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Polynomial Squares of the Form aX m1b(12X)n1c.

UMBERTO ZANNIER (*)

ABSTRACT - It is an open diophantine problem to prove the finiteness of the inte-
gral solutions for equations like y 243m12n11. This may be shown to corre-
spond to one of the simplest unknown cases of a conjecture by Lang and Vojta
and is probably very difficult; actually also the most basic analogous questions
over function fields seem not to follow easily from known principles. With this
in mind, in the present note we consider the equation y(X)24aX m1b(12
2X)n1c , to be solved in the unknowns a , b , c�C*, m , n�N and polynomials
y�C[X]; we show that only pairs (m , n) with m , nG8 may give rise to sol-
utions. Our arguments are somewhat ad hoc and in a way surprising; the pro-
blem is left to find a more natural and general approach.

It is a known open diophantine problem to prove the finiteness of the
integral solutions to equations like

y 2 43m 12n 11 .(*)

Although certain similar equations, like e.g. y 2 46m 12n 11, can be sho-
wn to have only finitely many solutions (see [CZ] or [Z, Ch. 4]), the di-
splayed example seems to escape from the known methods. Note that
the equation represents a special, but illustrative, case of the problem of
S-integral points (over Q) for the variety V»4P2 0 D, where S4

4 ]Q , 2 , 3( and where the divisor D is the sum of the lines x0 40, x1 40
and the conic x2

2 4x0
2 1x0 x1 . The link appears after observing that an S-

integral point (1 : u : v) on V corresponds to an S-unit u such that v 2 2

2u21 is again an S-unit, namely to an equation v 2 411u1w where
u , w are S-units, i.e. of the form 62a 3b , a , b�Z . As a special case of
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broad conjectures by Lang and Vojta (see [L]), one does not expect a Za-
riski dense set of S-integer points on such varieties P2 0 D; the case
when D consists of the sum of four lines is known: it leads to the so-cal-
led S-unit equation u1v1w41. The next simplest case occurs with a
D of the mentioned shape and is still unknown (see also [Z, Ch. 4]).

J.-L. Colliot-Thélène and P. Corvaja have asked whether at least the
function field analogues of the mentioned questions can be treated, i.e.
replacing for instance Q with C(X) and the set S of places of Q with some
finite subset of P1 (C). The simplest nontrivial choice would be S4

4 ]0, Q(, leading to the equations y(X)2 4aX m 1bX n 1c , i.e. to the easy
problem of trinomials in one variable which are squares (Schinzel [Schi,
2.2.6] has described the difficult case of arbitrary k-nomials). The next
case occurs with S4 ]0, 1 , Q( and then the analogue of (*) becomes the
equation y(X)2 4aX m 1b(12X)n 1c , for which one seeks solutions in
integers m , n , nonzero complex a , b , c and polynomials y�C[X]. Note
that all of this is linked to (and in fact a special case of) purely geo-
metrical problems like the following: Given a divisor D of P2 , sum
of two lines and a conic, classify the regular rational maps
W : P1 0]0, 1 , Q( KP2 0 D.

Now, it seems that already such basic analogue of (*) escapes from
the standard treatment of S-unit equations over function fields (see also
Remark (a) below); hence it is tempting to investigate what sort of argu-
ments may actually be used. After some attempts, we have found a finite-
ness proof by somewhat round-about methods involving roots of unity
and congruences. Though the problem is certainly a special one, and
though the present methods are unlikely to admit broad generalizations,
for the above reasons it may be not entirely free of interest to carry out a
complete proof. We formulate our conclusion as the following:

THEOREM. There are only finitely many pairs (m , n) of positive in-
tegers such that, for some nonzero complex numbers a , b , c , the polyno-
mial aX m 1b(12X)n 1c is a perfect square.

We shall give more than one argument; the last one will yield the
estimate m , nG8, which readily leads to a complete list of the
solutions.

We thank Jean-Louis Colliot-Thélène and Pietro Corvaja for raising
the problems and for several interesting conversations.

PROOF OF THEOREM. Let a , b , c�C* be such that f (X) »4aX m 1
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1b(12X)n 1c is a perfect square, so all of its roots have multiplicity F2.
We start with the special case m4nD1. Let j�C be one such root,
so

aj m 1b(12j)m 1c40, aj m21 4b(12j)m21 .(1)

If j were a triple root, we would have also aj m22 1b(12j)m22 40,
which, together with the second of the equations (1), gives the false
equality j4j21. Therefore all of the roots have multiplicity 2 and so
there are at least (1 /2) deg fF (m21) /2 distinct roots.

Combination of equations (1) yields

j m21 42c/a , (12j)m21 42c/b .

Let r (resp. s) be a given complex (m21)-th root of 2c/a (resp. 2c/b);
then j4zr , 12j4us , for some (m21)-th roots of unity z , u , yielding
the equation

12zr2us40 .

But it is easy to see that for given r , s�C* this equation, for z , u on the
unit circle, represents the intersections of two distinct circles and so has
at most 2 solutions in roots of unity z , u . Therefore the number of possi-
bilities for j is likewise bounded, leading to mG5. (Note that this argu-
ment bounds by 2 the number of double roots of a polynomial f (X) of the
given shape, apart from the assumption that it is a perfect square.)

Let us now suppose that mcn and that f (X) 4g(X)2 is the square of
the polynomial g�C[X]. On putting 12X in place of X if necessary, we
may assume that mDn , so m42 l is an even integer. Dividing f (X) by
(21)n b and writing a 2 in place of (21)n a/b and 2b in place of (21)n c/b ,
we may assume that f (X) takes the shape

f (X) 4a 2 X 2 l 1 (X21)n 2b , a , b�C*, 2 lDn .(2)

Further, by specialization we may assume that a , b are nonzero alge-
braic numbers and changing the sign of a if necessary we may write
g(X) 4aX l 1h(X), where deg hE l . Plugging into (2) yields

h(X)(2aX l 1h(X) ) 4 (X21)n 2b4 »
zn41

(X212zu) ,

where u�C* is a given n-th root of b . Simple inspection then leads to the
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factorizations

2aX l 1h(X) 42a »
z�A

(X212zu)(3)

and

h(X) 4 (2a)21 »
z�B

(X212zu) ,(4)

where A , B are disjoint subsets of the set Un »4 ]z�C : z n 41( of n-th
roots of unity, such that

ANB4Un , JA4 l , JB4n2 l .

In equation (3) write 11uu in place of X , where u�B; then, by (4), we
get h(11uu) 40 and

(11uu)l 4u l »
z�A

(u2z) ,

whence, dividing by u l and setting v41/u , we find that

(v1u)l 4 »
z�A

(u2z) for all u�B .(5)

In particular, v is a nonzero algebraic integer and so some conjugate of v
over Q has absolute value F1; but we may conjugate everything and so
we may suppose from the beginning that NvNF1.

An easier case now occurs when the degree n2 l of h(X) is strictly
less than l21, namely when nEm21. In this case, the coefficient
of X l21 on both sides of (3) vanishes, whence !

z�A
(11zu) 40, i.e.

v42(1 /l) !
z�A

z . The right side of this equation is plainly G1 in absolute

value, with equality only if JA41. Recalling that NvNF1 and that
JA4 l , we thus conclude that l41 in this case.

Therefore we shall suppose n42 l21 4m21 from now on. With
this assumption we have found three essentially different ways of con-
cluding the proof. Because of possible generalizations, we shall give all
arguments, with a brief sketch of the first two and complete detail for
the last one.

Sketch of first argument. The principle is to contradict (5) by an ine-
quality, using NvNF1. With this in mind, we pick u 0 �B so that Nv1u 0 N

is maximal. Then the sector of the unit circle containing v/NvN and with
extrema u 0 and its symmetrical with respect to v/NvN , is free of elements
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of B; hence the n-th roots of unity contained therein all lie in A . This in-
formation may be used to show that the right side of (5) is not too large,
and must be in fact smaller than the left side, yielding a contradiction.
The argument can be carried out asymptotically, taking absolute values
in (5) (with u4u 0), then taking logarithms and finally approximating the
summation over A with a suitable integral. In this last step one has first
to maximize the sum in question subject to JA4 l and to the mentioned
constraint concerning the distribution of the set A on the unit circle. (It
is easily seen that the maximum is attained when the remaining part of A
lies «nearest» and symmetrically around 2u 0 .) The estimates one final-
ly needs are as follows. For 0 GvGp , introduce the function

G(v)4p log g11cos
v

2
h2�

0

v

log (12cos u) du22 �
0

p2v

2

log (11cos u) du .

If one shows that G(v) has a positive minimum, an upper bound for m
follows (and may be effectively computed) by the skectched approach. To
prove the positivity of G one calculates its first derivative, which turns

out to be H(r), where r4sin
v

2
and where

H(r) 42
pr

2(11k12r 2)
1 log

11r

2r 2
.

One checks that: G(0) D0, G(p) D0, G 8 (01 ) 41Q , G 8 (p) E0 and
H 8 (r) E0, whence G 9 (v) E0. This shows that G(v) has a unique statio-
nary point, a local maximum, interior to the interval [0 , p]. In turn, this
implies that G attains its minimum either at 0 or at p; since G is positive
at both points, we get what is required.

Sketch of second argument. This again exploits a similar inequality,
but its deduction is more arithmetical. One first shows that if l is large
enough then v�Q(Un ). In fact, suppose the contrary and let v 8cv be a
conjugate of v over Q(Un ). Conjugating (5) we see that, for an l-th root of
unity r4r u , we have

v 81u2rv2ru40 .(6)

We view this as a four-term linear relation among the roots of unity
1 , u , r , ru , with coefficients v 8 , 1 , 2v , 21. To obtain a contradiction
one applies to it a theorem of Schlickewei [S], which bounds the number
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of «irreducible» solutions of linear equations in roots of unity, namely
those such that no nontrivial subsum vanishes. The cases when (6) is re-
ducible are easily dealt with as well, concluding the proof in this case.
Suppose now that v is an algebraic integer in Q(Un ) and observe that for
the right side of (5) we have an obvious estimate N »

z�A
(u2z)NGc1 c2

l , for

every u�B (in fact for every u on the unit circle), where c1 , c2 are suita-
ble positive absolute constants such that c2 E2. Then (5) implies that, for
large enough l , any conjugate of w4wu »4v1u has absolute value E2.
An argument of Kronecker (see [Schi], Lemma 5, p. 394) then implies
that r4r1r21 for a root of unity r , whence Nv1uN2 4 (r1r21 )2

and

(NvN2 22)1vu1vu21 2r 2 2r22 40 .

We view this as a linear relation among the five roots of unity
1 , u , u21 , r 2 , r22 , with coefficients NvN2 22, v, v , 21, 21. As before,
the mentioned result by Schlickewei [S] implies that if l is large enough v
must be a root of unity.

Finally, fix a number c3 , c2 Ec3 E2. Then the above bound implies
that if l is large enough, every conjugate w s of w4wu »4v1u satisfies
Nw sNEc3 . Namely, putting a»4uv 21 (a root of unity), we have
N11asNEc3 . In particular, if a has exact order N , we have

N11exp g 2pi

N
hN Ec3 . Since c3 E2 this plainly implies that N is bounded

(in terms of c3 only). In other words, uv 21 has finitely many possibilities
at most, and the same then holds for u and l , concluding the proof.

Third argument. This is completely different and exploits a con-
gruence modulo 4 . We have already noted that we may suppose that the
involved coefficients are algebraic. Let O be a valuation ring in Q of some
place above the prime 2; factoring out we may then assume that f (X)2 4

4aX 2 l 1b(X21)2 l21 1c , where f� O[X] and a , b , c� O do not all lie in
the maximal ideal.

Note that each polynomial P(X) may be expressed uniquely as a sum
A(X 2 )1XB(X 2 ) of an even and an odd polynomial: in char c2 one finds
A(X 2 ) 4 (P(X)1P(2X) ) /2 , B(X 2 ) 4 (P(X)2P(2X) ) /2X . Also, the de-
nominator 2 here is in fact «apparent», since the coefficients of A and B
are among the coefficients of P , so A , B� O[X] if P� O[X]. We shall
compare these expressions for the right and left sides of our equation. To
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start with, one finds

(X21)n 4U(X 2 )1XV(X 2 ) , n42 l21 ,(7)

where

U(X 2 ) 4
1

2
( (X21)n 2 (X11)n ) , V(X 2 ) 4

1

2X
( (X11)n 2 (12X)n ) .

We expand by means of the n-th roots of unity; collecting together pairs
of complex conjugate terms one easily gets

U(X) 42 »
ImzD0

(2X122 (X21)(z1z21 )) ,

V(X) 4 »
ImzD0

(2X121 (X21)(z1z21 )) ,

where both products are over the set S of n-th roots of unity with positi-
ve imaginary part. Note that both U , V have degree (n21)/24l21.

Setting f (X) 4A(X 2 )1XB(X 2 ), squaring and equating even and odd
parts we get

A 2 (X)1XB 2 (X) 4aX l 1bU(X)1c , 2A(X)B(X) 4bV(X) .(8)

Since aX 2 l 1b(X21)2 l21 1c is a square in O[X] the coefficients of odd
powers of X , and in particular b , must be divisible by 2 in O. Also, note
from (7) that the leading coefficients of U and V are 2n4122 l and 1
respectively; hence they are in O* and so 21z1z21 (ImzD0) and all
the roots of U(X) V(X) lie in O; then the second of equations (8) easily
yields (by Gauss Lemma),

A(X) 4cA »
z�SA

(x2r z ) , B(X) 4cA »
z�SB

(x2r z ) , 2cA cB 4b ,

where cA , cB � O, where SA NSB 4S is a partition and where r z4 (z2

221z21 ) /(z121z21 ) � O. Since z121z21 � O*, this implies r zf1
(mod 4) for all z�S and we get

A(X) fcA (X21)r , B(X) fcB (X21)s ( mod 4)

where r4deg A , s4deg B . We have r1s4deg V4 l21; also, the first
of equations (8) yields max (2r , 2s11) 4deg (aX l 1bU(X)1c) 4 l .
Hence either r4 l/2 , s4 (l22) /2 or s4 (l21) /2 and r4(l21)/24s.

Further, either of the formulas for U(X) yields U(X) f2
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2(2 l21)(X21)l21 (mod 4) and therefore the first of equations (8) im-
plies that aX l 1c is divisible by (X21)h modulo 4 , where h4

4 min (2r , 2s , l21) F l22, with strict inequality for odd l . If lF3 this
implies in particular a1cf0 (mod 4), and then both a and c must be in-
vertible in O, because one among a , b , c is supposed to be in O*. Hence
X l 21 is divisible by (X21)l22 modulo 4 , or, equivalently, (Y11)l 21 is
divisible by Y l22 modulo 4 . However it is easily checked that (11Y)2q

f

f112Y 2q21
1Y 2q

(mod 4) for qF1, so the highest power of Y dividing
(11Y)l 21 modulo 4 is precisely 1 if l is odd and otherwise half of the hi-
ghest power of 2 dividing l; since this must be F l22, or even F l21 for
odd l , this leads to lG4, which concludes the argument.

REMARKS. (a) An equation g(X)24aX m1b(12X)n1c can be «almost»
treated as a four-term S-unit equation, with methods based on differentia-
tion, generalizing the Mason’s method for the abc-theorem in function fiel-
ds (see [BM]); however, as it stands, such an approach seems insufficient,
needing just a bit of supplementary information to go through.

(b) The given proof does not allow to bound the number of double
roots of a polynomial f (X) 4aX m 1b(12X)n 1c; namely, the assum-
ption that f (X) is a perfect square is essential for the arguments. On the
one hand, this does not affect the geometrical significance of the result;
on the other hand, one would expect a much stronger assertion, like e.g.
an absolute bound for the number of double roots. Some evidence for this
comes with the case m4n when such a bound follows from our argu-
ment, as noted in the course of the proof.

(c) Things become rather easier and simpler if one assumes that
a , b , c are fixed and m , n grow. Now equations (1) alone suffice to derive
asymptotic relations j m21 A2c/a , (12j)n21 A2c/b . In particular, all
conjugates of j turn out to lie near some cube root of unity. Then, com-
parison of estimates for the discriminant leads to a contradiction for lar-
ge m , n . This argument again bounds the number of double roots, and so
leads to a sharper result. However assuming a , b , c to be fixed deprives
the result of its geometrical implication, as in the above introductory
comments.

(d) The congruence arguments, as in the third approach, may be sui-
tably extended so to work for odd exponents n other than 2 l21, and pe-
rhaps they might cover the whole proof. It is also possible that some va-
riation on this method leads to a complete classifications of the regular
rational maps W : P1 0]0, 1, Q( KP2 0D, mentioned in the introduction.
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