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Generalized Almost Completely Decomposable Groups.

ADOLF MADER(¥) - LUTZ STRUNGMANN (**)

1. Introduction.

Rank-one groups are torsion-free abelian groups isomorphic to some
additive subgroup of the group of rational numbers. These groups have
been classified by the so-called types that have a concrete description.
However, here a type will simply be an isomorphism class of rank-one
groups. Completely decomposable groups are direct sums of rank-one
groups and have been classified up to isomorphism. Almost completely
decomposable (acd-)groups are finite essential extensions of completely
decomposable groups of finite rank. These groups have been studied ex-
tensively during the last fifteen years and although much is known about
them, it is a class of groups whose complete understanding is beyond
reach. Attempts have been made to extend the concepts, ideas and results
of acd-groups to infinite rank. As an example, in [Arn81] and [MS00] bed-
groups were studied that are, by definition, essential extensions of com-
pletely decomposable groups of arbitrary rank by bounded groups. The
question remains what «generalized almost completely decomposable
groups» should be. Now almost completely decomposable groups (of finite
rank) are not only finite extensions of completely decomposable groups but
are also contained in completely decomposable groups as subgroups of
finite index. Hence another way of generalizing almost completely de-
composable groups is to consider special subgroups of completely decom-
posable groups. Core features of almost completely decomposable groups
are the existence of Butler decompositions and of completely decom-
posable regulating subgroups. Certainly these features should be present
in «generalized almost completely decomposable groups».
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A group H is sharp in G if H*(t) = H N G*(z) for every type 7. A main
result (Theorem 4.5) characterizes almost completely decomposable
groups as exactly the sharp subgroups of completely decomposable groups
of finite rank. This characterization makes sense for any rank and justifies
our definition of generalized almost completely decomposable groups as
the sharp subgroups of arbitrary completely decomposable groups. We
show that sharp subgroups of completely decomposable groups have
Butler decompositions and completely decomposable regulating sub-
groups (Corollary 4.1, Corollary 4.8) hence qualify to be called generalized
almost completely decomposable groups. The earlier class of bed-groups is
a subclass of the new class.

We remark ([MSO00]) that there are drastic differences between
almost completely decomposable groups and the generalized almost
completely decomposable groups. In contrast to the acd-groups in
which the regulating subgroups are completely decomposable and
«large» in the sense of having minimal (finite) index, the regulating
subgroups of generalized acd-groups are not large in a similar sense.
In fact, the quotient of a bed-group modulo a regulating subgroup
need not be torsion, and in some groups, the intersection of all reg-
ulating subgroups is the zero-subgroup. bed-Groups with linearly or-
dered critical typeset need not be completely decomposable, in con-
trast to the finite rank case, but they always have non-trivial com-
pletely decomposable direct summands. The distinguished role that is
due the regulating subgroups of generalized acd-groups remains a
mystery.

A subgroup H of G is regular if H(t) = H N G(z) for every type 7.
Regularity is a weakening of purity. Butler groups are, by definition, pure
subgroups of completely decomposable groups, and therefore pure sub-
groups of Butler groups are again Bulter groups. In Section 5 we show
(Theorem 5.5) that regular subgroups of Butler groups are again Butler
groups. We do not know whether the same is true for sharp subgroups. As
there are many Butler groups that are not almost completely decom-
posable, not even pure subgroups of almost completely decomposable
groups need to be almost completely decomposable; in contrast sharp
subgroups of almost completely decomposable groups are almost com-
pletely decomposable (Theorem 4.5).

Section 6 contains applications to groups that are close to being com-
pletely decomposable. In particular, we reprove results due to Baer and
Erdos (Theorem 6.7). Most of our applications (Corollary 4.11, Corollary
4.12, Corollary 4.13, Corollary 6.9, Corollary 6.10, Proposition 4.14) contain
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sufficient conditions for a group to be completely decomposable. The new
proofs utilize systematically Butler decompositions and regulating sub-
groups, showing in each case that the group equals its (completely de-
composable) regulating subgroup.

We conclude with a list of open problems.

2. Notation and Background.

We write maps on the right. Generally our notation is standard. Yet
we mention that HY denotes the pure hull of the subgroup H of G in G.
A rational group is a subgroup of the additive group Q of rational
numbers containing 7. A type is the isomorphism class of all groups
isomorphic to a rational group and we will frequently identify a rational
group with its type. For a type (rational group) 7, the subgroups G(r) =
=5 {¢:¢ € Hom(zr,3)} and G[z] = [{Kery : v € Hom(G, 1)} are pure
in G and are called respectively the t-socle and the t-radical of G.
Additional «type subgroups» are defined by G*(g) = Z/m,— G(p), G*(o) =
= G*(a)f, and G[o] = ﬂp -, Glpl. The typeset Tst(G) of a torsion-free
group G is the set of all types of non-zero rank-one pure subgroups of G.
A type 7 of a group G is critical if G(r)/G*(z) # 0. The symbol T..(G)
denotes the set of all critical types.

A completely decomposable group A has a <homogeneous decomposi-

tion»
A= P 4,
pETer(4)

where each A, is -homogeneous completely decomposable.

We use the letters A, B, C, D for completely decomposable groups, and
X, Y, Z for almost completely decomposable groups and generalizations. If
A is a subgroup of X such that X/A is bounded, then the exponent
exp (X /A) is the least integer e such that e(X/A) = 0.

We recall a number of properties of the so-called type subgroups that
can be found in [Mad00].

LeEmMmA 2.1. Let G be a torsion-free group and a,t types. Then the
Sfollowing hold.
1) G*(¢) C G¥(o) C G(o) and Glo] C Ga].
2) If ¢ € Hom(G, H), then G(c)$ C H(c), G*(0)¢ C H*(0), G*(a)¢ C
C H%0), and G*[ol¢ C H'[0], i.e., all type subgroups are functorial sub-
groups.
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3) If G = G1 & Gy, then

G() = G1(0) & G2(1), G 1) = Gi(r) ® G5 (v),
Gltl = Gi[t] @ Gal7l, Gi7] = Gi[t] @ Gil<l.

For a completely decomposable group A = €P,cr,_ )4, We have ex-
plicitly
A =EPf4, :p>1, A=A, :p> 1},

Aldl = P4, p e}, Al =Pl4,:p£ 1
We will use the following properties of partially ordered sets.

DEFINITION 2.2. Let T be a partially ordered set.

1) A poset T fulfills the minimum condition if every non-void subset
contains a minimal element. The minimum condition is equivalent with
the descending chain condition (DCC) that says that T contains no in-
finite descending chain to > 71 > - - -.

2) A poset T fulfills the maximum condition if every non-void
subset contains a maximal element. The maximum condition is equiva-
lent with the ascending chain condition (ACC) that says that T contains
no nfinite chain 1o < 11 < ---.

3) A poset is inversely well-ordered if it is linearly ordered and
satisfies the maximum condition.

4) The depth dp(t) of an element © € T is one less than the cardin-
ality of the longest ascending chain in T beginning with t if there are
longest chains of this kind, otherwise dp(t) = oc. Thus t € T is maximal if
and only if dp(r) = 0.

A poset T satisfying the maximum condition provides for a general
induction principle as follows. To prove that a statement p(z), 7 € T, is valid
for all 7, it suffices to show that

1) p(v) holds for maximal elements t in T,
2) if p(o) holds for all o > 1, then p(t) holds.

The principle is easily established by showing that the set of elements t
for which p(7) fails is empty.

A decomposition G(r) = B, ® G*(r) with B, t-homogeneous completely
decomposable is called a t-Butler decomposition and the t-homogeneous
completely decomposable summand B, is a t-Butler complement of G. A
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group G has Butler decompositions if G has a Butler decomposition for
each type 7. If G has Butler decompositions and B, is a Butler comple-
ment for each critical type of G, then B=}_ 1 ) B, is a regulating
subgroup of G. The following lemma can be found in [MS00] but Lemma
2.3.1 is an immediate consequence of the Baer Lemma and the rest is
almost obvious.

LEMMA 2.3.
1) A torsion-free group G has a t-Butler decomposition if and only if
the quotient group G(1)/G*(7) is t-homogeneous completely decomposable.
2) A direct summand of a group with Butler decompositions has
Butler decompositions.
3) Direct sums of groups with Butler decompositions have Butler
decompositions.

3. Sharp Embeddings.

The way a subgroup is embedded in a group is of great importance.
Being a direct summand or a pure subgroup are the most common types of
embeddings, but there are several more. Arnold [Arn81] and Miiller-
Mutzbauer [MM92] introduced and studied embeddings that all have to do
with the interplay of the type subgroups of subgroup and over-group. We
are mainly concerned with two of these embeddings. The first is as follows.

DEFINITION 3.1.  Let H be a subgroup of the torsion-free group G. Then
H is sharp in G if, for every type 1, H(t) = H N G*(z).

The first lemma collects basic properties of sharp embeddings.

LEMMA 3.2, Let K < H <G.

1) If K is sharp in H, and H is sharp in G, then K is sharp in G.

2) If K is sharp in G, then K is sharp in H.

3) If K is sharp in G, then K¢ is sharp in G.

4) (Miiller-Mutzbauer) For every type 1, H(t), H*(t), and H(t) are
sharp in H.

5) If H is sharp in G, then, for all types 1, H(t) is sharp in G(v), H (1)
is sharp in G*(1), and H*(z) is sharp in G*(z).

Proor. 1) Suppose that Kf(r) = KNH') and H(t) = HN G ().
Then Ki(t) = KN H!(t) = KN HNGHr) = K NGH).
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2) Suppose that K*(t) = K N G*(z). Then
K1) C KN H¥(1) C K NGHx) = K¥(v).
3) Suppose that K*(r) = K N G*(r) and H = K%. Then
H'(1) C HNGHD) = KGN G = (KN GHD) = KA C HY ),

4) [MM92, Satz 7]
5) In all cases it is a matter of combining (4) with (1). O

Lemma 3.2. 5) makes induction on the depth of the typeset possible.

We will be interested particularly in sharp embeddings. The following
fundamental lemma shows that some important properties of groups are
passed down to sharp subgroups.

LEMMA 3.3. Let G be an arbitrary torsion-free group and H sharp in
G. Then the following hold.
1) Te(H) C Ter(G).
2) If G has Butler decompositions and hence requlating subgroups,
then H has Butler decompositions and regulating subgroups.
3) If Tst(G) is finite, then Tst(H) is finite and Tst(H) C Tst(G).
4) If G*(r) = G(1) N G[z], then H*(t) = H(t) N H[7].

Proor. 1) Since H*(r) = H N G¥(z) = H(z) N G¥(r) we have the natural
injection
H®) G)

(3.4) ZEC) — G0

This establishes 1).

2) By assumption G(r)/G*(z) is t-homogeneous completely decom-
posable, therefore H(t)/H'(z) is t-homogeneous and by the Baer-Kolettis
Theorem ([Fuc73, Theorem 86.6]) it is also completely decomposable. Now
H has Butler decompositions by Lemma 2.3.

3) By 1) To.(H) C Tee(G) C Tst(G) showing that T..(H) is finite.
Define

£ Tst(H) \ To(H) — {G*0) : 0 € T} : pf = G*(p).

We will show that f is injective. Suppose that o1, 02 € Tst(H) \ Te.(H) and
G*(g1) = G¥(09). Then

H(o1) = H¥(91) = HN G*01) = H N GXoz) = H¥(0p) = H(oy),
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and hence o) = g2. There are only finitely many different groups G*(c)
since Tst(G@) is finite and it follows that Tst(H) is finite. By [Mad00, Lem-
ma 2.4.20] Tst(H) is the meet-closure of T.(H) C T.(G) and hence
Tst(H) C Tst(G).

4) H(r) CH@) NH[] C G@)NGIrINH = HN G 1) = H (1). O

If a group and a subgroup both have Butler decompositions, it may not
be possible to choose Butler complements that are nested. The following
lemma contains a substitute for nested Butler complements which will be
needed in the prove of the main result Theorem 4.5.

LEMMA 3.5. Let G be a finite rank Butler group and let H be a sharp
subgroup of G. Then H has Butler decompositions, say H(t) = A, @ H'(z),
and there are a positive integer m and subgroups M, =~ G(1)/G (),
1€ To(@), of G such that M, ® G*(t) C G(t), mA, C M, and mG C M =

= ZPET@(G) Mp'

Proor. The Butler group G has Butler decompositions G(z) =
=D, ® G'(1), and by Lemma 3.3 H has Butler decompositions H(zr) =
A, ® H¥7). Set D = Z/,GT@(G) D,and A = Z/,GT“(H) A, Letn, : G(r) = D,
be the projection along G*(t). Define

v, A, — D, xy, = xn,

The map w, is a monomorphism because A, NG*(r) =0. Let B, =
= Ay, = Am;. Then B, =~ A,. The purification (Bf)f is a direct summand
of D,, say, D, = (BT)SGBCT. Moreover B, and (Bf)f are homogeneous
completely decomposable groups of the same type and rank, hence iso-
morphic, and therefore the quotient (Bf)f /B. is finite ((Mad00, Proposi-
tion 2.1.3]). Choose 7, such that n, (Bf)fg B.. We define a homomorphism

as follows.
9,:D, = (B)’®C; — GH@) : (b+ ¢)p, = (n:by " — n.b,

where b € (Bf)f, ¢ € C;.. The map ¢, is well-defined because the image
of ¢, clearly is contained in G(z) and ((n:b)y;! — nb)a, = nb —nb =0
showing that ¢, maps into G*(r) as required. It is apparent that
M, := D.(n, + ¢,) is disjoint from G*(z), hence M, ® G*(r) C G(z). Also
M.~ D, =~ G(x)/G'(x) since n, + ¢, : D, — M, = D.(n. + ¢,) is a mono-
morphism. In fact, if d € D and d(n.+ ¢,) =0, then n.d = —dp, €
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€D, NGt)=0, so d =0. We claim that
(3.6) A, C M,.

Indeed, given a € A,, n.a = (ay o, + nlay.) = (ay, )0, + ¢,) € M..

It is well-known that > o Dp s @ regulating subgroup of the Butler
group G*(r). Hence there are positive integers e, such that e,G*(r) C
cy» . D, (IMad00, Proposition 4.1.6]). We claim that there is a positive
integer n such that nD C M :=3_ 1 ) M,. It suffices to show that for
every 7 € T:(G) there is k; such that kD, C M. Assume first that 7 is
maximal in T..(G). Then G!(z) = 0, hence @, = 0. Thus, for any d € D,, we
have n.d =d(n,+¢,) € M, C M. Suppose now that 7€ T..(G) is not
maximal and assume by induction on depth that

VYo >r1, ks, keDs C M.
Let d € D,. Then
nrd - d(nr + (01-) - d(”r

Since dg, € G*(x), it follows that e.dp, C > = Dp- By induction hypothesis
there is k such that ke.d$, € M. Hence kemn.d=ke.dn.+ ¢p,)—
—ke.dp, € M.

We have proved that nD C M and since D has finite index in G there is
a multiple m of n such that mG C M. Without loss of generality m is a
multiple of each n,. Then, by (3.6), mA. C n.A, C M,. O

4. Generalized Almost Completely Decomposable Groups.

The theory of almost completely decomposable groups is largely based
on the existence of a completely decomposable subgroup of finite index.
However, it is not clearcut how «completely decomposable subgroup of
finite index» should be extended to infinite rank. In Theorem 4.5 we
characterize almost completely decomposable groups as the sharp sub-
groups of completely decomposable groups of finite rank. This makes
sense for any rank and justifies our definition of «generalized almost
completely decomposable group».

Some lemmas are needed in the proof. The first result is an application
of Lemma 3.3.

COROLLARY 4.1. Let D be a completely decomposable group and X a
sharp subgroup. Then the following hold.
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1) Te(X) C Ter(D).

2) X(r) = A; © X*(7) for a r-homogeneous completely decomposable
group A,.

3) Xi(zr) = X(v) N X[z].

4) A:=3 1.4, is a completely decomposable group
A=@Bper, x4

LEMMA 4.2. Let X be a torsion-free group having Butler decomposi-
tions and hence regulating subgroups. Assume that Tst(X) satisfies the
maximum condition. Then X /A is torsion for every requlating subgroup A
of X.

PrOOF. Let A =3 1 x)A, where X(1) =A, & X i(7) for every (cri-
tical) type 7 of X. We prove that X /A is torsion by induction on Tst(X). Let
x € X, v = tp*(x). Suppose that 7is maximal in Tst(X). Then 7 is critical and
x € X(r) = A, C A. Now suppose that 7 is not maximal in Tst(X) and for all
y € X with tp*(y) > 1, there is a positive integer m, such that m,y € A.
According to the Butler decomposition X(r) = A, ® X*(7), writex = a + ¥
with @ € A, and y € X*(7). Since X*(r)/X*(7) is a torsion group, there is a
positive integer m such that my =y; +--- +y; where y; € X and

p~(y;) > 7. By induction hypothesis there is a positive integer M such that
My; € A for every i. Then mMx = mMa + M(my) € A. |

Recall that H is a quasi-summand of G if there is a subgroup K of G
such that HN K = 0 and nG C H @ K for some positive integer n.

LEMMA 4.3.  Let D be a completely decomposable group of finite rank
and X a subgroup of D that has a regulating subgroup A = @ cn x) Ap with
A, C D.. If Tst(X) satisfies the maximum condition, then X is an almost
completely decomposable group. Moreover, X is a quasi-summand of D.

Proor. For each 7 € Tst(X) we have A, = (Af)f since both groups
are t-homogeneous completely decomposable of the same type and rank.
Moreover, the group (AT)? is a direct summand of D,. By [Mad00,
Proposition 2.1.3] we obtain that (AT)? is finite over A,. Thus, using

Lemma 4.2,
D
Drern 4 X = < PETarX) >* < < Dperam 4y >
D D
) > D et @A)

(4.4)
< peTa Ay

N
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Since P, (A,,)f is finite over (P, A4,, we conclude that X is finite over
@®,A,. We have established that X is almost completely decomposable.
To show that X is a quasi-summand of D, choose complements

D
(Af)feaC,:DT. By (4.4) (@peTcr(X)A/,> /X is finite and hence

D /(X & @,en,xCy) is finite.

We are now ready to prove the mentioned characterization of almost
completely decomposable groups.

THEOREM 4.5. A torsion-free group X of finite rank is almost com-
pletely decomposable if and only if it is a sharp subgroup of a completely
decomposable group. Moreover, if X is sharp in the completely decom-
posable group D of finite rank, then X is a quasi-summand of D.

PrOOF. An almost completely decomposable group X, by definition,
contains a completely decomposable subgroup A such that for some positive
integer ¢, eX < A. Hence X < ¢7'A4 and X is sharp as e 1A /X is finite.

Conversely, suppose that X be sharp in the completely decomposable
group D =P ,cr, Dy Without loss of generality rk(D) < co. Then
Tep(X) C Tep(D), and X inherits Butler decompositions, hence completely
decomposable regulating subgroups from D (Lemma 3.3). It remains to show
that for a regulating subgroup A of X, the quotient X /A is finite. Choose
Butler decompositions X(r) = A, © X*(1), and let A = @ T (D) A, be the
corresponding regulating subgroup of X. By Lemma 3.5 there exist sub-
groups M, = D, of D and a positive integer m such that M, @ D*(r) C D(1),
mA, CM,andmD CM =5 peT (D) M,. We claim that } is the direct sum
of its subgroups M. The sum function 2" : @ o1, p) M, — M is surjective,
and 1k (€Ber,0) M) ) = &yen, @ TK(D,) = kD = rkM which is possible
only if Ker2' =0 and M = cr, ) M,. Since mX has Butler decom-
positions with Butler complements mA., we obtain by Lemma 4.3 that
mX /D e, MA, is finite, and therefore X/ P o1, ) 4, is finite.

It is left to show that X is a quasi-summand of D. By Lemma 3.3.3)
Tst(X) is finite and by Lemma 4.3 it follows that m.X is a quasi-summand of
M. Since mD C M we conclude that X is also a quasi-summand of D. O

COROLLARY 4.6. A sharp subgroup of an almost completely decom-
posable group is again an almost completely decomposable group.

PrOOF. An almost completely decomposable group has finite index in
some completely decomposable group, so is sharp in a completely decom-
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posable group. The transitivity of sharp embeddings makes Theorem 4.5
applicable. |

We are ready to formally introduce infinite rank almost completely
decomposable groups.

DEFINITION 4.7. A group is a generalized almost completely de-
composable group or an gacd-group for short, if it is a sharp subgroup of
some completely decomposable group.

As a consequence of Corollary 4.1, generalized almost completely de-
composable groups have completely decomposable regulating subgroups
that are the direct sums of Butler complements.

COROLLARY 4.8. A generalized almost completely decomposable
group has Butler decompositions and completely decomposable regulat-
mg subgroups.

The following corollary is just a reformulation of Theorem 4.5.

COROLLARY 4.9. The almost completely decomposable groups are
exactly the generalized almost completely decomposable groups of finite
rank.

The following proposition shows that gacd-groups are not rare. E.g.
Proposition 4.10.1 shows that for any completely decomposable group D
and any set of positive integers n., v € I, the subgroup > e n,,Dﬁ(p) is
sharp in D.

ProposITION 4.10.

1) Let D be a completely decomposable group. A group X C D is
sharp in D if D'(t) = X*(0)? for every type t.

2) Every bed-group is a generalized almost completely decomposable
group.

3) Direct sums of generalized almost completely decomposable
groups are generalized almost completely decomposable groups.

4) Direct summands of generalized almost completely decomposable
groups are again generalized almost completely decomposable groups.

PROOF. 1) We have X(r) = X N (X*())’= X n D¥(2),
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2) It is well-known ([Mad00, Lemma 2.3.10.2]) and easy to check that
subgroups of bounded index are sharp.

3) Suppose that X = &P, ;X; where each X; is contained in a
completely decomposable group D; such that Xf(r) =XnN Dg(r). Let
D =@, Di. We have X*(v) = @, Xf(r) =@ Xin D?(r) = (P XN
N(@;; D) = X N D¥).

4) Let X = X; @ X> be a gacd-group. Then X*(1) = X N Di(r). We
must show that X/(¢)=X;NDr). In fact, X/(x) CX;NDHr) C
C X;NX NDHa) CX; NXHD) = X (2). O

We conclude this section by considering an aspect in which acd-groups
and gacd-groups differ substantially.

Almost completely decomposable groups with linearly ordered critical
typeset are necessarily completely decomposable. This is not true for gacd-
groups .

COROLLARY 4.11. Let X be a generalized almost completely decom-
posable group whose typeset Tst(X) satisfies the maximum condition.
Then X is completely decomposable if and only if X*(t) = X*(1) for each
7 € Tst(X).

PrOOF. It is clear that X*(r) = X*() if X is completely decomposable.
For the converse we prove that X = A where A = P ,c1_ x4, is a reg-
ulating subgroup of X. It is sufficient to show that X(o) C A for each
o € Tst(X). Suppose first that ¢ is maximal in Tst(X). Then ¢ € T.(X) and
X(o) = A, C A. Now suppose that X (o) C A for each o € Tst(X) with o > 7.
Then X(1r) = A, @ X*(1) = A, ® X*(1) C A by induction hypothesis. O

COROLLARY 4.12. Let X be a generalized almost completely decom-
posable group such that Tst(X) is inversely well-ordered. Then X 1is
completely decomposable.

PRrROOF. Since Tst(X) is linearly ordered we have X*(t) = X*(z). Hence
Corollary 4.11 implies that X is completely decomposable. O

An immediate corollary is [EIt96, Satz 6.5] since bed-groups are gen-
eralized almost completely decomposable groups.

COROLLARY 4.13 (Elter). Amny bed-group with inversely well-ordered
typeset is completely decomposable.
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Nongxa [Non87, Example p. 614] exhibits a sharp and pure subgroup of
a completely decomposable group (hence of a generalized almost com-
pletely decomposable group) that is not completely decomposable. The
typeset of the Example in [Non87] is of the form {y, 71, 72} where 7; and 72
are incomparable and 7y = inf{7y, 72}. This shows that the assumptions in
Corollary 4.12 are necessary. By [Arn81] (or [MS00]) there are bed-groups
(hence generalized almost completely decomposable groups) with linearly
ordered typeset that are not completely decomposable.

Nevertheless, Corollary 4.12 can be modified in the following way.

PROPOSITION 4.14. Let X be sharp in D such that Te.(D) is tnversely
well-ordered. Then X is completely decomposable.

Proor. By Corollary 4.12 it suffices to show that Tst(X) is inversely
well-ordered. Note that Tst(D) = T(D) is linearly ordered. First we show
that Tst(X) is linearly ordered. Let o1, g2 € Tst(X). Then D(a1) C D(a2) or
D(o2) C D(a1) since Tst(D) is linearly ordered. Without loss of generality
we assume that D(o1) C D(o9). If o1 € Tst(D), then o1 > g2 follows im-
mediately. Hence assume that o; ¢ Tst(D). Then D(s;) = D*(g;) and
o1 € Tep(X) since T (X) C T (D) (Lemma 4.1). We have to distinguish two
cases:

Case 1: a3 & Te(D). Then D(a2) = D¥(02) and X(g2) = X%(02), hence

X(a1) = X*(01) = X N D¥(01) € X N D¥(02) = X*(02) = X(02)

and therefore o1 > os.

Case 2: oo € Top(D). We will show that either g2 > o7 or X N D¥ ;) C
C X N D¥o3). Let x € D¥a1) C D(02) = D,, @ D*(02). Then x has a re-
presentation x = y © 2z where y € D,,, 2 € D*(02). If y # 0, then tp(x) = o2
and hence g2 > ¢;. Hence assume that X N D¥(g;) € X N D¥%o5). Then

X(01) = X*(01) € X N DXo1) € X N D¥(02) = X*(02) C X(02)

which implies o1 > g9.
Therefore Tst(X) is linearly ordered and since T..(X) C T (D) we
conclude that Tst(X) = T..(X) must also be inversely well-ordered. O

There is a kind of inverse to Proposition 4.14 as follows.

COROLLARY 4.15.  Let D be completely decomposable and suppose that
Sfor any two critical types there is a prime number p such that neither o,
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nor oy 1s divisible by p. Then every sharp subgroup of D is completely
decomposable if and only if Te (D) is inversely well-ordered.

Proor. By Proposition 4.14 any sharp subgroup of D is completely
decomposable if T..(D) is inversely well-ordered. Conversely, if every
sharp subgroup of D is completely decomposable and there exist
01,02 € T (D) which are incomparable, then o1 @ o9 is a direct summand
of D. By hypothesis there is a prime p that divides neither ¢; nor g,. But
then there are well-known finite extensions of ¢; © g» that are in-
decomposable. Hence g1 @ o2 contains an indecomposable gacd-subgroup
which is trivially also an indecomposable sharp subgroup of D, a contra-
diction. Hence T..(D) is linearly ordered. Moreover, if T..(D) contains an
infinite ascending chain of types g;, 1 € w, then there is a bounded ex-
tension of P, g; by [E1t96] or [MS00] which is not completely decom-
posable. Hence ,_,, o; and therefore D contains an gacd-subgroup that is
not completely decomposable, again a contradiction. Thus T..(D) is in-
versely well-ordered.

5. Butler Groups.

Butler groups, according to one possible definition, are the pure sub-
groups of completely decomposable groups. This implies immediately that
a pure subgroup of a Butler group is again a Butler group. We will show
more generally that a regular subgroup of a Butler group is a Butler group
where «regular» is the following weakening of «pure».

DEFINITION 5.1 (Arnold). Let H be a subgroup of the torsion-free group
G. Then H s regular in G if H(t) = H N G(z) for all types .

Pure subgroups are always regular but regular subgroups need not be
pure. An example of Miiller-Mutzbauer that also appears in generalized
form as [Arn00, Exampl 3.1.11] shows that a sharp subgroup need not be
regqular.

The first lemma is a simple house keeping matter.

LEmMA 5.2, Let K < H <G.
1) H is reqular in G if and only if for every x € H, tpf (x) = tp® ().
2) IfK is regularin H, and H is regular in G, then K is reqular in G.
3) If K is reqular in G, then K is reqular in H.
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Proor. 1) Suppose that H is regular in G, and x € H. Always
tp(x) < tp% (). Set v = tp®(x). Then x € HNG(x) = H(v), so tpf(x) >t
and equality follows.

Suppose that for every « € H it is true that tp”(x) = tp®(x). Always
H(z) C HNG(r). Let x € HN G(1). Then 7 < th(ac) = tpH(ac), sox € H(z).

2) Suppose that K(t) = KN H(zr) and H(r) = H N G(t). Then K(7) =
=KnNnHx)=KnNnHNGx) =KnNGk).

3) Suppose that K(r)= KNG(z). Then K(r) CKNH(T) CKNG(r) =
= K(7). O

The following proposition characterizes Butler groups in terms of
regulating subgroups.

PRrROPOSITION 5.3. A torsion-free group of finite rank is a Butler group
if and only if it has a finite critical typeset, Butler decompositions, and a
requlating subgroup that has finite index in the group.

Proor. It is well-known that Butler groups have finite critical type-
sets, Butler decompositions and regulating subgroups of finite index
([Mad00, Proposition 4.1.6]). Let H be torsion-free of finite rank and as-
sume that A = > 1 )4, is a regulating subgroup of finite index in H.
Then A has finite rank and is an epimorphic image of a completely de-
composable group of finite rank, namely €9 eTo(x) Ap- S0 A s a Butler group
and so is H as it is the epimorphic image of F' & P 1, x) 4, Where F is a
suitable free group of finite rank. O

We need a lemma in order to prove the advertised closure property of
the class of Butler groups.

LEMMA 54. Let H be a subgroup of the torsion-free group G. If H is
regular in G and G/H 1s torsion, then H is sharp in G.

Proor. Trivially H N G*(r) D H'(r). To prove equality, let x € HN
N G*(z). Using that G/H is torsion and the definition of G*(z), there exists a
natural number » such that nx = hy + - -+ + h,;, for elements h; € H with
tp®h; > 7. By regularity tp’h; >  and, « being in H, by definition of H*(z),
it follows that & € H(1). O

We can now prove that regular subgroups of Butler groups are Butler
groups.
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THEOREM 5.5. A reqular subgroup of a Butler group of finite rank is a
Butler group.

Proor. Let H be a regular subgroup of the Butler group G. Then H
is regular in H¢ and H¢ is a Butler group as a pure subgroup of a Butler
group. Hence without loss of generality G/H is torsion. By Lemma 5.4 H
is sharp in G. Therefore Lemma 3.5 applies. Thus we have a subgroup
M=3 v M, of G with M, =G(x)/G*x), a regulating subgroup
A=3cn, A, of H and a positive integer m such that mG C M and
mA, C M.. Because H is sharp and regular in G, we have an exact se-
quence with natural map

H(7) . G(7) N H+ G@x)
Hit) Gi(r) H+G@x)’

The right hand group is a subgroup of an epimorphic image of the torsion
group G/H. We conclude that mA, ~ A, = 5‘(8) and M, = g((ff)) are iso-
morphic -homogeneous completely decomposable groups. Hence mA; has
finite index in M, ([Mad00, Proposition 2.1.3]), and it follows that [M : mA]
is finite and [G : mA] is finite. Hence [H : A] = [mH : mA] is finite and by

Prpoposition 5.3 H is a Butler group. O

We showed earlier that sharp subgroups of almost completely decom-
posable groups are again almost completely decomposable groups (Cor-
ollary 4.6). We could not decide whether sharp subgroups of Butler groups
are again Butler groups.

[MM92, Satz 10] follows from Theorem 4.5 as we will see. A subgroup H
of G is eritically regular in G if, for every type 7, H'(t) = H(z) N G¥(1). A
strongly regular subgroup is one that is both regular and critically reg-
ular. «strongly regular» is strictly stronger than «sharp» ((MM92]).

THEOREM 5.6 (Miiller-Mutzbauer). The strongly reqular subgroups of
an almost completely decomposable group D of finite rank are exactly the
quasi-summands of D.

Proor. Without loss of generality D may be assumed to be completely
decomposable. A strongly regular subgroup clearly is sharp and hence a
quasi-summand of D by Theorem 4.5. The converse is trivial. O
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Miiller and Mutzbauer prove in addition that a torsion-free group of
finite rank all of whose strongly regular subgroups are quasi-summands, is
necessarily almost completely decomposable.

COROLLARY 5.7. A subgroup H of a completely decomposable group D
of finite rank is sharp if and only if for every type t, H(t) = H N G(z) and
Hi(t) = H(x) N GHx).

We could not find a more direct proof that sharp subgroups of com-
pletely decomposable groups of finite rank are regular.

6. Completely Decomposable Groups.

One of our main tools in the following are regulating subgroups. E.g., to
show that a group is completely decomposable one can show that its reg-
ulating subgroups are completely decomposable and equal to the group.
The following lemmas point in this direction.

LEMMA 6.1. Let A be a torsion-free group whose typeset Tst(A) sa-
tisfies the maximum condition. Suppose that
1) A(r) = A, ® A¥~x) for each 7 € T..(A).
2) A*(1) = AY(x) for each t € T (A).

Then each A; is t-homogeneous and A =3 g 4)Ap.

Proor. It is clear from 1) that A, is t-homogeneous. Set A’ =
= ZpETcr(A)Aﬂ'

We show that A = A’ by induction on depth in Tst(A). Let x be maximal
in Tst(A). Then A*(u) =0, so u € Tex(4) and A(u) =A, CA. Now let
7 € Tst(A) be arbitrary and assume that A(g) C A’ for every o € Tst(4)
with ¢ > 7. It is to show that A(z) C A’. In fact (justifications below),

A=A, 0 A1) =A.® > et porAP) = Ar @ Y ena) oo Alp) C A
The first equality is 1), the second 2), the third is true because, in general,

G(p) = >  ersc)0p G(0), and the last containment is by induction. O

An additional notion is needed. Let G be a torsion-free group and 7 a
type. Define G**(z) = > s G(p). We clarify the relationship of G**(z) and
the radical G[z].
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Recall Lady’s formulas ([Arn00, Proposition 3.2.8(a)]) saying that, for a
finite rank Butler group G,

(6.2) Gltl = (Go): 0 £7)¢ and Grl= (G(o): 0 £ 1)%.

LEMMA 6.3. Let G be a torsion-free group and t a type.
1) G*(z) C Gzl
2) G* (1) need not be pure in G.
3) If G is a Butler group of finite rank, then G**(r)f = G7].
4) There exist torsion-free groups G of any finite rank such that
G*(r) = 0 and G[t] = G.

Proor. 1) This is obvious since homomorphisms cannot decrease
types.

2) Let 71 = Z[Z_l],rz = Z[?)_l],l'g = 7’;[5_1], A = 1101 D 1202 @ 1303,
and X=A+71@ +vp). Then tp*(3(v1 +12) =7, and X*(r3) =
= 7101 D 1202 iS not pure in X.

3) (6.2).

4) [Arn82, Example 2.7, p.26] exhibits a strongly indecomposable
group G of prescribed rank r that is homogeneous of type Z. Then
G**(7) =0 while G[Z] = G since any non-zero homomorphism G — 7
would cause a non-trivial decomposition of G. O

LEMMA 6.4. Let A be a torsion-free group. Suppose that
1) A(r) = A, @ AXt) for each T € Te(A).
2) A(t) NA™(1) C A1) for each t € To(A).

Then each A. is t-homogeneous and 3 ,cn 1Ay = D er.a) 4
Proor. It is clear that A, is t-homogeneous. To show that A’ =

=2 peta)Ap = D er,.a) A4 We suppose to the contrary that there exist
non-zero elements a; € A, such that a; + - -- + a; = 0. Without loss of

generality we assume that 7; is minimal in the set {71,...,7;}. Then
ay = —ag —--- — a € A1) NA**(r1) C A¥(1y). This means that a; € A, N
NA*1;) = 0, a contradiction. O

We can now easily derive a result of Arnold and Vinsonhaler ([AV&4,
Theorem II]): Part (b) of [AV84, Theorem II] says that a Butler group
contains a completely decomposable subgroup of finite index (i.e., is an
almost completely decomposable group) if and only if the natural map
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gbf : G(1)/G* (1) — G*[7]/Gl7] is a monomorphism. Obviously gbf is a
monomorphism if and only if G(r) N G[t] = G(7).

PRrROPOSITION 6.5. Let G be a Butler group of finite rank. Then G is
almost completely decomposable if and only if, for all 7, G(r) N G[t] =
= G¥1).

Proor. Almost completely decomposable groups clearly have the
stated property. Conversely, Butler groups have regulating subgroups and
the regulating subgroups have finite index in the group (Proposition 5.3).
The regulating subgroups are completely decomposable by Lemma 6.4
which applies because G(r) N G**(1) C G(t) N G[1] = G (). O

COROLLARY 6.6. Let A be a torsion-free group whose typeset Tst(A)
satisfies the maximum condition. Suppose that
1) A(t) = A, @ AX1) for each T € Ter(A).
2) A*(t) = A1) for each © € Ter(A).
3) A(r) NA™(1) C AXx) for each T € To(A).

Then each A; is t-homogeneous and A = @ ,cr )4
Proor. Combine Lemma 6.1 and Lemma 6.4. O

The preceding result implies the non-trivial part of [Fuc73, Theorem
98.3] due to Baer and Erdos ([Bae37], [Erd54]).

THEOREM 6.7 (Baer, Erdos). Let A be a torsion-free group whose
typeset Tst(A) satisfies the maximum condition. Then A is the direct sum
of homogeneous groups if and only if the following hold.

1) For each type 1, A*(t) is a dirvect summand of A(z),
2) for each type 1, A*(tr) = A(r) N A** (7).

Proor. The assumption 1) implies that A*(z) is pure, hence A*(x) =
= A%(7) and A1) = A, @ A%(7) for some A.. Thus the hypotheses of Cor-
ollary 6.6 are satisfied. |

A theorem of Prochazka ([Pro63]) is another easy consequence of our
results. To derive it we need to consider groups with linearly ordered
typesets.
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LEmMMA 6.8.  Let G be a torsion-free group with linearly ordered type-
set. Then the following hold.
1) For any type 1, G*(z) = | J{G(p) : p € Tst(G),p > 1} = G*1).
2) If H 1is regular in G, then H is sharp in G.

Proor. 1) Let 7 be a type. Then G*(v) =>{G(p):p>r1}=
=YH{G() : p>1,p € Tst(@} = U{Gp) : p > 1,p € Tst(@} = G*(x).
2) Let H be regular in G. Then the typeset of H is also linearly or-
dered. Further,

HNG @ =Hn| J{Gp):p>7,peTsU@} = JITHNG():p>1,pe TSH@)} =
=JtH® : p> 7, p e TG} = {H () : p > 7,p € Tst(H)} = H*(x).
COROLLARY 6.9 (Prochazka). Let A be a pure subgroup of the com-

pletely decomposable group D whose typeset Tst(D) is inversely well-
ordered. Then A is completely decomposable.

Proor. By Lemma 6.8 A is sharp in D. Hence Corollary 4.12 applies
and X is completely decomposable. O

Also [Non87, Theorem 1] follows from Corollary 4.12.

COROLLARY 6.10 (Nongxa). A t-homogeneous sharp and pure sub-
group of a completely decomposable group is completely decomposable.

Finally we obtain a variant of the well-known Baer-Kolettis Theorem.

COROLLARY 6.11. Let X be sharp in D where D is t-homogeneous.
Then X 1is t-homogeneous and completely decomposable.

Proor. By Lemma 3.3 Tst(X) C Tst(D) = {z} and by Proposition 4.14
X is completely decomposable. O
7. Some open problems.

QUESTION 7.1. Is a sharp subgroup of a finite rank Butler group
again a Butler group? Let G be a Butler group and H a sharp subgroup.
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By Lemma 3.3 H has a finite typeset and Butler decompositions. It re-
mains to show that for every type, H*(t)/H*(7) is finite.

1) Itis enough to check that H* () JH*(7) is finite for © € Tst(H) as for
other types H'(t) = H(t) = H*(1).

2) Without loss of generality G/H is a torsion group. Ifthis is not the
case replace G by HS which is a Butler group, being a pure subgroup of a
Butler group.

QUESTION 7.2. Considering the diminished role of the regulating
subgroups in a gacd-group X, the sigma regulator

2X) = Z{A : A is regulating in X} = Z X(p)
PET(X)

may have increased significance. Investigate the sigma regulator of gacd-
groups.

QUESTION 7.3. [Is there an intrinsic characterization of generalized
almost completely decomposable groups? A generalized almost completely
decomposable group X has Butler decompositions and completely de-
composable regulating subgroups, also X(t) N X[t] = X*(t) for each critical
type ©. What more is needed to obtain an gaed-group?

QUESTION 7.4. Let X be a generalized almost completely decomposable
group and let A be a regulating subgroup of X. Is A sharp in X ?

QUESTION 7.5. If X is a generalized almost completely decomposable
group which of the groups X (v), X*(7), X[z}, X*[c], X /X (1), X /X*(2), X /X[1],
X /X 1] are again generalized almost completely decomposable groups?
(See [MM92, Theorem 7].)

A group G has co-Butler-decompositions if for all types ©

G Gl H
Gzl  G[z] ~ G[z]

for some subgroup H, and (g[[f]] is T-homogeneous completely decomposable.

QUESTION 7.6. Do generalized almost completely decomposable
groups have co-Butler-decompositions?



68 Adolf Mader - Lutz Striingmann

QUESTION 7.7.  Which infinite rank Butler groups are generalized al-
most completely decomposable groups? Which generalized almost com-
pletely decomposable groups are Butler groups of various descriptions?

QUESTION 7.8. Is an gacd-group X with X*(z)/X*(t) bounded (uni-
formly bounded by e) necessarily a (e-)bed-group?

QUESTION 7.9.  There are many different ways in which subgroups of
torsion-free Abelian groups can be embedded in the over-group. A
scheme 1s as follows. A functorial subgroup is a functor @ that assigns to
each object G a sub-object ©(G) such that for every morphismf : H — G
it is true that (O(H))f C &(G). The prominent examples of functorial
subgroups in torsion-free Abelian groups are the various socles and
radicals, including the identity functor as an extreme case. Let @ and ¥
be two functorial subgroups with @ < ¥ in the obvious sense. We obtain
a special embedding of a subgroup H of G by requiring that &(H) =
=YH)ND(G). Which of the many variants are of significance in
Abelian group theory?
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