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Divergence Measure Fields and Cauchy’s Stress Theorem.

M. SILHAVY (*)

ABSTRACT - Divergence measure fields are integrable vector fields whose dis-
tributional divergence is a measure. Some versions are derived of the divergence
theorem for divergence measure fields on sets of finite perimeter. Using these
results, it is shown that Cauchy fluxes from the theory of Cauchy’s stress the-
orem can be extended to a class of surfaces that includes singular surfaces of
continuum mechanics (shock waves and phase boundaries). On the singular
surfaces, the divergence of the stress has a surface delta type singularity, with
tractions on a surface and its opposite different from each other.

1. Introduction.

Cauchy’s stress theorem asserts that the force f(S) exerted by one part
of a continuous body on another part through a surface S of contact is
expressed by

£(S) = JTndA
S

where n is the normal to S, dA is the element of area of S, and T, the main
object of the stress theorem, is the stress tensor (V). Cauchy’s derivation
was heuristie, with unnecessary additional assumptions. Noll [19] raised
the question of a rigorous derivation under minimal assumptions. Basic
properties of interactions in a body were formalized in the concept of a
Cauchy flux ) in[18] and using this notion, the proof of the Cauchy stress
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©) Similarly, the flux of heat F(S) through a surface S is given by the heat flux
vector g via F(S) = [ ¢ -ndA.

2 - §
(*) See Section 5.
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theorem was given under natural, albeit still restrictive assumptions A.
These ideas were then adapted to the context of sets of finite perimeter [3,
29, 24,14, 201 (*). The assumptions of [13] lead to bounded stress fields, and
in [29] it was shown that the distributional divergence div T of T is a
bounded (integrable) function; see also [1]. Clearly, there are many si-
tuations where the boundedness of T and of div T are violated. Unbounded
stress fields occur in fracture mechanics and in the existence theorems in
nonlinear elasticity; div T has a (surface) J type singularity on singular
surfaces (shock waves and propagating phase boundaries). Cauchy fluxes
leading to unbounded stress fields and with div T an (unbounded) integr-
able function are treated in [24-25]. In [25] it was shown that at this gen-
erality the Cauchy flux can be defined only for «almost all» surfaces S. This
covers unbounded stresses but excludes singular surfaces. The extension
to stress fields arising in the presence of singular surfaces is in [7, 15-18].
These works consider Cauchy fluxes for which the resulting stress field
may be unbounded with distributional divergence a Radon measure.
Following [7], such tensor/vector fields are called divergence measure
fields in the subsequent treatment (°). However, the concept of almost
every surface adopted in [7, 15-18] excludes surfaces where div T is not
absolutely continuous with respect to Lebesgue’s measure, in particular,
the Cauchy flux is generally undefined on singular surfaces.

This paper (i) derives some new properties of the divergence measure
fields including versions of the divergence theorem for them and (ii) uses
(i) to extend Cauchy fluxes to a class of surfaces which includes the singular
surfaces. To simplify the description, we switch from vector valued Cauchy
fluxes (such as force) to scalar valued ones (such as the heat flux) (6); ac-
cordingly, the stress tensor T changes to the flux vector q. The results may
be extended to vector valued fluxes by components.

The divergence measure vector fields are locally integrable fields
q :R"—R" whose distributional divergence div ¢ is a Radon measure. The
paper first briefly addresses the question of the nature of the measure
div ¢ in Section 3. It is shown thatif ¢ € L? (R")thenfor1 <p <n/(n —1)

loc

() See below.

() A variational approach to Cauchy’s theorem is developed in [11], and an
approach based on Whitney’s geometric integration theory [28] is outlined in [21].
See also [23].

(®) The spaces of fields with integrable distributional divergence are treated in
many works, e.g., [2, 12]; papers [4-6] consider divergence measure fields.

(% See footnote (V) above.
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any Radon measure can arise as div q, while if n/(n — 1) < p < oo, then
the singularities of div ¢ are not be arbitrary: div q vanishes on sets of
Hausdorff dimension m <n —p/(p —1) if p is finite and of dimension
m < n — 1if p = co; moreover, in the latter case div q also vanishes on each
set of n — 1 dimensional Hausdorff measure 0.

Next, several versions of the divergence theorem are given for diver-
gence measure vector fields and sets of finite perimeter. If ¢ is a smooth
vector field and ¢ a smooth scalar field with compact support then the
divergence theorem reads

(1.1) J oq -nMdor1 = JD(wqdc%”‘ + J(/)q divg d.£™"
oM M M

for any normalized set of finite perimeter M C R" with the measure the-
oretic boundary OM and the measure theoretic normal n* (see Section 2
for definitions). For divergence measure vector fields the right hand side
generalizes to

JD¢~quZ" + J(pdivq
M M

where the last integral is the integral of a continuous function with re-
spect to the Radon measure div g, but the left hand side of (1.1) does not
have an immediate meaning. It turns out that for divergence measure
vector fields the expression ¢ - n? cannot be interpreted pointwise, i.e.,
the left hand side of (1.1) must be interpreted as a functional on scalar
fields ¢ on OM, [4-6]; this occurs even when the distributional diver-
gence div ¢ is an integrable function [26; Theorem 1.2, Chapter I]. It is
shown that such a functional exists for every set of finite perimeter
(Proposition 4.1, generalizing [6] to sets of finite perimeter); this func-
tional is called the normal trace (") of q. If ¢ is «bounded» near OM (see
the definition of domination in Section 4), the normal trace has addi-
tional properties. Theorem 4.2 gives two conditions under which the
normal trace is a measure; one of these guarantees a measure with
support on the closure OM of the measure theoretic boundary; the other
guarantees a measure supported on M but requires ¢ € LI (R") with
p >mn/(n —1) and regular boundary in some measure theoretic sense.
Finally, Theorems 4.4 and 4.6 give conditions which guarantee that the

) [6].
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normal trace is of the form

(1.2) J oMd "t

oM

where ¢ is an 77! integrable function. Theorem 4.4 deals with
bounded vector fields (g € L*(R")) and shows that then the normal
trace is as in (1.2) with ¢ € L>(0M) for any set of finite perimeter; this
has been proved in [2; Theorem 1.9] for open sets with Lipschitz
boundary. Theorem 4.6 deals with a general ¢ and proves (1.2) for sets
M whose boundaries do not intersect some exceptional set of n — 1 di-
mensional Hausdorff measure 0 where div ¢ is too singular.

Using the divergence theorem 4.6, it is shown that every Cauchy flux
that is defined for almost every surface in the sense of [7, 15-18] can be
automatically extended to a class of surfaces where the measure div ¢ has a
surface type singularity, thus including the singular surfaces. Clearly, this
extended Cauchy flux reflects more fully the properties of the interaction.
However, generally the flux cannot be extended to all surfaces, for, firstly,
the flux g vector has to satisfy the domination condition as mentioned
above, and, secondly the surface cannot intersect the exceptional set where
div ¢ is too singular. If ¢ is bounded then the domination condition is au-
tomatically satisfied, the exceptional set is void and the Cauchy flux can be
extended to all surfaces.

After a brief recapitulation of the basic measure theoretic notions in
Section 2, Section 3 states some properties of the divergence measure
fields. The divergence theorems and Cauchy fluxes are discussed in
Sections 4 and 5, respectively. The proofs are given in the rest of the

paper.

2. Preliminaries.

For a set M C R" we denote by M= R"\M the complement of M. If
x € R" and r > 0 then B(x, ) is the open ball of radius » and center x.
™ is the (outer) Lebesgue measure in R"; if A C R" then |A| = ¥"(A)
is the Lebesgue measure of A. If 0 < m < oo, we denote by 7™ the m
dimensional Hausdorff measure [10; §§ 2.10.2-6]. Briefly, if A c R"
then

2" (A)= lim 5 (A)
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where for any > 0 the size  approximation 777 (A) is defined by

T5A) = ay, inf {Z(diam Ci/2":C; CR", A | JC;,diam C; < 5} ,
i

=1
where diam C = sup {|x —y|:x,y € C} is the diameter of C,
a,:=1"1/2)/T'(m/2+1),

and I' is the Euler gamma function. If m is an integer, then a,, is the
volume of the unit ball in R™ and .7%™ coincides with the m dimensional
area on m dimensional manifolds in R"; in particular .7#" = £".

If M c R" is 4" measurable and x € R" we say that M has a density at
x if the following limit exists:

D, M):= lim OB I
r—0 0y 7"

which is then called the density of M at x. A point x € R" is said to be a
point of density of M if D(x, M) = 1. For ameasurable set M we denote by
M, the set of all points of density of M. By Lebesgue’s differentiation
theorem [27; Theorem (7.2)], M, is a Borel set and the symmetric differ-
ence of M and M, has #" measure 0. We define the measure theoretic
boundary OM of a measurable set M by

cf. [10; §4.5.12]. OM is a Borel set and |0M| = 0. We say that a measurable
set M C R" is normalized if M = M,.

By a Borel measure in R" we mean any o additive function
w:.% — [0, oo] whose domain .7 is a ¢ algebra which contains all Borel
sets in R". Thus the restrictions of £, 7™ to their respective systems of
measurable sets are Borel measures. By a (signed) Radon measure in R"
we mean any ¢ additive function x:.% — R defined on the ¢ algebra .% of
all Borel sets in R". By a measure we mean either a Borel or a Radon
measure. If ¢ is a Radon measure we denote by |u| the total variation
measure, which is a nonnegative Radon measure. Then ||| = |u|(R") < oo
denotes the total variation of ;1. We denote by . Z(R") the set of all Radon
measures on R" and by .Z_(R") the subset of nonnegative Radon mea-
sures on R".

If A c R" is a Borel set and u a measure, we denote by ul_ A the re-
striction of 1 to A, i.e., a measure given by

nl_AB) =uANB)
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for any B from the domain of 1. We say that a measure u is supported on a
Borel set A if u = ul_ A. We say that a measure u vanishes on a Borel set
N if u(A) = 0 for each A C N from the domain of . If x is a measure and
f:R" — R a Borel function that is integrable with respect to x, then fu
denotes the measure given by

(f1)(A) = [fdﬂ

A

for each A from the domain of x. The reader is referred to [10; Chapter 2]
for further details of the measure theory.

A measurable set M c R" is said to be a set of finite perimeter (cf. [10;
Theorem 4.5.6]) if the distributional partial derivatives D;1y,, 1 <1 < n, of
the characteristic function 1;; of M are Radon measures. M is a set of finite
perimeter < 7" HOM) < oo (ef. [10; Theorem 4.5.11]) < there exists a
Borel function n: 9M — S§"~!, where §" ! is the unit sphere in R" such
that

(2.1) JD(p ds" = J onMd oz

M oM
for each ¢ € C°*(R"). Here C;°(R") is the set of all infinitely differ-
entiable functions with compact support and Dg¢ is the gradient of ¢.
The function M is determined by (2.1) uniquely to within a change on

an 77" ! negligible subset of &M, and is called the measure theoretic
normal of M.

3. Divergence measure fields.

Agq e LlloC (R"™) (®) is said to be a divergence measure field if there exists

a i € .Z(R") such that

3.1) JD(p-qd:%”" =— J pdu
Rll R”

for every ¢ € Ci°(R"). One then writes div ¢ := u. The space of all diver-

(®) Here LE (R"),1 < p < oo, stands for the set of all measurable maps
q : R" — R" that are locally integrable with pover p.
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gence measure fields is denoted by LIOC ZWRY) and we write
L 7™ RY:=LL, . #™R") L (R") whenever 1 < p < oc.

For n = 1 the space L}, . # 4v(R™) reduces to the space of functions of
bounded variation on R'; ; throughout the rest of the paper we assume that
n > 1. The following are archetypical examples of divergence measure
fields:

EXAMPLES 3.1 - (i) (Transversal fields). Let f € L} (R"~ Y and define
qge L R") by qlxi, ..., 2,)=(0,...,0, fl1, ..., z,_1)), z € R". Then
qgeLl, .7 WVR™ and divg = 0.

@) (Singular surface). Let e1 be the coordinate vector in the xy di-
rection and qx)=e; if x1 >0 and qx) =0 if 1 <0, x € R". Then
qgeLl, #%WR") and divg = 7" {x € R":x; = 0}.

If 1 is a Radon measure and 0 < m < co, we say that u is 7™ abso-
lutely continuous if |u|(B)=0 for every Borel set B C R" with
"™(B) = 0. We say that a Borel set B has o finite . 77" measure if B is a
union of countably many Borel sets of finite .72" measure.

THEOREM 3.2. Letn/(n—1) <p < oo, g € LE .Z™(R"), and set

p n—p/p—1 if p<oo,
Cln-1 if p=oo

() If p < oo, then |divq|(B) = 0 for every Borel set B of o finite .7°
measure;
(i) if p = oo then divq is Vi absolutely continuous.

For the given range of p, the value of d changes monotonically from 0 to

n — 1. The theorem imposes a restriction on the dimensionality of the
measure divq: ifq € Lp .(R"), then div ¢ cannot be concentrated on sets of
dimension < d. Thus, e.g., the Dirac 0 cannot occur as the divergence of
some g € L (R") with p > n/(n — 1); the improved integrability of g im-
plies improved regularity of divg. In partlcular, for bounded vector fields
divg is absolutely continuous with respect to the n —1 dimensional
Hausdorff measure. The bound d is optimal: if 1 <p <n/(n , then
essentially every measure can occur as a divergence of some q € LIOC(R”)
while if 7/(n — 1) < p < oo then there are vector fields ¢ € L{ (R") with
divergences concentrated on sets of dimension s higher than but arbi-

trarily close to d:
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ExampLE 33. - () If 1 <p <n/(n—1) then for any signed Radon
measure j with compact support there existsaq € LY . .7 4 (R™) such that
divg = u.

) If n/n—-1)<p<oo then for any s>d there exists a
ell 7 4 (R™) such that divq is not .77° absolutely continuous.

The vector field ¢ is constructed as the Newton force (the gradient of
the Newton potential) for the uniform mass distribution on a compact set K
with 0 < 7™ (K) < oo, see Proposition 6.1.

4. The divergence theorem.

Proposition 4.1 and Theorems 4.2, 4.4 and 4.6 discuss the divergence
theorem for normalized sets of finite perimeter M and ¢ € L}, .. 7 div(Rm)
in decreasing generality but with improving properties of the boundary
term (see the discussion in Introduction). It is first noted in Proposition
4.1 that the boundary term is always a linear functional on the space
Lipy(OM) of Lipschitz continuous functions with compact support on
OM. For any set W C R" we denote Lip,(W) the set of all real valued
Lipschitz continuous functions ¢ on W such that {x € W:¢(x) # 0} is
bounded, with norm

01l Lip,m= Lip (@) + llell o)
where Lip (p) is the Lipschitz constant of ¢ and
l@llcan:= sup {lpte):x € W}.

ProPOSITION 4.1 (Normal trace as a functional). If M is a normalized
set with finite perimeter and q € LL, .7 4(R™) then there exists a linear
functional N¥(q, -): Lipy(OM) — R such that

(4.1) NY(q, ¢loy) = Jqu-qd;%m + Jqo divg
M M

for every ¢ € Lipy(R"). If N:= (M°).. then
(4.2) NY(g, ) +N¥(q, ) = —divql_ oM.

If M or M is bounded then N™(q,-) is continuous with respect to
1 ipgon) -
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Here ¢|aas is the restriction of ¢ to 9M and the assertion is that the right
hand side of (4.1) depends only on the boundary values of ¢. NM (q, ) is
called the normal trace of ¢ on OM. Although the frameworks are not
strictly comparable, (4.1) may be considered to be a generalization of the
relevant results of [4-6]. Equation (4.2) says that the normal traces from
the two sides of OM are different if div q is concentrated on 0M; see (4.11),
below, for a more concrete form, cf. also Example 3.1(ii).

Next we are concerned with specific forms of the normal trace. If M is a
normalized set of finite perimeter and q € LL .7 ™ (R") we say that the
normal trace N¥(q, -) is

() a measure if there exists a v/ = v/ (q) € .#(0M) such that

N"(q, p) = JMVM
R?l
for every ¢ € Lipy(0M);
M _

(i) an integrable function if there exists ¢M =q¢M(q) €
e LYOM, 77" 1) such that

N(q, p) = J o dor !
oM

for every ¢ € Lip,(0M).

The following theorem discusses conditions under which the normal
trace is a measure. If M is a normalized set of finite perimeter, we say that
ageLl (R")is

() weakly dominated on OM if there exists a sequence p; > 0,

pj — 0, and a constant C < oo such that

(4.3)

J J lq@) - nMx)|d " (yd 7" x) < C

a.p;
OM B(x,p;)

for every j € N;
(ii) dominated on OM if there exists a function g € L'(OM, 7"

and a sequence p; > 0, p; — 0, such that
1

44
(44) v

J la(y) -nM)|d " (y) < glx)

B(x, p;)

for 77" ! a.e.x € OM and every j € N.
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Clearly, if g is dominated on OM then it is weakly dominated on OM. If
q € L°(R") then ¢ is dominated on any OM; if q € L2.(R") then q is
dominated on 0M if M is bounded.

THEOREM 4.2. (Normal trace as a measure). Let q € Llloc (R and
let M be a normalized set of finite perimeter. Then
(1) f q is weakly dominated on OM, the normal trace is a measure
supported on OM;
@) o qc¢€ Lﬁc//édi"( "), where n/n—1)<p<oco, d is as n
Theorem 3.2, q is dominated on OM, and

(4.5) d,M has a o finite 77" measure

where O;M = {x € OM : D(x, M) does not exist}, then the normal trace is
a measure supported on OM.

Assertion (i) guarantees a measure supported on OM, which may be
large, while (i) guarantees a measure supported on 0M, which is a set with
"1 (OM) < co. Condition (4.5) requires that the «singular part» O,M of
the boundary be small. We note that D(x, M) exists and is equal to 1/2 for
27" 1 ae. x € OM; however, since d < n —1, Condition (4.5) requires
more. Theorem 4.2 holds also if p = oo, in which case (4.5) can be omitted,
but in this special case the normal trace is an integrable function, cf.
Theorem 4.4, below.

Finally we consider situations when the normal trace is an integrable
function. Let first ¢ € LL,.Z™(R") N L>(R"); it will turn out that then
the normal trace is an integrable function for every normalized set of finite
perimeter; moreover, it is given by a function ¢°(x, %) which we shall now
introduce. If x e R", ne8" !, and >0, let B(x, n, r):=B(x, r)nN
N{yeR":(y —x) -n <0}. If ¢ € LL (R"), we define a function ¢°: R" x
xS§" 1 = R by

lim
r—0 an_lr”

J aw) - E=Y gy
x —y|
@, n) = .7

if the limit exists and is finite,

0 if the limit either does not exist or is infinite,

x € R", n € 8! The function ¢°(x, n) is a generalization of the expression
qx)-n:
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REMARK 4.3. Ifq € L (R") and x € R" is a Lebesgue point of q then

loc
x,n) =qx)-n

for every n € 8"

Here ¢ is any representation of the class ¢. In Example 3.1(ii),

0 e;-n ife;-n>0,
¢ (x,n) =
0 else,

for any x with x; = 0. Thus ¢° is bound to be nonlinear in the presence of
discontinuities in the normal component of q.

THEOREM 4.4. (Normal trace as a function, special case).
W) Ifqell, 7 V(R L(R") then for every normalized set of
finite perimeter M the normal trace is a bounded function, i.e., there exists
aq™ e L>OM, 77" 1) such that

(4.6) J oMd. "t = J Dp-qd 7" + J pdivg
oM M M

for every ¢ € Lip, (R"); moreover, ¢™ is given by
4.7 qM(x) = qo(x, nM(x))

for 77" a.e. x € OM, and g™l e onr. o) < @l e

(i) If, more generally, q € Ly, .7 W (R™) and q is dominated on OM,
then the normal trace is an integrable function g™ which satisfies (4.7) for

7" a.e. x € OM.

The existence of the normal trace as in (i) has been proved in [2;
Theorem 1.9] for open sets with Lipschitz boundary. In addition, (4.7)
shows that the normal trace depends on the shape of 9M only through the
normal n¥. In the context of Cauchy fluxes, assertions of this type are
called Cauchy’s postulate.

To proceed to the general p, we need to isolate the part of the measure
div ¢ which is singular with respect to 77" !. The following proposition, a
direct generalization of Lebesgue’s decomposition, is a basis for that. If
0 <m < oo, we say that ann € .7 (R") is 7™ singular if it is supported
on a Borel set B with .7%7™(B) = 0.
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PROPOSITION 4.5. If ne . #.(R") and 0 < m < n then there exists a
unique decomposition of n as

(4'8) N =Nem + My & Moy

where 1_,,, Ny Nom € M+ (R") have the properties
Q) 7.y, is T singular;
(i) #,, is . 7" absolutely continuous and supported on a set of o finite
" measure;
(i) #.,,(B) = 0 for every Borel set B of o finite 7™ measure.

We may say that the dimensions of %_,,, #,,, #-., are less than, equal to,
and bigger than m, respectively. The Lebesgue decomposition is the case
m = n by noting #., = 0 by (iii). By the Radon Nikodym theorem [27;
Theorem (10.39)] we have

(4.9) nlA) = F. 7" S,

for some Borel set Sy € R" of s finite 77" measure and some nonnegative
Borel function f:R" — R with f € L1(Sy, 77™), f(x) > 0 for every x € S
and f(x) = 0 for every x¢ Sy (°). Then Sy, f are determined to within a
change ona. 77" null set. Foragq € Ll .. 7 4v(R™) we apply Proposition 4.5
with m = n — 1 to obtain

|d1VQ| = |divq|<n71 + |divq‘n—l + |ddi|>n71'
Then |divg|, ; = f.,%"’l L Sy where f, Sy are as above; moreover,
divgl So=J7" S,

for some Borel function J:R" — R such that J € L(So, . 77" 1) and
J(x) =0 for x¢.Sy. The set Sy is the (analog of the) singular set of con-
tinuum mechanics and J is related to the jump of the normal trace of ¢
across OM; see (4.11), below.

THEOREM 4.6 (Normal trace as a function, general case). Let
1<p<oo,qell 7 WR™) and let M be a normalized set M of finite

loc ~
perimeter for which q is dominated on OM and

(4.10) \divg|_, ,(0M) =0,

() On the contrary, the measure N-m, despite of being 7™ absolutely
continuous, cannot be expressed as in (4.9), because it is supported on a set of
non o finite .77™ measure.
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Then the mnormal trace of q¢ on OM 1is an integrable function
M e L' (oM, 7", If N:= (M°), then also the normal trace of ¢ on ON 1is
an integrable function and

(4.11) M x) + ¢V (x) = - J(x)
for 77" Y a.e. ¢ € OM = ON.

Equation (4.10) ensures that M does not intersect the region where
div ¢ is too singular. In contrast to the situation q € LL .Z™(®R") N
NL.(R"), in the present context the normal trace ¢ does not seem to be
given by (4.7) generally. However, we have the following weak form of the

local dependence of g™ on the shape of OM:

REMARK 4.7. If M;, i =1, 2, are two normalized sets of finite peri-
meter which satisfy the hypothesis of Theorem 4.6 and if S:= {x € OM;1 N
NOMs :n*i(x) = n™2(x)} then the normal traces ¢™ satisfy

¢ (x) = ™2 (x) for 7" ' ae. xes.

5. Cauchy fluxes.

Let 7 be the set of all bounded normalized sets of finite perimeter. An
oriented surfaceis apair S = (S, nS) such that is a Borel subset of M of some
M € 7 andn®(x) = n™(x)for 77" ' a.e.x € S. Let.” bethe setof all oriented
surfaces. We say that the oriented surfaces S = (S, nS) and T = (T, n”) are
compatible if there exists an oriented surface U = U , nY) € .7 such that

nSkx) ifxes,

SuT=0U and nU(x):{ K
Tx) ifxeT

n

for 7" 'a.e.x € U. Wethenwrite U = SUT.IfM € 7 we interpret OM as
the oriented surface OM = (M, nM).

We denote by £ the set of all Borel functions (not classes of equiva-
lence) : R" — [0, colsuch thatk € LL (R").Ifh € < andn € .7, (R") we
denote [7]

Pryi={M C R":M € 7, J hd.o7" ' < oo, n(OM) = 0},
oM

S p={S €S COM, M € 7,}.
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We say that N C.” is a null set if /" C.v"\/), for some h e ¥,
ne 7. (R").Wesaythataset 7 C ./ contains almost all of ./ if ¥\ & isa
null subset of .. If # is a property associated with all surfaces S €., we
say that 7 holds for a.e. S € ./ if there are & € & and n € M, (R") such that
n(S) is true for all S € .77,

A Cauchy flux is any mapping F: & — R, where & C .7, such that
for some &7y C & that contains almost all of . we have

@ if S, T € ¥, are disjoint compatible material surfaces then

SuT e &y and

FSUT)=F®8)+F(T);

(ii) there exists & € < such that

(5.1) IF(S)] < Jhd.%ﬂ“
N
for every S € &y;
(iii) there exists 7 € M (R") such that
|F'(OP)| < n(P)
for any M € 7 with OM € &,,.

We say that F'is a Cauchy flux of class Lﬁc, 1 < p < oo, if the function

h as in (5.1) can be chosen in L} .

The above definition is equivalent to the one given in [7, 15-18]; the
papers [13, 29] deal with h € L (R"), n = ¢ %", ¢ € R, and [24-25] with

loc

hell (R, n=Ff" fell (R, 1<p<occ.

loc

THEOREM 5.1. F'is a Cauchy flux if and only if there exists a vector

field q € L11OC (R such that, for any representation q of the class q,
(52) F(S) = Jq S
S

for a.e. S € &. The correspondence F' — q is one to one if one identifies
Cauchy fluxes that differ only on null subsets of .7 and interprets q as
Lebesgue classes of equivalence. Moreover, F is of class L, . if and only if
gell . 7ZWR"),1<p<oo.

loc

The field q is called the flux vector corresponding to F. Theorem 5.1
follows from the results of [7]; previous special cases are [13, 29, 24-25].
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For a given Cauchy flux F' with the flux vector ¢ define
7*:={M € : q is dominated on OM and |div q|_,_,(0M) = 0},
s ={S €.:S C OM for some M € 7"},
and F*:.¥" — R by

(53) Fa(S) = JquJ/H
S

for any S €.7* where M € 7*, S ¢ OM and ¢ is the normal trace of ¢ on
OM, which exists by Theorem 4.6. The function F* is well defined by
Remark 4.7.

THEOREM b.2. If F is a Cauchy flux then F* is a Cauchy flux and
F(S) = F*(S) for a.e. S € .7 if F is a Cauchy flux of class Ly, then F* is
defined on ./ =.7.

The flux F™* is defined naturally as the densities from (5.3) satisfy the
divergence theorem. Its domain S* contains singular surfaces S (surfaces
with div g S # 0) provided ¢ is dominated on S. By (4.11),

F*(8) + F*(—8) = —divq(S)

where —S is the surface S with the opposite orientation.

6. Proof of Theorem 3.2 and Example 3.3.

Proor oF THEOREM 3.2. (i): It suffices to prove that |divg|(B) = 0 for
each Borel set B with .77"(B) < co. Let B be a Borel set with .7%(B) < oc.
From the Hahn decomposition [27; Theorem 10.36] we deduce that there
exist Borel sets B. C B with B, NB_ =0, B, =B, =B such that
+divgl_ B+ > 0. Our goal is to prove that divq(By) = 0. It suffices to
prove only divg(B_) = 0 for which in turn by [10; § 2.2.5] it suffices to prove
that divq(K) = 0 for any compact subset K of B.. Thus let K C B, be
compact. Let ¢: R" — [0, 1] be given by

1 if ] <1,
px) =< 2—Jx] f1<nl <2
0 if o] > 2

and note that ¢ is a Lipschitz continuous function with |Dg| < 1 for #™ a.e.
e R" Lete> 0.Sinced < nand 7#*(K) < oo, we have #"(K) = 0. Using

qgc Lﬁ)c( ™), p < oo, we deduce that there exists a bounded open set U with
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K c U and ||q||z») < e Furthermore, by [10; Theorem 2.2.2(2)] this set U
may be chosen so as to satisfy div ¢*(U\K) < e. Since K is compact, there
exists an 0 > 0 such that for any ball B(x, ) with » < é and K N B(x, r) # 0,
we have B(x, 2r) C U. From the definition of . 77%, there exists a covering of
K by a finite system of balls B(x;, r;), t1€I, with 7, <J and
ag Y. rl7B) +1(*°). Thus | B(x;, 2r;) C U. Let ;(x):= p(r; 1(x — x;)),
iell,xeR",andlet i
w(x) = max {g;x):iel}

for every x € R". Then 0 < w < 1, wis Lipschitz continuous, and w = 1 on
K. Since the support of w is in U, we obtain

(6.1) div ¢(K) = Jw divg = — JDa) q A" — J w div ¢
K U U\K

directly from the definition of div ¢ (see (3.1)). We now estimate the right
hand side. Since 0 < w < 1 and div ¢*(U \K) < ¢, we have

6.2) ‘ J  div q} < 2.
K
Further,
(63) ”Dw g ds"] < LV gl < LY

U

where q:=p/(p—1) is the conjugate Holder exponent and L =
= [ |Dw|'d#".One easily finds that for #™ a.e.x € R" there exists at least

oné i € I such that Dw(x) = Dg;(x) and hence

L= J |Da)|ngn < Z J |D§0i|qd(%;n
U iel

A

=Y | i
T

< 2"a, Z ri

1€l

< 2"a,/ay( 77" (B) +1)

(1% In this proof we switch without change in notation from the Hausdorff
measure .7 to the spherical measure 7% [10; §§ 2.10.2-6], which is possible by the
inequalities w< < [@n/(n+ 1)]‘1/2 7%, see [10; §2.10.6], which show that
77" and .7 have the same system of null sets and sets of finite measure.
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where we note that n — ¢ = d and |Dg;| < r;1 on B(x;, 2r;). Thus
0 < div ¢(K) < (2"a, Jag(7#*(B) + 1))V + 2¢

by (6.1), (6.2) and (6.3). The arbitrariness of ¢ > 0 gives div ¢(K) = 0. Thus
|div ¢|(B) =

(ii): We have to prove that if B ¢ R" is a Borel set with 7" 1 B) =0
then |div ¢|(B) = 0. Thus let 77" 1(B) = 0, let B have the same meaning
as in the proof of part (i), let K be a compact subset of B, and prove that
divq(K) =0. Let ¢ >0, let U be an open set with K ¢ U such that
div ¢*(U\K) < &; corresponding to this U we find an 6 > 0 as in the proof
of part (i). Since 77" 1(K) =0, there exists a covering of K by a finite
system of balls B(x;, 7;), ¢ € I, withr; < dand > 7‘1’?*1 < & If wis as above,
then (6.2) holds while (6.3) is replaced by L

(64) [po-aaz| < Ligly,

U
where L = [ |Dw|d%". As above,
U

L< Z J |Do;|d 7" = Z J |Do;|d 2" < 2"a,, Zr{b‘l < 2"aue.

iel R il Blx,,2r) iel

Thus we have
0 < div g(K) < 2"a,e|ql| gy +2¢

by (6.1), (6.2) and (6.4). Hence divq(K)=0 and -consequently
divg(B,) = 0. O

PROPOSITION 6.1. Let u is a signed Radon measure on R" with com-
pact support and

(6.5) (x):= 1 Jw

na, lx —y|"
R?I

for every x € R" for which f e —y['"d|u|@) < co. Then
() q e L 7R omd

loc*
(6.6) div g = g;
(i) f1<p<mn/in—1)thenq<c L (R");

loc

(ifi) if n/(n—1) < p < oo then q € LL (R") provided |u|(B(x, r)) <
< cr™ for all x € R" and all 0 < r < a, where m > d, a >0, ¢> 0 are

constants and d is as in Theorem 3.2.
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Proor. Write i:= |y, let

blx) = j x — y[1"dny)

R"

for every x € R" so that ¢: R" — [0 oo] and prove that ¢ € L? (R") for

loc

every p satisfying 1 < p < n/(n —1). By Holder’s inequality, with ¢ the
conjugate exponent,

Px) < ||n|ij x — " V).
RIL

Therefore, if z € R" and r > 0,

| ewarw < || oyt
B(z,r) R" B(z,7)

For any y € R" we have B(z, r) C By, |z — y| + ) and therefore

J |x _ y|*P(7l—1)d7%/n(x) < J |x _ y|7p(n B 1)d%n(X)
BG,7) By, |z—y|+r)

= Cllz —y|) + """

where C:= na,/(n — p(n — 1)). Therefore

J ¢lx)d ") < CIIHII”"J (z —y|+ """ V().
B(z,r) Rﬂ

The last integrand is a bounded function of y on the compact support of #
and thus the integral is finite. Hence ¢ € L{ (R"); thus in particular, ¢ is
finite for 4™ a.e. x € R" and hence ¢ is defined 2" a.e. on R". (i): By
lgx)| < nflagl(x) we see that q is locally integrable. Equation (6.6) is
standard by noting that q is the derivative of the Newton potential corre-
sponding to the mass distribution w. (ii): Has been proved above. (iii): Let u
satisfy the hypothesis of (iii) and let s be any number such that d < s < m.
Assume first that p < co and denote by ¢ the conjugate exponent. Writing
e —y[' "= |x — y|*x — y|1" " we obtain by Holder’s inequality

/
¢p(X) < (J |x _yrsdn(y))?’ q J |x _y|P(S/Q*n+l)d’7(y).
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Prove that there exists a C < oo such that
(6.7) [ b~y an <

for every x € R". Let x € R" and write M(v) = y(B(x, 7)) for » > 0 so that
M(r) < cr™. Then, standardly,

[w-ur i = | w-wdw+ | s dw

B(x,a) B(x,a)’

gl v dM(r) + J a—*dnly)

B(x,a)

a

<M SJW M) dr + 0~
0
Cma/”n S s
< a
< =

which proves (6.7). Hence,
¢p(x) < C’P/(I J |x _ y|p(s/q77‘b+1)d7’](y).

Thus if z € R" and » > 0, we have, using B(z, ) C B(y, |z —y| + ),

(6.8) J qbp(x)d,,%”(x)ng/qJ J e — [P/ VG 2 () dipy).

B(z,7) R" B(y, |z—y|+7)

By s > d we have n + p(s/qg —n + 1) > 0; thus the inner integral is finite
and equal to na,(n + p(s/q —n +1)) "z — y| + )" P which is a
bounded function of y on the compact support of #. Thus the right hand
side of (6.8) is finite. The case p = oo is similar. O

Proor or ExaMPLE 3.3.  (i): This follows from Proposition 6.1 (i), (ii). Proof
of (ii): If 0 <m <mn then there exists a compact set K such that
0 < #™(K) < oo and for some constant c,

T"KNBx, r) <cr'™

for all x € R" and r» > 0 [9; Corollary 4.12]. Choose any m such that
d<m <s. Let yu=77" |_ K and let ¢ be given by (6.5). By Item (i) of
Proposition 6.1, ¢ € L: . #%(R") and div ¢ = . The measure y satisfies

loc*
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the hypothesis of Item (iii) of Proposition 6.1 and thus ¢ € L{;c( ™). On the
other hand, since m < s and .7%7"(K) < oo, we have .7%7*(K) = 0. O

7. Proof of Proposition 4.1 and Theorem 4.2.

Let ¢ be a radially symmetric mollifier on R"; for any p > 0 let
&, (2) = p"é(z/p), z € R". For any f € L} (R") denote by f, € C*(R") the
p mollification of f,

f) = j & — 9 @) d W),

R"

xeR" Ifqe L, #"™R") then

divg, () = J &,0x—y) divaly)
2

for every x € R". For any M C R" let 1, be the characteristic function
of M.

Lemma 7.1. Let M be a mormalized set of finite perimeter and
¢ € Lipy(R"™) such that 9 =0 on OM. Then the function 0:= lyp is in
Lipy(R") and DO = 13Dy for £ a.e. point in R".

ProoF. Let w € Cj°(R"); by the Gauss-Green theorem for the set M
and the function we,

J O0Dwd <" = J(ﬂDwdz%’” =- JwD(o ds" = — J wlyDpd L
Rﬂ M M R?I
since wp =0 on OM. Thus the weak derivative of 6§ is DO = 1Dy and

satisfies |D@|< Lip (¢) for L" a.e. point of R". The mollifications 6, of 0
satisfy

Dﬂ,,(x) = J é/)(x — y)Dg(y) d,;Z/n;

R"

hence |D6,(x)| < Lip (p) and consequently |6,(x) — 6,()| < Lip (p)}x — y|
for every x,y € R". Furthermore, 6,(x) — 0(x) for everyx € R". Indeed, if
x € M it suffices to use that 6 is continuous on M, vanishes on M°, and
Dx, M) =1; if x € (M°), then 0 vanishes on M°, is bounded on M, and
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Dx, M) =1. If x € OM then |0| < Lip(p)r on B(x, r). The limit in
|0,,(x) - 0/,(y)‘ < Lip (p)|x — y| gives |0(x) — 0(@y)| < Lip (p)|x — y| for each
x,y €R". O

Proor oF PROPOSITION 4.1. Let M be a normalized set of finite peri-
meter. Firstly, note that (3.1) holds for every ¢ € Lip,(R"). Indeed, it
suffices to apply (3.1) to the sequence of mollifications ¢, of ¢ and let p — 0.
Secondly, note that if ¢ € Lipy(R") and ¢ = 0 on OM then

(7.1) JD¢~qd;%”+ J(pdivq:O.
M M

Indeed, the function 6 = 1;¢ is Lipschitz continuous by Lemma 7.1; the
application of (3.1) to 0 gives (7.1). For any ¢ € Lip,(0M), define N¥(q, ¢)
by

(7.2) N g, o) = JD(o qd s + J o divg
M M

where ¢ is any Lipschitz extension of ¢ to R" with compact support. The
existence ¢ is easily deduced from the existence of an extension with the
same Lipschitz constant ([10; Theorem 2.10.43]) and the fact that
{x € OM, ¢(x) # 0} is bounded. We note that the value of the right hand
side of (7.2) is independent of the extension ¢ by (7.1). Moreover, NY (q, ) is
linear since if 1 € R, one can choose the extension corresponding to g to be
A and similarly for the sum. This completes the proof of the existence of
N (q, -). To prove (4.2), it suffices to write (4.1) for M and for N, to add the
results, and subtract (3.1). Next, let M be bounded and prove that

(7.3) INY(q, p)| < CliollLipyion

for some C and all ¢ € Lip,(0M). Using a suitable cutoff function that is
equal to 1 on the (bounded) closure of M, one can show that the extension ¢
of ¢ can be chosen as to satisfy

(7.4) 19llLip, ) < DIl Lipgonn

where D is a constant independent of ¢. But then from (7.2) and (7.4) we
obtain (7.3) where C' = D( f lg|d#" + ||div q|)). Finally, if M¢ is bounded,
then NV (q, -) is continuous and (4.2) establishes the continuity of N M (q, ).

O

LEMMA 7.2. Let q € L1 7™ (R") and let M be a normalized set of

finite perimeter.

Toc~”
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() If q is weakly dominated on OM then the normal trace is re-
presented by a measure VWV = M — oM where

(7.5) 2 =w' —lm g,|oy 0™ 7" LOM in AR,
p—
(7.6) oM =w" —lim x, in ZR"),
p—0
where q,, is the mollification of q, u, € .7 (R") is given by

(1, 9) = J J(P(y)ip(y —-x)dZ"(y)d divq(x)

oM M

for every ¢ € Co(R"), and w* denotes the weak* convergence, understood
along an appropriate sequence of p tending to 0; the support of v is in OM.
(i) If q is dominated on OM then n = qok%”*l L OM where

Qo =w — lirr}) q,|om - n  in LYOM, 7"
p—
where w denotes the weak convergence.

PROOF (i): Since ¢ is dominated on OM, there exists a sequence p; — 0
and a C < oo such that (4.3) holds. Since for each x € OM and p > 0,

lg,0x) - ") < D J lq@) - (x)|d <" ()
B(x,p)

where D is the maximum of &, we deduce from (4.3) that

[ g, n a1 < B

oM
for some K <oc and all p=p;, j€N. Thus the total variation of
q,lom - nM 27"1 | &M is bounded and hence, for some subsequence of Pjs
still denoted by p, the limit in (7.5) exists. Further, one easily finds that
(. 9)| < divq|(OM)||g||«r) for each ¢ € Co(R") and each p, ie.,
|l < div g|(OM). Thus for some subsequence of p;, still denoted by p, the
limit in (7.5) exists. Let ¢ € Lip,(R"). The divergence theorem for smooth
vector fields and sets of finite perimeter reads

(e oq, nMd 7" = | Dp-q,ds" + | pdiveg,d 2™,
» p ,
oM M i
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and
JD(p-ql,d%’" — Jqudk%’", J oq, nMd7"! — J o drM
M M oM R

since g, — ¢ in LL (R™) and by (7.5). Next note that

loc

Jgpdivqp ds" = J 9,divg

M Rﬁ,
where
(18) ) = j o) & — ) d ),
M
and write
(7.9) J p,divg = Jgopdivq + J 9, divg + J 9,divg.
R" M (Me), oM

37

The three terms on the right hand side of (7.9) converge, respectively, to

J(pdivq, 0, J pdd¥.

M R"
The first two limits follow from (*!)

) p(x) for every x € M,
O 0 for every x € (M°),

by the dominated convergence theorem, while the last limit is (7.6) by
observing that [ ¢,divg = (u,, ¢). To summarize, the limit in (7.7) gives
oM

J(pan = JD(wth%er J¢dOM+ Jgodivq.
M

R" M R"

Thus the normal trace NM(q, -) is represented by a measure v/. The
support of v/ is in OM. Indeed, the support of g, oy - nM.77" " |_ OM is

in OM and to show that the support of ¢ is in M, we note that for

each p < r, the support of u, is in {x € R":dist (x, 9M) < r}.

(") Here we use that M is a normalized set of finite perimeter.
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@ii): If q is dominated on OM, there exists a sequence pj — 0 and a
g € LY(OM, 77"1) such that (4.4) holds for 77" ! a.e. x € OM. If D is the
maximum of &, then

lg,(x) - n¥(x)| < Dyg(x)

for 77" ! a.e. x € OM and every p = pj, J € N. The sequence of functions
q, -nM is thus 77"~ equiintegrable on M and hence [8; Corollary 11,
§IV.8] there exists a subsequence of p;, still denoted p, and a qo €
€ LY (oM, 77" ') such that

g, n" —qo in L'OM, 7"
The limit in (7.5) is 7 = qoH" ' |_ OM. O

Proor orF THEOREM 4.2. (1): Follows from Lemma 7.2(1).

(ii): We only have to prove that the measure v/ of (i) is supported on
OM. By Lemma 7.2(ii) we have 7™ = qo.77" ! |_ OM. The measure ¥
satisfies

(M, p) =lim J 9,divg
p—0
oM

where ¢, is given by (7.8). At every x € OM where D(x, M) exists we have
9,(x) — D(x, M) p(x). By (4.5) and Theorem 3.2, |div ¢|(0;M) = 0. Thus we
have that ¢, — D(-, M) ¢ for |divg| [ OM a.e.x € R". Hence

lim J 9, divg — J o(6) Dix, M) div q(x).

p—

oM oM
Thus ¢™ = D(-, M) divq |_ OM and consequently
W= qo. 7"V | dM — D(-, M)divq |_ M,

which is a measure supported on OM. O

8. Proof of Theorems 4.4 and 4.6.

Ify € M, (R")and 0 < m < oo, the m dimensional upper density of # by

B
0" (x, n) zlirr}) sup { u z@:B an open ball of radius p<r, x EB}, xreR".
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ProrosrTioN 8.1. ([10; §2.10.191)3)D. If 1 is a nonnegative Radon
measure, F C R" a Borel set and 0 < ¢ < oo then
() if 0™ (x, n) < cforallx € F then 7" (F) > 27"»(F)/c;
(i) i 0™ (x, n) > c forall x € F then 7" (F) < ||| /c.

PrOOF OF PROPOSITION 4.5. Prove that the decomposition (4.8) is un-
ique. Thus let 7_,,, 7, =, With the Properties (i)—(iii), be such that

(8'1) N=Nep + 0y + sy

The measures 7_,, and 7_,, are supported on sets A, A of .77" measure 0
with 7"™(A) = 7#™A) = 0. Let A:= AUA and let C be any Borel set.
Noting that 7™ (C N A) = 0, referring to the properties (i), (iii), and ap-
plying (4.8), (8.1) to C N B we obtain

nCn A) =7 (CN A) =7y (CN A)

Since Nems Hep are supported on A and A, respectively, we have
Nen(COA) = 1,,(C), 7, (€ N A) = 7, (C). Thus 1., = 7., and we have

(8'2) N=Nsp + 0y + sy

The measures 7,,, 7,, are supported on sets B, B of ¢ finite .77"" measure.
Set B = B U B. Let C be any Borel set; the application of (8.2) to B N C and
the property (i) gives #,,(BNC) =17,,(BNC) which again reduces to
1,(C) = 7,,(C). This completes the proof of the uniqueness. The existence.
(Cf. [22; Theorem 67] for n = 1.) Define W_,,,, W,,, W<, by

Wem = {x €R": 0Wl(x ) = OO}, Win:= {x ER"0< 0”‘( ) < OO}
Wep = {x € R":0™(x, n) = 0}

and let #_,,, #,,, 7>, be the restrictions of #n to W, W,, Wi,
respectively. On W_,, one has 0™(x, ) >c¢ for any ¢ >0 and thus
Proposition 8.1(i) gives . 7™ (W.,,) = 0; thus 75_,, satisfies (i). We have
Wy, = U W; where W; = {x € R": 00 > 6™(x, ) > 1/i}; Proposition 8.1(ii)

says that T W) < |9t < oo; thus W, has o finite measure. To prove the
H™ absolute continuity of 7,,,, let B be a Borel set with.7"(B) = 0. We have
nnB)=nBNWy,) and prove that nBNW,)=0. Let Wi =
={xeR"0<0"x,n) <j}, jE€N. Then W,, = W and n(BNW,,) =
= lim 5(B N WY). Thus it suffices to prove that n(B]ﬂ W7) = 0. Proposition

J—00 ) )
8.1(1) says 0 = 2. 77" (BN W) > »n(B N W). This completes the proof of
(ii). To prove (iii), let B be a Borel set of ¢ finite .77" measure and prove
that #.,,(B) =0. It suffices to assume that .7"(B) < co. We have
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NomB) = n(W-,, N B). On W, we have 0™ (x, n) < ¢ for any ¢ > 0 and thus
by Proposition 8.1(1), #(W~,, N B) < 2"¢.7%™(B). Hence n(Ws,, N B) = 0.
O

LEMMA 82. Let m > 0. If BCR" is a Borel set and n€ M, (R") a
measure with n(B) = 0 then

mnt@ﬂ%

r—0 "

=0
for 7™ a.e. x € B.

Proor. Since n(B) = 0, for each 0 > 0 there exists an open set U D B
such that #(U) < 6. One has 0™(x, ) = 6" (x, n _ U) for each x € B. Let
B,:={x € B:0™(x, n) > 0} so that B, = | JB; where

i

Bii={x € B:0"(x, ) > 1/i}.

By Proposition 8.1(ii), 7" (B;) < 2™in(U)2™ié. Since ¢ > 0 is arbitrary, we
have . 77™(B;) = 0. O

ProOF oF REMARK 4.3. Let x be a Lebesgue point of ¢ [27; (7.14)-
(7.15)] and n € 8", Abbreviating

nx —y)
a, 11" |x - y|’

Grl:= Foi= | aw)-Goaz

B(x,n,r)

and noting thatn = [ G,d“", we have, for r — 0,
B(x,n,r)

P g nl=| | W) - q) -G d 7w

B(x,n,r)

< na;lr J @) — qW|ds" @) — 0. O
B(x,n,r)

ProOF OF THEOREM 4.6. Note that under the hypotheses of Theorem
4.6, the conclusions of Lemma 7.2(i), (ii) are available. We have to prove
that the measure v/ from Lemma 7.2 is H"~! absolutely continuous, which
in turn means that ¢¥ is 7" absolutely continuous. Note first that
divg | oM is .77"" absolutely continuous since |divg|_, ,(@M) = 0. By
the Radon Nikodym theorem, there exists a gz € L'(dM, .77"!) such that

divg | OM = g.H" ' | OM.
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By (7.6) we have

<0JW7 ¢> = })ILTT([) J (ﬂp leq = }}Lr([) J (pﬂqzd!7K17,—l
oM oM

where ¢, is given by (7.8). Noting that
1
9,(x) — é(p(x) for 7" 1 ae. xeoM
we see that

1
(@™, ) = 5 J pged 7"
oM

Thus ¢ =1go.77"' | OM and (4.6) holds with ¢":= gy — 1¢>. Equation
(4.11) follows from (4.2) by noting that divq | oM = J. 7" oM. O

ProoF OF THEOREM 4.4. (ii): If ¢ € L}, . Z#™(R") N L, (R") and ¢ is
dominated on OM, then by Theorem 3.2(ii), |divg| is g7t absolutely
continuous, hence |divg|_,,_; vanishes by Proposition 4.5 and thus (4.10) is
automatically satisfied. That the normal trace is an integrable function
then follows from Theorem 4.6. Proof of (4.7): Prove first that if q, M satisfy
the hypothesis of Theorem 4.6, then for 77" ! a.e. x € M we have

y—Xx
ly — x|

(8.4) ™ (x) = lim

r—0 ®p_17"

J a2 ao).

MnB(x,r)

For 77" a.e. x € &M we have the following assertions:

1
M _n oym—1
(8.5) Q) =tim oy J M,
OMNB(x,r)
. 1 ..

Here (8.5) follows from the rectifiability of OM ([10; Theorem 4.5.6(2)]) and
(8.6) follows from Lemma 8.2 applied to m:=n — 1 and := |divq| L M by
noting that #(0M) = 0. Let x be a such point and for any » > 0 set

M, =MnBx,r), ¢y =max {r—|y—x|, 0}

y € R". We apply the divergence theorem (4.6) and divide by n/a, 17" to
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obtain

n
an—lrn

(8.7)

| oerar = [qgazm s " v

OMNB(x,r) M, M,

,
where G, is given by (8.3);. Noting that ¢,) = [1pw. o @) d #(s) we find
that 0

J W) dor = J J qu]K”*Id;%’l(s);
0

OMNB (x,r) OMnNB

combining with I’'Hopital’s rule and with (8.5), one finds that the left hand
side of (8.7) converges to ¢ (x). Since

[ 0= o= sy diva)] < ridivalt,)
M,

the limit of the second term on the right hand side of (8.7) vanishes by (8.6).
Thus (8.4). To prove (4.7), note that for 7" ! a.e.x € OM (see [10; §§ 4.5.5-6])

(8.8) Dx, MA {y eR":(y —x) -nx) <0})=0.

Here A denotes the symmetric difference, i.e., A A B:= (A\B) U (B\A) for
any two sets A, B. Using (8.4), (8.8), and the local boundedness of ¢ near x, a
straightforward estimate shows that (8.4) remains valid with OM N B(x, r)
replaced by B(x, n(x), »). (i): If additionally ¢ € L>(R") then q is dominated
on OM and the conclusions follow from (i). O

Prooror REMARK 4.7. By Lemma 7.2 and the proof of Theorem 4.6 we
have

¢" = qé)wi —5% "
1 =1, 2, where
(8.9) " =w— limy g, o, Wi in LNOM;, 7Y,
(8.10) divg L oM; = b 7" L oM.

We have q,|on, - nh = =q,lom, - 1 M: on S and thus testing (8.9) on funec-
tions f e L°c (OM,, T~ 1) N L®(OMs, .77"') which vanish outside S we
obtain q qM for 77" ! a.e. point of S. Similarly, divg | dM;(4) =
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=divg L OM3(A) for each Borel set A C S and thus (8.10) implies
@ = g3 for H*! a.e. point of S. O
9. Proof of Theorem 5.2.

ProoF oF THEOREM 5.2. Prove first that .””* contains almost all of .7
Let

1 -
(x) = J az"
q/’ a, pn q

B(x,p)

for any x € R" and p > 0, let ¢ be any Borel representation of the class
qc LllOC .//Zdi"(R"‘), and let By,:= B(0, m), m € N. We have g, — ¢ in
LY(By) as p — 0. Thus there exists a sequence p") = {p{’}° | converging
monotonically to 0 such that |g i qlpp) < 2% keN. Define

]’thBl — [0, OO] by

hi () = lg@o)] + ) lg,0(x) — q)],
k=1

X € B1, and note that /, is a Borel function in L (B;). Next, since ¢ = qin

LY(By) as k — oo, there exists a subsequence p® = {p?'};2, of p¥ such
that ¢, —qllzs, <27, k € N. Define hy: By — [0, o]
by

ate) = lg)] + > lg,(6) — o),
k=1

X € By, and note that s is a Borel function in L'(Bs) with hs < k; on Bj.
Proceeding inductively, for each m € N there exists a subsequence
P = {pi" 12, of p~1 such that the function

(9.1) T 0):= qe)| + D [0 (x) — g(x)
k=1

is a Borel function in L'(B,) and h, <hy,_1 on B,_;. Define
h:R" — [0, co] by h(x) = h,,(x) where m is the unique integer such that
x € By, \By,—1, with the convention By:= ). Note that & is a Borel function
in L} .(R"). Set n:= |divg|_,_; and prove that %, C 7”*. Thus we have to

prove that if M € 77, then q is dominated on OM. Let M € -,,. Since M is

bounded, we have M C B,, for some m; the condition [ hd 7" ! < oo,
oM
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which follows from M € 7, and the fact that z,, < h on B,,, implies that
[ hwd "' < o0. By (9.1) then

oM
g, ()| < Ty (x)

where p,:= p}j”), which implies (4.4) with g = h|sy. Thus ¢ is dominated
on OM; hence 7, C " and consequently ./ contains almost all S.
Furthermore, Conditions (i)-(iii) of the definition of the Cauchy flux are
clearly satisfied on &7y: = ./}, where h, n are as above, with % as above in (ii)
and n:= |divg| in (iii). Finally, if M € 7, then the normal trace ¢* of ¢ on
OM is given by ¢™(x) = g(x) - nM (x) for 77" ! a.e. point x of M. Thus

FS) g nSa
S

for any S € .77),. A comparison with (5.2) shows that F(S) = F*(S) for al-
most every S €./
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