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A Note on Extremality and Completeness
in Financial Markets with Infinitely

many Risky Assets (*).

LUCIANO CAMPI (**)

ABSTRACT - In this paper we study the interplay existing between completeness of
financial markets with infinitely many risky assets and extremality of equiva-
lent martingale measures. In particular, we obtain a version of the Douglas-
Naimark Theorem for a dual system aX , Yb of locally convex topological real
vector spaces equipped with the weak topology s(X , Y), and we apply it to the
space L Q with the topology s(L Q , L p ) for pF1. Thanks to these results, we
obtain a condition equivalent to the market completeness and based on the no-
tion of extremality of measures, which allows us to give new and simpler
proofs of the second fundamental theorems of asset pricing. Finally, we
discuss also the completeness of a slight generalization of the Artzner and
Heath example.

1. Introduction.

Artzner and Heath (1995) constructed a market with an infinite num-
ber of equivalent martingale probability measures, which is complete un-
der two of such measures, the extremal ones. This market has the essen-
tial property that the set of risky assets is infinite, in other words it is a
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large financial market. The existence of such an economy implies that
the equivalence between completeness and uniqueness of the equivalent
martingale measure is not verified in an infinite assets setting.

Bättig (1999), Jin, Jarrow and Madan (1999) and Jarrow and Madan
(1999) adopted a different notion of market completeness in order to
extend this equivalence even to a large financial market. They give a de-
finition of completeness which is independent from the notion of no-arbi-
trage, and show that if the market is complete, then there exists at most
one equivalent martingale signed measure and if the market is arbitra-
ge-free, then this signed measure is a true probability. In order to de-
monstrate them, these authors have to verify the surjectivity of a certain
operator and then the injectivity of its adjoint.

Here we will examine the interplay existing between the extremality
of martingale probability measures and the various notions of market
completeness introduced by Artzner and Heath (1995) and Jin, Jarrow
and Madan (1999). For this we will need two versions of the Douglas-
Naimark Theorem, which is a functional analysis result connecting the
density of the subsets of some space L p with the extremality on a certain
subset of measures of the underlying probability. Now, we quote them
without proofs, for which one can consult Douglas (1964) (Theorem 1, p.
243) or Naimark (1947) for the first and Yor (1976) (Proposition 4 of the
Appendice, p. 306) for the second.

THEOREM 1. Let (V , F, P) be a probability space and let F be a
subspace of L 1 (P) such that 1 �F . The following three assertions are
equivalent:

1) F is dense in (L 1 (P), V QV1 );

2) if g�L Q(P) satisfies s fgdP40 for each f�F , then g40 P-a.s.;

3) P is an extremal point of the set

J
A

1 (P) 4 ]Q� P : for each f�F , f�L 1 (Q) and EQ ( f ) 4EP ( f )( ,

where P is the space of all probability measures over (V , F ).

We denote ba(V , F ), or simply ba , the space of all additive bounded
measures on the measurable space (V , F ). It is well known that one can
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identify ba with the topological dual of the space L Q (P) equipped with
the strong topology. Finally, with an obvious notation, one has the de-
composition ba4ba 12ba 1 . For further information on ba , one can
consult Dunford and Schwartz (1957).

THEOREM 2. Let ba 1 (P) 4 ]n�ba 1 ; n b P(, and let F be a sub-
space of L Q (P) such that 1 �F . The following two assertions are
equivalent:

1) F is dense in (L Q (P), V QVQ );

2) every additive measure n�ba 1(P) is an extremal point of the set

J ba (n) 4 ]l�ba 1 (n) : for each f�F , l( f ) 4n( f )( .

We observe that the spaces L p considered in the previous theorems
are equipped with their respective strong topologies.

In Section 2 we obtain a version of the Douglas-Naimark Theorem for
a dual system aX , Yb of ordered locally convex topological real vector
spaces, and we apply it to the special case aX , Yb 4 aL Q , L p b for pF1.
In Subsection 2.3 we obtain also a Douglas-Naimark Theorem for L Q

with L p-norm topologies for pF1, which we will use for the discussion of
the completeness of the AH-market.

In Section 3, we apply these results to mathematical finance. In parti-
cular, in subsections 3.2 and 3.3 we give new proofs of the versions of the
Second Fundamental Theorems of Asset Pricing (abbr. SFTAP) obtai-
ned by Jarrow, Jin and Madan (1999) and Bättig (1999), based on the no-
tion of extremality of measures thanks to the results established in Sec-
tion 2. The advantage of this approach is that it permits to work directly
on the equivalent martingale measures set of the market, using only so-
me elementary geometrical argument. In Subsection 3.4 we discuss the
completeness of the Artzner and Heath market with respect to several
topologies and we obtain a more general construction of it.

2. A weak version of the Douglas-Naimark Theorem.

2.1. Weak Douglas-Naimark Theorem for a dual system

We recall some basic facts about duality for a locally convex topologi-
cal real vector space (abbr. LCS). Let X , Y be a pair of real vector spa-
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ces, and let f be a bilinear form on X3Y , satisfying the separation
axioms:

f (x0 , y) 40 for each y�Y implies x0 40,

f (x , y0 ) 40 for each x�X implies y0 40.

The triple (X , Y , f ) is called a dual system or duality (over R). To distin-
guish f from other bilinear forms on X3Y , f is called the canonical bili-
near form of the duality, and is usually denoted by (x , y) O ax , yb. The
triple (X , Y , f ) is more conveniently denoted by aX , Yb.

If aX , Yb is a duality, the mapping x O ax , yb is, for each y�Y , a li-
near form fy on X . Since y O fy is linear and, by virtue of the second
axiom of separation, biunivocal, it is an isomorphism of Y into the alge-
braic dual X * of X ; thus Y can be identified with a subspace of X *. Note
that under this identification, the canonical bilinear form of aX , Yb is in-
duced by the canonical bilinear form of aX , X * b.

We recall that the weak topology s(X , Y) is the coarsest topology on
X for which the linear forms fy , y�Y , are continuous; by the first axiom
of separation, X is a LCS under s(X , Y).

Let aX , Yb be a duality between LCS’s and let K%X be a cone, which
introduce in X a natural order G, which we call K-order, i.e. xGx 8 if
x 82x�K . Now, we set

HK 4 ]y�Y : ax , yb F0 for each x�K(

and we observe that it is a cone contained in Y . If there is no ambiguity
about the cone K we will consider, we will simply write H instead of HK .

We assume that Y is a vector lattice. We recall that a vector lattice is
an ordered vector space Y over R such that for each pair (y1 , y2 ) �Y ,
sup (y1 , y2 ) and inf (y1 , y2 ) exist. Thus, we can define the positive and the
negative part of each y�Y by

y 14 sup (0 , y)

y 24 sup (0 , 2y)

and its absolute value NyN4 sup (y , 2y) which satisfies NyN4y 11y 2 .
Finally, we have y4y 12y 2 .

We need some additional notation. If y�Y and F%X , we set

J y , F 4 ]z�HK : ax , zb 4 ax , yb for every x�F( .
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If there is no confusion about the subset F , we will simply write
J y . Finally, we set K0 4K0]0( and H0 4H0]0(.

For more information on topological vector spaces, see e.g. Schaefer
(1966) or Narici and Berenstein (1985).

THEOREM 3. Let F be a subspace of X .The following assertions are
equivalent:

1) F is dense in (X , s(X , Y) );

2) every y�H0 is extremal in J y .

PROOF. Firstly, we show that 1) implies 2). It is known (e.g. exercise
9.108(a) in Narici and Berenstein (1985), p. 222) that F is dense in
(X , s (X , Y) ) if and only if, for every y�Y , ax , yb 40 for each x�F im-
plies y40. Now, we proceed by contradiction and we assume that there
exists y�H0 not extremal in J y , i.e. we can write y4ay1 1 (12a) y2

where a� (0 , 1 ) and yi �J y for i41, 2 . Then, we have

ax , y1 b 4 ax , y2 b 4 ax , yb ,

which implies

ax , y1 2y2 b 40 .

Then y1 4y2 4y .
In order to prove the other direction of the equivalence, we note that

it is sufficient to show, for every y�Y , that if ax , yb 40 for each x�F ,
then y40. We assume that there exist y0 �Y and x0 �X0F such that
ax , y0 b 40 for every x�F and ax0 , y0 b c0. Since Y is a vector lattice, we
can write y0 4y0

12y0
2 and Ny0N4y0

11y0
2�H0 , where y0

1 , y0
2�H0 .

Now, we observe that

Ny0N4
1

2
(2y0

112y0
2 )

and, since 2y0
1 , 2y0

2�J Ny0N , we have, by the extremality hypothesis,
that Ny0N42y0

142y0
2 , which implies y0 40. r

We note that we have used the assumption that Y is a lattice only in
the second part of the proof. Then, even if Y is not a lattice, 1) still im-
plies 2).
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2.2. The space L Q equipped with weak topologies.

Let (V , F, m) be a measure space, where m is a positive finite
measure.

Now, we want to apply Theorem 3 to the special case X4L Q (m)
equipped with a family of weak topologies. In this case, the order we con-
sider is the usual one, i.e. for each f , g�L Q (m), fFg if f (v) Fg(v) for
every x�V . In other words, we choose K4L1

Q (m).

COROLLARY 4. Let F be a subspace of L Q (m), where m is a non null
finite positive measure and let pF1. The following assertions are
equivalent:

1) F is dense in (L Q (m), s(L Q , L p ) );

2) every g�L p(m), such that gF0 and m(]gD0()D0, is extremal in

J p (g) 4 mh�L p (m) : hF0 and � fhdm4� fgdm for each f�Fn ;

3) every non null finite positive measure n b m , such that dn

dm
�

�L p (m), is extremal in

J p (n) 4 mr� Mp (n) : � fdr4� fdn for each f�Fn
where Mp (n) is the space of finite positive measures r absolutely conti-

nuous with respect to n and such that dr

dn
�L p (n).

PROOF. It is an immediate application of Theorem 3. r

COROLLARY 5. Under the same assumptions of Corollary 4, if m is
a probability measure and 1 �F , the following two assertions are
equivalent:

1) F is dense in (L Q (m), s(L Q , L p ) );

2) every probability measure n b m , such that dn

dm
�L p (m), is

extremal in

J
A

p (n) 4 mr� Pp (n) : � fdr4� fdn for each f�Fn
where

Pp (n) 4 ]r� Mp (n) : r(1) 41( .
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PROOF. If F is dense in (L Q (m), s(L Q , L p ) ), then, by Corollary 4,

every probability measure n b m such that dn

dm
�L p (m) is extremal in

J p(n) & J
A

p(n) and it follows that n is extremal in J
A

p(n). Then, 1) implies 2).
Now, we assume that there exists a positive finite measure n b m ,

such that dn

dm
�L p (m), which satisfies n4ar 1 1 (12a) r 2 with a� (0 , 1 )

and r i �J p (n) for i41, 2 . By setting n 4
n

n(1)
, we have

n 4a
r 1

n(1)
1 (12a)

r 2

n(1)
,

and, since 1 �F , r 1 (1) 4r 2 (1) 4n(1) and so ri 4
r i

n(1)
� J

A
p (n) for

i41, 2 . r

2.3. The space L Q equipped with L p-norm topologies.

In this subsection, we obtain a Douglas-Naimark Theorem for L Q (m)
equipped with L p-norm topologies, i.e. the topologies induced by the
norms V QVp for pF1. In the proof we will essentially use the same argu-
ment as in the proof of Theorem 3.

THEOREM 6. Let F be a subspace of L Q (m) such that 1 �F and let

p, qD1 such that 1

p
1

1

q
41. The following assertions are equivalent

1) F is dense in (L Q (m), V QVp );

2) for each g�L q such that gF0 and sgdm41, the probability
n4g Qm is extremal in J

A
q (n).

PROOF. We first show that 1) implies 2). The Hölder inequality shows
that if F is dense in L Q (m) for the L p (m)-topology, then it is dense even
for the s(L Q , L q )-topology. So Corollary 5 applies and the thesis
follows.

In order to show that 2) implies 1) it is sufficient to show that if
h�L q (m) verify s fhdm40 for each f�F , then h40 m-a.s.. We assume,
without loss of generality, that n4NhN Qm is a probability. As usually, we
denote by h 1 and h 2 the positive and negative parts, respectively, of h .
Hence, we have

� fh 1 dm4� fh 2 dm
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for every f�F . Hence

n4NhN Qm4
1

2
[(2h)1 Qm1 (2h)2 Qm]

is a middle-sum of two points of the set J
A

q (n). But, by assumption, n is an
extremal point of J

A
q (n) and then NhN42h 142h 2 m-a.s., which implies

h40 m-a.s.. r

An immediate consequence of Corollary 5 and Theorem 6 is the
following

COROLLARY 7. Let F%L Q (m) be a subspace such that 1 �F and let

p , qD1 such that 1

p
1

1

q
41. F is dense in (L Q (m), s(L Q , L p ) ) if and

only if it is dense in (L Q (m), V QVq ) (1).

REMARK 8. For the case p41, being L Q (m) dense in (L 1 (m), V QV1 ),
w e h a v e t h e s a m e e q u i v a l e n c e a s i n T h e o r e m 1 : l e t F be a li n e a r s u b -
s p a c e o f L Q (m) c o n t a i n i n g 1 , t h e n F is de n s e i n (L Q (m) , V Q V1 ) i f a n d
o n l y i f m i s a n e x t r e m a l p o i n t o f t h e s e t J 1 (m) . I n d e e d , i f F is a su b -
s p a c e o f L Q (m) c o n t a i n i n g 1 a n d d e n s e i n (L Q (m) , V Q V1 ) , t h e n i t i s a l s o
d e n s e i n (L 1 (m) , V Q V1 ) a n d s o i t e m 3 ) o f T h e o r e m 1 h o l d s . O n t h e o t h e r
h a n d , i f t h e l a t t e r h o l d s t h e n F is de n s e i n (L 1 (m) , V Q V1 ) a n d o b v i o u s l y
i n (L Q (m) , V Q V1 ) t o o .

3. Applications to finance.

3.1. The model.

Let (V , F, P) be a probability space. We consider a financial market
where the set of trading dates is given by R’ [0 , 1 ], with R4 ]0, 1( or
R4 [0 , 1 ], and we denote S the set of discounted price processes of this
economy, i.e. S is a family of stochastic processes indexed by R and adap-
ted to the filtration F4 (Ft )t�R , where F0 is the trivial s-field and F1 4 F.
For simplicity, we assume that, for each S4 (St )t�R� S, S0 41. We note
that the set S may be infinite. In the continuous-time case, we will always

(1) As pointed out by an anonymous referee, the previous equivalence can be
directly proved by using Hölder inequality and the duality (L p , L q) without assum-
ing 1 �F .
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suppose that F satisfies the usual conditions and each price process S� S

is càdlàg.
Following Jin, Jarrow and Madan (1999) and Bättig and Jarrow

(1999), we identify the set of contingent claims with the space of all es-
sentially bounded random variables L Q4L Q (V , F, P) equipped with
some topology t . We call P the true probability of the market.

Finally, throughout the sequel, R will be the set of real numbers and,
if A is an arbitrary subset of L Q , v . s . (A) will denote the vector space
generated by A.

Now, we give two notions of market completeness for the discrete
and the continuous-time cases.

DEFINITION 9 (discrete-time case). Let R4 ]0, 1(. The market S is
said to be t-complete if the set

Yd 4v.s. ( (S1 NR)OL Q )

where S1 4 ]S1 ; S� S(, is total in L Q for the topology t .

DEFINITION 10 (continuous-time case). Let R 4 [0 , 1 ]. The market
S is said to be t-complete if the set

Yc 4v.s. ((INR)OL Q)

is dense in L Q for the topology t , where

I 4 ]Y(St2Ss ) : sGt F-stopping times , Y�L Q (Fs , P), S� S( .

We observe that the spaces Yc and Yd are not empty, both containing
0. The space L Q will be equipped with the strong topology, i.e. the topo-
logy induced by the supremum norm V QVQ , and the weak topologies
s(L Q , L p ) for pF1. If the market is t-complete with t4V QVQ or t4

4s(L Q , L 1 ), we will say that it is strongly complete or, respectively, wea-
kly* complete.

A detailed discussion of the economic interpretation of the topology
s(L Q , L 1 ) can be found in Bättig and Jarrow (1999).

If we apply Corollary 4 to these notions of market completeness, we
obtain immediately the following equivalence.

THEOREM 11. Let pF1. The following two assertions are equiva-
lent:

1) The market is s(L Q , L p )-complete;
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2) every probability measure Q b P such that dQ

dP
�L p (P) is

extremal in J
A

p (Q).

PROOF. Choose F4 Yd for the discrete time case and F4 Yc for the
continuous time one. r

3.2. The second fundamental theorem of asset pricing: the discrete-time
case.

In this subsection we will treat the case R 4 ]0, 1(. Finally, we de-
note by M the set of all martingale probability measures for S and we
set

Ma 4 ]Q� M : Q b P(

and

Me 4 ]Q� M : QAP( .

In this case a process S� S is a Q-martingale if S1 �L 1 (Q) and
EQ (S1 ) 41.

Thanks to Theorem 11, we can re-demonstrate, using only some geo-
metrical argument based on the notion of extremality, two results which
have been initially obtained by Jarrow, Jin and Madan (1999).

THEOREM 12. Let pF1 and let the market be s(L Q , L p )-complete.

Then, there exists at most one Q� Me such that dQ

dP
�L p (P).

PROOF. We assume that there exist two equivalent martingale pro-
bability measures Q1 and Q2 for S. Since Me is a convex set, for each a�
� [0 , 1 ], Qa4aQ1 1 (12a) Q2 is an equivalent martingale probability
measure for S. But, since the market is s (L Q , L p )-complete, by Theo-
rem 11, every Qa must be extremal in J

A
p (Qa ) 4 M * [Q1 , Q2 ], which is a

contradiction if we choose a� (0 , 1 ). r

Let n be a finite signed measure over the measurable space (V , F ).
We will say that S4 (1 , S1 ) � S is a n-martingale if S1 is NnN-integrable
and n(S1 ) 4 sS1 dn41.

We denote by Ms the space of all finite signed measures n which are
absolutely continuous with respect to P , such that n(V) 41 and each
S� S is a n-martingale.
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THEOREM 13. Let Ms be nonempty. The following two assertions
are equivalent:

1) the market is weakly*-complete;

2) Ms is a singleton.

PROOF. Firstly, we show that 2) implies 1). We fix n� Ms , which
exists by assumption, and assume that the market is not weakly*-com-
plete, i.e. by Theorem 11 there exists a probability Q b P such that

Q4aQ1 1 (12a) Q2

where a� (0 , 1 ) and Qi � J
A

1 (Q) for each i41, 2 . Now, we set

n i 4Qi 2Q1n

for i41, 2 . Then, since n i (S1 ) 4EQi
(S1 )2EQ (S1 )1n(S1 ) 41, for

each i41, 2 , n i is martingale signed measure for S. Furthermore, since

Q1 G
1

a
Q and Q2 G

1

12a
Q , we have Qi b Q b P for every i41, 2 R

Then, since Nn iNGQi 1Q1NnN , we have Nn iNb P for each i41, 2 . This
shows that n is not unique in Ms and so 2) implies 1).

To show that 1) implies 2), proceed by contradiction and suppose that
Ms * ]n 1 , n 2 (, with n 1 cn 2 . Observe now that, by the definition of Ms ,
n 1 (S1 ) 4n 2 (S1 ) 41 and n 1 (V) 4n 2 (V) 41, that is

n 1
1 (S1 )2n 1

2 (S1 ) 4n 2
1 (S1 )2n 2

2 (S1 ) 41(1)

and

n 1
1 (V)2n 1

2 (V) 4n 2
1 (V)2n 2

2 (V) 41 ,(2)

where n i
1 and n i

2 (i41, 2) are, respectively, the positive and the nega-
tive part of n i in its Hahn-Jordan decomposition. This implies

n 1
1 (S1 )1n 2

2 (S1 ) 4n 2
1 (S1 )1n 1

2 (S1 )(3)

and

n 1
1 (V)1n 2

2 (V) 4n 2
1 (V)1n 1

2 (V):4kD0 .(4)

Thus, define the two probability measures Q1 and Q2 as follows:

Q1 4
n 1

11n 2
2

k
, Q2 4

n 2
11n 1

2

k
.(5)
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Observe that Q1 4Q2 on Yd and define Q :4aQ1 1 (12a) Q2 for some
real a� (0 , 1 ). It is straightforward to verify that Q b P (since Nn iNb
bP , for i41, 2) and that Q1 and Q2 are absolutely continuous to Q , which
implies that Q1 , Q2 � J

A
1 (Q). We have so built a probability measure Q ab-

solutely continuous to P that is not extremal in J
A

1 (Q). Finally, Theorem
11 applies and gives that 1) ¨ 2) r

We recall that a necessary and sufficient condition for the existence
of an equivalent martingale probability measure (resp. finite signed
measure) for S is the absence of free lunch with free disposal (resp. free
lunch). For the precise definition of these two conditions, see Jin, Jarrow
and Madan (1999). Here, we note only that, under the absence of free
lunch, there could exist arbitrage opportunities.

3.3. The second fundamental theorem of asset pricing: the continuous-
time case.

Here we pass to the continuous-time case, i.e. we take R4 [0 , 1 ], for
which our main reference is Bättig (1999). We suppose that the filtration
F satisfies the usual conditions and that each price process S� S is
càdlàg (right continuous with left limit).

We denote Mloc the set of all local martingale probability measures
for S and we set

Mloc
a 4 ]Q� Mloc : Q b P(

and

Mloc
e 4 ]Q� Mloc : QAP( .

If we use exactly the same argument as in the proof of Theorem 12,
we obtain its analogue in the continuous-time case. In order to avoid re-
petitions, we omit its proof.

THEOREM 14. Let pF1 and let the market be s(L Q , L p )-complete.

Then, there exists at most one Q� Mloc
e such that dQ

dP
�L p (P).

Now, let n be a signed finite measure over (V , F ) such that n(V) 41.
We will say that S� S is a n-local martingale if n( f ) 40 for all f� I and
n-integrable. We let Mloc

s denote the space of all finite signed measures n
which are absolutely continuous to P and such that n(V) 41 and each
S� S is a n-local martingale.
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REMARK 15. For a complete treatment of martingales under a fini-
te signed measure but with a definition slightly different from ours, one
can consult Beghdadi-Sakrani (2003); for a striking extension to signed
measures of Lévy’s martingale characterization of Brownian Motion,
see Ruiz de Chavez (1984).

THEOREM 16. Let Mloc
s be nonempty. The following two assertions

are equivalent:

1) the market is weakly*-complete;

2) Mloc
s is a singleton.

PROOF. One may proceed exactly as in the proof of Theorem 13. r

3.4. The Artzner-Heath example.

In this subsection, we study the t-completeness of an Artzner-Heath
market (abbr. AH-market), which is a slight generalization of the patho-
logical economy constructed by Artzner and Heath (1995). Now we give
its precise definition. We use the same notation as in the previous
section.

DEFINITION 17. We say that a financial market S is of the AH-type
or that it is an AH-market if, P0 and P1 being two different equivalent
probability measures,

M 4 [P0 , P1] 4 ]Pa4aP0 1 (12a) P1 ; a� [0 , 1]( .

In this market we can choose P0 as the true probability measure. So,
applying the different versions of Douglas-Naimark Theorem, one has
the following result.

PROPOSITION 18. An AH-market satisfies the following three pro-
perties:

1) it is V QV1-complete under Pa if and only if a� ]0, 1(;

2) it is not strongly complete under Pa for each a� [0 , 1 ];
3) it is not weakly* complete under Pa for each a� [0 , 1 ].

PROOF. The first and the third property are simple consequences of,
respectively, Theorem 1 and Theorem 11. In order to prove the second
property, we assume that there exists a� [0 , 1 ] such that the market is
complete w.r.t. Pa . By Theorem 2, this is equivalent to the extremality of
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every n�ba 1 (Pa ) in J ba (n). But, if we choose n4Pb for b� (0 , 1 ), Pb

has to be extremal in J ba (Pb ) & [P0 , P1 ], which is obviously ab-
surd. r

REMARK 19. The previous proposition is a generalization of Pro-
position 4.1 of Artzner and Heath (1995) and of the content of Section 6
of Jarrow, Jin and Madan (1999).

Now, we give a little more general construction of an AH-market
than the original one contained in Artzner and Heath (1995).

Firstly, we set (V , F ) 4 (Z*, P(Z*) ), where Z* is the set of integers
different from zero, and S 4 ]S n : n�Z(. Now, we assume that every
random variable S1

n has a two-points support, i.e.

supp S1
n 4

S1
n (k) 4

S1
0 4

]n , n11( for nD0

S1
2n (2k) for nE0

1

K(p1 1q1 )
(1]1(11]21( ) .

(6)

REMARK 20. The hypothesis on the support of the price processes is
not restrictive at all. Actually, thanks to Lemme A of Dellacherie (1968),
we know that the extremality of a probability P in the set of martingale
probabilities for a process S4 (1 , S1 ) � S, implies Sf1 or that the sup-
port of the law of S1 is a two-points set. In financial terms the result of
Dellacherie means that, in a two-period setting, the only market model
which is both arbitrage-free and complete is the binomial one.

Then, we fix two different equivalent probabilities P0 and P1 over
(V , F ) and we denote, for every n�Z*, pn

0 4P0 (]n() and pn
1 4

4P1 (]n().
Every process S� S has to be a martingale under P0 and P1 . Then, we

have

Q(]n() S1
n (n)1Q(]n11()S1

n (n11) 41 for every nD0,(7)

for Q� ]P0 , P1 (, i.e. for every nD0

pn
0 S1

n (n)1pn11
0 S1

n (n11) 41,

pn
1 S1

n (n)1pn11
1 S1

n (n11) 41.
(8)
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We solve (8) with respect to S1
n and we found for each nD0

S1
n 4

(pn11
0 2pn11

1 ) 1]n(2 (pn
0 2pn

1 ) 1]n11(

pn
1 pn11

0 2pn
0 pn11

1
.(9)

Hence, we have constructed a class S of processes, which are martin-
gales under both P0 and P1 , i.e.

[P0 , P1] % M .

Now, we fix S1
n and interpret (8) as an equation with respect to the vector

Q and we found that its solutions are of the form Pl4lP0 1 (12l) P1

for l�R. This implies, for this kind of market,

M % ]Pl ; l�R( .

Now, we look for some conditions on P0 and P1 such that Pl is not a
probability when l� [0 , 1 ].

LEMMA 21. Let P0 and P1 be two different equivalent probabilities
over an arbitrary measurable space (V , F ). The following two proper-
ties are equivalent:

1) Pl4lP0 1 (12l) P1 is a probability if and only if l�
� [0 , 1 ];

2) dP0

dP1

and dP1

dP0

are not bounded.

PROOF. Firstly, we assume that the Radon-Nikodym derivative dP1

dP0

is bounded, i.e. there exists a constant MD1 such that dP1

dP0

GM almost

surely. Let f : VKR be a measurable, positive and bounded function. If
lD1, we have

� fdPl4� f gl1 (12l)
dP1

dP0
h dP0

F� f (l1 (12l) M) dP0 .

Then, if one chooses lD1 such that l1 (12l) MF0, i.e. lG
M

M21
, Pl

is a probability measure. If we assume that the other Radon-Nikodym
derivative is bounded, then we found that there exists lE0 such that Pl

is a probability.
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Now, let dP1

dP0

be unbounded, i.e. for every MD0

Pag dP1

dP0

FMhD0 for a40, 1 .

Let f41m dP1
dP0

FMn and lD1. Then, we have

� fdPl4 �
]

dP1
dP0

FM(

gl1 (12l)
dP1

dP0
h dP0

G (l1 (12l) M) P0g dP1

dP0

FMh
E0

for M sufficiently large. For the case lE0, we proceed exactly in the

same way, using the fact that dP1

dP0

is supposed unbounded. r

Finally, thanks to Lemma 20, we have the following result, which is a
generalization of the construction contained in Section 3 of Artzner and
Heath (1995).

PROPOSITION 22. Let P0 and P1 two different equivalent probability
measures on (Z*, P(Z*) ) which satisfy condition 2 of Lemma 21. Then
the class S defined by (6) and (9) is an AH-market, i.e.

M 4 [P0 , P1 ] .

EXAMPLE 23 (Artzner and Heath (1995)). Let 0 EpEqE1 be two
real numbers. We set, for every nD0,

P0 (]n() 4Kp n 1]nD0(1Kq 2n 1]nE0(

P1 (]n() 4P0 (]2n() for every n�Z*,

where K is a renormalizing constant. In this case, it is obvious that

lim
nK1Q

dP1

dP0

(n) 4 lim
nK1Q

g q

p
hn

41Q
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and

lim
nK2Q

dP0

dP1

(n) 4 lim
nK2Q

g p

q
hn

41Q .

So the previous proposition applies, and we find that for

S1
n 4

(q n11 2p n11 ) 1]n(1 (q n 2p n ) 1]n11(

Kp n q n (q2p)
(10)

the set of all equivalent martingale probabilities for S is equal to the
segment [P0 , P1 ].

4. Conclusions.

In this paper, we have established in a very easy way a weak version
of the Douglas-Naimark theorem, which relates the density (with re-
spect to the weak topology) of a subspace of a vector topological locally
convex space with the extremality of a certain family of linear functio-
nals. Then, in Subsection 2, we have applied this result to the space
L Q (m) equipped with the topologies s (L Q , L p ) for pF1, where m is a
probability measure, and in Subsection 2.3 we have shown an analogue
result for the spaces (LQ(m), V QVp), pF1. Finally, thanks to these results,
we have obtained, in Section 3, a condition equivalent to the market
completeness and based on the notion of extremality of measures, which
has permitted us to give new elementary proofs of the second fundamen-
tal theorem of asset pricing and to discuss the completeness of a more
general construction of the Artzner-Heath example.
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