Characterization of Abelian-by-Cyclic 3-Rewritable Groups.

A. Abdollahi (*) - A. Mohammadi Hassanabadi (**)

Abstract - Let n be an integer greater than 1 . A group G is said to be n-rewritable (or a Q_{n}-group) if for every n elements $x_{1}, x_{2}, \ldots, x_{n}$ in G there exist distinct permutations σ and τ in S_{n} such that $x_{\sigma(1)} x_{\sigma(2)} \ldots x_{\sigma(n)}=x_{\tau(1)} x_{\tau(2)} \ldots x_{\tau(n)}$. In this paper we have completely characterized abelian-by-cyclic 3-rewritable groups: they turns out to have an abelian subgroup of index 2 or the size of derived subgroups is less than 6 . In this paper, we also prove that $G / F(G)$ is an abelian group of finite exponent dividing 12 , where $F(G)$ is the Fitting subgroup of G.

1. Introduction and results.

Let n be an integer greater than 1 . A group G is said to be n-rewritable (or a Q_{n}-group) if for every n elements $x_{1}, x_{2}, \ldots, x_{n}$ in G there exist distinct permutations σ and τ in S_{n} such that

$$
x_{\sigma(1)} x_{\sigma(2)} \ldots x_{\sigma(n)}=x_{\tau(1)} x_{\tau(2)} \ldots x_{\tau(n)} .
$$

The class of 2-rewritable groups is precisely the class of abelian groups, while Q_{3}, Q_{4}, etc. are successively weaker properties.

In the above definition, if one of the permutations σ or τ can always be chosen to be the identity then the group G is said to
(*) Indirizzo dell'A.: Department of Mathematics, University of Isfahan, Isfahan 81746-73441, Iran. E-mail: abdollahi@member.ams.org
(**) Indirizzo dell'A.: Department of Mathematics, University of Isfahan, Isfahan 81746-73441, Iran. E-mail: aamohaha@yahoo.com

This research is supported by Isfahan University Grant no. 801030.
be n-permutable (or a P_{n}-group). Thus $P_{n} \subseteq Q_{n}$ for all n. But for all $n>2, P_{n}{ }_{\neq} Q_{n}$, (see Proposition 2.10 of [5]).

We define $P=\bigcup_{n>1} P_{n}$ and $Q=\bigcup_{n>1} Q_{n}$, so again $P \subseteq Q$. A complete classification of P-groups and Q-groups are given in [9] and [5] respectively; namely that the classes of P-groups and Q-groups both coincide with the class of finite-by-abelian-by-finite groups.

However there exist such a nice characterization for P-groups and Q groups, the informations about P_{n}-groups and Q_{n}-groups for various n is very little.

Curzio, Longobardi and Maj [8] showed that a group G has the property P_{3} if and only if $\left|G^{\prime}\right| \leqslant 2$. Also Longobardi, Maj and Stonehewer $[12,13,11,10]$ proved that a group G has the property P_{4} if and only if either $\left|G^{\prime}\right| \leqslant 8$ or G has an abelian subgroup of index 2. Blyth [4] has shown that Q_{4}-groups are soluble and Maj [12] proved that Q_{3}-groups are metabelian.

Although Q_{2}-groups are just the abelian groups, there is no classification for Q_{3}-groups. Recently Blyth [3] has shown that a finite group of odd order is in Q_{3} if and only if $\left|G^{\prime}\right| \leqslant 5$. In view of this result and Lemma 2.1 of [1], to study finite, nilpotent Q_{3}-groups we need only consider finite nilpotent 2 -groups. In [1, Theorem B], we characterized all finite 2 groups in Q_{3}, it is proved that a nilpotent 2-group G of class 2 lies in Q_{3} if and only if $\left|\langle x, y, z\rangle^{\prime}\right| \leqslant 4$ for all $x, y, z \in G$. Also a bound for the nilpotency class of certain finite 2 -groups in Q_{3} is given in [1, Theorem A]. The main aim of this paper is to characterize abelian-by-cyclic groups in Q_{3}. It is done as Theorem 1.1, below. It seems that toward having a complete characterization for all Q_{3}-groups, the first step is to characterize abe-lian-by-cyclic groups.

The main results of this paper are as follows.
Theorem 1.1. Let G be a finite abelian-by-cyclic group. Then G is a 3 -rewritable group if and only if either G has an abelian subgroup of index 2 or its derived subgroup has order less than 6.

As consequence of Theorem 1.1 and using similar methods as [2], we obtain the following result.

Theorem 1.2. Let G be a finite 3 -rewritable group. Then $G / F(G)$ is an abelian group of finite exponent dividing 12, where $F(G)$ denotes the Fitting subgroup of G.

2. Proofs.

Lemma 2.1. Suppose that G is a Q_{3}-group and A is an abelian subgroup of G containing G^{\prime}. Let $a, b \in A$ and $x \in G$. Then one of the following holds.
(i) $[x, b]=1$,
(ii) $[a, x]=1$,
(iii) $\left[b, x^{2}\right]=1$,
(iv) $[a, x]^{x}=[x, b]$,
(v) $[x, a]^{x}=[x, b]$,
(vi) $[a, x]=[b, x]$,
(vii) $[a, x]=[x, b]$
(viii) $[x, b]=[b, x]^{x}[x, a]^{x}$,
(ix) $[x, b]=[b, x]^{x}[a, x]^{x}$.

Proof. It is easy to see, applying the 3-rewritability property on the elements $a x, b x$ and x, that the result follows.

Lemma 2.2. Let $G=A\langle x\rangle$ be a Q_{3}-group where A is a torsion abelian normal subgroup of G. Let p be a prime number and let a be a pelement of A such that $\left[a, x^{2}\right] \neq 1$. Then x centralises the p-complement of A.

Proof Let $b \in A$ be a p^{\prime}-element. Then it follows from Lemma 2.1, using the elements a, b and x, that $[b, x]=1$.

Lemma 2.3. Let G be a Q_{3}-group and let A be an abelian normal subgroup of G. Suppose also that $G=A\langle x\rangle$. If $\left[a, x^{2}\right] \neq 1$ for some element $a \in A$, then $G^{\prime}=\langle[a, x]\rangle^{G}$.

Proof. Since $\left[a, x^{2}\right] \neq 1,[a, x] \neq 1$. Let $b \in A$ and use Lemma 2.1 and the fact that $G^{\prime}=[A, x]$ to establish the lemma.

In view of Lemma 2.2, to characterize finite abelian-by-cyclic $Q_{3^{-}}$ groups, we need only consider groups $G=A\langle x\rangle$ where A is an abelian normal p-group for some prime p. In what follows G is a finite abelian-by-cyclic 3-rewritable group and p is a prime number, A a normal abelian p-subgroup of G and x an element of G such that $G=A\langle x\rangle$. To characterize groups $G=A\langle x\rangle$ where A is an abelian normal p-subgroup, we need the following.

Lemma 2.4. Let $G=A\langle x\rangle$ where A is an abelian normal p-subgroup. Let $a \in A$ be such that $\left[a, x^{2}\right] \neq 1$. Then one of the following holds:

1) $[a, x]^{x^{2}}=[a, x]^{-1}$
2) $[a, x]^{x^{2}}=[a, x]$
3) $[a, x]^{x}=[a, x]$
4) $[a, x]^{x}=[a, x]^{-1}$
5) $[a, x]^{x^{2}}=[a, x]^{x}[a, x]$
6) $\left[a, x^{3}\right]=1$.

Proof. It follows easily from Lemma 2.1 by replacing a by a^{x} and b by a.

Lemma 2.5. Let $G=A\langle x\rangle$ where A is an abelian normal p-subgroup of G and $a \in A$ is such that $\left[a, x^{2}\right] \neq 1$. Then one of the following holds:
I) $[a, x]^{2}=1$
II) $[a, x]^{2 x}=[a, x]^{-1}$
III) $[a, x]^{2 x}=[a, x]$
IV) $[a, x]^{3}=1$
V) $[a, x]^{x}=[a, x]$
VI) $[a, x]^{3 x}=[a, x]^{-1}$.

Proof. Replacing a by a^{2} and b by a in Lemma 2.1 the result follows easily.

Lemma 2.6. Let $G=A\langle x\rangle$ where A is an abelian normal p-subgroup of G. Let $a \in A$ be such that $\left[a, x^{2}\right] \neq 1$, then one of the following holds:
(A) $[a, x]^{x}=[a, x]$
(B) $[a, x]^{x^{2}}=[a, x]^{x}[a, x]^{-1}$
(C) $[a, x]^{2 x}=[a, x]$
(D) $[a, x]^{x^{2}}=[a, x]^{-x}[a, x]$
(E) $[a, x]^{x^{2}}=[a, x]^{-1}$

Proof. Applying the 3-rewritability property on the elements $a x, a^{x}$ and $x a$ one sees that the result follows.

Lemma 2.7. Let G be a Q_{3}-group, A a normal abelian p-subgroup of G and x an element of finite order in G such that $G=A\langle x\rangle$. If $\left[A, x^{4}\right]=1$, then either $\left[A, x^{2}\right]=1$ or $\left|G^{\prime}\right| \leqslant 4$.

Proof. Applying the 3 -rewritability property on the elements $a x, a x^{2}$ and $a x^{3}$, where a is any element in A, we have either $\left[a, x^{2}\right]=1$ or $[a, x]^{x^{2}}=[a, x]$.

Suppose that there exists $a \in A$ such that $\left[a, x^{2}\right] \neq 1$. Then $[a, x]^{x^{2}}=$ $=[a, x]$ and by Lemma 2.3, $G^{\prime}=\left\langle[a, x],[a, x]^{x}\right\rangle$. Let $x=y z$ where y is a 2 -element, z is a 2^{\prime}-element and $[y, z]=1$. Then we have $G^{\prime}=\left\langle[a, y],[a, y]^{y}\right\rangle$.

Now if $p=2$ then G is a finite 2 -group and by [1, Lemma 2.4] $\left|G^{\prime}\right| \leqslant$ $\leqslant 4$. So suppose that $p \neq 2$. Then by exercise 6 , page 282 of [14], $A=$ $=C_{A}(y) \times[A, y]$ and so $y^{2} \in A$ which gives a contradiction.

Lemma 2.8. Let G be a finite Q_{3}-group, A a normal abelian subgroup of G and x an element of finite order such that $G=A\langle x\rangle$. If $\left[a, x^{2}\right] \neq 1$ for some element $a \in A$ and $[a, x]^{x}=[a, x]$, then $\left|G^{\prime}\right| \leqslant 5$.

Proof. By Lemma 2.3, $G^{\prime}=\langle[a, x]\rangle^{\langle x\rangle}$ and by the hypothesis $G^{\prime}=$ $=\langle[a, x]\rangle \leqslant Z(G)$ and so G is nilpotent of class at most 2 . Thus $G=P \times Q$; where P is the Sylow 2 -subgroup and Q is the Sylow 2^{\prime}-subgroup of G. By [1, Lemma 2.1], either P or Q is abelian. If P is abelian, then $G^{\prime}=Q^{\prime}$ and by the main Theorem of [3, Lemma 2.1], $\left|G^{\prime}\right| \leqslant 5$. If Q is abelian, then $G^{\prime}=P^{\prime}$, and P is an abelian-by-cyclic 2 -group in Q_{3}. In this case, Lemma 2.4 of [1] completes the proof.

Lemma 2.9. Let $G=A\langle x\rangle$ be in Q_{3} where A is an abelian normal p subgroup of G. If $a \in A$ is such that $\left[a, x^{2}\right] \neq 1$ and $[a, x]^{7}=1=\left[a, x^{3}\right]$, then G is abelian.

Proof. Let $K=\langle a\rangle^{G}\langle x\rangle$. Then x^{3} and $a^{7} \in Z(K)$ so that $\frac{K}{Z(K)}$ is a $\{3,7\}$-group in Q_{3} and is nilpotent. Thus K is nilpotent. Now $G^{\prime}=K^{\prime}$ and by lemma 2.3, $K^{\prime}=G^{\prime}=\left\langle[a, x] \mid\left[a, x^{7}\right]=1\right\rangle$. But since K is nilpotent $K=P \times Q$ where P is the Sylow 2 -subgroup and Q is the 2-complement of K. Since Q is a finite group of odd order in Q_{3}, so by the main Theorem of $[3],\left|Q^{\prime}\right| \leqslant 5$ and since $Q^{\prime} \leqslant K^{\prime}$ it follows that $\left|Q^{\prime}\right|=1$. Also since P is a 2 -group and $P^{\prime} \leqslant K^{\prime}$, we have $P^{\prime}=1$ and the proof is complete.

Lemma 2.10. Every group containing an abelian subgroup of index 2 is in Q_{3}.

Proof. Let G be a group containing an abelian subgroup A of index 2. Thus $G=A\langle x\rangle$ for some element $x \in G$ such that $x^{2} \in A$. Suppose that x_{1}, x_{2} and x_{3} are arbitrary elements in G. Then there are $a_{1}, a_{2}, a_{3} \in A$ such that $x_{i}=a_{i} x$ for $i=1,2,3$. Now it is easy to see that

$$
\left(a_{1} x\right)\left(a_{2} x\right)\left(a_{3} x\right)=\left(a_{3} x\right)\left(a_{2} x\right)\left(a_{1} x\right)=x^{3} a_{1}^{x} a_{3}^{x} a_{2}
$$

It follows that we have $x_{1} x_{2} x_{3}=x_{3} x_{2} x_{1}$ for all elements x_{1}, x_{2}, x_{3} in G.

Proof of Theorem 1.1. Let $G=A\langle x\rangle$ where A is an abelian normal p-subgroup of G such that $\left[A, x^{2}\right] \neq 1$. If G contains an abelian subgroup of index 2, then Lemma 2.10 implies that $G \in Q_{3}$ and if $\left|G^{\prime}\right| \leqslant 5$, then [5, Proposition 2.4] yields that $G \in Q_{3}$.

Now assume that $G \in Q_{3}$ and there is an element $a \in A$ such that $\left[a, x^{2}\right] \neq 1$. Suppose, for a contradiction, that $\left|G^{\prime}\right| \geqslant 5$. Then by Lemma 2.7, $\left[a, x^{4}\right] \neq 1$. Considering the 36 cases arising from Lemmas 2.4 and 2.5 we see that one of the following must hold:
(a) $[a, x]^{3}=1$ and $[a, x]^{x^{2}}=[a, x]^{-1}$
(b) $[a, x]^{3}=1$ and $[a, x]^{x^{2}}=[a, x]$
(c) $[a, x]^{x^{2}}=[a, x]$ and $[a, x]^{x}=[a, x]$
(d) $[a, x]^{x^{2}}=[a, x]$ and $[a, x]^{3 x}=[a, x]^{-1}$
(c) $[a, x]^{x}=[a, x]$
(f) $[a, x]^{3}=1$ and $[a, x]^{x^{2}}=[a, x]^{x}[a, x]$
(g) $\left[a, x^{3}\right]=1$ and $[a, x]^{2 x}=[a, x]$
(h) $\left[a, x^{3}\right]=1$ and $[a, x]^{3}=1$
(i) $\left[a, x^{3}\right]=1$ and $[a, x]^{3 x}=[a, x]^{-1}$

Now comparing each one of the cases (A)-(E) from Lemma 2.6 with each one of the cases (a)-(i) above we have either $[a, x]^{x}=[a, x]$ or $[a, x]^{7}=1$, which cannot happen by Lemmas 2.8 and 2.9, respectively.

Proof of Theorem 1.2. First we prove that $G / F(G)$ is an abelian $\{2,3\}$-group. By [12], G is metabelian and so it is clear that $G / F(G)$ must be abelian. Now assume G is a counterexample of minimum order with respect to the property that $G / F(G)$ is not a $\{2,3\}$-group. It follows from [7, Satz 2.9] that G is a semidirect product of a group N by a cyclic
group Q of order p, where p is a prime other than 2 and 3 . Since p is odd it follow from the main Theorem of [3, Satz 2.9] that N is an elementary abelian 2-group. Furthermore $G^{\prime}=N=C_{G}(N)=F(G)$ is a minimal normal subgroup of G. Now by Theorem 1.1, $|N| \leqslant 4$. Therefore G itself is a $\{2,3\}$-group, which is a contradiction.

Hence $G / F(G)$ is an abelian $\{2,3\}$-group. Now suppose, for a contradiction, that G is a counterexample of least possible order subject to the property that the Sylow 2-subgroup of $G / F(G)$ does not have exponent dividing 4 . Thus by [7, Satz 2.9] G is a semidirect product of a group N by a cyclic group $Q=\langle b\rangle$ of order 8 and N is an elementary abelian 2^{\prime} group. Moreover $C_{N}\left(b^{4}\right)=1$ and $N=G^{\prime}$. It follows from Theorem 1.1, that $|N|=3$ or 5 . But then the order of $\operatorname{Aut}(N)$ divides 4 and so $b^{4}=1$, a contradiction. Therefore the exponent of the Sylow 2-subgroup of $G / F(G)$ divides 4 . By a similar argument one can prove that the Sylow 3subgroup of $G / F(G)$ is elementary abelian. It completes the proof.

REFERENCES

[1] A. Abdollahi - A. Mohammadi Hassanabadi, 3-rewritable nilpotent 2groups of class 2, to appear in Comm. Algebra, 32 (2004).
[2] M. Bianchi - R. Brandl - A. Gillio Berta Mauri, On the 4-permutational property, Arch. Math. (Basel), 48, No. 4, (1987), pp. 281-285.
[3] R. D. Blyth, Odd order groups with the rewriting property Q_{3}, Arch. Math. (Basel), 78, No. 5 (2002), pp. 337-344.
[4] R. D. Blyth, Rewriting products of group elements-II, J. Algebra, 119 (1988), pp. 246-259.
[5] R. D. BLyTH, Rewriting products of group elements-I, J. Algebra, 116 (1988), pp. 506-521.
[6] R. D. Blyth - D. J. S. Robinson, Semisimple groups with the rewriting property Q_{5}, Comm. Algebra, 23, No. 6 (1995), pp. 2171-2180.
[7] R. Brandl, Zur theorie der untergruppenabgeshlossenen formationen: Endlich varietäten, J. Algebra, 73 (1981), pp. 1-22.
[8] M. Curzio - P. Longobardi - M. Mas, Su di un problema combinatorio in teoria dei gruppi, Atti Acc. Lincei Rend. Sem. Mat. Fis. Nat., 74 (1983), pp. 136-142.
[9] M. Curzio - P. Longobardi - M. Maj - D. J. S. Robinson, On a permutational properties of groups, Arch. Math. (basel), 44 (1985), pp. 385-389.
[10] P. Longobardi - M. Maj - S. Stonehewer, The classification of groups in which every product of four elements can be reordered, Rend. Semin. Mat. Univ. Padova, 93 (1995), pp. 7-26.
[11] P. Longobardi - S. E. Stonehewer, Finite 2-groups of class 2 in which every product of four elements can be reordered, Illinois Journal of Mathematics, 35, No. 2 (1991), pp. 198-219.
[12] M. MAs, On the derived length of groups with some permutational property, J. Algebra 136, No. 1 (1991), pp. 86-91.
[13] M. Maj - S. E. Stonehewer, Non-nilpotent groups in which every product of four elements can be reordered, Can. J. Math., 42, No. 6 (1990), pp. 1053-1066.
[14] D. J. S. Robinson, A course in the theory of groups, 2nd ed., Berlin-New York, 1995.

Manoscritto pervenuto in redazione il 23 settembre 2003 e in forma finale il 4 febbraio 2004.

