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An Interpolation Inequality in Exterior Domains.

FRANCESCA CRISPO (*) - PAOLO MAREMONTI (*)

1. Introduction.

This note is concerned with some interpolation inequalities of Ga-
gliardo-Nirenberg type. In [4, 13] it is proved that if V%Rn is a bounded
domain having the cone property or if V4Rn , then any function u belon-
ging to L q (V) with derivatives D a u , a multi-index, belonging to
L p (V), q , pF1, satisfies the following inequality: for m4NaN and
j40, R , m21

ND j uNL r (V) GC1 ND m uNL p (V)
a NuNL q (V)

12a 1C2 NuNL q (V) (1) ,(1.1)

where
1
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n
1a g 1
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m

n
h1 (12a)

1

q
, with a� k j

m
, 1l either if p41

or if pD1 and m2 j2
n

p
�NN ]0(, while a� k j

m
, 1h for pD1 and m2

2j2
n

p
�NN ]0(. The constants C1 , C2 are independent of u . In interpo-

lation inequality (1.1) the constant C2 can be equal to zero either if u�
�W0

m , p (V) or if we assume V4Rn (see [7, 10, 13, 15]). An extension of
inequality (1.1) has been given in [11, 14]. It is known that the above ine-
quality is an improvement of the Sobolev embedding theorem. Indeed, if
1

p
2

m

n
D

1

q
and u�W 1, p (V)OL q (V), then inequality (1.1) implies, for

the values of the exponent r , a range wider than the Sobolev embedding
one. Moreover, inequality (1.1) is interesting in the study of partial diffe-
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rential equations and, of course, the inequality is improved proving that
C2 40.

Assuming that V is an exterior domain, we are going to investigate
the validity of inequality (1.1) with C2 40 without requiring that u has
trace equal zero on ¯V . For such a problem, partial results are already
known. In [5, 6] the above problem was studied in connection with So-

bolev’s inequality: Nu2uiNL r (V) GCN˜uNL p (V) ,
1

r
4

1

p
2

1

n
, p� [1 , n),

where ui is a constant depending on u and V is an exterior domain. A
priori function u has trace different from zero on ¯V , but lim

NxNKQ
s

Sn

Nu2

2uiNds40, where Sn is the surface of the n-dimensional unit sphere. If,
in some sense, uK0 for NxNKQ , then constant ui40. Moreover, in [9],
in relation with some applications in partial differential equations, ine-
quality (1.1) is studied with respect to the interpolation by derivatives of
first order: NuNL r (V) GC1 N˜uNL p (V)

a NuNL q (V)
12a . However, also in the case of

first order derivatives, the result in [9] is partial since r� [q , 1Q) is re-
quired. The aim of this paper is to establish inequality (1.1) with C2 40 in
a complete form in the case of an exterior domain.

The proof is rather elementary: it makes use of an appropriate con-
struction of cut-off functions and of inequalities of Sobolev and Gagliar-
do-Nirenberg type. It consists of two main steps: the first goal is to pro-
ve inequality (1.1) with C2 40 interpolating function u by first and se-
cond order derivatives; subsequently, it is given the generalization of the
inequality to any order derivatives jEm .

A referee of this paper has pointed out that in the case of Lipschitz
boundary (special case of our assumption) the result can be obtained em-
ploying a modified version of the extension theorem of Burenkov (cf. [2])
and the Gagliardo-Nirenberg results.

2. Notations and statement of the theorem.

Throughout this paper V%Rn will denote an exterior domain, that is
an unbounded domain with compact boundary, having the cone property.
By d we denote the diameter of Rn 0V . L p (V) (pF1) denotes the Bana-
ch space of all Lebesgue measurable functions u endowed with the usual
L p norm; likewise L Q (V) denotes the Banach space of Lebesgue measu-
rable functions such that NuNQ4ess supV Nu(x)NE1Q . We shall deno-
te by N QNp the norm on V , while if DcV is a subdomain of Rn we shall
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write N QNL p (D) . We let W m , p (V) 4 ]u�L p (V) : D a u�L p (V), 0 GNaNG

Gm(, with the norm NuNm , p 4 g !
NaN40

m

ND a uNp
ph1/p

if pF1, NuNm , Q4

4 max
0 GNaNGm

ND a uNQ if p41Q , where D a u denotes weak derivatives of

u(x) of order NaN . For mF0, pF1 we set W×m , p (V) 4 ]u�L 1
loc (V) :

D a u�L p (V), NaN4m(. As described in [1, 3], any domain V having the
cone property can be expressed as a union of finitely many subdomains,
each of which is union of translates of parallelepipeds. Following Miran-
da, [10, 12], if m� (0 , 1 ], we define C [0 , m] (V) as the set of locally Hölder
continuous functions, that is all functions such that

sup
x , y�V

Nu(x)2u(y)N

Nx2yNm
EQ ,

for any x , y belonging to a parallelepiped P’V . We will denote the up-
per bound, which is independent of P , by [u]m

V . Then, for pE0 we set
k4 [2n/p], m42k2n/p , and define the Nirenberg seminorm, [13],
setting

NuNp 4
.
/
´

sup
NsN4k

[D s u]m
V

sup
NsN4k

ND s uNQ

if mD0 ,

if m40 .

Since we will often make use of it later on, we define an infinitely dif-
ferentiable function h(x) of the positive variable x satisfying the condi-
tions h(x) � [0 , 1 ], h(x) 41 for xG1, h(x) 40 for xF2. If a is a positive
constant and x is a point of Rn , we let h a (x) 4h(NxN/a). If w is a function
defined on V , we can decompose it in the sum w4w1

a 1w2
a , where w1

a 4

4 (12h a (x) ) w(x), w2
a (x) 4h a (x) w(x). The symbol Sa (x) denotes an open

ball of radius a centered at x and Ka (x) the set ]x�Rn : aGNxNG

G2a(.
The symbol C denotes a numerical constant whose value is unessen-

tial to our aims. As in [8], when there is no ambiguity, if AF0 the quanti-
ty C(11AC) is majorized by C .

Now we are in a position to state our result.

THEOREM 2.1. Let w(x) be in W×m , p (V)OL q (V), p� [1 , 1Q],
qF1. Then, for k� ]0, 1 , R , m21(, the following inequality holds

ND k wNr GCND m wNp
a NwNq

12a ,(2.2)
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where

1

r
4

k

n
1a g 1

p
2

m

n
h1 (12a)

1

q
,(2.3)

with a� k k

m
, 1l either if p41 or if pD1 and m2k2n/p�NN ]0(,

while a� k k

m
, 1h if pD1 and m2k2n/p�NN ]0(. The result also

holds if q41Q ; however, in the case k40 and mpEn the following
additional condition is required: w tends to zero at infinity or w�
�L q 8 (V) for some finite q 8F1. The constant C in inequality (2.2) is inde-
pendent of w(x).

REMARK 2.1. In virtue of Lemma 3.1 below, if we replace w by
w2w0 , we can omit the additional hypothesis of the case k40 and
mpEn .

Observe that, by using Gagliardo-Nirenberg’s theorem, D k w (k4

40, R m21) certainly enjoys the summability properties, as we point out
in Lemma 3.7 given in section 3. Hence, the aim of the theorem is to show
the validity of the interpolation inequality of the form (2.2).

3. Some preliminary results.

LEMMA 3.1. Let u(x) be in W×1, p (V), p� [1 , n). Then, there exist
constants u0 and C such that

Nu2u0Nq GCN˜uNp ,
1

q
4

1

p
2

1

n
,

with C independent of u.

PROOF. In [5], Chapter II Theorem 5.1, the result has been proved
assuming ¯V locally lipschitzian. However, the same proof works also if
we assume V with the cone property. The case V’R3 and ¯V of class C 2

can be found in [6].

THEOREM 3.1. Let D be a bounded domain of Rn having the cone
property and u(x) be in W×m , p (D)OL q (D), p , q� [1 , Q]. Then, for
k� ]0, R , m21(, the following inequality holds

ND k uNL r (D) GC1 ND m uNL p (D)
a NuNL q (D)

12a 1C2 NuNL q (D) ,(3.1)
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provided that

1

r
4

k

n
1a g 1

p
2

m

n
h1 (12a)

1

q
,(3.2)

with a� k k

m
, 1l either if p41 or if pD1 and m2k2n/p�NN ]0(,

while a� k k

m
, 1h if pD1 and m2k2n/p�NN ]0(. The result also

holds for D4Rn , with C2 40. In this case, if q4Q , k40 and mpEn
the following additional condition is required: w tends to zero at infini-
ty or w�L q 8 (V) for some finite q 8F1. The constants C1 and C2 in ine-
quality (3.1) are independent of w(x).

PROOF. See Gagliardo [4], Nirenberg [13] and Miranda [10] also.

LEMMA 3.2. Let u be a twice continuously differentiable function
on the open interval (0 , 1 ), u in L q and u 9 in L p , q� [1 , Q], pF1. Mo-
reover, suppose u 8 equals zero at least in a point of the interval (0 , 1 ).
Then, the following inequality holds

Nu 8Nq1
GCNu 9 Np

1/2 NuNq
1/2 , q1 4

2pq

p1q
.(3.3)

The constant C in inequality (3.3) is independent of u(x).

PROOF. See Miranda [10], Lemma 2.II.

LEMMA 3.3. Let u be a twice continuously differentiable function
on the open interval (0 , 1 ), u in L q and u 9 in L p , q� [1 , Q], pF1.
Then, the following inequality holds

Nu 8Nq1
GCNu 9Np

1/2 NuNq
1/2 1NuNp , (p � [1 , q] ,(3.4)

with q1 4
2pq

p1q
. The constant C in inequality (3.4) is independent of

u(x).

PROOF. We can assume u 8c0 for all x� (0 , 1 ), since if there is x �
� (0 , 1 ) with u 8 (x) 40 then the result follows trivially from Lemma 3.2.
Then just to fix the ideas, let us assume that

u 8 (x) Fu 8 (c) D0 .
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If there exists a point x0 � (0 , 1 ) such that u(x0 ) 40, we have

Nu(x)NFu 8 (c)Nx2x0N ,

and then, by a simple computation, we get

Nu 8 (c)NGC(p)NuNp , (p � [1 , q] .(3.5)

Setting

uA(x) 4u(x)2u 8 (c)(x2c) ,

we have

uA8 (c) 40; NuA8 (x)NGu 8 (x); NuA Np G (11C(p) )NuNp , (p � [1 , q] .

Then, by Lemma 3.2 we have

NuA8Nq1
GCNuA9 Np

1/2 NuA Nq
1/2 GCNu 9 Np

1/2 NuNq
1/2

and, since

NuA8 Nq1
4Nu 8 (x)2u 8 (c)Nq1

FNu 8 (x)Nq1
2Nu 8 (c)N ,

from (3.5) we also get

Nu 8Nq1
GCNu 9 Np

1/2 NuNq
1/2 1C(p)NuNp .

Finally, let us suppose u(x)c0 for all x� (0 , 1 ) and assume u(x)D0.
In this case, setting u(c) 4 min

x� [0 , 1 ]
u(x), we define the following func-

tion

u×(x) 4u(x)2u(c) .

From the definition it is immediate that Nu×Np GCNuNp . Moreover, the
function u× has the same properties of regularity of u . So, we can repro-
duce for u× the same arguments used in the previous case for u , and we
get

Nu 8Nq1
4Nu×8Nq1

GCNu×9Np
1/2 Nu×Nq

1/2 1

1CNu×Np GCNu 9Np
1/2 NuNq

1/2 1CNuNp , (p � [1 , q] .

The case u(x) c0 for all x� (0 , 1 ) and u(x) E0 can be treated in a simi-
lar way.
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REMARK 3.1. Inequality (3.4) has been proved in [4, 10, 13] for p 4

4q . Our proof follows the lines of the one given in [10], with suitable chan-
ges in order to obtain the inequality for any p � [1 , q].

LEMMA 3.4. Let D be a bounded domain of Rn having the cone pro-
perty and u(x) be in W×2, p (D)OL q (D), p� [1 , n/2 ), qDnp/(n22p).
Then, the following inequality holds

(3.6) N˜uNL r (D) G

GC gND 2uNL p(D)
a NuNL q(D)

12a 1NuNL p(D)1
2a21

a
NuNL p(D)

a NuNL q(D)
12a h, (p�[1, q] ,

where

1

r
4

1

n
1a g 1

p
2

2

n
h1 (12a)

1

q
,

with a� k 1

2
, 1l. The constant C in (3.6) is independent of w(x).

PROOF. Let us consider the cases a41 and a4
1

2
. For a41 inequa-

lity (3.6) follows from Theorem 3.1. For a4
1

2
we can obtain inequality

(3.6) using Lemma 3.3 and following the proof given in [4, 13] or [10] (2).
Finally, employing the convexity theorem for L r (D) we deduce the ine-
quality in the complete form.

REMARK 3.2. Lemma 3.4 can be proved for arbitrary exponents of
summability p and q and for any order derivatives. In this way, since p is
arbitrary, we obtain a sort of generalization of Gagliardo-Nirenberg’s
theorem. However, we think that such a result does not give a real im-
provement to the theory.

LEMMA 3.5. Let u� W×1, p (V), pDn. Then u�C [0 , m] (V), m412
n

p
,

and

[u]V
m GCN˜uNp ,(3.7)

with the constant C independent of u(x).

PROOF. See Gagliardo [3], Nirenberg [13].

(2) In particular we suggest [4], par. 6, pg. 45.
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LEMMA 3.6. Let u be in C [0 , m] (V)OL Q (V). Setting s42
n

m
, the

following inequality holds

NuNq GCNuNs
a NuNQ

12a , a4
s

q
� [0 , 1 ] .(3.8)

The constant C in inequality (3.8) is independent of u(x).

PROOF. The proof is quite immediate. Indeed, choosing two points x ,
y in the same parallelepiped P in V , we have

(3.9)
Nu(x)2u(y)N

Nx2yNm 1
4 g Nu(x)2u(y)N

Nx2yNm hm 1 /m

Nu(x)2u(y)N12m 1 /mG

GCNuNs
m 1 /m NuNQ

12m 1 /m , with m 1 42
n

q
.

Then, considering the upper bound of (3.9), which is independent of P ,
we obtain inequality (3.8).

LEMMA 3.7. Let u(x) be in W×m , p (V)OL q (V), p� [1 , 1Q], qF1.
Then, for k� ]0, 1 , R , m21(,

D k u�L r (V) ,

where

1

r
4

k

n
1a g 1

p
2

m

n
h1 (12a)

1

q
,

with a� k k

m
, 1l either if p41 or if pD1 and m2k2n/p�NN ]0(,

while a� k k

m
, 1h if pD1 and m2k2n/p�NN ]0(. The result also

holds if q41Q ; however, in the case k40 and mpEn the following
additional condition is required: w tends to zero at infinity or w�
�L q 8 (V) for some finite q 8F1.

PROOF. Let RDd . The result is a consequence of the decomposition
u4u1

R 1u2
R . Indeed, u1

R and u2
R can be considered as functions defined

on Rn and VOS2R , respectively. For these two functions the summabili-
ty of the kth order derivatives is ensured by Theorem 3.1.
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4. Proof of the theorem.

LEMMA 4.1. Let w(x) be in W×1, p (V)OL q (V), p� [1 , 1Q], qF1.
Then, the following inequality holds

NwNr GCN˜wNp
a NwNq

12a ,(4.1)

where

1

r
4a g 1

p
2

1

n
h1 (12a)

1

q
,(4.2)

with a� [0 , 1 ] if pcn , a� [0 , 1 ) if p4n . The result also holds if q4

41Q ; however, in the case pEn the following additional condition is
required: w tends to zero at infinity or w�L q 8 (V) for some finite q 8F1.
The constant C in (4.1) is independent of w(x).

PROOF. For p� [1 , n) inequality (4.1) is an easy consequence of
the convexity theorem for L p spaces and Lemma 3.1. Indeed, if qG

Gnp/(n2p), we have

NwNr GNwNnp/(n2p)
a NwNq

12a GCN˜wNp
a NwNq

12a , (r� kq ,
np

n2p
l .

If qDnp/(n2p) the same argument works.
For p� [n , 1Q], either r belongs to [q , 1Q] or r is a negative real

number.
Case 1 - Let us consider the case pFn , r� [q , 1Q) and qFp . Let

w4w1
R 1w2

R . Since w1
R (x) is defined on the whole Rn , we can apply

Theorem 3.1 and, subsequently, Hölder’s inequality. Thus,

(4.3) Nw1
RNrGC1 N˜w1

RNp
a Nw1

RNq
12aGC1gN˜wNp 1

1

R
NwNL p (KR )ha

NwNq
12aG

GC1gN˜wNp 1
1

R 12n(q2p) /qp
NwNqha

NwNq
12a .

Since w2
R (x) is defined on a bounded domain, using Theorem 3.1, it follo-

ws that

Nw2
RNr GC2 N˜w2

R Np
a Nw2

R Nq
12a 1C3 Nw2

R Nq .(4.4)

We can assume N˜wNp c0, otherwise w(x) is a constant and the assum-
ption w(x) �L q (V) implies w40. Then the inequality (4.1) becomes tri-
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vial. There are two possible cases:

NwNq

N˜wNp

Gd 12n(q2p) /qp or
NwNq

N˜wNp

Dd 12n(q2p) /qp .

In the first case we fix RDd and increase NwNq in the right-hand side of
(4.3) and (4.4) by R 12n(q2p) /qp N˜wNp . Therefore,

NwNr GNw1
RNr 1Nw2

RNr G (C1 2a 1C2 1C3 R (12n(q2p) /qp)a )N˜wNp
a NwNq

12a .

In the latter case we modify the estimate for w2
R (x) and, subsequently,

we choose R in a suitable way. For any rFq , there exists p � [1 , n) such
that np /(n2p) Dr . In virtue of (4.1) for p � [1 , n), we get

Nw2
R Nr GCN˜w2

R Np
b Nw2

R Nq
12b ,

with C independent of R and w2
R (x). Since pD p and w2

R (x) is 0 for NxNF

F2R , applying Hölder’s inequality, we deduce

Nw2
RNr GCR bn(p2p) /pp N˜w2

R Np
b Nw2

RNq
12b G

GCR bn(p2p) /ppgN˜wNp 1
1

R
NwNL p (KR )hb

NwNq
12b G

GCR bn(p2p) /ppgN˜wNp 1
1

R 12n(q2p) /qp
NwNqhb

NwNq
12b .

Since pFn then 1 Dn(q2p) /qp , for any qF1. Thus choosing
R 12n(q2p) /qp 4NwNq /N˜wNp Dd 12n(q2p) /qp , the estimate for NwNr beco-
mes

NwNrGNw1
RNr1Nw2

RNrG2a C1 N˜wNp
a NwNq

12a12b CN˜wNp
b(12b) NwNq

12b(12b) ,

with b4
qn(p2p)

p(qp2n(q2p) )
.

Taking into account the values of b and a in (4.2), a simple computation
gives a4b(12b). The proof is then complete in the case qFp and
p� [n , 1Q].

Case 2 - Let us consider the case qEp . First of all we prove that w(x)
is in L p (V). Of course, Poincaré inequality implies w(x) �L p (B) for all
bounded domain B contained in V . Moreover, considering w1

R
A

, RA Dd ,



An interpolation inequality in exterior domains 21

from Theorem 3.1 we have

Nw1
R
A
Np GCN˜w1

R
A
Np

a1 Nw1
R
A
Nq

12a1 ,

which implies w(x) �L p (V2S2 RA ). So, we have proved that w(x) �
�L p (V). Since for w(x) �W 1, p (V) we have already obtained estimate
(4.1), then for any rFp

NwNr GCN˜wNp
a2 NwNp

12a2 .(4.5)

By applying the convexity theorem for L p spaces to inequality (4.5), we
have

NwNr GCN˜wNp
a2 NwNr

b(12a2 ) NwNq
(12b)(12a2 ) , with b4

r(p2q)

p(r2q)
,

and it is easy to deduce

NwNr GCN˜wNp
a NwNq

12a ,(4.6)

with a given in (4.2). In order to obtain the inequality (4.1) in the case r�
� (q , p) it is sufficient to apply again the convexity theorem for L p

spaces:

NwNr GNwNr1
b NwNq

12b ,
1

r
4

b

r1

1
12b

q
, (r1 Fp .(4.7)

Since r1 Fp , we majorize the right-hand side of inequality (4.7) by (4.6).
Therefore,

NwNr GC(N˜wNp
a3 NwNq

12a3 )b NwNq
12b

and a simple computation gives a3 b4a , with a satisfying (4.2).
Now, let us prove the inequality for r41Q . For this value of r , ine-

quality (4.1) takes the form

NwNQGCN˜wNp
a NwNq

12a ,(4.8)

where

a g 1

p
2

1

n
h1 (12a)

1

q
40 .(4.9)

The proof can be obtained following some ideas given in [1, 13]. Assume
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R1 Dd . Let x be in S c
R1

4S c (0 , R1 ), Cx a finite cone (3) of height l contai-
ned in S c

R1
( l D0. Introducing polar coordinates (r , w) in Rn with origin

at x such that 0 ErE l and w� A, we have

w(x) 4w(0 , w) 4w(r , w)2�
0

r
¯

¯t
w(t , w) dt , (r� (0 , l ), (w� A .

If r n21 v(w)drdw denotes the volume element, multiplying by r n21 v(w),
integrating r from 0 to l and w over A and using Hölder’s inequality, we
obtain

Nw(x)Nvol(Cx ) G

G�
Cx

Nw(y)Ndy1
l n

n
�

Cx

N˜w(y)N

Nx2yNn21
dyGNwNLq (Cx ) (vol(Cx ) )(q21) /q 1

1
l n

n
N˜wNL p (Cx )N�

Cx

Nx2yN(12n)p/(p21) dyN
(p21) /p

G

GNwNLq (Cx ) l n(q21) /q 1C
l n112n/p

n
N˜wNL p (Cx ) .

Hence,

Nw(x)NGCNwNLq (Cx ) l 2n/q 1
l 12n/p

n
N˜wNL p (Cx ) .(4.10)

Actually, we can choose l such that

l 12n(q2p) /qp 4
NwNq

N˜wNp

.

Thus, inequality (4.10) becomes

Nw(x)NGCNwNq
12np/(qp2nq1np) N˜wNp

np/(qp2nq1np) 1

1CNwNq
q(p2n) /(qp2nq1np) N˜wNp

11q(n2p) /(qp2nq1np) 4CN˜wNp
a NwNq

12a ,

(3) As in [1], given a point x�Rn , an open ball B1 with center x , an open ball
B2 not containing x , we call a finite cone in Rn with vertex at x the set Cx4B1O
O ]x1l(y2x) : y�B2 , lD0(.
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with a4np/(qp1np2nq), which implies

NwNL Q (S c
R1 ) GCN˜wNa

p NwN12a
q .(4.11)

Let us prove inequality (4.11) in VOSR1
. Define the function w3 (x) 4

4h R1 (x)w(x). Since w3 (x) is defined on the bounded domain V 3 4VO
OS2R1

, we can use Theorem 3.1 and obtain

Nw3 NL Q (V 3 ) GCN˜w3 Na
L p (V 3 ) Nw3 N12a

L q (V 3 ) 1CNw3 NL q (V 3 ) .(4.12)

First, let us estimate the last term on the right-hand side of relation
(4.13). If qGp , applying Poincarè inequality and, subsequently, Hölder’s
inequality, we have

Nw3NL q (V 3 ) 4Nw3NL q (V 3 )
a Nw3NL q (V 3 )

12a G

GCN˜w3NL q (V 3 )
a Nw3 NL q (V 3 )

12a GCN˜w3 NL p (V 3 )
a Nw3 NL q (V 3 )

12a .

If nEpEq , using Poincarè inequality, we majorize Nw3 NL q (V 3 ) as
follows

Nw3NL q (V 3 ) 4

4Nw3NL q (V 3 )
t Nw3 NL q (V 3 )

12 t GNw3 NL q (V 3 )
t Nw3 NL p (V 3 )

p(12 t) /q sup
V 3

Nw3 N(q2p)(12 t) /q G

GNw3NL q (V 3 )
t N˜w3NL p (V 3 )

p(12 t) /q Nw3NL Q (V 3 )
(q2p)(12 t) /q , (t� (0 , 1 ) .

By Cauchy inequality and for t4p(12a) /(p2a(p2q) ), we have

Nw3NL q (V 3 ) G

GCN˜w3NL p (V 3 )
a Nw3NL q (V 3 )

12a 1hNw3NL Q (V 3 ) , nEpEq , (h� (0 , 1 ).

So, in both the cases, inequality (4.12) becomes

Nw3NL Q (V 3 ) GCN˜w3N
a
L p (V 3 ) Nw3N

12a
L q (V 3 ) .

From this inequality, using estimate (4.11) for R1 GNxNG2R1 , we
obtain:

Nw3NL Q (V 3 ) GC(N˜wNp 1NwNL Q (KR1 ) )a Nw3N
12a
L q (V 3 ) G

GCN˜wNp
a NwNq

12a 1C(N˜wNp
a NwNq

12a )a Nw3 NL q (V 3 )
12a ,
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hence

Nw3NL Q (V 3 )GCN˜wNp
a NwNq

12a1CN˜wNp
a 2

NwNq
a2a 2

mis(V 3 )(12a) /q Nw3NL Q (V 3 )
12a .

Using Cauchy inequality we get

Nw3NL Q (V 3 ) GCN˜wNp
a NwNq

12a .(4.13)

Inequality (4.11) and (4.13) imply inequality (4.1) for r41Q .
Finally, let us prove the inequality for pDn , rE0. By Lemma 3.5,

function w belongs to C [0 , a] (V), a4 (p2n) /p . Moreover, we have just
proved that w belongs to L Q (V). Hence, we can apply the interpolation
lemma 3.6 and we get

NwNr GNwN np

n2p

e NwNQ
12e ,

1

r
4e g 1

p
2

1

n
h .

Then, majorizing the right-hand side of the previous inequality using
Lemma 3.5 and inequality (4.8), we obtain our estimate for rE0.

LEMMA 4.2. Let w(x) be in W×2, p (V)OL q (V), p� [1 , n/2 ), qD

Dnp/(n22p). Then, for k� ]0, 1(, the following inequality holds

ND k wNr GCND 2 wNp
a NwNq

12a ,(4.14)

where
1

r
4

k

n
1a g 1

p
2

2

n
h1 (12a)

1

q
,(4.15)

with a� k k

2
, 1l. The result also holds if q41Q ; however in the case

k40 the following additional condition is required: w tends to zero at
infinity or w�L q 8 (V) for some finite q 8F1. The constant C in inequa-
lity (4.14) is independent of w(x).

PROOF. First we show inequality (4.14) in the case a41. Since
D 2 w�L p (V), pEn/2 , by Lemma 3.1 there exist a constant vector a and
a constant C such that N˜w2aN np

n2p

GCND 2 wNp . Setting w× 4w2a Qx ,

we have ˜w× �L
np

n2p (V) and then we can apply Lemma 3.1 to the function
w×. Therefore, there exist two constants w0 and C , C independent of w×,
such that Nw×2w0N np

n22p

GCN˜w×N np

n2p

, so that the function w2a Qx2w0

belongs to L
np

n22p (V). However, in some sense w2a Qx2w0 K0 for
NxNKQ , hence Na Qx1w0 NK0 for NxNKQ , which implies a40, w0 4
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40. Therefore, the previous inequalities become

NwN np

n22p

GCN˜wN np

n2p

GCND 2 wNp .(4.16)

Now, let us consider the case k41, a� k 1

2
, 1l . Fix R0 Dd . Since w1

R0 is

defined on Rn , we apply Theorem 3.1 and obtain

N˜w1
R0Nr GCND 2 w1

R0 Np
a Nw1

R0 Nq
12a G

GC(ND 2 wNp 12N˜h R0 ˜wNp 1NwD 2 h R0 Np )a NwNq
12a G

GC(ND 2 wNp 1N˜wNL p (KR0 ) 1NwNL p (KR0 ) )
a NwNq

12a .

In virtue of the Ehrling-Gagliardo-Nirenberg theorem [1], it follows
that

N˜w1
R0 Nr GC(ND 2 wNp 1NwNL p (KR0 ) )

a NwNq
12a .

Applying Hölder’s inequality we get

N˜w1
R0 Nr GC(ND 2 wNp 1NwN np

n22p

)a NwNq
12a ,

and then, using (4.16), inequality (4.17) becomes

N˜w1
R0 Nr GCND 2 wNp

a NwNq
12a .

Now, let us estimate w2
R0 . Since this function is defined on the bounded

domain V 0 4VOS2R0
, we apply Lemma 3.4 and consider a4

1

2
. Thus,

for some p � [1 , q] and r 42pq/(p1q) we get

N˜w2
R0 NL r (V 0 ) GCND 2 w2

R0 NL p (V 0 )
1 /2 Nw2

R0 NL q (V 0 )
1 /2 1C1 Nw2

R0 NL p (V 0 ) G

GC(ND 2 wNp 1N˜wNL p (KR0 ) 1NwNL p (KR0 ) )
1/2 NwNq

1/2 1C1 NwNp .

Then, using the Ehrling-Gagliardo-Nirenberg theorem and, subsequen-
tly, Hölder’s inequality we obtain

N˜w2
R0 NL r (V 0 ) GC(ND 2 wNp 1NwNL p (KR0 ) )

1/2 NwNq
1/2 1C1 NwNp G

GC(ND 2 wNp 1NwN np

n22p

)1/2 NwNq
1/2 1C1 NwNp .

We apply the convexity theorem to the term NwNp choosing p4nr/(n2r)
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and we obtain

N˜w2
R0 NL r (V 0 ) GC(ND 2 wNp 1NwN np

n22p

)1/2 NwNq
1/2 1NwN np

n22p

1/2 NwNq
1/2 .(4.18)

Therefore, from (4.16) inequality (4.18) becomes

N˜w2
R0 NL r (V 0 ) GCND 2 wNp

1/2 NwNq
1/2 .

Moreover, by Lemma 3.4 with a41 we deduce

N˜w2
R0 NL r (V 0 ) GC(ND 2 w2

R0 Np 1Nw2
R0 Np ) G

GC(ND 2 wNp 1N˜wNL p (KR0 ) 1NwNL p (KR0 ) 1Nw2
R0 Np ), r 4

np

n2p
.

Then, applying the Ehrling-Gagliardo-Nirenberg theorem and, subse-
quently, Hölder’s inequality we obtain

N˜w2
R0 NL r (V 0 ) G

GC(ND 2 wNp 1NwNL p (KR0 ) )1CNwNp GC(ND 2 wNp 1NwN np

n22p

)1CNwNp .

Choosing p 4np/(n22p) and using (4.16) we obtain

N˜w2
R0 NL r (V 0 ) GC(ND 2 wNp 1NwN np

n22p

) GCND 2 wNp .

Hence, using the convexity theorem for L p spaces we finally deduce

N˜w2
R0 NL r (V 0 ) GCND 2 wNp

a NwNq
12a ,

for any r satisfying (4.15). Since N˜wNr GN˜w1
R0 Nr 1N˜w2

R0 Nr , summing
N˜w1

R0 Nr and N˜w2
R0 Nr we obtain inequality (4.14) for k41.

Inequality (4.14) with k40 and a� [0 , 1 ] can be obtained using Lem-
ma 4.1 and the inequality just proved for k41.

PROOF OF THEOREM 2.1. Lemma 4.1 and Lemma 4.2 are cases of the
theorem, therefore the following proof, for k41 and m42, does not in-
volve the exponents p� [1 , n/2 ) and qDnp/(n22p). First, we consider
the case k41, m42, subsequently we shall consider the general case.
For k41, m42, inequality (2.2) becomes

N˜wNr GCND 2 wNp
a NwNq

12a .(4.19)

First, we prove the case r� [1 , 1Q). Since w1
R is defined on the whole
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Rn , we apply Theorem 3.1, thus

N˜w1
RNr GCND 2 w1

RNp
a Nw1

RNq
12a G

GC(ND 2 wNp 12N˜h R ˜wNp 1NwD 2 h RNp )a NwNq
12a G

GC(ND 2 wNp 1
1

R
N˜wNL p (KR ) 1

1

R 2
NwNL p (KR ) )a NwNq

12a .

In virtue of the Ehrling-Gagliardo-Nirenberg theorem and taking into
account the geometry of the set KR , it follows that

R 21 N˜wNL p (KR ) GC gND 2 wNL p (KR ) 1
1

R 2
NwNL p (KR )h ,

hence we get

(4.20) N˜w1
R Nr GC(ND 2 wNp

a NwNq
12a 1

1

R 2a
NwNL p (KR )

a NwNq
12a ) 4

4I1 (p , q)1I2 (p , q , R) .

We notice that from Lemma 3.7 it follows ˜w�L r (V). We can assume
ND 2 wNp c0, otherwise ˜w is a constant c . If c40 the inequality is tri-
vial; if cc0, then ˜w is in L Q (V) and we get a contradiction, because
w�L q (V), q� [1 , 1Q].

There are two possible cases:

NwNq

ND 2 wNp

Gd 22n(q2p) /qp or
NwNq

ND 2 wNp

Dd 22n(q2p) /qp .(4.21)

In the first case we fix R4R2 Dd and majorize NwNq by
R2

22n(q2p) /pq ND 2 wNp . Let us estimate I2 (p , q , R2 ) in inequality (4.20). If
pGq we apply Hölder’s inequality; otherwise, i.e. if pDq , we apply
Theorem 3.1. Hence, we get:

pGq , I2 (p , q , R2 ) GCR2
2(22n(q2p) /qp)a NwNq

a NwNq
12a ,(4.22)

pDq , I2 (p , q , R2 ) G
C

R2
2a

(ND 2 wNp
c NwNq

12c 1NwNq )a NwNq
12a .(4.23)

From (4.21)1 inequalities (4.22) and (4.23) imply

I2 (p , q , R2 ) GC(R2 )ND 2 wNp
a NwNq

12a .
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For w2
R2 we employ Gagliardo-Nirenberg’s theorem. Therefore, from

(3.1) and using the Ehrling-Gagliardo-Nirenberg theorem, we get

N˜w2
R2 Nr GCND 2 w2

R2 Np
a Nw2

R2 Nq
12a 1C1 Nw2

R2 Nq G

GC(ND 2 wNp 1N˜wNL p (KR2 ) 1NwNL p (KR2 ) )
a NwNq

12a 1

1C1 NwNq GC(ND 2 wNp 1NwNL p (KR2 ) )a NwNq
12a 1C1 NwNq .

Since (4.21)1 ensures that NwNq
a GC(R2 )ND 2 wNp

a , we have

N˜w2
R2 Nr GC(R2 )(ND 2 wNp

a NwNq
12a 1NwNL p (KR2 )

a NwNq
12a ).

Taking into account the arguments already used for N˜w1
RNr , we

get

N˜w2
R2 Nr GCND 2 wNp

a NwNq
12a .

Since N˜wNr GN˜w1
R2 Nr 1N˜w2

R2 Nr , summing N˜w1
R2Nr and N˜w2

R2Nr we
obtain inequality (4.19) under condition (4.21)1 .

To complete the proof of (4.19), we only need to prove it under condi-
tion (4.21)2 . So, assume now that (4.21)2 holds. In this case we can choose
R such that

R 22n(q2p) /qp 4
NwNq

ND 2 wNp

.(4.24)

We now majorize I2 (p , q , R) in (4.20). When pGq , we obtain for
I2 (p , q , R) the same estimate as in (4.22):

pGq , I2 (p , q , R) GCR 2(22n(q2p) /qp)a NwNq
a NwNq

12a ,

that, via (4.24), leads to

I2 (p , q , R) GCND 2 wNp
a NwNq

12a .

If qEpEn , applying Lemma 4.1 to NwNL p (NxNFR) FNwNL p (KR ) , we have

I2 (p , q , R) G
C

R 2a
(N˜wNd

L
np

n2p (NxNFR) NwNq
12d )a NwNq

12a .(4.25)

Applying Sobolev’s inequality of Lemma 3.1 to (4.25) and using (4.24), we
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have

I2 (p , q , R) G
C

R 2a
ND 2 wNp

da NwNq
(12d)a NwNq

12a G

G
C

R 2a
ND 2wNp

da ND 2wNp
(12d)aR (22n(q2p)/qp)(12d)a NwNq

12a4CND 2wNp
a NwNq

12a ,

where we have taken into account that d4n(p2q) /(2pq1np2nq) (be-
cause of (4.2)), hence (22n(q2p) /qp)(12d) 42. If pFn and pDq , ap-

plying Lemma 4.1 with sDr and sD
np

n1p
, the estimate for I2 (p , q , R)

becomes

I2 (p , q , R) G
C

R 2a
(N˜wNs

h NwNq
12h )a NwNq

12a .

Subsequently, applying Lemma 4.1 to the gradient on the right-hand si-
de of this last inequality and then Cauchy inequality (we recall that
N˜wNr is finite), we deduce

I2 (p , q , R) G
C

R 2a
(ND 2 wNp

eh N˜wNr
(12e)h NwNq

12h )a NwNq
12a G

GCR 2a ND 2 wNp
b NwNq

g1hN˜wNr , (hD0 ,

with

a4
2a

11ha(e21)
, b4

eha

11ha(e21)
, g4

(12h) a

11ha(e21)
,

with e4np(s2r) /s(rp1np2nr) and h4sn(p2q) /p(ns1sq2nq), bo-
th obtained from (4.2). Using (4.24) and setting

22
n(q2p)

qp
4z ,(4.26)

we have

I2 (p , q , R) GCND 2 wNp
b1a/z NwNq

g2a/z 1hN˜wNr ,

where b1a/z4a , g2a/z412a . Therefore, the estimates for
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I2 (p , q , R) are the following ones:

.
/
´

pGq , I2 (p , q , R) GCND 2 wNp
a NwNq

12a ,

pDq , I2 (p , q , R) G
.
/
´

CND 2 wNp
a NwNq

12a

CND 2 wNp
a NwNq

12a 1hN˜wNr

if pEn ,

if pFn .

(4.27)

We now estimate N˜w2
RNr . In virtue of the remark made at the beginning

of the proof, we have only to consider the cases p� k1,
n

2
h and

qG
np

n22p
or pF

n

2
. Since p� k1,

n

2
h and qG

np

n22p
or p� k n

2
, nh

imply rGnp/(n2p), we can apply Hölder’s inequality with exponents
(n2p)r

np
,

np1rp2nr

np
, after which we can use Sobolev’s inequality of

Lemma 3.1 and we get

N˜w2
RNr GCR (np1rp2nr) /rp N˜w2

RN np

n2p

GCR (np1rp2nr) /rp ND 2 w2
R Np .

Otherwise, namely if pFn , we apply Hölder’s inequality with exponents
p/s , (s2p) /s , sDr and then we use Lemma 4.1. Hence, the following
estimate holds:

N˜w2
R Nr GCR n(s2r) /rs N˜w2

R Ns GCR n(s2r) /rs ND 2 w2
R Np

e N˜w2
R Nr

12e .(4.28)

Taking into account that (4.2) gives e4np(s2r) /s(rp1np2nr), from
(4.28) we have

N˜w2
R Nr GCR n(s2r) /rse ND 2 w2

R Np 4

4CR (np1rp2nr) /rp ND 2 w2
R Np , pFn , sDr .

So, in both cases, using the Ehrling-Gagliardo-Nirenberg theorem and
taking into account the geometry of the set KR , we get

(4.29) N˜w2
RNr GCR (np1rp2nr) /rp ND 2 w2

R Np G

GCR (np1rp2nr) /rpgND 2 wNp 1
1

R
N˜wNL p (KR ) 1

1

R 2
NwNL p (KR )hG

GCR (np1rp2nr) /rpgND 2 wNp 1
1

R 2
NwNL p (KR )h4F1 (p , q)1F2 (p , q).
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From (4.24) and (4.26), we obtain

F1 (p , q) 4CND 2 wNp
12 (np1rp2nr) /rpz NwNq

(np1rp2nr) /rpz 4CND 2 wNp
a NwNq

12a .

We now estimate F2 (p , q) in (4.29). If pGq , using Hölder’s inequality
and (4.24), we have

F2 (p , q) GCR 2z1 (np1rp2nr) /rp NwNq GCND 2 wNp
a NwNq

12a .

If pDq and pEn , we apply Lemma 4.1, with a suitable exponent of sum-
mability for ˜w , in order to apply Lemma 3.1. Hence, we get

F2 (p , q) GCR (np2rp2nr) /rp NwNp GCR (np2rp2nr) /rp N˜wNd
np

n2p

NwNq
12d G

GCR (np2rp2nr) /rp ND 2 wNd
p NwNq

12d ,

where d4n(p2q) /(2pq1np2nq) is given from (4.2). Then, using posi-
tion (4.24) we obtain

F2 (p , q) GCND 2 wNp
a NwNq

12a .

If pDq and pFn , we use Lemma 4.1, obtaining for sDn

(4.30) F2 (p , q) GCR (n2r) /r NwNQG

GCR (n2r) /r N˜wNs
t NwNq

12 t GCR (n2r) /r ND 2 wNvt
p N˜wNr

(12v) t NwNq
(12 t) .

Let

a 1 4
(n2r) /r

12 (12v) t
, b 1 4

vt

12 (12v) t
, g 1 4

12 t

12 (12v) t
,

where t4sn/(ns1sq2nq) because of (4.9) and v4np(s2r) /s(np1

1rp2nr) because of (4.2). Applying Cauchy inequality and using (4.24),
inequality (4.30) becomes

F2 (p , q) GCR a 1 ND 2 wNp
b 1 NwNq

g 1 1hN˜wNr 4

4CND 2 wNp
b 12a 1 /z NwNq

g 11a 1 /z 1hN˜wNr , (hD0,

where b 1 2a 1 /z4a , g 1 1a 1 /z412a . Therefore, the estimates for
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F2 (p , q) are the following

.
/
´

pGq , F2 (p , q) GCND 2 wNp
a NwNq

12a ,

pDq , F2 (p , q) G
.
/
´

CND 2 wNp
a NwNq

12a

CND 2 wNp
a NwNq

12a 1hN˜wNr

if pEn ,

if pFn .

(4.31)

Since N˜wNr GN˜w1
RNr 1N˜w2

RNr , choosing 0 EhG1/3 in (4.27)3 and
(4.31)3 , from (4.20) and (4.29) we deduce (4.19) under condition
(4.21)2 .

We now consider the case r41Q . First, we apply Lemma 4.1 to ˜w ,
then we apply (2.2) to N˜wNs with sEQ . So, we have

(4.32) N˜wNQGCND 2 wNp
b N˜wNs

12b GCND 2 wNp
b (ND 2 wNp

c NwNq
12c )12b 4

4CND 2 wNp
b1c(12b) NwNq

(12c)(12b) ,

with b4np/(sp2ns1np), because of (4.9), and c4p(sq2nq1

1ns) /s(2pq2nq1np), because of (2.3). Now, taking into account the
value of a in (2.3), a simple computation gives a4b1c(12b).

Finally, let rE0. Since pDn , by Lemma 3.5 we get

N˜wNnp/(n2p) GCND 2 wNp .(4.33)

Moreover, inequality (4.32) implies that ˜w belongs to L Q (V). Hence,
using the interpolation lemma 3.6 we have

N˜wNr GN˜wNnp/(n2p)
e N˜wNQ

12e ,
1

r
4e g 1

p
2

1

n
h .

Then majorizing the right-hand side of the previous inequality by (4.32)
and (4.33) we obtain

N˜wNr GCND 2 wNp
e (ND 2 wNp

d NwNq
12d )12e 4CND 2 wNp

e1d(12e) NwNq
(12e)(12d) ,

where d(12e)1e4a , with a given in (2.3). Thus, we have completed
the proof of the case k41, m42.

In order to establish inequality (2.2) in the general case, we proceed
by induction on k , showing that if the result holds for m21 and for any
0 GkEm21, it also holds for m and for k4m21. Subsequently, we
will easily show that the inequality holds for m and for any k with 0 G

GkGm22. Hence, we assume the validity of the following inequality for
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all 0 GkEm21, mF3 and for a suitable p F1

ND k wNrk
GCND m21 wNp

b NwNq
12b ,(4.34)

and show that

ND m21 wNrm21
GCND m wNp

a NwNq
12a ,(4.35)

where

1

rm21

4
m21

n
1a g 1

p
2

m

n
h1 (12a)

1

q
, a� k m21

m
, 1l .(4.36)

For the sake of simplicity, we replace rm21 by r . Since w1
R is defined on

Rn , by Theorem 3.1 it follows that

ND m21 w1
RNr GCND m w1

RNp
a Nw1

RNq
12a G

GC gND m wNp 1 !
j40

m21

ND m2 j h RNp ND j wNpha

NwNq
12a G

GC gND m wNp
a 1 !

j40

m21 1

R (m2 j)a
ND j wNL p (KR )

a hNwNq
12a .

Now, applying the Ehrling-Gagliardo-Nirenberg theorem and taking
into account the geometry of the set KR , we get

(4.37) ND m21 w1
RNr GC(ND m wNp

a NwNq
12a 1

1

R ma
NwNL p (KR )

a NwNq
12a ) 4

4 IA1 (p , q)1IA2 (p , q , R) .

Again we select two cases:

NwNq

ND m wNp

Gd m2n(q2p) /qp or
NwNq

ND m wNp

Dd m2n(q2p) /qp .(4.38)

In the former case we adopt the same arguments used for the second or-
der derivatives case. Hence, we show inequality (4.35) only under condi-
tion (4.38)2 . In this case we choose R such that

R m2n(q2p) /qp 4
NwNq

ND m wNp

.(4.39)

Then, we estimate the term ND m21 w1
RNr under condition (4.38)2 . We
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start by considering the cases pGq , qEpEn . We shall discuss the
other case pFn and pDq , in the sequel in a slightly different way. If
pGq , using Hölder’s inequality and (4.39), we obtain for IA2 (p , q , R) in
(4.37) the following estimate

IA2 (p , q , R) GCR 2(m2n(q2p) /qp)a NwNq
a NwNq

12a GCND m wNp
a NwNq

12a .

If pDq and pEn we first use the induction hypothesis, subsequently
Sobolev’s inequality of Lemma 3.1, and then we have

IA2 (p , q , R)G
C

R ma
NwNp

a NwNq
12aG

C

R ma
(ND m21 wN np

n2p

d NwNq
12d )a NwNq

12aG

G
C

R ma
ND m wNp

da NwNq
(12d)a NwNq

12a .

Now, using (4.39) we obtain

IA2 (p , q , R) G
C

R ma
ND m wNp

da ND m wNp
(12d)a R (m2n(q2p) /qp)(12d)a NwNq

12a 4

4CND m wNp
a NwNq

12a ,

where d4n(p2q) /(np1mpq2nq) (because of (2.3)), and so (m2

2n(q2p) /qp)(12d) 4m .
Now, we estimate ND m21 w2

RNr . First, we consider the case

p� k1,
n

m
h and qD

np

n2mp
, which implies qDp . If we consider r as in

(2.3) as a function of a , it takes its minimum value for a41, its maximum
value for a4k/m . We denote the maximum value of r , corresponding to
the kth order derivative, by rk . We observe that rk Drk11 . From the stu-
dy of the interpolation inequality for second order derivatives, we
deduce

ND m21 w2
R Nrm21

GCND m w2
R Np

1/2 ND m22 w2
R Nrm22

1 /2(4.40)

where rm21 4
mpq

(m21)q1p
and rm22 4

mpq

(m22)q12p
. From the induc-

tion hypothesis we also have

ND m22 w2
R Nrm22

GCND m21 w2
R Nrm21

(m22) /(m21) Nw2
R N1/(m21)

q .(4.41)
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Then, substituting (4.41) in (4.40), after a simple computation we
obtain

ND m21 w2
R Nrm21

GCND m w2
R Np

(m21) /m Nw2
R N1/m

q .(4.42)

Consider the Sobolev’s exponent np/(n2p), corresponding to the value
a41 in (4.36). Using Sobolev’s inequality of Lemma 3.1 we have

ND m21 w2
R N np

n2p

GCND m w2
R Np .(4.43)

Hence, applying the convexity theorem and using (4.42) and (4.43) we
get

ND m21 w2
R Nr GND m21 w2

R Nrm21
b ND m21 w2

R N np

n2p

12b G

GCND m w2
R Np

(m2b) /m Nw2
R Nq

b/m , b4
mq

r

np1rp2nr

np1mpq2nq
,

where (m2b) /m4a given in (4.36). Now, applying the Ehrling-Gagliar-
do-Nirenberg theorem and taking into account the geometry of the set
KR , we get

ND m21 w2
R Nr GCND m w2

R Np
a Nw2

R Nq
12a G

GC(ND m wNp 1
1

R m
NwNL p (KR ) )a Nw2

R Nq
12a .

Since pEq , we can apply Hölder’s inequality and then use (4.39). Thus,
we obtain

ND m21 w2
R Nr GCND m wNp

a NwNq
12a 1R 2m(n2 (q2p) /qp)a NwNq

a NwNq
12a G

GCND m wNp
a NwNq

12a .

If p� k1,
n

m
h and qG

np

n2mp
or p� k n

m
, nh we have rm21 Gnp/(n2p),

and we can apply Hölder’s inequality and Sobolev’s inequality of Lemma
3.1 and we get

ND m21 w2
R Nr GCR (np1rp2nr) /rp ND m21 w2

R N np

n2p

G

GCR (np1rp2nr) /rp ND m w2
R Np .

In the remaining case, namely if pFn , we apply Hölder’s inequality
with exponents p/s , (s2p) /s , sDr and then we use Lemma 4.1. Hence,
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the following estimate holds

(4.44) ND m21 w2
R Nr GCR n(s2r) /rs ND m21 w2

R Ns G

GCR n(s2r) /rs ND m w2
R Np

e ND m21 w2
R Nr

12e .

Taking into account that (4.2) gives e4np(s2r) /s(rp1np2nr), from
(4.44) we have

ND m21 w2
R Nr GCR n(s2r) /rse ND m w2

R Np 4

4CR (np1rp2nr) /rp ND m w2
R Np , pFn , sDr ,

so, in both cases we get

ND m21 w2
R Nr GCR (np1rp2nr) /rp ND m w2

R Np .

Finally, using the Ehrling-Gagliardo-Nirenberg theorem and taking
into account the geometry of the set KR , we obtain

(4.45) ND m21 w2
RNr GCR (np1rp2nr) /rpgND m wNp 1

1

R m
NwNL p (KR )h4

4 FA1 (p , q)1FA2 (p , q) .

Setting

y4m2
n(q2p)

qp
,(4.46)

from (4.39) we obtain for FA1 (p , q):

FA1 (p , q) 4CND m wNp
12 (np1rp2nr) /rpy NwNq

(np1rp2nr) /rpy 4CND m wNp
a NwNq

12a .

We now estimate FA2 (p , q). If pGq we use Hölder’s inequality and condi-
tion (4.38)2 , and we have

FA2 (p , q) GCR 2y1 (np1rp2nr) /rp NwNq GCND m wNp
a NwNq

12a .
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If pDq and pEn , we apply the induction hypothesis, with a suitable
exponent of summability for D m21 w , in order to apply Lemma 3.1. Hen-
ce, we get

FA2 (p , q) GCR (np2rp2nr) /rp NwNp GCR (np2rp2nr) /rp ND m21 wNd
np

n2p

NwNq
12d G

GCR (np2rp2nr) /rp ND m wNd
p NwNq

12d ,

where d4n(p2q) /(mpq1np2nq) is given in (2.3). Now, using (4.39)
we obtain

FA2 (p , q) GCND m wNp
a NwNq

12a .

We now consider the last case when pDq and pFn . We choose
rm21 4rmin , where rmin is the minimum exponent of summability for
D m21 w . It corresponds to the value a4 (m21) /m . For simplicity, in
the sequel we will denote rmin by rA. Applying the induction hypothesis
and then Lemma 4.1 to the term IA2 (p , q , R) in (4.37) with r4 rA, we
obtain

IA2 (p , q , R) G

GR
( n

p
2m)a

NwNL Q (KR )
a NwNq

12a GR
( n

p
2m)a

(ND m21 wNp
t NwNq

12 t )a NwNq
12a G

GR
( n

p
2m)a

(ND m wNp
v ND m21 wNrA

12v )ta NwNq
(12 t)a NwNq

12a .

Let

a 2 4
(m2n/q)a

12 (12v) ta
, b 2 4

vta

12 (12v) ta
, g 2 4

12 ta

12 (12v) ta
,

where t4np/(np1 (m21) pq2nq) because of (2.3), v4n(p2rA) /(np1

1prA 2nrA) because of (4.2). Applying Cauchy inequality and using (4.46)
we obtain

IA2 (p , q , R) GR 2a 2 ND m wNp
b 2 NwNq

g 2 1eND m21 wNrA 4

4ND m wNp
b 21a 2 /y NwNq

g 22a 2 /y 1eND m21 wNrA , (eD0,

where b 2 1a 2 /y4a , g 2 2a 2 /y412a . In a similar way, applying the
induction hypothesis and then Lemma 4.1 to the term FA2 (p , q) in (4.45),
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by simple computations we obtain

(4.47) FA2 (p , q) G

GCR (n1rA(12m) ) /rA NwNQGCR (n1rA(12m) ) /rA ND m21 wNp
t NwNq

12 t G

GCR (n1rA(12m) ) /rA (ND m wNp
v ND m21 wNrA

12v )t NwNq
12 t .

Let

a 3 4
(n1rA(12m) ) /rA

12 (12v) t
, b 3 4

vt

12 (12v) t
, g 3 4

12 t

12 (12v) t
,

where t4np/(np1 (m21)pq2nq) because of (2.3) and v4n(p2

2rA) /(np1prA 2nrA) because of (4.2). Applying Cauchy inequality and using
(4.46), inequality (4.47) becomes

FA2 (p , q) GCR a 3 ND m wNp
b 3 NwNq

g 3 1eND m21 wNrA 4

4CND m wNp
b 32a 3 /y NwNq

g 31a 3 /y 1eND m21 wNrA , (eD0,

where b 3 2a 3 /y4a , g 3 1a 3 /y412a .
Since we have shown the inequality for rA 4rmin , in the case pFn and

pDq , it is immediate to get the inequality for any r4rm21 satisfying the
dimensional balance (4.36). Indeed, it suffices to use Lemma 4.1 and the
inequality already obtained for ND m21 wNrA :

ND m21 wNrA GCND m wNp
c NwNq

12c ,

in order to get

ND m21 wNr GCND m wNp
d ND m21 wNrA

12d GCND m wNp
d1c(12d) NwNq

(12c)(12d) .

Now, it is easy to check that d1c(12d) 4a , with a obtained from
(4.36).

Finally, the general case follows from inequalities (4.34) and
(4.35).
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