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How to show that some rays are maximal transport rays
in Monge problem.

ALDO PRATELLI (*)

ABSTRACT - In this paper we prove a result, extending Lemma 8.1 in [2], which al-
lows to proof that a set of segments is the set of the maximal transport rays for a
transport problem. This is particularly useful to build non-trivial examples of
transport maps, then in particular to provide specific examples (or counter-
examples) in mass transportation. We also give some of these examples.

1. Introduction
1.1. The mass transportation problem.

We are interested in the mass transportation problem, first pro-
posed by Monge [11] in 1781; in today’s language, we can state it as
follows. The ambient space is the closure Q of an open, bounded and
convex subset ©° C R%, and we are given two probability measures f*
and /= on Q. A transport map from f* to f~ is a Borel map ¢ : Q — Q
such that t4f* =f~, where the push-forward ty : M7(Q) — MT(Q) is
defined as t4f*(B) :=f"(t"1(B)) for any Borel set B C Q. If we think
that f* and f~ measure respectively the distribution of some mass and
the depth of a hole, then any transport map is a «strategy» to move all
the mass inside the hole, covering the latter. To any transport map we
associate a cost given by

(1.1) Ct) == J|t(x) — x| df (@),

Q

and the mass transportation problem consists in finding an optimal
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transport map, that is, a transport map minimizing the cost C. In
general, there may be no optimal transport maps, or even no transport
maps at all; however, one can consider a sort of relaxation of this
problem, as first proposed by Kantorovich ([9, 10]) in the ’40s: we
call transport plan between f* and f~ any probability measure
y € P(Q2 x Q) such that the two projections 71y and nzy of y on Q coincide
with f* and f~ respectively. Moreover, to any transport plan y one
associates the cost

(12) Co) = ” ly — | dyte, .

QxQ

Any transport map t is «naturally» associated to the transport plan
7 = (1, t)4f" (in fact, it is trivially checked that y, is a transport plan
whenever ¢ is a transport map, as well as C(t) = C(y;)). However, there
are much more transport plans than transport maps, and it can be
shown that, unlike the transport maps, there always exist transport
plans (for instance, f* ® f~ is such a plan), and there always exist also
optimal transport plans, that is, transport plans minimizing C (since C
is easily a weakly™* l.s.c. functional and the set of the transport plans is
weakly* compact in MT(Q x Q)). The mass transportation problem is
widely studied, and in its more general statements the ambient space 2
is replaced by a subset of RY, or a manifold, or even a general metric
space, and the Euclidean distance |-| appearing in (1.1) and (1.2) is
replaced by a more general norm, or by a distance, or even by a generic
Ls.c. functions: there is a huge literature about this field, for a general
reference we only quote [13, 1, 12].

We consider now the maximization problem, sometimes referred to as
shape optimization problem, which consists in maximizing the functional

(1.3) I = ju(x) d(f - @)

Q

among the 1-Lipschitz functions u : Q2 — R; any maximizer is called
Kantorovich potential (or also optimal shape, depending on the point of
view). The following result, stating a deep connection between the two
problems, is well known since the work of Kantorovich (see for instance [4,
5, 1]).

THEOREM 1.1. inf (1.2) = sup (1.3) and both the extremals are reached.
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Moreover, given any Kantorovich potential u and any optimal plan vy, one
has u(x) — u(y) = |y — x| for y—a.e. (x,y) € 2 x Q.

As the Theorem above enlightens, the segments on which the mass is
moved, i.e. the segments xy with (x,y) € spty, have particular properties.
To understand them, we need some standard notation (see for in-
stance [7, 2, 12]): given an optimal transport plan y, we say that

e an open oriented segment xy is a transport ray if (x,y) € spty;

e an open oriented segment xy is a maximal transport ray if any
z € xy belongs to the closure of some transport ray contained into xy, and
ay is not strictly contained into any segment with the same property;

e apoint zis a doubling point if it belongs to the closure of at least
two different maximal transport rays;

o T:= {z € R?: zis contained into some maximal transport ray} is
the transport set.

It is to be remarked that a maximal transport ray need not to be a
transport ray; we also notice the following facts.

REMARK 1.2. Thanks to Theorem 1.1, for any Kantorovich potential u
and any optimal transport plan y, u is decreasing at maximal slope on
any maximal transport ray; this implies, in particular, that different
maximal transport rays can not cross (recall that the maximal transport
rays are open segments).

By the linearity of the functional (1.2) as well as of the constraints
my=f*, mey =/, it is clear that any convex combination of optimal
transport plans is still an optimal transport plan. Therefore, the above
Remark says, more generally, that two different maximal transport rays
can not cross, even if they are obtained from two different optimal trans-
port plans. In fact, usually the maximal transport rays do not depend on
the choice of an optimal transport plan, see Remark 2.12.

From now on, we will consider the maximal transport rays as oriented
following the slope of u (by Theorem 1.1, this orientation does not depend
on the choice of the Kantorovich potential u): therefore, whenever
(x,y) € spty we have that xy belongs to some maximal transport ray and
x > y. Finally, from the definition it follows also that any doubling point
does not belong to T, since it is an endpoint of all the maximal transport
rays to the closure of which it belongs; more precisely, it is either the upper
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endpoint of all the maximal transport rays to the closure of which it be-
longs, or the lower endpoint of all them.

We conclude this section with an easy but important consequence of
Theorem 1.1; first we give a straightforward

COROLLARY 1.3.  Given a transport plan y and a 1—Lipschitz function
u, one has that both y and u are optimal (for (1.2) and (1.3) respectively) if
and only if C(y) = I(u).

Then we can sharpen the above claim as follows:
LeEmMA 1.4.  Given a transport plan y and a 1—Lipschitz function u, one

has that both y and uw are optimal (for (1.2) and (1.3) respectively) if and
only ify is concentrated on the set {(x,y) € @ x Q: w(x) —uly) = |y — x|}

ProOF. An implication is already given by Theorem 1.1; concerning
the other one, taken % and y as in the statement one can evaluate

o) = j ly — @) dyle, ) = ” (@) — uly) dye, )
QxQ QxQ
- ju(m) dy(e,y) - “ ) dylee, y) = j (@) df (@) —Ju(y) df ()
QxQ QxQ Q Q
= |u@)d(f™ —f )x) = I(u)
Q

recalling that the projections of y are f=. Therefore, the thesis follows by
Corollary 1.3 O

1.2. Discerning the maximal transport rays.

As usual, also in the mass transportation is it of great interest to exhibit
examples (and even more counterexamples!); however, except for situa-
tions with a broad symmetry, it is not easy to find explicit examples: to be
more precise, it is often easy to build examples where one guesses the right
optimal transport plan or optimal transport map, but it may be not so easy
actually to show their optimality. Therefore, it can be useful a tool allowing
to claim in many situations that a particular plan or map is optimal.
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In view of Lemma 1.4, we know that a transport plan is optimal if and
only if it has «the right maximal transport rays», that is, if all its maximal
transport rays are segments of maximal slope for some Kantorovich po-
tential (equivalently, for all the Kantorovich potentials): we will for sim-
plicity refer to these segments as admissible maximal transport rays.
Hence, an useful tool could be a result asserting which are all the ad-
missible maximal transport rays: having this at hand, to show that a plan is
optimal one could simply check that all its maximal transport rays are
admissible. Moreover, as we will discuss in Remark 2.12, the maximal
tranpsort rays usually do not depend on the choice of the optimal transport
plan.

A tool as the one we are looking for is already present in the literature,
namely Lemma 8.1 in [2]:

LeEmMA 1.5 [Horizontal transport rays]. Denote K = [0, 1], and let f* be
concentrated respectively in K x K and [5,6] x K. We assume that

FH0,11x [0, =f~ (5,61 x [0,t]) ~ Vte K.

Then the only admissible maximal transport rays are the horizontal
segments.

In words, this result says that a transport plan is optimal if and only if
all its maximal transport rays are horizontal segments: this Lemma can be
applied quite often, basically whenever one wants to build examples where
an optimal transport plan moves everything horizontally. For instance,
in [2]it was used to build a counterexample giving a negative answer to the
following question, that was open: is it true that f* <« H* with 1 <s <2
implies the existence of an optimal transport map? The question was in-
teresting, since it was already known that the answer was negative for
s < 1 and affirmative for s = 2, and that the answer was affirmative also for
1 < s < 2 replacing the Euclidean distance |- | in (1.1) by its square | - |2.

Our main result is a generalization of Lemma 1.5, which allows to
consider much more situations; in fact, as we will discuss before Ex-
ample 3.5, our results works in a broad range of cases. Before to state it, we
need some notation; first of all, we give the following

DEFINITION 1.6. A ray configuration is a family of pairwise disjoint
open segments covering 2°, each of them with extremes in 0Q. Given a ray
configuration % = {R;, 1 € I}, we define its set of doubling points as the
set O of all the points belonging to the closure of more than one R;, i € I (of
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course, ¥ C 0Q). Finally, a curve transversal to & (or simply a trans-
versal curve) is a C! injective curve on Q intersecting each segment R;
exactly once and whose gradient at any point is not parallel to the direction
of the unique ray passing through that point.

It is an easy geometric property that, given any ray configuration
A ={R;, 1 € I}, it is possible to find a transversal curve H, and it is an
open curve with both the endpoints in 9Q, so that it divides Q2 in two parts,
that we will refer to arbitrarily as the «left» and the «right» part, each of
them intersecting all the R;’s; we equip then each segment R; with the
orientation going from the left part to the right part of the segment. We
give now the following last definitions:

DEFINITION 1.7. Given any Borel set S C Q, we define
F©S):=|J{R;: iel, BinS #0};

then, we say that the configuration A is balanced if for any S C Q the
Sfollowing holds (see also the remark below):

(1.4) O <f(F®), [ <fHFE).

In the above definition, the inequality (1.4) makes sense only if F(S) is
measurable with respect to both f* and f~; in fact, as an easy consequence
of the classical Projection Theorem (see for instance [6]) one can deduce
more in general that F'(S) is universally measurable, therefore in particular
measurable with respect to both f* and f~.

We will deduce many fruitful informations about the behaviour of f*
with respect to the ray configuration 92 in the balanced case in Lemma 2.5.
We also point out that, in fact, the two possible orientations «left-right» on
the rays R; are determined uniquely by 92, and not depend on the parti-
cular choice of a transversal curve H. Finally, we state

THEOREM A. Let %# ={R;, 1 €1} be a balanced ray configuration
such that there exists two disjoint Borel sets I'* in Q on which f* are
concentrated with the property that, for all i €1, supR;NIT <
<inf R; N I'". Then, the admissible maximal transport rays are all the
segments R;, 1 € I and all their open subsegments.

We point out that Lemma 1.5 is the particular case when
Q=10,6] x[0,1] and &2 = {[0,6] x {i}, € [0, 1]}, since of course in the
hypotheses of Lemma 1.5 the configuration ¢ is balanced.
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In Section 2 we will prove Theorem A, while in Section 3 we will provide
some examples using it. In particular, Example 3.5 shows that there are
non-trivial situations with presence of doubling points in the interior of
sptf ™, that may be not obvious at first glance.

2. Proof of Theorem A.

This Section is entirely devoted to show Theorem A: to do that, we
will exhibit a particular transport plan y and a particular 1-Lipschitz
function u; then, making use of Lemma 1.4, we will check that they are
both optimal and we will deduce the position of all the admissible max-
imal transport rays. In Subsection 2.1 we will define u, in Subsection 2.2
we will define y and finally in Subsection 2.3 we will give the proof of the
Theorem.

First of all, we fix a transversal curve H and we fix arbitrarily on it one
of the two possible orientations. Notice that, by the obvious bijection be-
tween H and I, this allows to equip / with an order, and that / ~ R with this
order; therefore, in a purely formal way that will be quite useful in the
sequel, we will consider also the indeces +oo on I corresponing to the
empty rays R. ., but we will also intend B, .. and B_., to be the two closed
sets consisting of the single points sup H and inf H in 922, and we will
consider also those two points as elements of H.

Whenever C and D belong to H, we denote by CD the part of the curve
H between C and D, that is CD={PeH: C <P <D} if C <D and
CD = {P ceH: C>P> D} if C > D. Therefore, we will write for brevity

H'(CD)  if C > D;
CD={0 if C = D;
~H(CD) if C < D.

Analogously, whenever A and B belong to a same R; € 9 (recall that all
the R; are oriented segments), we set

AB ifA>B:
AB =10 if A=B;
_4AB if A<B.

D B

In addition, we will write f g(s) ds (resp. j 9(s) ds) to denote the integral of
C A
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any function g on the curve CD (resp. on the segment AB) with respect to
H, multiplied by 1 or —1if C <D of C > D (resp. if A< B or A > B):
formally,

D B
2.1) Jg(s) ds := CD f g(s)dH LH(s), Jg(s) ds := AB ][ g(s)dH(s).
C D A AB

2.1. Definition of u.

Here we define the function u, and we check that it is 1—Lipschitz; we
give first a

DEFINITION 2.1. Leti: Q\ & — I the funﬂfion whach associates to any
x € Q\ D the unique i = i(x) € I such that R(i(x)) >;x. Moreover, we set
p:Q2\ Y — Has

(0(90) = Rl(x) NH,

so that o(x) is the intersection of the ray passing through x with H. Finally,
welet0: Q\ Y — (0,n) be the function so that 6(x) is the angle between the
(oriented) segment Ri(ac) and the (oriented) tangent to H at Ri(x) NH.

We can finally define the function % as we claimed: we fix a point O € H,
deciding %(0) := 0; then, we set -keep in mind (2.1)-

22) u(x) == — 6|a£cos (H((idS) Ve € H,
w@) == u(p) — plr), Ve e Q°\ H.

REMARK 2.2. By immediate geometrical arguments, the functions ¢
and 0 are continuous on Q\ U; notice that 0(x) belongs to the open in-
terval (0,7) by definition of transversal curve, and that it is constant on
each ray R;, 1 € I. By (2.2), then, we infer that u is continuous on Q°.
Notice that, a priori, u could happen not to be continuously extendable on
09, wn particular on the set ). However, we will show that u is 1-Lipschitz,
so that it can also be extended to the whole Q, still remaining 1-Lipschitz.

The continuity of u at ©° stated in the above remark is of course not
satisfactory: since we mean to show that u is a Kantorovich potential, we
have first to check that « is 1-Lipschitz.
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LEmMA 2.3.  The function u defined in (2.2) is 1-Lipschitz and it de-
creases with slope 1 in all the rays R; € X.

Proor. The second part of the claim is immediate by the defini-
tion (2.2), the difficult part is the first one. Assume that this is not true:
then, there must be two points A and B in Q° such that

w(A) — uw(B) > /|A — B|

with some A > 1. Consider now the segment connecting A and B: of course,
there is some point P in this segment with the property that

) (@) — u(P)| _
2.3 1 - = :
(2:3) B POy TE

we claim that P¢H. Indeed, by the continuity of # noticed in Remark 2.2 and
by the definition (2.2) of u, it is clear that Vu(S) exists at each S € H, and
moreover |Vu(S)| = 1 and Vu(S) is parallel to R;), so that (2.3) ensures P
not to be inside H. Without loss of generality, we assume P to be in the right
part of Q; take now a point @ close to P with the property that

(2.4) (@) — u(P)| > IPQ :

we will show that this leads to a contradiction provided @ is sufficiently close
to P. To do that we give now some definitions, as in Figure 1 where of course
we assume that our conventions for left and right, arﬂor up and down are

the obvious ones: we set P := o(P), 6:) = 0@, & := f’é and @ the point of
R;q) whose orthogonal projection on R;p) is P. Notice that «(P) # i(Q)
by (2.4), since » has exactly slope 1 along each ray R;, so that ¢ # 0.

(i

Fig. 1. — Position of points in Lemma 2.3
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Moreover there is a suitable constant p > 0 such that
(2.5) PQ > ple]

provided PQ is sufficiently small: recalling that P belongs to Q° by con-
vexity, this follows immediately via a similitude argument since R;p) and
Rj) do not intersect in ©°, and of course the constant p depends on the
angle between the segment AB and the gradient of H at P, as well as on the
distance between P and 02 (p becomes smaller when P gets closer to 0Q).
As a consequence, ¢ — 0 when @ — P. By (2.2), we evaluate w(P) =

= u(f’) — PPand (@) = u(é) — QQ recalling that P and @ are on the right
of H (concerning (), this is of course true provided |@ — P| < 1). Therefore,
by (2.4) one infers

(2.6) Q) — u(P) + PP — QQ| > JPQ.
Again by (2.2), we know that

Q
w(@Q) = u(P) — Jcos (0()) ds :
P

since, as noticed in Remark 2.2, the function ¢ is continuous, by the defi-
nition of ¢ we deduce

w(@) = u(P) — ecos (0) + 0(e),

where we write 0 in place of 0(13) for shortness. Substituting this estimate
in (2.6), one finds

2.7) |PP — QQ — zcos (0) + o(e)| > /P@.

Again by the continuity of 6 at P, we can also clearly estimate

28) QR=QQ+QQ, QQ = —ccos(®)+o(e), PQ=esin(0)+ o(e);
putting then together (2.7) and (2.8), we have

2.9) PP — QQ +0(e)| > /PQ.

To recover a contradiction with |¢| sufficiently small, we recall that by the
triangle inequality

< PQ + PQ;

S
)

(2.10)
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moreover by Pitagora’s Theorem we can evaluate, using also (2.8) and re-
calling that P # P because P¢ H,

PG = \[PB 4 P& = \[ PP + (ssin(® + o) = P + ot
that together with (2.10) gives
(2.11) QQ < PQ + PP+ o(e).
In the very same way, the triangle inequality ensures also
(2.12) PP < PQ + QP;
and again Pithagora’s Theorem, recalling the continuity of 0, gives
@ = @ -+ 0(¢), so that from (2.12) one has
(2.13) PP < PQ + QQ + o(e).
Putting together (2.11) and (2.13), and substituting into (2.9) gives

PQ > 7PQ + o(e),

that gives the desired contradiction when |¢| is sufficiently small keeping in

mind (2.5). O

REMARK 2.4. The function u has been defined only on Q°; however, by
the previous Lemma it can be uniquely extended, remaining 1—Lipschitz,
to the whole Q.

2.2. Definition of .

In this subsection we will define the measure y with them we will prove
the Theorem. First, let us briefly recall some well-known facts about the
disintegration of the measures (for a formal treatment of this subject and
for the proof of the claims below one can refer to [3]): given the spaces X
and Y, and measures p € MT(X), Ky € PX) for y € Y and n € M(Y), we
write p = p, @y if for any Borel set 4 C X the function y—pu, (4) is
n—measurable and one has

W= | i)
yeY
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A vparticularly interesting situation when such a decomposition of u is
possible, is when one is given a function a : X — Y in this case, the Dis-
integration Theorem ensures that there exists probability measures
My € P(X), each of them concentrated in the corresponding a‘l({y}), such
that 1 = 1, ® ayp; moreover, these measures ., are uniquely determined
for agp—a.e. y € Y. Finally, if there is a space Z and two functions
f:X —Z and v : Z — Y such that a = w o f5, then the decomposition of
B 41 with respect to y is given by

(2.14) Bkt = Pytty @ vy (Bus).

Now, our aim is to define a transport plan y with the property that each
of its maximal transport rays is contained in some of the B; € 9. We point
out that, without any assumption on the ray configuration 9, if such y
exists then &2 is balanced, so that the balance property is also necessary
for the maximal transport rays. To notice this fact, just fix S C Q and
recall that

O =y{@y: xeS}) <r{@y: yeFO}) =1 (FOS);

indeed, by definition of maximal transport rays, whenever (x,¥) € spty
and x € S then xy is contained in some ray R; € 9% intersecting S (for
instance, at x!), so y € F(S). Therefore, the first inequality in (1.4) is
verified, and the second can be shown in the very same way.

For any i € I, now, we consider the «upper set»

/12' = UE]',

iz

and we prove some useful consequences of the balance property:

LEmMA 2.5.  Under the assumptions of Theorem A, take 1 € I and write
R; =: AB € &%; if both A and B do not belong to O, then f+(4;) = f~(4;).
More precisely, ifthereisnoj < tsuchthat A isthe left endpoint of R; (resp.
B is the right endpoint of R;) then f*(4;) < f~(4;) (vesp. f~(4;) < fH(A4).

Proor. Defining S = 4; \ {B}, if A is not the left endpoint of some R;
with j <4 then by construction F(S) = 4;; therefore, since by the hy-
potheses of the Theorem clearly B¢, (1.4) gives

FU) =F7S) <[ (FS)) = (4.

The case when B is not the right endpoint of E; for any j < i is of course



How to show that some rays are maximal ecc. 191

completely similar; and the first claim, in which A and B are not doubling
points of 92, is now a consequence. O

REMARK 2.6. For each i € I, at least one of the claims in the above
Lemma applies. Indeed, since the rays in 7 cover Q° and are disjoint, it is
mmmediately checked that, in case that both A and B belong to &, then
either A is the left endpoint only of rays R; with j > i and B s the right
endpoint only of rays R; with j < i, or A is the left endpoint only of rays R;
with j < i and B is the right endpoint only of rays R; with j > 1.

Take now a point P € I'" N &J: by geometrical arguments, there are
Imin < tmax € I, depending on P, such that P is the left endpoint of all and
only the rays R; with iy, <17 < imax. We claim that the function
0 : (lin, Tmax] — R given by

8G) = f () — T (4;\ {P})

is  decreasing. Indeed, for i, <J1 <Jo <imax We  set
S=U{R;: j1 <j <jg}, for which F(S)=4; \ 4; U{P}; by the hy-
potheses, P¢1"~, hencete also that again by (1.4) one immediately obtains
that0 < 6 <fT({P})in (Ymin» Ymax] -we also underline that the fact that the
interval is open in the left is fundamental to derive this estimate. Therefore,
we extend J to the whole R by setting 6(j) = fT({P})ifj < iy, and 6() = 0
if 7 > imax, and we define the measure up € MT(I) given by up := —DJ:
since J is a bounded decreasing function, up is a positive measure of mass
f +({P}) concentrated in [%;,,, tmax]. For any ¢ € I, we also define P(n, ) as
the point in B; = AB such that AP(n,7) = AB/n. Finally, we introduce the
measures

T (P)

(2.15) Lo =frer\o)+ Y J Op(n,i)dp (D).
PeonI™ ;" (p)

The meaning of up and f;; is worth to be understood: up says how the part of
f7T contained in the point P should be distributed among the different rays of
7 in order to have a precise mass balance. The measures f;}” simply perform
this distribution for all the doubling points, shifting a corresponding part of
mass in the interior of the rays, but remaining arbitrarily close to the dou-
bling points in the limit %2 — + oo. Notice that the definition (2.15) makes
sense since the function i—P(n, 1) is continuous and the set ¥ N I't is at
most countable. Our last ingredient is the following measure.
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DEFINITION 2.7. We define the measure v € P(I) setting v([i, +00)) for
any 1 € R as follows:

v([E,+00)) ==

{ f7(4,) 1if the left endpoint of R; is not left endpoint of any R; with j <1;
B f(4) if the right endpoint of R, is not right endpoint of any R; with j <.

Notice that the two definitions agree where they apply simultaneously
thanks to Lemma 2.5 (recall also Remark 2.6).

REMARK 2.8. We point out that, if & is f+—negligible, then
p: Q\ 9 — Hisin fact defined f™—a.e., so that it is possible to define the
measure g,f". Moreover, by Definition 2.7 and by construction, it is
clearly v = g f"; in the very same way, v = guf~ if (D) =

Finally, we are ready to prove the fundamental

LEmMA 2.9.  The measures f,- are probability measures weakly* con-
verging to f*; moreover, there are probability measures f,; concentrated
on R; forn € N, i € I such that one. has the dzsmtegmtwn = n+ ;.
Finally, for any i € I one has f,; = f5 and fr=frov wzth fi con-
centrated in R;. The same statement allows to write f~ =fi- @vwith f;”

concentrated in R;.

ProoF. Since f* is a probability measure and f, coincides with f* up
to splitting the mass of any P € I'" N & in the corresponding rays (recall
lup| = fT({P})), then also f," is a probability measure. Moreover, since the
points P(n, 1) uniformly converge to the left endpoints of the rays R;, then
the convergence f;* — f+ follows. Notice now that by construction f; is
concentrated in Q\ &, and as noticed in Remark 2.8 it is clear that
94,7 = v. Therefore, we can disintegrate obtaining £, = f,"; ; @ v with 7;
concentrated in R;.

By construction, for any i € I the sequence of measures n—f,’; is the
sum of a constant measure and a Dirac mass in a point moving to the left
extreme of R;, so that f,", N /i with f;" concentrated in R;; since the f, ;’s
are probability measures, the Dominated Convergence Theorem ensures
that thenf" @ v = f;7 ®v, so that also the second part of our claim follows.

The result for f~ can be derived in the same way, replacing in the
previous argument and in the definition of J the left with the right and
with f~. O
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REMARK 2.10. We like to mention that the previous claim, i.e. that one
canwrite f* = fi* ® vwith probability measures f;" on R;, is all we need to
perform our construction of y; therefore, the whole discussions we made in
this subsection until now would be completely unnecessary under the
assumption that & is negligible with respect to both f and f~, since in
that case one could directly decompose f+ with respect to ¢. Notice also
that by construction & contains countable many points, so that it would
have been sufficient to add to Theorem A the hypothesis of f+ being non-
atomic. However, since our vesult is true without this assumption, we
decided to present this more involved argument.

Finally, we can give our construction of the transport plan .

LEMMA 2.11.  There exists a transport plan y between f* and f~ such
that any maximal transport ray of y is contained i some R;, 1 € L.

Proor. We will define
(2.16) yi=9; Q0

being y; a transport plan between flﬁL and f;~ (we write f + fii ® vin view
of Lemma 2.9); any choice of y; works, provided of course that i—y; is a
v—measurable measure valued map, in the sense of [1]; in other words,
since defining y := y; ® v means that for any v € C,(2 x Q) one sets

(7.) = jm,w i),
1

we need to check that the preceding integral is well defined, that is that
t—(y;,v) is a v—measurable real map for any continuous and bounded
function v on Q x Q. To solve easily this problem, it suffices to define

(2.17) pi =1 f

7; is of course a transport plan between fj and fi*, and ¢ —y; is easily seen
to be a v—measurable measure valued map because so are z'r—>fl.+ and i—f;"
by the properties of disintegration; indeed, u—(y;,v) is clearly
v—measurable if v is the characteristic function of a set 2; x €9 where
and Q9 are Borel subsets of Q, and by a standard density argument one
concludes for a general v.

Having defined y via (2.16) and (2.17), we need to check that it satisfies
our claim; in fact, by (2.14) one has 71y = my; ® v = f;" ® v =f* and ana-
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logously mey = f~, so that y is a transport plan between f* and f~. More-
over, y—a.e. pair (x,y) in 2 x Q is contained in spty; for some ¢ € I, then
both 2 and ¥ are in R;; this immediately implies that all the transport rays
are contained in some R;, and then also the maximal transport rays do the
same (recall that transport rays and maximal transport rays are open
segments). O

2.3. Proof of the Theorem.
Here we can show Theorem A.

PrOOF. of Theorem A: We denote by u the function defined in (2.2)
and by y the transport plan built in Lemma 2.11: by construction, all the
maximal transport rays of y are contained in some of the rays E;, and on the
other hand we know by Lemma 2.3 that « decreases with slope 1 in all
these rays (recall also Remark 2.4). Hence, we can apply Lemma 1.4 to
derive that u is a Kantorovich potential and y is an optimal transport plan.
Recalling the discussions at the beginning of Section 1.2, we know that
then the admissible maximal transport rays are exactly those segments on
which u decreases at slope 1. Since the rays R; € % cover the whole Q°, we
derive that these segments are exactly all the subsegments of some
R; € 92, and the proof is completed. O

REMARK 2.12. Theorem A says which are the admissible maximal
transport rays, and thanks to the discussions in Section 1.2 this tells us
which of the transport plans are optimal and which are not. However,
usually something more is true, that s, that the maximal transport rays
are the same for all the different optimal transport plans: indeed, if & is
[ —megligible (in fact, it suffices that & is negligible with respect to just one
between [+ and f~), then the maximal transport rays are exactly all the
maximal subsegments of the R;’s intersecting the supports of f+ and f~. If
9 1is not negligible, the unicity of the maximal transport rays is still true
under the assumptions of our Theorem, since as we proved in Section 2.2 it
can be precisely determined how much of each doubling point must be
moved along each ray. But in the completely general case, this unicity may
not be true, since the different optimal transport plans could split differ-
ently the doubling points in the different admitted directions. For instance,
m Example 3.2 the maximal transport rays associated to y, are the vertical
segments AC and DB, the maximal transport rays associated to y; are the
horizontal segments AB and DC, and the maximal transport rays asso-
ciated to y, with 0 < s < 1 are all the four segments.
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3. Examples.

In this section, we give several examples to comment our Theorem and
to show some of its possible applications. First of all, we give an easy ex-
ample to enlighten the necessity of introducing the sets I'* in the claim of
the Theorem.

ExampPLE 3.1. Let f* and f~ be concentrated in two polygons as in
Figure 2.a); more precisely, let f* be absolutely continuous with respect to
the Lebesgue measure £, with densities given by

1 in [0,1] x [0,1/2];

+ —
Jele): { 1/2 in[0,2] x [1/2,1].

1/2 in[1,3] x[0,1/2];

fela,y) = { 1 in[2,3] x[1/2,1].

Then one can apply Theorem A with the horizontal rays and with
I'* = sptf* \ Ry, being R := [0, 3] x {1/2}, and it follows that the admis-
sible maximal transport rays are the horizontal segments (thus this could
have been recovered also through a stronger version of Lemma 1.5).
Notice that the condition sup R; N I'" < inf R; N I"~ would have not been
satisfied replacing I'* with sptf*: this shows the importance of introdu-
cing the sets I'* in our statement also for very simple situations.

Now, consider once more the meaning of the Theorem: roughly
speaking, if one has the insight of which are the maximal transport rays, it
allows to show it formally, and this seems to be the easiest way to give
explicit examples of optimal transport plans (or maps), except than in
trivial cases. In other words, there is a certain class of pairs f* (and of
corresponding sets Q) for which the Theorem can be applied to reveal the
maximal transport rays -of course, after that one has guessed them. This
class was very little after Lemma 1.5 in [2], since it covered only some

f* I A B f* = £

Ry

@] —° O] (c)

Fig. 2. — Examples 3.1, 3.2 and 3.3
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situations when all the transport rays are horizontal, with our result at
hand, this class has become much larger, as we will try to show mainly
through Examples 3.4 and 3.5. But of course this class can not cover all the
possible configurations f*, as we can understand with the following two
examples.

ExampLE 3.2. Consider the situation when f*=1/2(d4 + Jp) and
f~ =1/2(0p + d¢) and the four point A, B, C and D are the vertexes of
a square as in Figure 2.b). Then it is clear that the transport plan are
exactly the measures

})s:S(5A®5B+5D®5c)+(1—S)((5A®50+5D®5B)

with 0 < s < 1. Observe that, for any convex set Q containing the square, it
is not possible to find a ray configuration satisfing the conditions of the
Theorem: in particular, there are balanced configurations (for instance, the
one made by all horizontal lines), but the condition sup R, NI <
<inf R; N I'~ can not be satisfied because whenever A is on the left of
its ray then D is on the right of its one. Thus, the Theorem can not be
applied.

A less critical situation in which the Theorem still can not be applied is
the following one:

ExampLE 3.3. Consider, as in Figure 2.¢), the situation when f*
and f~ are (up to the constant 1/2 to ensure |f*| = 1) the Lebesgue
measure restricted on the sets ([0,1]U[3,4]) x [0,1] and [1,3] x [0, 1]
respectively: then, it is easy to understand that the maximal transport
rays are all the open segments (0,2) x {s} and (2,4) x {s} for 0 < s <1,
so one can not find any ray configuration with segments having the
endpoints in 0Q.

Now we give a simple example, to show a situation that can be handled
with Theorem A and could have not been solved with Lemma 1.5 (this

It 77 I

Fig. 3. - Example 3.4
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example has been already presented in [8] because it admits an optimal
transport map which is not continuous).

ExampLE 3.4. Let Q:=10,3] x [0,1], and let &2 :={R;, i € [0,1]}U
U{R;, i € [0,1]}, being R; (resp. R;) the open segment connecting (0, 0)
and (3, 7) (resp. (0, 4) and (3, 1)); Figure 3 shows some of these rays. We let
ft and f~ be concentrated on [0,1] x [0, 1] and [2, 3] x [0, 1] and abso-
lutely continuous with respect to the Lebesgue measure, with densities
given by

C*t(@) in[0,1]1 x[0,1]1NR;

i@, y) = { _ _
CT() in[0,1] x [0,1]1N R;;

C~() in[2,3] x[0,1]1N Ry;
fr@y =9 -

C—() in[2,3]x[0,11NR;
and where the Borel functions C*, C* : [0,1] — R can be arbitrarily
chosen subject to the constraint

(3.1) ct=5C", C =5C".

We claim that Theorem A can be applied to this situation, and hence that
the maximal transport rays are exactly the R; and the R;. To show this
assertion, one has only to check that the mass balance condition holds,
then by symmetry we limit ourselves to show that f+(T) = f~(T) for the
triangle T with vertexes (0,0), (3,0) and (3, 1) for a generic 7 € [0,1]. A

trivial calculation ensures that fH(T)=1 /6]0*(75) dt and f~(T)=
=5/ GIC (¢) dt, so that thanks to (3.1), our claim follows.

We give now our last example, which will be a more involved appli-
cation of Theorem A and it will also give an interesting counterexample.
To show its meaning, we first underline that our Theorem can not clearly
be applied whenever there is some doubling point in the interior of the
support of f or of f~, as it happens in Example 3.3. From this example
and other simple situations, it could seem reasonable that whenever f*
are sufficiently regular and with supports convex and disjoint, there may
not be doubling points in the interior of the supports: notice that this
would imply that the Theorem can be applied in all these situations. On
the countrary, in the example below we present a situation where the
supports of f* are convex and disjoint and f* are regular, but there is a
doubling point in the interior of spt f*. We remark that as a consequence
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the Theorem can not be applied in this situation: nevertheless, we will
prove our claim with a careful application of our result in some subset of
the supports.

fr f~ 2—¢ B ——
. — :
)/‘;/ Ye

(b)

(a) o

Fig. 4. - Example 3.5

ExampLE 3.5. Let f* and f~, as in Figure 4.a), be two absolutely
continuous measures concentrated on the squares [0,2] x [ —1,1] and
[4,6] x [ — 1, 1], whose densities (up to the resecaling factor 4 = L(sptf*) =
L(spt(f7)) are given by

2—¢ in[4,6]x ([—1,-1/2]U[1/2,1]),

+ = 1, . ) =
fEy) fr @) {g in [4,6] x [ —1/2,1/2],

where ¢ is a small positive number. An immediate symmetry argument
shows that whenever y is an optimal transport plan and (x,y) € spty,
if 9 >0 then yo >0 and if 9 < 0 then y9 < 0. Therefore, we con-
sider the transport problem associated to fT :=f+ L{xg >0} and
fm=f L{xy > 0}, and the admissible maximal transport rays for the
original problem will be all the admissible maximal transport rays for
the restricted problem and all their symmetric images with respect to
the axis {xg = 0}. We will apply Theorem A to the restricted config-
uration. To this aim, for any 0 < s < 3 and any 0 <t <1 we define the
points xs € asptf T and y; € 8sptf ~ as

{(0,1—3) ifo<s<I,
Xg =

= (6,1 —1t);
(s-1,0) if1<s<3 ( )

notice that the set of the points {xs, 0 <s <3} is the left and the
bottom part of the boundary of sptf+, while the set of the points
{ys, 0 <t <1/2} is the right part of the boundary of sptf_. We also
define the funection ¢ : [0,3] x [0,1] — RZ as follows: the first (resp. the
second) component of ¢(s,?) is the measure w.r.t. f+ (resp. to f~) of
the region above the segment connecting xs and y;. We state now the
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CraM. There is a strictly increasing continuous functions t :[0,1/2] —
— [0,3] with ©(0) = 0 with the property that p1(z(}),t) = po(z(?),?) for any
0<t<1/2

Before to show the claim, notice that an immediate consequence is that
7(1/2) < 3 since ¢;(3,1/2) = 2 < 95(3,1/2): consistently, in Figure 4.b) we
drawn x, = 1(y,), € = () and v = t(w) with w = (6,1/2). Extend now
the function 7 to (1/2, 1] setting () := 7(1/2) for 1/2 < ¢t < 1, and consider
the ray configuration % made by all the segments . y; for 0 <¢ <1 (as
the segment vy, in the figure): since, for any ¢ > 1/2, in the triangle with
vertexes v, w and (6,0) the densities of f T and f ~ (where positive) are
costantly 1 and ¢, by the Claim it follows that 92 is balanced. Hence, we can
clearly apply the Theorem, finding that the elements of 92 are exactly the
maximal transport rays for the problem with data f * and f ~. As noticed
before, a symmetry tells us also which are the maximal transport rays for
the original problem: therefore, we found that the point » is a doubling
point inside the interior of sptf*! We remark also that v clearly converges
to (2,0) when ¢ — 0; moreover, the discontinuity of (the density of) f~ on
the lines {xs = £1/2} is clearly not important in this example, and one
could easily replace f* with probability measures having smooth densities.
We conclude now this example showing the claim.

Proor oF THE CLAIM: One could easily obtain the proof through trivial but
very boring calculations; nevertheless, we prefer to give now a simple ab-
stract proof. First of all, notice that for any 0 < ¢ < 1/2 one has clearly
91(0,7) < 9(0,%) but 91(3,?) = 2 > ¢9(3,?): therefore, by continuity one has
that for any ¢ there exists some s with (s, %) = po(s, t) (also for ¢ = 0 since
of course ¢(0,0) = (0,0)). We want to show that for any ¢ there is a unique
such s := (t), and for any s there is at most a unique ¢ < 1/2 such that
91(s,t) = po(s,t): as a consequence, the claim will immediately follow.
Concerning the uniqueness of s for a given ¢, assume by contradiction
the existence of 0 <t < 1/2and 0 < 51 < s2 < 3 with ¢,(s;,t) = p,(s;,t) for
both 7 =1, 2. Assume first that s, < 1, and denote by 7 the triangle with
vertexes &, , @5, and y;: it should be f (7)) = f ~(T), but by similitude one
immediately has £(T Nsptf*) > 2£(T Nspt f~), and since the density of
ft on TNsptf* is costantly 1 while the density of f* on T Nsptf* is
everywhere less than 2, one finds the contradiction, then it must be so > 1.
We can then assume the existence of 1 < s < s2 < 3 with

(3.2) 01(8,8) > 03(8,1),01(s2, 1) = pa(s2,1) :
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indeed, if s; > 1 the choice s := s; clearly works and the «>» above is in
fact «=», while if s; < 1 then the same similitude argument as before en-
sures that the choice s := 1 works and the «>» is a «>». We will obtain
that (3.2) is absurd by showing that ¢,(-,?) and ¢,(-,t) are respectively
concave and convex in the interval [s,3] and recalling that ¢,(3,t) =
= 2> ¢,(3,1). To obtain this, just call T the triangle with vertexes y;, s
and x; for a generic s < s < 3: then the concavity of ¢; follows by the ob-
vious geometric fact that s—£ (T Nsptf+) = f*(Ty) is (strictly) concave
on [3, 3]. On the other hand, the convexity of ¢, is true since in [5, 3] the map

s—L(TsN{p € R2: the density of f~at pis 2 — e})
is linear, while the map

s—L(TsN{p € R2: the density of f~ at p is e})

is (strictly) convex.

Finally, concerning the uniqueness of ¢ for a given s, assume that there
exists s €[0,3] and 0 <t <tp <1/2 with ¢,(s,t;) = ps(s,t;) for both
1 =1, 2. The conclusion follows in a very similar way as before: we have
that ¢,(s,t1) = ¢a(s,t1), and clearly ¢,(s,1) < p,(s,1) (the inequality is
strict if and only if s < 1). The absurd (which concludes the proof of the
claim and the example) is given by the fact that on [¢1, 1] the function ¢, (s, -)
is linear, while ¢,(s, -) is strictly concave on [#;,1/2] and linear on [1/2,1].
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