REND. SEM. MAT. UNIV. PADOVA, Vol. 112 (2004)

Characterization of Abelian-by-Cyclic 3-Rewritable Groups.

A. Abdollahi(*) - A. Mohammadi Hassanabadi(**)

ABSTRACT - Let *n* be an integer greater than 1. A group *G* is said to be *n*-rewritable (or a Q_n -group) if for every *n* elements x_1, x_2, \ldots, x_n in *G* there exist distinct permutations σ and τ in S_n such that $x_{\sigma(1)}x_{\sigma(2)}\ldots x_{\sigma(n)} = x_{\tau(1)}x_{\tau(2)}\ldots x_{\tau(n)}$. In this paper we have completely characterized abelian-by-cyclic 3-rewritable groups: they turns out to have an abelian subgroup of index 2 or the size of derived subgroups is less than 6. In this paper, we also prove that G/F(G) is an abelian group of finite exponent dividing 12, where F(G) is the Fitting subgroup of *G*.

1. Introduction and results.

Let *n* be an integer greater than 1. A group *G* is said to be *n*-rewritable (or a Q_n -group) if for every *n* elements x_1, x_2, \ldots, x_n in *G* there exist distinct permutations σ and τ in S_n such that

$$x_{\sigma(1)} x_{\sigma(2)} \dots x_{\sigma(n)} = x_{\tau(1)} x_{\tau(2)} \dots x_{\tau(n)}.$$

The class of 2-rewritable groups is precisely the class of abelian groups, while Q_3 , Q_4 , etc. are successively weaker properties.

In the above definition, if one of the permutations σ or τ can always be chosen to be the identity then the group G is said to

^(*) Indirizzo dell'A.: Department of Mathematics, University of Isfahan, Isfahan 81746-73441, Iran. E-mail: abdollahi@member.ams.org

^(**) Indirizzo dell'A.: Department of Mathematics, University of Isfahan, Isfahan 81746-73441, Iran. E-mail: aamohaha@yahoo.com

This research is supported by Isfahan University Grant no. 801030.

be *n*-permutable (or a P_n -group). Thus $P_n \subseteq Q_n$ for all *n*. But for all n > 2, $P_n \underset{\neq}{\subseteq} Q_n$, (see Proposition 2.10 of [5]).

We define $P = \bigcup_{n>1} P_n$ and $Q = \bigcup_{n>1} Q_n$, so again $P \subseteq Q$. A complete classification of *P*-groups and *Q*-groups are given in [9] and [5] respectively; namely that the classes of *P*-groups and *Q*-groups both coincide with the class of finite-by-abelian-by-finite groups.

However there exist such a nice characterization for P-groups and Q-groups, the informations about P_n -groups and Q_n -groups for various n is very little.

Curzio, Longobardi and Maj [8] showed that a group G has the property P_3 if and only if $|G'| \leq 2$. Also Longobardi, Maj and Stonehewer [12, 13, 11, 10] proved that a group G has the property P_4 if and only if either $|G'| \leq 8$ or G has an abelian subgroup of index 2. Blyth [4] has shown that Q_4 -groups are soluble and Maj [12] proved that Q_3 -groups are metabelian.

Although Q_2 -groups are just the abelian groups, there is no classification for Q_3 -groups. Recently Blyth [3] has shown that a finite group of odd order is in Q_3 if and only if $|G'| \leq 5$. In view of this result and Lemma 2.1 of [1], to study finite, nilpotent Q_3 -groups we need only consider finite nilpotent 2-groups. In [1, Theorem B], we characterized all finite 2groups in Q_3 , it is proved that a nilpotent 2-group G of class 2 lies in Q_3 if and only if $|\langle x, y, z \rangle'| \leq 4$ for all $x, y, z \in G$. Also a bound for the nilpotency class of certain finite 2-groups in Q_3 is given in [1, Theorem A]. The main aim of this paper is to characterize abelian-by-cyclic groups in Q_3 . It is done as Theorem 1.1, below. It seems that toward having a complete characterization for all Q_3 -groups, the first step is to characterize abelian-by-cyclic groups.

The main results of this paper are as follows.

THEOREM 1.1. Let G be a finite abelian-by-cyclic group. Then G is a 3-rewritable group if and only if either G has an abelian subgroup of index 2 or its derived subgroup has order less than 6.

As consequence of Theorem 1.1 and using similar methods as [2], we obtain the following result.

THEOREM 1.2. Let G be a finite 3-rewritable group. Then G/F(G) is an abelian group of finite exponent dividing 12, where F(G) denotes the Fitting subgroup of G.

2. Proofs.

LEMMA 2.1. Suppose that G is a Q_3 -group and A is an abelian subgroup of G containing G'. Let a, $b \in A$ and $x \in G$. Then one of the following holds.

(i) [x, b] = 1, (ii) [a, x] = 1, (iii) $[b, x^2] = 1$, (iv) $[a, x]^x = [x, b]$, (v) $[x, a]^x = [x, b]$, (vi) [a, x] = [b, x], (vii) [a, x] = [x, b](viii) $[x, b] = [b, x]^x [x, a]^x$, (ix) $[x, b] = [b, x]^x [a, x]^x$.

PROOF. It is easy to see, applying the 3-rewritability property on the elements ax, bx and x, that the result follows.

LEMMA 2.2. Let $G = A\langle x \rangle$ be a Q_3 -group where A is a torsion abelian normal subgroup of G. Let p be a prime number and let a be a pelement of A such that $[a, x^2] \neq 1$. Then x centralises the p-complement of A.

PROOF Let $b \in A$ be a p'-element. Then it follows from Lemma 2.1, using the elements a, b and x, that [b, x] = 1.

LEMMA 2.3. Let G be a Q_3 -group and let A be an abelian normal subgroup of G. Suppose also that $G = A\langle x \rangle$. If $[a, x^2] \neq 1$ for some element $a \in A$, then $G' = \langle [a, x] \rangle^G$.

PROOF. Since $[a, x^2] \neq 1$, $[a, x] \neq 1$. Let $b \in A$ and use Lemma 2.1 and the fact that G' = [A, x] to establish the lemma.

In view of Lemma 2.2, to characterize finite abelian-by-cyclic Q_3 groups, we need only consider groups $G = A\langle x \rangle$ where A is an abelian normal p-group for some prime p. In what follows G is a finite abelianby-cyclic 3-rewritable group and p is a prime number, A a normal abelian p-subgroup of G and x an element of G such that $G = A\langle x \rangle$. To characterize groups $G = A\langle x \rangle$ where A is an abelian normal p-subgroup, we need the following. LEMMA 2.4. Let $G = A\langle x \rangle$ where A is an abelian normal p-subgroup. Let $a \in A$ be such that $[a, x^2] \neq 1$. Then one of the following holds:

1) $[a, x]^{x^2} = [a, x]^{-1}$ 2) $[a, x]^{x^2} = [a, x]$ 3) $[a, x]^x = [a, x]$ 4) $[a, x]^x = [a, x]^{-1}$ 5) $[a, x]^{x^2} = [a, x]^x [a, x]$ 6) $[a, x^3] = 1$.

PROOF. It follows easily from Lemma 2.1 by replacing a by a^x and b by a.

LEMMA 2.5. Let $G = A\langle x \rangle$ where A is an abelian normal p-subgroup of G and $a \in A$ is such that $[a, x^2] \neq 1$. Then one of the following holds:

I) $[a, x]^2 = 1$ II) $[a, x]^{2x} = [a, x]^{-1}$ III) $[a, x]^{2x} = [a, x]$ IV) $[a, x]^3 = 1$ V) $[a, x]^x = [a, x]$ VI) $[a, x]^{3x} = [a, x]^{-1}$.

PROOF. Replacing *a* by a^2 and *b* by *a* in Lemma 2.1 the result follows easily.

LEMMA 2.6. Let $G = A\langle x \rangle$ where A is an abelian normal p-subgroup of G. Let $a \in A$ be such that $[a, x^2] \neq 1$, then one of the following holds:

(A) $[a, x]^{x} = [a, x]$ (B) $[a, x]^{x^{2}} = [a, x]^{x}[a, x]^{-1}$ (C) $[a, x]^{2x} = [a, x]$ (D) $[a, x]^{x^{2}} = [a, x]^{-x}[a, x]$ (E) $[a, x]^{x^{2}} = [a, x]^{-1}$

PROOF. Applying the 3-rewritability property on the elements ax, a^x and xa one sees that the result follows.

LEMMA 2.7. Let G be a Q₃-group, A a normal abelian p-subgroup of G and x an element of finite order in G such that $G = A\langle x \rangle$. If $[A, x^4] = 1$, then either $[A, x^2] = 1$ or $|G'| \leq 4$.

PROOF. Applying the 3-rewritability property on the elements ax, ax^2 and ax^3 , where a is any element in A, we have either $[a, x^2] = 1$ or $[a, x]^{x^2} = [a, x]$.

Suppose that there exists $a \in A$ such that $[a, x^2] \neq 1$. Then $[a, x]^{x^2} = [a, x]$ and by Lemma 2.3, $G' = \langle [a, x], [a, x]^x \rangle$. Let x = yz where y is a 2-element, z is a 2'-element and [y, z] = 1. Then we have $G' = \langle [a, y], [a, y]^y \rangle$.

Now if p = 2 then *G* is a finite 2-group and by [1, Lemma 2.4] $|G'| \le \le 4$. So suppose that $p \ne 2$. Then by exercise 6, page 282 of [14], $A = = C_A(y) \times [A, y]$ and so $y^2 \in A$ which gives a contradiction.

LEMMA 2.8. Let G be a finite Q_3 -group, A a normal abelian subgroup of G and x an element of finite order such that $G = A\langle x \rangle$. If $[a, x^2] \neq 1$ for some element $a \in A$ and $[a, x]^x = [a, x]$, then $|G'| \leq 5$.

PROOF. By Lemma 2.3, $G' = \langle [a, x] \rangle^{\langle x \rangle}$ and by the hypothesis $G' = \langle [a, x] \rangle \leq Z(G)$ and so *G* is nilpotent of class at most 2. Thus $G = P \times Q$; where *P* is the Sylow 2-subgroup and *Q* is the Sylow 2'-subgroup of *G*. By [1, Lemma 2.1], either *P* or *Q* is abelian. If *P* is abelian, then G' = Q' and by the main Theorem of [3, Lemma 2.1], $|G'| \leq 5$. If *Q* is abelian, then G' = P', and *P* is an abelian-by-cyclic 2-group in Q_3 . In this case, Lemma 2.4 of [1] completes the proof.

LEMMA 2.9. Let $G = A\langle x \rangle$ be in Q_3 where A is an abelian normal psubgroup of G. If $a \in A$ is such that $[a, x^2] \neq 1$ and $[a, x]^7 = 1 = [a, x^3]$, then G is abelian.

PROOF. Let $K = \langle a \rangle^G \langle x \rangle$. Then x^3 and $a^7 \in Z(K)$ so that $\frac{K}{Z(K)}$ is a $\{3, 7\}$ -group in Q_3 and is nilpotent. Thus K is nilpotent. Now G' = K' and by lemma 2.3, $K' = G' = \langle [a, x] | [a, x^7] = 1 \rangle$. But since K is nilpotent $K = P \times Q$ where P is the Sylow 2-subgroup and Q is the 2-complement of K. Since Q is a finite group of odd order in Q_3 , so by the main Theorem of [3], $|Q'| \leq 5$ and since $Q' \leq K'$ it follows that |Q'| = 1. Also since P is a 2-group and $P' \leq K'$, we have P' = 1 and the proof is complete.

LEMMA 2.10. Every group containing an abelian subgroup of index 2 is in Q_3 .

PROOF. Let G be a group containing an abelian subgroup A of index 2. Thus $G = A\langle x \rangle$ for some element $x \in G$ such that $x^2 \in A$. Suppose that x_1, x_2 and x_3 are arbitrary elements in G. Then there are $a_1, a_2, a_3 \in A$ such that $x_i = a_i x$ for i = 1, 2, 3. Now it is easy to see that

$$(a_1 x)(a_2 x)(a_3 x) = (a_3 x)(a_2 x)(a_1 x) = x^3 a_1^x a_3^x a_2.$$

It follows that we have $x_1x_2x_3 = x_3x_2x_1$ for all elements x_1, x_2, x_3 in G.

PROOF OF THEOREM 1.1. Let $G = A\langle x \rangle$ where A is an abelian normal p-subgroup of G such that $[A, x^2] \neq 1$. If G contains an abelian subgroup of index 2, then Lemma 2.10 implies that $G \in Q_3$ and if $|G'| \leq 5$, then [5, Proposition 2.4] yields that $G \in Q_3$.

Now assume that $G \in Q_3$ and there is an element $a \in A$ such that $[a, x^2] \neq 1$. Suppose, for a contradiction, that $|G'| \ge 5$. Then by Lemma 2.7, $[a, x^4] \neq 1$. Considering the 36 cases arising from Lemmas 2.4 and 2.5 we see that one of the following must hold:

- (a) $[a, x]^3 = 1$ and $[a, x]^{x^2} = [a, x]^{-1}$
- (b) $[a, x]^3 = 1$ and $[a, x]^{x^2} = [a, x]$
- (c) $[a, x]^{x^2} = [a, x]$ and $[a, x]^x = [a, x]$
- (d) $[a, x]^{x^2} = [a, x]$ and $[a, x]^{3x} = [a, x]^{-1}$
- (c) $[a, x]^x = [a, x]$
- (f) $[a, x]^3 = 1$ and $[a, x]^{x^2} = [a, x]^x [a, x]$
- (g) $[a, x^3] = 1$ and $[a, x]^{2x} = [a, x]$
- (h) $[a, x^3] = 1$ and $[a, x]^3 = 1$
- (i) $[a, x^3] = 1$ and $[a, x]^{3x} = [a, x]^{-1}$

Now comparing each one of the cases (A)-(E) from Lemma 2.6 with each one of the cases (a)-(i) above we have either $[a, x]^x = [a, x]$ or $[a, x]^7 = 1$, which cannot happen by Lemmas 2.8 and 2.9, respectively.

PROOF OF THEOREM 1.2. First we prove that G/F(G) is an abelian $\{2, 3\}$ -group. By [12], G is metabelian and so it is clear that G/F(G) must be abelian. Now assume G is a counterexample of minimum order with respect to the property that G/F(G) is not a $\{2, 3\}$ -group. It follows from [7, Satz 2.9] that G is a semidirect product of a group N by a cyclic

group Q of order p, where p is a prime other than 2 and 3. Since p is odd it follow from the main Theorem of [3, Satz 2.9] that N is an elementary abelian 2-group. Furthermore $G' = N = C_G(N) = F(G)$ is a minimal normal subgroup of G. Now by Theorem 1.1, $|N| \leq 4$. Therefore G itself is a $\{2, 3\}$ -group, which is a contradiction.

Hence G/F(G) is an abelian $\{2, 3\}$ -group. Now suppose, for a contradiction, that G is a counterexample of least possible order subject to the property that the Sylow 2-subgroup of G/F(G) does not have exponent dividing 4. Thus by [7, Satz 2.9] G is a semidirect product of a group N by a cyclic group $Q = \langle b \rangle$ of order 8 and N is an elementary abelian 2'-group. Moreover $C_N(b^4) = 1$ and N = G'. It follows from Theorem 1.1, that |N| = 3 or 5. But then the order of Aut(N) divides 4 and so $b^4 = 1$, a contradiction. Therefore the exponent of the Sylow 2-subgroup of G/F(G) divides 4. By a similar argument one can prove that the Sylow 3-subgroup of G/F(G) is elementary abelian. It completes the proof.

REFERENCES

- A. ABDOLLAHI A. MOHAMMADI HASSANABADI, 3-rewritable nilpotent 2groups of class 2, to appear in Comm. Algebra, 32 (2004).
- [2] M. BIANCHI R. BRANDL A. GILLIO BERTA MAURI, On the 4-permutational property, Arch. Math. (Basel), 48, No. 4, (1987), pp. 281-285.
- [3] R. D. BLYTH, Odd order groups with the rewriting property Q₃, Arch. Math. (Basel), 78, No. 5 (2002), pp. 337-344.
- [4] R. D. BLYTH, Rewriting products of group elements-II, J. Algebra, 119 (1988), pp. 246-259.
- [5] R. D. BLYTH, Rewriting products of group elements-I, J. Algebra, 116 (1988), pp. 506-521.
- [6] R. D. BLYTH D. J. S. ROBINSON, Semisimple groups with the rewriting property Q₅, Comm. Algebra, 23, No. 6 (1995), pp. 2171-2180.
- [7] R. BRANDL, Zur theorie der untergruppenabgeshlossenen formationen: Endlich varietäten, J. Algebra, 73 (1981), pp. 1-22.
- [8] M. CURZIO P. LONGOBARDI M. MAJ, Su di un problema combinatorio in teoria dei gruppi, Atti Acc. Lincei Rend. Sem. Mat. Fis. Nat., 74 (1983), pp. 136-142.
- [9] M. CURZIO P. LONGOBARDI M. MAJ D. J. S. ROBINSON, On a permutational properties of groups, Arch. Math. (basel), 44 (1985), pp. 385-389.
- [10] P. LONGOBARDI M. MAJ S. STONEHEWER, The classification of groups in which every product of four elements can be reordered, Rend. Semin. Mat. Univ. Padova, 93 (1995), pp. 7-26.

- [11] P. LONGOBARDI S. E. STONEHEWER, Finite 2-groups of class 2 in which every product of four elements can be reordered, Illinois Journal of Mathematics, 35, No. 2 (1991), pp. 198-219.
- M. MAJ, On the derived length of groups with some permutational property, J. Algebra 136, No. 1 (1991), pp. 86-91.
- [13] M. MAJ S. E. STONEHEWER, Non-nilpotent groups in which every product of four elements can be reordered, Can. J. Math., 42, No. 6 (1990), pp. 1053-1066.
- [14] D. J. S. ROBINSON, A course in the theory of groups, 2nd ed., Berlin-New York, 1995.

Manoscritto pervenuto in redazione il 23 settembre 2003 e in forma finale il 4 febbraio 2004.