 1

1+qWL

for x € C, which defines a meromorphic function in x. The function ¢,(x) is
considered as a g-analogue of the usual logarithm

00 n—1 n
loga = 32D M@=

m=1 n

expanded in |x — 1| < 1, as the following calculation shows:

0 — g™
Eq(%‘) =(@-1 Zm
m=1

DS g

m=1 n=1
D" e —1)" (—1" 1"
=(q— 1)21— = ZT,

where [n], = q i L and limg; [n], = n.
We show that a g-analogue of (1.2) is expressed as

z
_ iy, 41 rplta”
(13) /gq(l € )dx - 27] log <n1 1 _ q—n !

0

To formulate the result neatly, we recall the quantum dilogarithm (see
Kirillov [K]);

Ligg@) =3 -2

n=1 %[%]q

We also introduce
Fyw) =] a-qgmem =)
n=1

Then we have the following theorem.
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THEOREM 1.2. For0 < a <1, it holds that

/Eq(l — ae®®)dx = — 2% {Liz o( — @) — Lig4(a)}
0

:l.log (Fiq (1%%+%>> .

=\ ()

If we put @ = 1 in Theorem 1.2, the equation (1.3) follows immediately
from the second expression. Moreover, we have the following limit for-
mulas which allow us to obtain (1.2) as the limit ¢ | 1 of (1.3).

PROPOSITION 1.3.

(1.4) 1;?11 (@ — Dlog (f[l a+ q”)) = f—z
and

o 2
(1.5) lim (¢ - Dlog (g a- q")) =-5

Furthermore, we prove the following

THEOREM 1.4. Suppose Ima > 0. Then we have

lim Fy(x) = F1 ().
ql1

This result indeed shows that “lim,|; (Theorem 1.2) = Theorem 1.1”.
We add one remark. Since

5 2n 2n
1 1 1
/log (sinx)dx = 1/ log |sin x|dx = ZRe 1/ log (sin x)dx,
0 0 0
it may be also reasonable to think the quantity
1 1 2n
1 Re Z/ Ly(sin x) d
0

as an analogue of (1.1). From this viewpoint, we obtain the following
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THEOREM 1.5. Forq > 2

2n
1.1 . T (5,
ZRe Z/Zq(s1nx)dx——§z [,
0

(@ — D& 1
= - 1y,
2 nz_;{ /1_2q—m }

We note that, in the formula above, it is impossible to take the limit ¢ | 1
directly.

2. Proof of Theorem 1.1.

The former part of the theorem is straightforward. In fact, we calculate

/ log (1 — ae®®)da = /2 —ianezm du
g T

n=

n

2
X n 2inz %
— § :(I_ ezinxdx — _ E :(l_ ¢
n n | 2in |,
1 n=

n=

(_ )’I’L
e

n=1

7’L

-5 L (Lin(— a) - Lis@).

To show the latter part of the theorem, it is sufficient to prove the following
lemma.

LEMMa 2.1. ForImx >0
Fi(x) = exp ( — Lig(e>™™)).

This is essentially proved in [KOW] or [KK], where the theory of
multiple sine functions is developed in extending the results to the double
sine functions due to Hélder [H] (for the period (1,1)) and Shintani [S] (for
the period (@1, ®2)). For reader’s convenience, we sketch the proof. See
also “Miscellaneous Examples” Chap. VII-20 of Whittaker-Watson [WW],
which treats indeed the double sine function F'(x) of Holder [H] (but
without mentioning to this reference).
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Proor or LEMMA 2.1. We first show that

(2.1) F(x) =exp (/ 7t cot (rt) dt) .

0
In fact, from the expression

log F'(x) =« + i{n(log (1 — %) —log (1 +%)> +2x}
n=1

we obtain
F@ | & 1 1
F(x) _1+;{n<x—n_n+x> +2}

1

| 22
=1+ Zixz — = nx cot ().
n=1

Hence, using F'(0) = 1, we obtain (2.1).
It follows from (2.1) that

X
log F(x) = / 7t cot (nt) dt.
0
Suppose Im (x) > 0. Then we have

X X
] enit + efm',t ) eZnit

0

X
2 00
_ - . 2 : 2mint
_—ﬂlg—znln_l/te dt

eran Zmnfc -1
= — — _ 2 J—
x i Z{ 27in (2min)? }

_ ) 5 o) emec 1 o) eZm’nm 1
TRt n + 2ni Z n?
n=1 n=1
7l 2 27m¢ 2mix
:—Eoc +alog(1 — )+ L1 (e )+ 2
Since Fy(x) = F(x) 2™ (1 — ¢2riv)?"%en* @) this shows the elaim in Lem-
ma 2.1. U

Thus Theorem 1.1 follows.



A g-logarithmic analogue of Euler’s sine integral 57

3. Proof of Theorem 1.2

The former part is exactly similar to the case of Theorem 1.1. Actually,
we have

/ 0,1 — ae®®)dx = / (—

<. a
:_Z[n]

n=1

NgE

a® eZinx
dx
[n],

Il
_

n

z

1 KN(—a)' —a”
2inx _
/ A= —g;> )

0 n=1

=
3

q
1 ... .
=—% {Liz¢( — @) — Lig4(a)}.
To show the latter part, it suffices to use the following result.

LEMMa 3.1.  ForIm(x) >0

Fy(x) = exp ( — Lig 4(e*™™)).

Proor. This is easily seen as follows (see [KW] also):

log Fy(x) =(q — 1Y _log(1 — g "e*™)

n=1

0 0 —nm 2mm4: anw

——@-DY > —— ——(q—l)z

n=1 m=1 m= 1

o0 g2min .
=- = —Lig (€*™).
m=1 m[m]q

Hence the claim follows. O

Thus, we obtain Theorem 1.2.

4. Proof of Theorem 1.4.

This is obvious from Lemma 2.1 and Lemma 3.1, because the formula

lim Lis 4(%) = Lia(x).
ql1 :

holds for |x| < 1.
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5. Calculations of special values.

First, we notice that one can directly see that Holder’s result is
equivalent to Euler’s integral, that is,

F(%):\/é — (1.1

as follows. From (1.2) we see that

F (%) = exp ( / 7t cot (rt) dt)
0

1
2
— exp <[t log (sin )]} — / log (sin t) dt)
0

= exp <— / log (sin t) dt) .
0

Hence we observe that

%
F(%) =2 = /log(sinnt)dt = —%logZ
0

n

2
= /log(sinx)dac = —g log 2.
0

We now look at the case a =1 of Theorem 1.2 and take the limit ¢ | 1.
Then we have (1.2) again by

=

0 —n
lim(g— Dlog | T] LT} =%
ql1 i l=a

To see this limit formula, it is enough to show that (1.4) and (1.5) in Pro-

position 1.3.

ProOF oF PrOPOSITION 1.3. Let us show these limit formulas by em-
ploying the modular form A4(z) of Ramanujan defined by

A(‘L’) _ eZm't H (1 _ e2ninr)24
n=1
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for Im = > 0. This has the functional equation, i.e. the automorphy of 4 (see,

e.g., [We));
A(— 1) =12 A(7).
T

Forq > 1,takez = %. Then, since 4(t) = ¢! L, a- q‘”)24, we have

log (H a- _”)> = —log A(T) + —log q

n=1
1 1 1 1
—ﬂlog (r A(—;)) +ﬂlogq

1 _2zin
:—élog ———+l (H(l— )> ﬂlogq.

Hence it follows that

(g —Dlog (H (1- q"))
n=1

_1 in _1
__mg-1 ¢ 10g1+(q_1)10g<H(1—e e )>+ o1 logq.

n=1
Taking ¢ | 1, we have
q—1
logq

Therefore we obtain

—1

, (@—1logt— 0, e % =0 and (g—1Dlogqg — 0.

. N W
léf?(q—l)log<H(1—q >>——g.

n=1

(This process shows that one may have more detailed asymptotics.) Then,
the relation

00 00 _ ,—2n
(g —1)log (H(l +q")> = (¢ — Dlog (HG_%))

n=1 n=1

— L@ wog [[a-a®) - @-vlog  [[a-a
q+1 n=1 n=1
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. - ) 1 e 2 77z2
lqlf?(ql”‘)g(H(”q )> E(E) - (ﬁ) 1

yields

This completes the proof of Proposition 1.3.

6. Proof of Theorem 1.5.

For ¢ > 2 we calculate

2n

00 n—1 2z
/éq(sinx)dmzz%/ (sinx — 1)" dw
q

0 n=1

= / (1 — sinx)" de.

n= l[n]q
A simple calculation shows the following lemma.

LEMmMA 6.1.

2n
(6.1) / (1 — sina)" de = 27 (2;&) 2-n,
0

Proor. We calculate as

2n

2n
/ (1 — sinx)"dzx —/ (sm g — cos 920>2n / (\/_ sin (E — Z))anx
0

0

0

T

_ 2n+l

S~y

sin2"0dg = 2"+2 / sin 20 d.
0

4

Therefore, by the well-known evaluation

/ sin®'9do =~ (2”) 27,
2\ n
0

we get (6.1).
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From this lemma we get the former part of Theorem 1.4. We next show

> L [71]; @-D Z { s \/W -1},

Recalling the binomial expansion

Q- = > (?) 272 (|| < 1),

n=0

we can calculate as

SEE 1y
> el :(q—nz(n)z @ -1

~a-03 > (32 —a- 03 Y (3 )z ey

n=1 m=1 n=1 m=1
fx——i———@.
m=1 "V 1- Zq—m

Thus the theorem follows.

=@-1
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