On the Semi-Simplicity of Galois Actions.

Bruno Kahn (*)

Let K be a finitely generated field and X be a smooth projective variety over K; let G_K denote the absolute Galois group of K and l a prime number different from char K. Then we have

Conjecture 1 (Grothendieck-Serre). The action of G_K on the l-adic cohomology groups $H^*(\overline{X}, \mathbf{Q}_l)$ is semi-simple.

There is a weaker version of this conjecture:

Conjecture 2 ($S^n(X)$). For all $n \ge 0$, the action of G_K on the l-adic cohomology groups $H^{2n}(\overline{X}, \mathbf{Q}_l(n))$ is «semi-simple at the eigenvalue 1», i.e. the composite map

$$H^{2n}(\overline{X},\,\boldsymbol{Q}_l(n))^{G_K} {\hookrightarrow\!\!\!\!\!\!\!-} H^{2n}(\overline{X},\,\boldsymbol{Q}_l(n)) {\rightarrow\!\!\!\!\!\!-} H^{2n}(\overline{X},\,\boldsymbol{Q}_l(n))_{G_K}$$

is bijective.

If K is a finite field, then Conjecture 2 implies Conjecture 1. This is well-known and was written-up in [8] and [4], manuscript notes distributed at the 1991 Seattle conference on motives. Strangely, this is the only result of op. cit. that was not reproduced in [10]. We propose here a simpler proof than those in [8] and [4], which does not involve Jordan blocks, representations of SL_2 or the Lefschetz trace formula.

We also show that Conjecture 2 for K finite implies Conjecture 1 for any K of positive characteristic. The proof is exactly similar to that in [3, pp. 212-213], except that it relies on Deligne's geometric semi-simplicity theorem [2, cor. 3.4.13]; I am grateful to Yves André for explaining it to me. This gives a rather simple proof of Zarhin's semi-simplicity theorem

(*) Indirizzo dell'A.: Institut de Mathématiques de Jussieu, 175-179 rue du Chevaleret, 75013 Paris, France. E-mail: kahn@math.jussieu.fr

Bruno Kahn

for abelian varieties (see Remark 8.1). There is also a small result for K of characteristic 0 (see Remark 8.2). Besides, this paper does not claim much originality.

In order to justify later arguments we start with a well-known elementary lemma:

Lemma 3. Let E be a topological field of characteristic 0 and G a topological group acting continuously on some finite-dimensional E-vector space V. Suppose that the action of some open subgroup of finite index H is semi-simple. Then the action of G is semi-simple.

PROOF. Let $W \subseteq V$ be a G-invariant subspace. By assumption, there is an H-invariant projector $e \in \text{End}(V)$ with image W. Then

$$e' = rac{1}{(G:H)} \sum_{g \in G/H} geg^{-1}$$

is a G-invariant projector with image W.

Lemma 4. Let K be a field of characteristic 0, A a finite-dimensional semi-simple K-algebra and M an A-bimodule. Let $\mathfrak A$ be the Lie algebra associated to A, and let $\mathfrak M$ be the $\mathfrak A$ -module associated to M (ad(a) m = am - ma). Then $\mathfrak M$ is semi-simple.

PROOF. Since K has characteristic 0, $A \otimes_K A^{\text{op}}$ is semi-simple. We may reduce to the case where K is algebraically closed by a trace argument, and then to M simple (as a left $A \otimes_K A^{\text{op}}$ -module). Write

$$A = \prod_i End_K(V_i)$$
; then $A \otimes_K A^{\operatorname{op}} = \prod_{i,j} End_K(V_i \otimes V_j^*)$ and M is isomorphic to one of the $V_i \otimes V_i^*$. We distinguish two cases:

a) i=j. We may assume A=End(V) $(V=V_i)$. Then $\mathfrak{A}=\mathfrak{gl}(V)==\mathfrak{Sl}(V)\times K$, and $\mathfrak{Sl}(V)$ is simple. By [9, th. 5.1], to see that $\mathfrak{M}=V\otimes V^*$ is semi-simple, it suffices to check that the action of $K=Cent(\mathfrak{A})$ can be diagonalised. But $a\in\mathfrak{A}$ acts by

$$ad(a)(v \otimes w) = a(v) \otimes w - v \otimes^t a(w)$$

and if a is a scalar, then ad(a) = 0.

b) $i \neq j$. We may assume $A = End(V) \times End(W)$ $(V = V_i, W = V_j)$. This time, $\mathfrak{A} = \mathfrak{gl}(V) \times \mathfrak{gl}(W) = \mathfrak{gl}(V) \times \mathfrak{gl}(W) \times K \times K$. The action of \mathfrak{A}

onto $\mathfrak{M} = V \otimes W^*$ is given by the formula

$$ad(a, b)(v \otimes w) = a(v) \otimes w - v \otimes^t b(w).$$

Hence the centre acts by $ad(\lambda, \mu) = \lambda - \mu$ and the conditions of [9, th. 5.1] are again verified.

PROPOSITION 5. Let V be a finite-dimensional vector space over a field K of characteristic 0. For u an endomorphism of V, denote by ad(u) the endomorphism $v \mapsto uv - vu$ of $End_K(V)$. Let A be a K-subalgebra of $End_K(V)$ and B its commutant. Consider the following conditions:

- (i) A is semi-simple.
- (ii) $End_K(V) = B \oplus \sum_{\alpha \in A} ad(\alpha) \ End_K(V)$.
- (iii) B is semi-simple.

Then (i) \Rightarrow (ii) \Rightarrow (iii), and (iii) \Rightarrow (i) if A is commutative.

PROOF. (i) \Rightarrow (ii): let \mathfrak{A} be the Lie algebra associated to A. By lemma 4, $End_K(V)$ is semi-simple for the adjoint action of \mathfrak{A} . Then (ii) follows from [1, §3, prop. 6].

(ii) \Rightarrow (iii): let us show that the radical J of B is 0. Let $x \in J$. For $y \in B$, we have $xy \in J$; in particular, xy is nilpotent, hence Tr(xy) = 0. For $z \in End_K(V)$, and $u \in A$, we have

$$Tr(x(uz - zu)) = Tr(xuz - xzu) = Tr(uxz - xzu) = 0.$$

Hence Tr(xy) = 0 for all $y \in End_K(V)$, and x = 0.

(iii) \Rightarrow (i) supposing A commutative: let us show this time that the radical R of A is 0. Suppose the contrary, and let r > 1 be minimal such that $R^r = 0$; let $I = R^{r-1}$. Then $I^2 = 0$. Let W = IV: then W is B-invariant, hence B acts on V/W. Let

$$N = \big\{ v \in B \, \big| \, v(V) \subseteq W \big\}$$

be the kernel of this action: then N is a two-sided ideal of B and obviously NI = IN = 0. Let $v, v' \in N$ and $x \in V$. Then there exist $y \in V$ and $w \in I$ such that v(x) = w(y). Hence

$$v'v(x) = v'w(y) = 0$$

and $N^2 = 0$. Since B is semi-simple, this implies N = 0. But, since A is commutative, $I \subseteq N$, a contradiction.

100 Bruno Kahn

THEOREM 6. Let X be a smooth, projective variety of dimension d over a field k of characteristic $\neq l$. Let k_s be a separable closure of k, $G = Gal(k_s/k)$ and $\overline{X} = X \times_k k_s$. Consider the following conditions:

- (i) For all $i \ge 0$, the action of G on $H^i(X, \mathbf{Q}_l)$ is semi-simple.
- (ii) $S^d(X \times X)$ holds.
- (iii) The algebra $H^{2d}(\overline{X} \times_{k_*} \overline{X}, \mathbf{Q}_l(d))^G$ is semi-simple.

Then (i) \Rightarrow (ii) \Rightarrow (iii), and (iii) \Rightarrow (i) if k is contained in the algebraic closure of a finite field.

PROOF. By the Künneth formula and Poincaré duality, we have the well-known Galois-equivariant isomorphism of Q_{Γ} -algebras

$$H^{2d}_{\mathrm{cont}}(\overline{X}\times\overline{X},\,\boldsymbol{Q}_{l}(d))\simeq\prod_{q=0}^{2d}End_{\boldsymbol{Q}_{l}}(H_{\mathrm{cont}}^{\,q}(\overline{X},\,\boldsymbol{Q}_{l})).$$

For $q \in [0, 2d]$, let A_q be the image of $\mathbf{Q}_l[G]$ in $End_{\mathbf{Q}_l}(H_{\mathrm{cont}}^q(\overline{X}, \mathbf{Q}_l))$. Then condition (i) (resp.~(ii),~(iii)) of theorem 6 is equivalent to condition (i) (resp.~(ii),~(iii)) of proposition 5 for all A_q . The conclusion follows by remarking that the A_q are commutative if k is contained in the algebraic closure of a finite field. \blacksquare

I don't know how to prove (iii) \Rightarrow (i) in general in theorem 6, but in fact there is something better:

THEOREM 7. Let F be a finitely generated field over F_p and let X be a smooth, projective variety of dimension d over F. Let \mathcal{O} be a valuation ring of F with finite residue field, such that X has good reduction at \mathcal{O} . Let Y be the special fibre of a smooth projective model \widetilde{X} of X over \mathcal{O} . Assume that $S^d(Y \times Y)$ holds. Then the Galois action on the \mathbf{Q}_l -adic cohomology of X is semi-simple.

PROOF. For the proof we may assume that X is geometrically irreducible. By Lemma 3 we may also enlarge F by a finite extension and hence, by de Jong [5, Th. 4.1], assume that it admits a smooth projective model T over F_p . By the valuative criterion for properness, \mathcal{O} has a centre u on T with finite residue field k. Up to extending the field of constants of T to k, we may also assume that u is a rational point. Now

spread X to a smooth, projective morphism

$$f: \mathcal{X} \rightarrow U$$

over an appropriate open neighbourhood U of u (in a way compatible to \widetilde{X}).

The action of G_F on $H^*(\overline{X}, \mathbf{Q}_l)$ factors through $\pi_1(U)$. Moreover u yields a section σ of the homomorphism $\pi_1(U) \to \pi_1(\operatorname{Spec} k)$; in other terms, we have a split exact sequence of profinite groups

$$1 \!\to\! \pi_1(\overline{U}) \!\to\! \pi_1(U) \!\to\! \pi_1(\operatorname{Spec} k) \!\to\! 1.$$

Let $i \geq 0$, $V = H^i(\overline{X}, \mathbf{Q}_l)$, $\Gamma = GL(V)$ and $\varrho : \pi_1(U) \to \Gamma$ the monodromy representation. Denote respectively by A, B, C the Zariski closures of the images of $\pi_1(\overline{U})$ $\pi_1(U)$ and $\sigma(\pi_1(\operatorname{Spec} k))$. Then A is closed and normal in B, and B = AC.

By [2, cor. 3.4.13], $\pi_1(\overline{U})$ acts semi-simply on V; this is also true for $\sigma(\pi_1(\operatorname{Spec} k))$ by the smooth and proper base change theorem and Theorem 6 applied to Y. It follows that A and C act semi-simply on V; in particular they are reductive. But then B is reductive, hence its representation on V is semi-simple and so is that of $\pi_1(U)$.

REMARKS 8. 1. If X is an abelian variety, we recover a result of Zarhin [11, 12]. Theorem 7 applies more generally by just assuming that Y is of abelian type in the sense of [6], for example is an abelian variety or a Fermat hypersurface [7]. (Recall, e.g. [6, Lemma 1.9], that the proof of semi-simplicity for an abelian variety X over a finite field boils down to the fact that Frobenius is central in the semi-simple algebra $End(X) \otimes Q$.)

2. If F is finitely generated over Q, this argument gives the following (keeping the notation of Theorem 7). Let F_0 be the field of constants of F. Assume that $S^d(Y \times Y)$ holds and that, moreover, the action of $Gal(\overline{K}/K^{ab})$ on the Q_l -adic cohomology of Z is semi-simple, where Z is the special fibre of $\widetilde{X} \otimes_{\mathcal{O}} F_0 \mathcal{O}$ and K is the residue field of $F_0 \mathcal{O}$. Then the conclusion of theorem 7 still holds.

To see this, enlarge F as before so that it has a regular projective model $g: T \to \operatorname{Spec} A$ (where A is the ring of integers of F_0), this time by [5, Th. 8.2]. Let u be the centre of $\mathcal O$ on T and U an open neighbourhood of u, small enough so that X spreads to a smooth projective morphism $f: \mathcal X \to U$. Let S = g(U) and s = g(u). Up to extending F_0 and then shrinking S, we may assume that $g: U \to S$ has a section σ such that $u = \sigma(s)$, that $\mu_{2l} \subset \Gamma(S, \mathcal O_S^*)$ and that $\mu_{l^\infty}(\kappa(s)) = \mu_{l^\infty}(S)$.

Let S_{∞} be a connected component of $S \otimes_{\mathbf{Z}} \mathbf{Z}[\mu_{l^{\infty}}]$ and $U_{\infty} = U \times_{S} S_{\infty}$.

We then have two short exact sequences

102

$$1 \to \pi_1(\overline{U}) \to \pi_1(U_\infty) \to \pi_1(S_\infty) \to 1$$
$$1 \to \pi_1(U_\infty) \to \pi_1(U) \xrightarrow{\chi} \mathbf{Z}_i^*$$

where χ is the cyclotomic character. The first sequence is split by σ ; the second one is almost split in the sense that $\chi(\pi_1(u)) = \chi(\pi_1(U))$. By assumption, $\pi_1(S_\infty)$ acts semi-simply on the cohomology of the generic geometric fibre of Z and (using theorem 6) $\pi_1(u)$ acts semi-simply on the cohomology of Y. Arguing as in the proof of theorem 7, we then get that $\pi_1(U_\infty)$, and then $\pi_1(U)$, act semi-simply on $H^*_{\text{cont}}(\overline{X}, \mathbf{Q}_l)$. (To justify applying the smooth and proper base change theorem to Y, note that $gf: \mathcal{X} \to S$ is smooth at s by the good reduction assumption.)

REFERENCES

- [1] N. Bourbaki, Groupes et algèbres de Lie, Chapitre 1, Hermann, 1971.
- [2] P. Deligne, La conjecture de Weil, II, Publ. Math. IHES, 52 (1980), pp. 137-252.
- [3] G. Faltings G. Wüstholz, Rational points, Aspects of Math., Vieweg, 1986.
- [4] U. Jannsen, Letter to Katz and Messing, July 30, 1991.
- [5] A. J. DE JONG, Smoothness, semi-stability and alterations, Publ. Math. IHÉS, 83 (1996), pp. 51-93.
- [6] B. Kahn, Équivalences rationnelle et numérique sur certaines variétés de type abélien sur un corps fini, Ann. sci. Éc. norm. sup., 36 (2003), pp. 977-1002.
- [7] T. Katsura T. Shioda, On Fermat varieties, Tôhoku Math. J., 31 (1979), pp. 97-115.
- [8] N. Katz W. Messing, Some remarks on the Tate conjecture over finite fields and its relations to other conjectures, manuscript notes, July 30, 1991.
- [9] J.-P. Serre, Lie algebras and Lie groups (2nd edition), Lect. Notes in Math. 1500, Springer, 1992.
- [10] J. Tate, Conjectures on algebraic cycles in l-adic cohomology, in Motives, Proc. Symposia Pure Math., 55 (1), AMS (1994), pp. 71-83.
- [11] Yu. G. Zarhin, Endomorphisms of abelian varieties over fields of finite characteristic, Math. USSR Izv., 9 (1975), pp. 255-260.
- [12] Yu. G. Zarhin, Abelian varieties in characteristic p, Mathematical Notes, 19 (1976), pp. 240-244.

Manoscritto pervenuto in redazione il 21 settembre 2003.