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On even surfaces of general type with K? =8, p, = 4, ¢ = 0.

P. A. OLIVERIO (*)

ABSTRACT - In this article we describe the moduli space of the minimal surfaces of
general type S with K2 =8, py =4, q =0, K divisible by 2 and the canonical
linear system |K| base point free, showing that it forms an irreducible open set of
the moduli space of minimal surfaces with K = 8, pg =4, ¢ = 0. By previous
results of Ciliberto [Ci] and Ciliberto, Francia, Mendes Lopes [CFM], the above
result shows that the moduli space of surfaces with K? = 8, p, = 4, ¢ = O has at
least three connected components.

1. Introduction.

Surfaces with K2 =8, p, =4, ¢=0 were considered by Enriques
[En],Chap 8 pag 284 (see also [Ca] for a related discussion); his proposal
was carried through by Ciliberto [Ci] who showed the existence of an al-
gebraic family K(8) of surfaces of degree 8 in the projective space ’® such
that the generic element F in K(8) is a canonical surface with
K*=8,p,=4,¢=0, with ordinary singularities without exceptional
curves of the first kind; moreover any such surface is in K(8); K(8) is ir-
reducible, unirational of dimension 49. Therefore the corresponding com-
ponent of the coarse moduli space for the surfaces in K(8) is irreducible and
unirational of dimension 34. Successively Ciliberto, Francia, Mendes
Lopes [CFM] constructed another family of minimal surfaces with in-
variants K2 =8, py =4, q=0. Recall that a compact complex smooth
surface is called an even surface if its second Stiefel-Withney class w2(S)
vanishes, or equivalently, if the canonical line bundle K is 2-divisible, i.e.
K = 2L where L is a line bundle on S. In this article we show the existence
of another connected component of the moduli space of even surfaces S
with K% =8, p, =4, ¢ = 0. Since the condition K = 2L implies that the
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intersection form on S is even and in particular K = 4L? , it follows that
among the minimal regular surfaces of general type which are even, ours
are the ones with the smallest possible value of K. In order to introduce
the main theorem, we consider the weighted projective space P(1,1,2, 3, 3)
with weighted homogeneous coordinates (Xi1,X»,Y,Z1,Z3), the point
P =(0,0,1,0,0) and the line H = {X; = X, = Y =0} in P(1, 1,2, 3,3). Our
main theorem is the following:

THEOREM 1.1. (Main Theorem) The canonical model of an even
surface of general type with K* = 8, p, = 4, ¢ = 0 and |K| base point free is
a weighted complete intersection X of type (6, 6) in the weighted projective
space P(1,1,2,3,3) with P¢X and HNX = 0. Conversely, a weighted
complete intersection X of type (6, 6) with at most R.D.P.’s as singularities
which does not intersect the line H and such that P¢X, is the canonical
model of an even surface S with K* = 8, p, = 4, ¢ = 0 and |K| base point
free.

We have the following corollary:

COROLLARY 1.2. The even surfaces of general type with K? =8,
py=4,9=0 and |K| base point free form an trreducible, unirational
open set of dimension 35 in their moduli space.

Note that Horikawa [Ho2] and subsequently Konno [Ko] made a very
deep study of some classes of even surfaces of general type.

Acknowledgments. The author is very grateful to Fabrizio Catanese for
help and useful discussions. Finally the author would like to thank the
referee for valuable suggestions.

Notation.

All varieties are projective and defined over the complex numbers.
H(Y,F) denotes the cohomology of a coherent sheaf F on the variety Y.
We put h'(Y, F) = dim H'(Y, F'). On a smooth variety, we do not distinguish
between line bundles and divisors. If Y is a Gorenstein variety, then Ky or
oy denotes the canonical divisor of Y. S will be a smooth surface with
K% =8,p,=4,q=0 and Kg=2Lg, where Lg is a line bundle on S,
pg = (S, Ky) is the geometric genus and ¢ := 11(S, Og) is the irregularity
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of S. The line bundles Kg and Lg will be denoted by K and L, respectively.
P1,1,2,3,3) is the weighted projective space ProjC[Xy,Xz,Y,Z1,Z2],
where deg X7 = deg Xy =1, degY =2, deg Z1 = deg Zy = 3.

2. The semicanonical divisor.

Let S be a minimal surface of general type defined over the complex
numbers. We will suppose that S is even. Then there exists a line bundle L
such that K = 2L. In particular we have that S is minimal and the inter-
section form is even. Since S is minimal of general type, the canonical di-
visor K is nef and big. By K = 2L, we have that also L is nef and big. Since
L? is even and positive, K? =8 gives the smallest possible value to
K? = 412. We shall assume in the sequel that S is an even surface with

K*=8,p,=4,q=0.
We recall some general facts about our surface S. The canonical ring of S is
defined as the graded ring
R(S,K) := @ H(S, nK).
n>0
We call semicanonical ring the following graded ring
R(S,L) := P H(S, nL).
n>0

Since K = 2L, one has R(S, K) = R(S, L)?, where
RS, L)® .= P HS,2mL).

m>0

From [EGA], Proposition 2.4.7, there exists a canonical isomorphism
Proj R(S,K) = Proj R(S,L).

Let X := Proj R(S, L) = Proj R(S, K) be the canonical model of S, and let
7 : S—X be the natural morphism. X is a normal surface with at most
Rational Double Points as singularities and with an invertible dualizing
sheaf wy. Let Kx be an associated Cartier divisor to wy, then K = n*Kx.
Therefore, one has a natural isomorphism between the canonical graded
rings R(S, K) and R(X, Ky). Our task is to calculate generators and rela-
tions of the graded ring

R(@S,L) := @HO(S,nL).

n>0
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We start with the cohomology of L.

LEMMA 2.1.  We have h°(S,L) = 2, and h*(S,kL) = 0 for all k € 7.

Proor. The Riemann-Roch theorem implies 2h°(L) — k(L) = 4, then
one gets 2 < h%(L). Since 4 = h°(2L) > 2h°(L) — 1, it follows that h°(L) = 2
and h'(L) = 0. Since S is regular, 2'(S,K) = h!(S,2L) = 0. Since L is nef
and big, the Ramanujam’s vanishing theorem [Ra2] gives that
XS, (@2 — k)L) = 0 for all k > 3. Then, using Serre duality, it follows that
RMS,kL)=0forallk € 7. Q.E.D.

LEMMA 2.2. Ifk > 3, then h°(S, kL) = k* — 2k + 5.

Proor. Riemann-Roch gives

K2L? — 2kL*

5 +(0s) — K(2 — k)L) =

(S, Os(kL)) =

=k -2k +5+h%Q2 - k)L).
This proves the lemma, since 2%(@2 — k)L) = 0, for each k > 3. Q.E.D.

We recall the following definition

DEFINITION 2.3. An effective divisor D is numerically k-connected if
D1Ds > k for every decomposition D = Dy + De with Dy > 0, Dg > 0.

REMARK 2.4. From [Bo], we known that every divisor D € |K| is 2-
connected. From |K| = |2L|, it follows that every C € |L| is 1-connected.
For an effective 1-connected divisor D on S, Ramanujam’s Lemma [Ral]
gives h°(D, Op) = 1.

LEMMA 2.5. Let S be an even surface of general type, and suppose that
it admits a morphism f:S — B onto a smooth curve B of genus b whose
general fiber is a smooth curve of genus 2. Then we have the relation

K2 = 2(05) — 6(0p).
Proor. See[Ko], Lemma 1.3, pag 17 Q.E.D.

LEMMA 2.6. Let S be a even surface of general type with K? =8,
pyg =4andq = 0. Then S does not have a base point free pencil of curves of
genus 2.
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Proor. Since ¢ =0, every pencil on S is rational. Then from
Lemma 2.5, we should have K2 =2p,—4, which gives a contradic-
tion. Q.E.D.

We have the following:

ProroSITION 2.7.  If S is an even surface with p, = 4, K 2=8 ¢=0,
then the canonical system |K| = |2L| is not composed with a pencil.

Proor. See [Ho3], Theorem 1.1. Q.E.D.

REMARK 2.8. We remark that since h°(S, L) = 2, the general element
of the movable part |D| of the pencil |L| is irreducible.

3. |L| has no fixed part.

We first consider the case where |L| has no fixed part. Since L? = 2, the
general element C € |L| is a nonsingular curve of genus 4. Moreover the
linear system |L| has two base points P, Ps, possibly with Py infinitely
near to P;.

LEmMA3.1.  Let C be a general curve in the linear system |L|. Then C is
a nonsingular nonhyperelliptic curve of genus 4.

Proor. The exact sequence
0—05—0s(L)—Oc(L)—0

shows that h°(O¢(L)) = 1. If C is nonsingular, then O¢(L) = O¢(P; + P3).
Moreover we get o = O¢(3(P; + Ps)). Suppose by contradiction that C is
hyperelliptic. Let P; be a point such that P; 4+ P; is a divisor of the ca-
nonical involution g} on C. We get 3P + 3P; € 3¢} and 8P; + 3P € 3¢..
Then 3P, is linearly equivalent to 3P|. Now Clifford Theorem yields
R'@BPsg) = hO(8P)) < 2. Since P} # Py(otherwise h(C,O¢(P; + P2) = 2)
we must have 7°@BP;)=h°BP)) =2. Then P;=Ps and this is a
contradiction. Q.E.D.

LEMMA 3.2.  If |L| has no fixed part, the linear system |3L| = |K + L|
yields a birational morphism.
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ProoF. Let x # y be points which belong to the set U which is the
complement of the singular or hyperelliptic curves of |L|. If
$13,(®) = ¢j31, (%), then there is a nonsingular nonhyperelliptic curve
C € |L| such that x,y € C. Now consider the long exact sequence of co-
homology

0 — H'(S, 0s(2L)) — H*(S, 0s(3L)) — H*(C,0c(L)) — H'(S, Os2L)),
associated to the exact sequence of sheaves
0—052L)—Os@BL)—O:BL) = o¢—0.

Since H'(S,0g(2L)) =0, one obtains that the map H°(S,Og(BL))—
—H(C, O¢(3L)) is surjective. Then the morphism ¢‘w | is the restriction of
$37, to C. Since C is nonhyperelliptic, we have ¢, (®) # ¢|,,(%), and this is
contradiction. We have proved that ¢5;, is birational. If & € S is a base point
of |3L|, we have x € C since 3C € |3L|. Therefore x is a base point of
|OcBL)| = |oc|, but |o¢| is free from base points, thus ¢g;, is a
morphism. Q.E.D.

We return now to the study of the canonical linear system |Kg|. The
exact sequence

0—Os(L)—Os(2L)—O¢(2L)—0,
induces the exact sequence of cohomology
0 — H'(S,05(L)) — H'(S, 0s(2L)) — H*(C,0¢(2L)) — H'(S, Os(L)) = 0.

Now RS, Os(L)) =2 and (S, Os(2L)) = 4, so we can choose a basis
{1,202} of H(S,0s(L)) such that {a% wjxe,23,y} is a basis of
H'(S, O5(2L)), with y ¢ Sym? H(S, Og(L)), where, if we set C = div(x;), the
restrictions of 90%, y to C give a basis of H(C, O¢(2L)). From the above basis
of H(S, Og(2L)), it follows that the image of the rational map ¢k Is a
quadric cone in P°. Furthermore we can choose x; such that div(x;) = Cisa
nonsingular nonhyperelliptic curve. Now consider the canonical system | K|
of S. Let = : S;—S be a composition of blowing ups such that the movable
part |N| of |z*K]| is base point free. We assume that = is the minimal one
among such compositions.

LEMMA 3.3. We have N? = 8or6. If N? =8, then |K| is free of base
points. While in the case N* = 6, the canonical system |K| has two base
points Q1, Qe with Qo tnfinitely near to Q.
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Proor. First note that, since the general element C of |L|is irreducible
and reduced with 2C € |K|, |K| has no fixed part. Let £ be the fixed part of
|7*K|. Then

v K| = IN| + E,

where 7*KE = 0. Thus 8 = n'Kn*K = n*K(N + E) = n*KN = N?> + NE =
= N% — " m#, where m; are the multiplicities of the base points in |K]|.
Since |K|is not composed with a pencil, we have 4 < N 2 < 8(cf. [Hol]). The
case N? = 8 corresponds to |K| being base point free. The cases N? = 5,7
are excluded, since the image of the canonical rational map ¢, is the
quadric cone in P°. N* = 4 implies that the degree of the map ¢, Ko = Pkl
is equal to two, and this is absurd since the curve C is nonhyperelliptic.
If N? = 6, the only possible multiplicities are m; = my = 1. Then |K| has
two base points @1,Q2 with @ infinitely near to @, otherwise the
moving part of |K|¢| should give a g} on C, against the fact that C is
nonhyperelliptic. Furthermore we note that |L| has two base points
Py, Po, where we necessarily have P; = @1 but Py # (2, again because C
is nonhyperelliptic. ~ Q.E.D.

4. |L| has a fixed part.

We now suppose that |L| has fixed part. Then
\L| = |D| + Z, withD* = 0, DZ = 2, LZ = 0, Z* = -2.

THEOREM 4.1. Let |L| = |D| + Z, with Z # 0. Then the canonical system
|K| is base point free.

Before proving the above theorem, we make some remarks on the
fixed part Z of |L|. First we note that the effective divisor Z is 1-con-
nected. In fact suppose that Z = Z; + Z» with Z; > 0, then -2 = 72 =
= 72 + Z2 + 2Z1Z5. On the other hand, by Hodge index theorem, K2 > 0
and KZ; = KZ, = 0 imply that Z% < -2, Z% < -2, since the Z; are posi-
tive and the intersection form is even. Then Z1Z5 > 0 and we have that Z
is 1l-connected. Using Ramanujam’s Lemma [Ral] it follows that
H(Z, 0z) = C. Further we note that the arithmetic genus of Z is

7P+ ZK

Pu(Z) =1+

0,

hence, plugging in the formula (Oz) =1 — p,(Z), we get h'(Z,Oz) = 0.
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Then Artin’s criterion says that invertible sheaves on Z are classified by
degree (see [Ba], Lemma 3.4). The invertible sheaf L has the property
that LZ; = 0 for every irreducible component Z; of Z. Moreover, using a
corollary of Artin’s criterion (see [Ba], Corollary 3.10), one gets that the
invertible sheaf L descends to an invertible sheaf on the canonical model
X of S. That is there exists an invertible sheaf Ly on X such that
L = n*Lyx, hence n.LL = Ly and Kx = 2Lx.

Proor oF THE THEOREM. We note that a base point p of |K| = |2D + 2Z|is
also abase point of |L| = |D| + Z, then p € Z since the pencil D is base point
free. By Artin’s criterion Oz(K) = Oy, therefore, the sections of K are
constant on Z, and we get a contradiction if we prove that the restriction
homomorphism

HS,K)—H"(Z,0y)
is surjective. From the exact sequence
0 — H(S,05@D + Z)) — H(S,K) — H'(Z,0y)

we are done, if dim H°(S, Og(@2D + Z)) = 3. Suppose, by contradiction, that
dim H°(S, Og(2D + Z)) = 4; then, using the exact sequence

0 — HS,04(D + Z)) — H(S,2D + Z) — H(D, Op(Z)) — 0,

we obtain (D, Op(Z)) = 2, i.e. D is a smooth hyperelliptic curve with ca-
nonical involution |Z|p| = gé. Since L = n*Ly and Lx = =.L, one gets

Ly = Ox(n.D)

A general element C € |Lx]| is an irreducible curve with a double point at
x = n(Z), and mp : D—C is the normalization morphism . The canonical
involution |Zp| = g} on D corresponds to |Lx .| on C. But this is an absurd
from the exact sequence

0—Ox—0Ox(Lx)—OcLx)—0
and H'(X,Ox) = H'(S,05) =0. Q.E.D.

REMARK 4.2. Notice that the proof of the theorem gives that the curve
C is nonhyperelliptic, i.e. C has normalization D which is nonhyperelliptic.
Arguments similar to those of Lemma 3.2 prove that the linear system
|3Lx| gives a birational morphism. In fact it is enough to observe that the
linear system |wp| is base point free and it yields a birational morphism,
since D is nonhyperelliptic.
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5. Canonical Ring.

In this section, we are going to calculate generators and relations of the
graded ring
R(S,L) := @ HS,nL).

n>0

Since R(S, L) = R(X, Ly), we work on the canonical model X. Here a gen-
eral member C € |Lyx| is an irreducible curve of arithmetic genus 4. If |L]
has no fixed part, then C is a nonsingular nonhyperelliptic curve of genus 4,
otherwise in the case |L| has fixed component Z( and then |K| will be base
point free), the curve C has a double point at x = #(Z) and the normalization
D of C is a non singular nonhyperelliptic curve of genus 3. In any case the
canonical sheaf of C is w¢ = O¢(3Lx). In these circumstances, we can apply
the Theorem of Noether (see [Sch] Theorem 1.2) which says that the
homomorphism

0" : S"H'(C, wc)—H"(C, 0}) = H'(C, Oc(3nLy))
is surjective for all n € N. By considering the exact sequence

0—H"(S, Ox2Lx))—H"(X, Ox8Lx))—H"(C, O¢(3Lx))—0,

we see that a3, x2ws, 2122, 21y, 23, 22y are linearly independent. We com-
1> M1vas 29 s Lo,

plete this set to a basis of H'(X, Ox(3Lx)):
{90?790%902790190379012/,90379022/,21,22},

where the restrictions of the elements x;xzy,zl,zz to C give a basis of
H'(C, o¢). Suppose from now on that the canonical system |K| on S is base
point free, thus |Kx| is base point free too.

We have the following exact sequence

0—H(X, 0xBLx)—H"(X, Ox(4Lx))—H"(C, O¢(4Lx))—0.

Since {x; = x2 =y = 0} = (), we see that x5, ¥3y, ¥221, X222, y* are linearly
independent in H°(C, O¢(4Ly)), then, since h°(C, O¢(4Lx)) = 5,

H'(X, Ox(4Lx)) = 1, H (X, Ox(3Lx)) @ V1,
where V; is the vector space with a basis given by
9037 90%?/7 X221, Waza, "

Using the following exact sequence
0—H'(X, Ox(4Lx)—H"(X, Ox(5Lx))—H"(C, O¢(5Lx))—0.
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and the surjectivity of the map
H(C, 0¢(8Lx)) ® H'(C, O¢(2Lx)) — H(C, O¢(5Lx))
we see that
H(X, Ox(5Lx)) = a1 H(X, Ox(4Lx)) & Vs,
where Vs is the vector space with a basis given by
a3, a3y, w521, X522, X2y?, Y21, Y2

Then we have neither new generators, nor relations in degree < 5. We now
consider the exact sequence

0—HX, Ox(6Lx))—H(X, Ox(6Lx))—H"(C, O¢(6Lx))—0,
where Oc(6Ly) = w?z, and the set
B = {whazy®2izb iy + iy + 245 + 3iy + 3i5 = 6,1; > 0,j = 1,2,3,4,5}.

Since B has 31 elements and %X, Ox(6Lx)) = 29, we see that there are two
independent relations between elements of 5. To find these relations, we
proceed as follows. First of all, one finds that the homomorphism

% : Sym*H(C, 0¢)—H(C, og?)

has kernel of dimension 1. Thus we have that xs, ¥, 21, 22 satisfy a quadratic
relation Qz(O{:g, X2Y,21,22) =0 on C. Moreover we find another relation
y® = Q4(x3, w2y, 21,22) on C, since y/? is in the image of 6. As the restriction
maps

H(X,0(nLx))—H"(C, O¢(nLy))

are surjective for all n > 0, it is possible to use the section principle of M.
Reid [Re]. Therefore we obtain the two independent relations between
L1, %2,Y,%1,72 on X :

Fﬁ(xhx?ay?zlazZ) = 07 Gﬁ(xlax27y7z17z2) = Oa

where

FG(XgaXZYaZhZZ) = Y3 - QIZ(X;);Xzya Z17Z2) +X]f%)(X1aX2a Y7 ZlaZ2)7

Go(X3,XoY, 71, Z2) = Qo(X3, XoY , Z1, Z2) + X195(X1, X2, Y, Z1, Z)

are two weighted homogeneous polynomials of degrees 6 in the vari-
ables X1,X3,Y,Z1,Zs with deg X7 =1, degXo =1, degY =2, degZ1 = 3,
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deg Zs = 3. We consider the graded ring
Q = (j[X17X27 Y7Z17Z2]7
and the homomorphism
¢: Q—R(S, L)

defined by ¢(X1) =¥1, ¢(X2) = X2, ¢(Y):y, ¢(Z1) =2Z1, ¢(Zg) =2Z2. Obviously
Kerg¢ contains Fig and Gg.

ProrosiTiON 5.1.  The induced homomorphism

¢:Q/(Fs,Gg)—R(X, Lx)

18 an isomorphism.

Proor. First we prove that R(X, Lx) and Q/(Fg, Gg) have the same
Hilbert series. For R(X, Lx) we have

Hpxro®) =1+2t+42 + 83 + ...+ (n® —2n +5)t" 4. ..

Note that F'g and G does not have common factor, thus they form a regular
sequence in Q. Then we can consider the exact sequence(Koszul complex)
associated to (Fg, Gg):

0-Q(-12)-Q(-6)dQR(—6) - Q — Q/(Fe,Gg) — 0,
and we find that

- (1 — 151 — 1)
Hoprico® =0 —pa —pa - &ya - &a -

By an easy calculation, it follows
Hgre.60)(#®) = Hpes,y(t) for every t.

In order ¢ to be an isomorphism, it is now enough to show that ¢ is
injective. The birational morphism ¢, | lifts to a morphism
& X—2XclP,1,2,8,3), where 2 is defined by Fg = Gg=0. Since
degé(X) = L% = degZX, then & is dominant and ¢is injective.  Q.E.D.

The proposition 5.1 shows that the canonical model X = Proj(R(S, K))
of S is isomorphic to the weighted complete intersection 2 c P(1,1,2,3,3)
which is defined by the polynomials Fig and Gg. In P(1, 1,2, 3, 3), we consider
the line H = {X; = X2 = Y = 0} and the point P = (0,0, 1,0, 0) which give
the singular locus of P(1,1,2,3,3) [IF]. We have the following theorem
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THEOREM 5.2. If S is an even surface with K* = 8, p, =4, ¢ = 0 and
|K| base point free, then X does not intersect the line H and P¢X.
Conversely, if X is a weighted complete intersection of type (6,6) with at
most rational double points as singularities, which does not intersect the
locus H U P, then X is the canonical model of a even surface S with K? = 8,
Py =4, ¢ = 0 and |K| base point free.

Proor. 2X'is a Gorenstein surface with at most rational double points,
since it is isomorphic to the canonical model ProjR(S, K). Fg(P) # 0implies
P¢X, while L N X =), since |K| is base point free. Viceversa, let X be a
weighted complete intersection of type (6,6) in P(1,1,2,3,3), such that
HnNZX =(and P¢X. Then, if X has at most rational double points as sin-
gularities(a sufficiently general weighted complete intersection of type
(6,6) has at most rational double points as singularities, see [IF]),
oy = Ox(2)is aninvertible sheaf. Let n: S — X be the minimal resolution of
singularities of 2. By standard calculations Kg =8, py(S) =4, (Og) =5,
whence ¢(S) = 0. Moreover Kg = 2n* Ly, where Ly = Ox(1) is invertible
since 2 C P(1,1,2,3,3) \ {H U P}. Finally, the linear system |K| is base
point free since 2 does not intersect the complex line H. Q.E.D.

As a corollary we have the following

COROLLARY 5.3. The even surfaces of general type with K? =8,
Py =4, ¢=0 and |K| base point free form an irreducible, unirational
open set of dimension 35 in their moduli space M.,. This non empty open
set gives rice to a mew connected component of the moduli space of
minimal surfaces of general type with K* =8, p, =4, ¢ = 0.

Proor. Infact for S to be even is equivalent to have the second Stiefel-
Withney class w2(S) equal to zero. Since the condition wy(S) = 0 is a topo-
logical condition, M., is a union of connected components of the moduli
space of the minimal surfaces of general type with K = 8, py=4,q=0.
Consider now the set U of weighted complete intersections X' of type (6, 6)
in the weighted projective space P(1, 1, 2,3, 3) with at most rational double
points as singularities and such that ZNH = () and P¢X. U is a Zariski
open subset of the Grassmannian G(2, H(P, Op(6)), since for X to have at
most rational double points as singularities is an open condition, the con-
dition X N H = () means that two quadratic forms on the projective line P!
do not have common roots, which is an open condition too and, of course, the
condition P¢2X is open. It is clear that a Zariski open subset of the moduli
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space of even surfaces with K% =8, p, = 4, ¢ = 0 is obtained taking the
quotient of U with respect to the natural action of the automorphism group
of P(1,1,2, 3, 3). Therefore we get an irreducible, unirational set. Making a
count of constants, we find that the dimension of this irreducible component
is equal to

dim G2, H'(P, Op(6)) — dim Aut P(1,1,2,3,3) = 58 — 23 = 35.

(Note that the automorphism group of a surface of general type is
finite). Q.E.D.

REMARK 5.4. We note that the moduli space of minimal surfaces of
general type with K2 =8, p, =4, ¢ =0 has at least three connected
components. One and only one contains the surfaces with the second
Stiefel-Withney class wq(S) = 0, which is a topological condition, another
contains only the surfaces with torsion /2, the component of Ciliberto,
Francia, Mendes Lopes [CFM], and finally there is the component of
Ciliberto [Ci], which is different from the above components since a ca-
nonical surface cannot have the canonical line bundle K divisible by 2.
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