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Connections on Distributional Bundles.

DANIEL CANARUTTO (*)

ABSTRACT - A general approach to the geometry of distributional bundles is pre-
sented. In particular, the notion of connection on these bundles is studied. A
few examples, relevant to quantum field theory, are discussed.

Introduction.

The notion of smoothness introduced by Frölicher [Fr] provides a
general setting for calculus in functional spaces [FK, KM] and differen-
tial geometry in functional bundles [JM, KM, CK, MK]. An important
aspect of that approach is that the essential results can be formulated in
terms of finite-dimensional spaces and maps, without heavy involvement
in infinite-dimensional topology and other intricated questions. In par-
ticular, the notion of a smooth connection on a functional bundle has
been applied in the context of the «covariant quantization» approach to
Quantum Mechanics [JM, CJM].

In a previous paper [C00a] I applied these ideas to the differential
geometry of certain bundles whose fibres are distributional spaces, more
specifically scalar-valued generalized half-densities. The main purpose
of the present paper is to extend those results to the general case of the
bundle of generalized «tube» sections of a 2-fibred «classical» (i.e. finite
dimensional) bundle; basic notions of standard differential geometry –
such as tangent space, jet space, connection and curvature – are intro-
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duced for this case; adjoint connections and tensor product connections
are shown to exist. Furthermore, a suitable connection on the underlying
classical bundle is shown to yield a connection on the corresponding dis-
tributional bundle; some particularly important cases are the vertical
bundle and its tensor algebra, which turn out to be closely related to the
notion of adjoint connection. Finally, I consider a few examples which
are relevant in view of applications to quantum field theory: the «Dirac
connection» on the bundle of 1-electron states for a given observer, and
the connections induced on the phase-distributional bundles describing
electron and photon fields.

1. Generalized sections.

Let p : YK Y be a real or complex classical vector bundle, namely
a finite-dimensional vector bundle over the Hausdorff paracompact
smooth real manifold Y. Moreover assume that Y is oriented, let
n»4 dim Y, and denote the positive component of Rn TY by VY »4

»4 (Rn TY)1. Then VY K Y is a semi-vector bundle [C98, C00a, C00b,
CJM], as well as its dual bundle V*Y f (Rn T*Y)1K Y which is called
the bundle of positive densities on Y.

Let YYY0 f DDD0 (Y, V*Y7
Y

Y*) be the vector space of all smooth sec-

tions Y KV*Y7
Y

Y* which have compact support. A topology on this
space can be introduced by a standard procedure [Sc]; its topological du-
al will be denoted as YYY f DDD(Y, Y) and called the space of generalized
sections, or distribution-sections of the given classical bundle, while YYY0

is called the space of test sections. In particular, a sufficiently regular or-
dinary section s : Y KY can be seen as a generalized section by the
rule

as , ub 4�
Y

as(y),u(y)b , u� YYY0 .

On turn, YYY has a natural topology [Sc], and its subspace YYY*0 f DDD0 (Y, Y)
of all smooth sections with compact support is dense in it. Some particu-
lar cases of generalized sections are that of r-currents (YfRr T*Y, r�
�N) and that of half-densities (1) (Yf (V*Y)1/2).

(1) The «square root» bundle (V*)1/2 is characterized, up to isomorphism, by
(V*)1/27 (V*)1/2

`V*.
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The topological dual of YYY*0 is YYY*f DDD(Y, V*Y7
Y

Y*), that is

the space of generalized Y*-valued densities on Y, or the adjoint space
of YYY.

REMARK. If u� YYY and f� YYY* then, possibly, the contraction au , fb
may be defined even if neither one is a test section.

Generalized sections can be naturally restricted to any open subset
Y
a

% Y of the base manifold, namely there is a natural linear projection
YYY K YYY

a
f DDD(Y

a
, Y

a
), where Y

a
»4p21 (Y

a
). Accordingly, if (bi ) is a local

frame of Y, a generalized section z� YYY has the local expression z4z i bi

with z i � DDD(Y
a
, C).

There is no inclusion YYY
a

%K YYY, since elements in YYY
a

cannot be natural-
ly extended to generalized sections on Y (such extension may not exist at
all). However, a gluing property holds: if ]Yi ( is a covering of Y and
]u i � YYYi ( is a family of generalized sections such that u i and u j coincide
on Yi OYj , then there exists a unique u� YYY whose restriction to Yi coin-
cides with u i (i.

Let p8 : Y8K Y8 be another classical vector bundle and W : YKY8 a
smooth fibred isomorphism over the diffeomorphism W: Y K Y8; namely,
p8 i W4 W i p. Clearly, W determines a natural isomorphism between the
spaces of ordinary sections of the two bundles; one easily sees that this
restricts to an isomorphism of the corresponding spaces of test sections,
and extends to an isomorphism W *: YYY K YYY8. One also has the adjoint
construction. It is not difficult to see that W * turns out to be a continuous
isomorphism (the proof is essentially the same as given in [C00a] for the
particular case of scalar-valued half-densities).

2. F-smoothness in distributional spaces.

Let I%R be an open interval. A curve a : IK YYY is said to be F-
smooth (Frölicher-smooth) if the map

aa , ub : IKC : t O aa(t), ub

is smooth for every u� YYY0 . Accordingly, a function f : YYY KC is called
F-smooth if f i a : IKC is smooth for all F-smooth curve a, and a map
F : YYY K WWW between any two distributional spaces is called F-smooth if
f i F i a is smooth for all F-smooth a : IK YYY and f : WWW KC.



Daniel Canarutto74

It can be proved [Bo] that a function f : MKR, where M is a classical
manifold, is smooth (in the standard sense) iff the composition f i c is a
smooth function of one variable for any smooth curve c : IKM. Thus one
has a unique notion of smoothness based on smooth curves, including
both classical manifolds and distributional spaces. This is convenient for
dealing with smoothness relatively to product spaces such as M3 YYY;
moreover, one has a natural notion of smoothness for maps MK YYY and
YYY KM. Hence, one may simply write smooth for F-smooth.

Let CCCYYY be the set of all F-smooth curves in YYY; take any i�NN ]0(

and consider the following binary relation in R3 CCCYYY :

(t , a) A
i

(s , b) ` Dk aa , ub(t) 4Dk ab , ub(s) (u� YYY0 , k40, R , i .

Then clearly A
i

is an equivalence relation; the quotient

Ti YYY »4 CCCYYY OA
i

will be called the tangent space of order i of YYY. The equivalence class of
(t , a) � CCCYYY will be denoted by ¯ i a(t). Obviously, Ti YYY is a fibred set over
YYY; the fibre over some l� YYY will be denoted by Ti

l YYY. In particular
T0 YYY 4 YYY.

The set T YYY »4T1 YYY is called simply the tangent space of YYY, and
¯a(t) »4¯1 a(t) is called the tangent vector of a at a(t). Any element in
T YYY can be represented as ¯a(0), for a suitable curve a defined on a
neighbourhood I of 0. It is not difficult to see that there is a natural
isomorphism

YYY 3 YYY KT YYY : (l , m) O ¯[l1 tm]t40 .

PROPOSITION 2.1. Let AAA and BBB be smooth spaces (each one is either
a classical manifold or a distributional space) and F : AAA K BBB a
smooth map. Then there exists a unique smooth map TF : T AAA KT BBB,
called the tangent prolongation of F, such that for every smooth curve
a : IK AAA one has

¯[F i a](t) 4TF i ¯a(t), t� I .

The proof of this non-trivial statement is omitted because it is essen-
tially similar to that of the particular case considered in [C00a]. It is not
difficult to see that tangent prolongations behave naturally in terms of
any compositions.
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3. Distributional bundles.

The basic classical geometric setting underlying distributional bun-
dles is the following. One considers a classical 2-fibred bundle

VK
q

EK
q

B ,

where q : VKE is a complex (or real) vector bundle, and the fibres of
the bundle EKB are smoothly oriented. Moreover, one assumes that
q i q : VKB is also a bundle (not a vector bundle in general), and that
for any sufficiently small open subset X%B there are bundle trivializa-
tions

(q , y) : EX KX3Y , (q i q , y) : VX KX3Y

(here EX »4 q21 (X ) and the like) with the following projectability prop-
erty: there exists a surjective submersion p : YK Y such that the
diagram

VX

qI
EX

K
(q i q, y)

K
(q, y)

X3Y

I1X3p

X3Y

commutes; this implies that YK Y is a vector bundle, not trivial in
general.

The above conditions are easily checked to hold in many cases which
are relevant for physical applications (as in the cases considered in § 11
and § 12). In particular, the above conditions hold if V4E3

B
W where

WKB is a vector bundle, if V4VE (the vertical bundle of EKB) and if
V is any component of the tensor algebra of VEKE.

Let n be the dimension of the fibres of EKB. The orientation re-
quirement implies that Rn VEKE is a trivializable bundle with smooth-
ly oriented fibres, and one has the smooth bundle V* E»4 (Rn V* E)1K

KE. Then for each x�B one may consider the distributional space VVV x »4

4 DDD(Ex , Vx ), and obtains the fibred set

[ : VVV f DDDB (E , V) »4 I2I
x�B

VVV x KB .

For any two classical local bundle trivializations (q, y) and (q i q, y) as
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above, let
Y : VVV X f[21 (X) K YYY f DDD(Y , Y) ,

Yx »4 (yx )* , x�X .

Then ([ , Y) : VVV X KX3 YYY is a local bundle trivialization of VVV KB.
Moreover, if (q, y8 ) : EX8KX83Y8 and (q i q, y8 ) : VX8KX83Y8 are two
other classical bundle trivializations related by the same projectability
property, then ([ , Y8 ) i ([ , Y)21 : XOX83 YYY KXOX83 YYY8 is F-
smooth and linear. Hence, suitable classical bundle atlases on VKB and
EKB determine a linear F-smooth bundle atlas on VVV KB, which is
said to be an F-smooth distributional bundle (2). Clearly, VVV turns out to
be an F-smooth space in a natural way: a curve a : IK VVV is defined to be
F-smooth if ([ , Y) i a is such for any local F-smooth trivialization; in
general, the F-smoothness of any map from or to VVV is equivalent to the
F-smoothness of its local trivialized expressions.

If a is F-smooth then it is natural to set

T(([ , Y) i a) 4 (T([ i a), T(Y i a)) : I3RKTX3T YYY .

One says that two F-smooth curves are first-order equivalent at some
point if their trivialized expressions are such; in this way one obtains the
definition of the tangent space T VVV . Obviously, this is a fibred set over
VVV ; a local bundle trivialization ([ , Y) of VVV yields the local bundle
trivialization

T([ , Y) : T VVV X K T(X3 YYY) f TX3T YYY ,

and the transition maps between two induced trivializations are F-
smooth and linear. Hence p VVV : T VVV K VVV , the tangent bundle of VVV , is an
F-smooth vector bundle. One has another F-smooth bundle with the
same total F-smooth space, namely

T[ : T VVV K TB : ¯a O ¯(q i a) .

Moreover one has the vertical subbundle

V VVV »4Ker T[%T VVV ,

the natural identification VVVV 4VVV 3
B

VVV and the exact sequence over VVV

0 KV VVV KT VVV K VVV 3
B

TBK0 .

(2) Not every trivialization of a distributional bundle derives from trivializa-
tions of the underlying classical 2-fibred bundle.
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The subbundle of T* B7
VVV

T VVV which projects over the identity of TB

is called the first jet bundle, denoted by J VVV K VVV . This is an affine bun-
dle over VVV , with «derived» vector bundle T* B7

VVV
V VVV . The restric-

tion of T* [7T([ , Y) is a local bundle trivialization which is denoted by

J([ , Y) : J VVV X KJ(X3 YYY) ` YYY 3(T* X7 YYY) .

If xf (xa ) : XKRm is a coordinate chart then one has the fibred
charts

(x , Y) : VVV KRm 3 YYY ,

(xa , Y , x
.

a , Y
.
) »4 T(x , Y) : T VVV KRm 3 YYY 3Rm 3 YYY ,

(xa , Y , Ya ) »4J(x , Y) : J VVV KRm 3 YYY 3(Rm 7 YYY) .

Tangent prolongations of F-smooth maps involving VVV can be expressed
through local trivializations; in particular, if s : BK VVV is an F-smooth
section, then Ts : TBK T VVV projects over the identity of TB, so that it
can be viewed as a section js : BKJ VVV . Setting sY »4Y i s : BK YYY one
has

(xa , Y , x
.

a , Y
.
) i Ts4 TsY4 (xa , sY , x

.
a ,x

.
a ¯a sY ) ,

(xa , Y , Ya ) i js4JsY4 (xa , sY , ¯a sY ) .

For maps f : VVV KR one introduces the notation

¯Y f»4Vf i (1VVV 3 ([ , Y)21) : VVV 3 YYY KR ,

and obtains the local coordinate expression

df»4pr1 i T f4¯a f dxa 1 (¯Y f) i dY .

REMARK. If Y
a

% Y is an open subset such that Y
a

»4p21 (Y
a

) is trivial-
izable, and (yi , yA ) : Y

a
KRn 3Rp is a linear bundle chart, then sY has a

coordinate expression whose components are scalar-valued distributions
s A � DDDX (Y

a
, R).

4. F-smooth fibred morphisms.

Let V8KE8KB8 another 2-fibred bundle with the same properties,
and [8 : VVV 8KB8 the induced distributional bundle. Let moreover
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F : VVV K VVV 8 be a fibred F-smooth map over the smooth map f : BKB8.
Then, similarly to the classical case, the tangent prolongation

TF : T VVV K T VVV 8

is a linear fibred morphism over F and a fibred morphism over
Tf : TBKTB8. setting FY8 »4Y8 i F : VVV K YYY8 one has (3)

(x8 , Y8 , x
.
8 , Y

.
8 ) i TF4 gf a 8 , FY8 , x

.
a ¯a f x8 , x

.
a ¯a FY81¯Y FY8

i Y
. h .

If moreover f is a diffeomorphism, then the restriction of f *7TF de-
termines a fibred morphism JF : J VVV KJ VVV 8 over F.

If F is linear over f, then one writes

FY8
Y »4¯Y FY84FY8

i ([ , Y)21 : XKLin (YYY, YYY8 ) ,

which is analogous to the matrix expression of a linear morphism in fi-
nite-dimensional case.

Let now W : VKV8 be a classical linear isomorphism over the fibred
diffeomorphism W : EKE8, which on turn is projectable over the diffeo-
morphism f : BKB8. Then one has the induced linear isomorphism
F»4W *: VVV K VVV 8 over B. In the domain of a local coordinate chart one
has (4)

(Fl)A 84 (FY8
Y lY )A 84 (W A 8

A l A ) i W
J, l� VVV ,

(¯a FY8
Y lY )A 84(¯a W A 8

A i WJ)(l A
i WJ)1[¯i (W

A 8
A l A ) i WJ] ¯a 8 W

Ji (¯a f a 8
i f

J
) ,

where back pointing arrows indicate the inverse maps. By using these
formulas one can write down the coordinate expressions of TF and JF.
As a special case, one also gets the transformation formulas in T VVV and
J VVV between any two charts induced by classical charts; a detailed treat-
ment of these aspects lies outside the scope of a short paper and will be
exposed in a future survey paper.

When V4VE, V84VE8 and W is a fibred diffeomorphism over f,
then one has the special case W4VW, which extends to any component of
the tensor algebra of VEKE. In particular, one is interested in the bun-

(3) These partial derivatives are naturally defined as a consequence of propo-
sition 2.1.

(4) The proof of the second formula is not difficult but somewhat delicate, as
one must take carefully into account the various involved compositions.
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dles of scalar q-densities, where q is a rational number, namely in the
distributional bundles DDDB (E , C7V2q E) where V2q Ef (V* E)q and
the like. One gets

¯a FY8 (l) 4 (¯i lY
i W

J) ¯a 8 W
Ji (¯a f a 8

i f
J

)NV W
J

Nq 1

1q(lY
i W

J) QNV W
J

Nq (¯i W i 8
i W

J
W) ¯a 8 ¯i 8 W

Ji (¯a f a 8
i f

J
) ,

where NV W
J

N denotes the vertical Jacobian determinant of W
J.

5. Distributional connections.

Similarly to the standard finite-dimensional case, a connection on the
distributional bundle VVV is defined to be an F-smooth section

÷ : VVV KJ VVV .

In the domain X%B of a local bundle chart (x , Y) : VVV X KRm 3 YYY one has
the local expression

÷a
Y »4Ya i ÷ : VVV K YYY .

The existence of global connections then follows from standard argu-
ments, using the paracompactness of B.

Basically, one deals with linear connections, that is connections ÷
which are linear morphisms over B. Then one writes

÷a
Y4÷a

Y
Y i Y , ÷a

Y
Y : XKEnd (YYY) .

If ÷a
Y8

Y8 is the expression of ÷ in a different fibred chart (x8 , Y8 ) over the
same domain X, then

÷a 8
Y8

Y8 4¯a 8 k
Ja Q (¯a KY8

Y1 KY8
Y i ÷a

Y
Y ) i KY

Y8 ,

where

K f (k , KY8
Y ) »4 (x8 , Y8 ) i (x , Y)21 : Rm 3 YYY KRm 3 YYY8

denotes the transition map.
As in the finite-dimensional case, a connection yields a number of

structures (whose assignment is actually equivalent to that of the con-
nection itself). First, ÷ can be viewed as a linear map VVV 3

B
TBK T VVV ,
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and (p VVV , T[) i ÷ is the identity of VVV 3
B

TB. The image

H÷ VVV »4÷(VVV 3
B

TB)

is a vector subbundle of T VVV K VVV , with m-dimensional fibres; the re-
striction of ÷ i (p VVV , T[) is the identity of H÷ VVV . If v : BK TB is a
smooth vector field, then ÷v : VVV K T VVV is an F-smooth vector field,
called its horizontal lift, with coordinate expression

x
.

a
i ÷v 4v a , Y

.
i ÷v 4v a ÷a

Y .

One also has the complementary map

V»412÷ : T VVV KV VVV f VVV 3
B

VVV ,

so that the map (÷ i (p VVV , T[), V) determines the decomposition

T VVV 4H÷ VVV 5
VVV

V VVV .

Let s : BK VVV be an F-smooth section. The covariant derivative of s
is defined to be the linear morphsim over B

˜sf˜[÷] s»4pr2 i V i Ts : TBK VVV .

If v : BK TB is a vector field, then one also writes ˜v s»4˜s i v. The lo-
cal coordinate expression of the covariant derivative is

(˜s)Y »4Y i ˜s4 x
.

a (¯a sY2÷a
Y

i s) .

The curvature tensor of a linear connection ÷ can be defined, as in
the finite-dimensional case, as the section D : BKR2 T* B7

B
End (VVV )

given by

D(u , v) s»4˜u ˜v s2˜v ˜u s2˜[u , v] s , u , v : BK TB , s : BK VVV ,

which has the local chart expression

DY
Y4Dab

Y
Y dxa Rdxb 42(¯b ÷a

Y
Y1÷a

Y
Y i ÷b

Y
Y ) dxa Rdxb .

A more general definition of curvature, valid also in the non-linear
case, can be given in terms of the Frölicher-Nijenhuis bracket [FN, MK,
MM, KMS]. First, one must define the Lie bracket of any two F-smooth
vector fields W , Z : VVV K T VVV . Using the canonical involution s : TT VVV K
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K TT VVV , and TZ i W2s(TW i Z) : VVV KVT VVV ` T VVV 3
VVV

T VVV , one sets

[W , Z] »4pr2 (TZ i W2s(TW i Z) ) : VVV K T VVV ,

which has the local expression

[W , Z]a 4W b ¯b Z a 2Z b ¯b W a 1¯Y Z a
i W Y2¯Y W a

i Z Y ,

[W , Z]Y4W b ¯b Z Y2Z b ¯b W Y1¯Y Z Y
i W Y2¯Y W Y

i Z Y .

The Frölicher-Nijenhuis bracket of F-smooth tangent-valued forms
VVV KRT* B7

VVV
T VVV can now be introduced by a straightforward exten-

sion of the standard definition, namely by the requirement that for de-
composable forms one has

[a7W , 7Z] 4aR7[W , Z]1aR (W . b)7Z2 (Z . a)R7W1

1(21)r (ZNa)Rdb7W1 (21)r da(WNb)7Z ,

where a : BKRr T* B, b : BKRs T* B, and W , Z : BK TB.
If ÷ : VVV KJ VVV is an F-smooth connection then its curvature is de-

fined to be

D»42[÷ , ÷] : VVV KR2 T* B7
VVV

V VVV .

6. Adjoint connections.

The distributional bundle VVV* »4 DDDB (E , V* E7
E

V*) KB is called

the adjoint bundle of VVV KB; its fibre type is YYY*, the adjoint of YYY

(§ 1).
An endomorphism A�End (DDD) of an arbitrary distributional space DDD

determines a dual endomorphism A 8�End (DDD0 ) of the test space, de-
fined by A 8 u»4u i A, that is aA 8 u , fb 4 au , Afb. Moreover it may hap-
pen that A 8 can be extended to an endomorphism A * of the distribution-
al completion DDD* of DDD0 ; this possible extension is called the adjoint of
A. This requirement is fulfilled, in particular, by the polynomial deriva-
tion operators [C01].

PROPOSITION 6.1. Let the F-smooth connection ÷ : VVV KJ VVV be
such that, in every local F-smooth chart (x , Y) : VVV KX3 YYY, the
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local expression ÷Y : TBKEnd (YYY) admits an adjoint (÷Y )* : TBK

KEnd (YYY*).
Then, there exists a unique F-smooth connection ÷*: VVV*KJ VVV*

such that Jc i (÷ , ÷*) 40, where c : VVV 3
B

VVV*KB3C : (s , l) O ([(s),

alb, s). Its chart expression is

÷*aY
Y42(÷a

Y
Y )* ,

that is

(˜*v l)Y4v a (¯a l Y2÷*aY
Y

i l Y ) 4v a (¯a l Y1l Y i ÷a
Y
Y ) .

Equivalently, ÷* is determined by the requirement that

v . al , sb 4 a˜v* l , sb1 al , ˜v sb

hold for all smooth sections l : BK VVV* and s : BK VVV , and for all vec-
tor field v : BK TB , whenever all contractions are well-defined.

PROOF. Let ÷*: VVV*KJ VVV* be any linear connection; denote by zf

fpr2 the (trivial) fibre coordinate on B3CKB, and observe that

Jc i (÷ , ÷*) : VVV 3
B

VVV*KC3T* B

has the chart expression

za i Jc i (÷ , ÷*)(s , l) 4 al Y , ÷a
Y

Y (sY )b1 a÷*aY
Y (l Y ), sY b ,

which holds for any (s , l) � VVV 3
B

VVV* whenever all contractions are well-

defined. This expression vanishes iff ÷*aY
Y42(÷a

Y
Y )*. If s : BK VVV 0*% VVV

is a section of the subbundle of test maps in VVV , one has ˜v s : BK VVV in
general. For every u : BK VVV 0 , the map

˜*v u : VVV 0*KC : s O v . as , ub2 a˜v s , ub

is linear continuous, hence ˜*v u : BK VVV*. Its chart expression is

as , ˜*v ub 4v a ¯a as Y , uY b2 av a ¯a s Y , uY b1 av a ÷a
Y

Y i s Y , uY b 4

4 as Y , v a (¯a uY1÷a
Y

Y )* uY b .

By continuity, the operation ˜v* can be extended to all sections l : BK

K VVV*, and is seen to define a covariant derivative. r
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REMARK. The adjoint connection ÷* is not reducible to the sub-
bundle VVV 0 KB.

REMARK. Similarly to the finite-dimensional case, a distributional
connection ÷ determines connections on any tensor bundle over B con-
structed from VVV KB. Together with its possible adjoint ÷*, it deter-
mines connections on the tensor algebra of VVV KB and its sub-
spaces.

7. Connection induced by a classical connection.

In this section, I’ll show that a suitable underlying classical structure
determines a connection on a distributional bundle (though not all distri-
butional connections arise in this way).

Consider again the classical 2-fibred bundle VKEKB as before. By
VV and JV one denotes the vertical and jet spaces of V relatively to base
B, while vertical and jet spaces relatively to base E will be denoted by
VE V and JE V.

A connection G : VKJV is said to be projectable if there is a connec-
tion G : EKJE such that the diagram

V
qI
E

K
G

K
G

JV

IJq

JE

commutes; moreover, G is said to be linear if it is a linear morphism over G.
Let (xa , yi , yA ) : VKRm 3Rn 3Rp be a local 2-fibred coordinate

chart, linear over (xa , yi ) : EKRm 3Rn ; the coordinate expression of a
linear projectable connection is then

G4dxa 7 (¯xa 1G a
i ¯yi 1G a

A
B yB ¯yA ) ,

G4dxa 7 (¯xa 1G a
i ¯yi ) ,

with G a
i , G a

A
B : EKR.

A smooth section s : EKV can be viewed as a section of a functional
bundle, whose fibre over each x�M is the space of all smooth sections
Ex KVx ; in the case when one considers local sections EKV, these must
be defined on a «tubelike» open subset of E. Moreover, this functional
bundle can be viewed as a subbundle of VVV »4 DDDB (E , V) KB.
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Observe now that the above s can be viewed as the vertical-valued
0-form

(1V , s) : VKV3
E

VfVE V% TV ,

which has the same coordinate expression s4s A ¯yA . One may also view
G as a projectable tangent-valued 1-form

G : VK T* M7
V

TV% T* V7
V

TV ,

and consider the Frölicher-Nijenhuis bracket

[G , s] : VK T* V7
V

TV .

Actually, [G , s] turns out to be a basic vertical-valued form VK

K T* M7
V

VE V, as one immediately sees from its coordinate expression

[G , s] 4 (¯a s A 1G a
i ¯i s A 2G a

A
B s B ) dxa 7¯yA .

From this, it is clear that [G , s] can be extended to the case when s is a
section BK VVV ; moreover, it can be seen as the covariant derivative of a
linear connection ÷ : VVV KJ VVV , which in the considered chart has the ex-
pression ÷a

Y
Y (sY ) 4G a

A
B s B 2G a

i ¯i s A, that is

(÷a
Y

Y )A
B 4G a

A
B 2d A

B G a
i ¯i .

It is not difficult (just a somewhat intricated calculation) to check that
the above expression transforms in the right way under the distribution-
al bundle chart transformation induced by a classical chart transforma-
tion.

There is a natural relation between the curvature R of G and
the curvature D of the induced distributional connection ÷. Actually
one has R4dxa Rdxb (Rab

i ¯i 1Rab
A

B yB ¯A ) with

Rab
i 42¯a G b

i 1¯b G a
i 2G a

j ¯j G b
i 1G b

j ¯j G a
i ,

Rab
A

B42¯a G b
A

B1¯b G a
A

B2G a
j ¯j G b

A
B1G b

j ¯j G a
A

B2G b
A

C G a
C

B1G a
A

C G b
C

B .

A direct calculation then gives

Dab
Y

Y sY4Rab
A

B s B 2Rab
i ¯i s A ,
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that is, simply, the Frölicher-Nijenhuis bracket

D(s) 42[R , s] .

8. Induced connection and horizontal transport.

In this section it will be showed that the notion of distributional con-
nection induced by a classical connection arises in a natural and some-
what more intuitive way in terms of the parallel (i.e. horizontal) trans-
ports related to the two connections.

Let I%R be an open neighbourhood of 0, and c : IKB a smooth
curve. For any v0 �Vc(0) one has, locally, a unique G-horizontal curve
Cv0

: Iv0
KV, with Iv0

% I, such that Cv0
(0 ) 4v0 . Moreover Cv0

is linear pro-
jectable over Cv0

: Iv0
KE, the horizontal G-lift of c starting from

v0 fq(v0 ).
If t� Iv0

, so that the horizontal transport of v0 �Vc(0) to Vc(t) is defined,
then there is a neighbourhood U%Vc(0) of v0 such that the horizontal
transport of every u�U to Vc(t) is defined too (this is a consequence of
the continuity of G). From a general result in the theory of ordinary dif-
ferential equations, on the other hand, it follows that horizontal trans-
port relatively to a linear connection on a vector bundle determines an
isomorphism of any two fibres along any smooth curve connecting their
base points. This is not the case of the presently considered setting,
since VKB is not a vector bundle in general. But the whole fibre Vv0

is
linearly sent to the whole fibre Vvt

, where Cv0
(t) f vt �Ec(t) ; namely hori-

zontal transport determines an isomorphism between these two fi-
bres.

Momentarily forgetting these locality issues, assume horizontal
transport along c determines, for all t� I, a fibred isomorphism
Ct : Vc(0) KVc(t) over a diffeomorphism Ct : Ec(0) KEc(t) . In other terms
one has a 1-parameter familiy of fibred isomorphisms over a 1-parameter
familiy of diffeomorphisms, denoted by

C : I3Vc(0) KV , C : I3Ec(0) KE .

Let now l� VVV c(0) f DDD(Ec(0) , Vc(0) ). Then

(Ct )* l� VVV c(t) f DDD(Ec(t) , Vc(t) ) .



Daniel Canarutto86

Namely, the classical horizontal transport locally determines a lift

C*: I3 VVV c(0) K VVV

of the base curve c. It can be seen that this is exactly the horizontal lift of
c relatively to the distributional connection ÷ induced by G, namely
that

÷ : TM3
M

VVV K T VVV : (¯c(0), l) O ¯(C* l)(0) .

This result follows from a coordinate calculation; from the definition of a
horizontal curve one has

¯

¯t
Ci (0 , v0 ) 4 c

.a (0) G a
i (v0 ) ,

¯

¯t
C A

B (0 , v0 ) 4 c
.a (0) G a

A
B (v0 ) ,

while the induced horizontal curve C* l : IK VVV can be written, by some
abuse of language, as

(C* l)A (t , y) 4C A
B (t , C

J
(t , y) ) l B (C

J
(t , y) ) .

Calculating the tangent vector ¯(C* l) : IK T VVV is now a straightfor-
ward (though not immediate) task; using the relation between G and ÷
one gets the claimed result.

As already observed, in general this horizontal lift of c through ÷
may not exist for every l� VVV c(0) , but it can defined for the restriction of
l to a suitable open subset. Furtherermore, the horizontal lift construc-
tion can be done whenever l has compact support K%Ec(0) , by the follow-
ing argument. For every e�Ec(0) choose an open neighbourhood of e, U%
%Ec(0), such that the restriction of l to U is horizontally transported over c
up to t4 tU D0; from this open covering of K select a finite subcovering
UUU, and define tK »4 min ]tU , U� UUU(. Then by a partition of unity sub-
jected to UUU one has horizontal transport of l over c up to t4 tK .

9. Induced connections and tensor products.

Consider another 2-fibred bundle V8KE8KB over the same lower
base manifold B. The fibred tensor product of V and V8 is defined to be
the 2-fibred bundle

W»4V7
F

V8KF»4E3
B

E8KB .
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Let (xa , yi , yA ) and (xa , yi 8 , yA 8 ) be 2-fibred coordinate charts on V and
V8; then one has induced coordinates (xa , yi , yA , yi 8 , yA 8 , wAA 8 ) on W,
where

wAA 8
fyA 7yA 8 i.e. wAA 8

i 74yAyA 8,

7 : V3
B

V8KW : (v , v 8 ) O v7v 8 .

The jet prolongation J7 : JV3
B

JV8K JW is characterized by the re-
quirement that the diagram

commutes for any two sections s : BKV, s 8 : BKV8. Thus one finds the
coordinate expression

wa
AA 8

i J74ya
A yA 81yA ya

A 8 .

Let now G : VK JV and G 8 : V8K JV8 be linear projectable connec-
tions over G : EK JE and G8 : E8K JE8, respectively; then there exists
a unique connection G7G 8 : WK JW such that the diagram

JV3
B

JV8

(G, G 8)H
V3

B
V8

K
J7

K
7

JW

HG7G 8

W

commutes; moreover, G7G 8 is linear projectable over

(G, G8 ) : E3
B

E8K JE3
B

JE8 ,

and its ccordinate expression is

(ya
i , ya

A , ya
i 8 , ya

A 8 , wa
AA 8 ) i (G7G 8 ) 4

4 (G a
i , G a

A
B yB , G a

i 8 , G a
A 8

B 8 yB 8 , G a
A

B yB yA 81yA G a
A 8

B 8 yB 8 ) ,

where the components of G 8 are recognized by primed indices.
The distributional bundle WWW »4 DDDB (F , W) KB is easily seen to co-
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incide with the fibred tensor product of VVV and VVV 8, namely

WWW »4 DDDM (F , W) 4 DDDM (E3
M

E8 , V 7
E3M E8

V8 ) 4

4 DDDM (E , V) 7
M

DDDM (E8 , V8 ) f VVV 7
M

VVV 8 .

Let ÷ : VVV K J VVV and ÷8 : VVV 8K J VVV 8 be the distributional connections in-
duced by G and G 8. These yield, exactly by the same argument which is
valid in the finite-dimensional case, a linear connection ÷7÷8 : WWW K

K J WWW ; it is not difficult to proof:

PROPOSITION 9.1. The tensor product connection ÷7÷8 is exactly
the distributional connection associated with the classical connection
G7G 8. For v� WWW one has

(÷7÷8 )a
YY8

YY8 v
YY84G a

A
B v BA 82G a

i ¯i v AA 81G a
A 8

B 8 v
AB 82G a

i 8 ¯i 8 v
AA 8 .

If E4E8 then one also has the 2-fibred bundle V7
E

V8KEKB. The

distributional bundle DDDM (E , V7
E

V8 ) is different from VVV 7
M

VVV 8. If

G : VK JV and G 8 : V8K JV8 are now linear projectable connections
over the same connection G : EK JE, then, besides G7G 8, they also de-
termine a different kind of tensor connection, that is

G7G 8 : V7
E

V8K J(V7EV8 ) ,

which is characterized by the commuting diagram

J(V3
B

V8 ) f JV3
JE

JV8

(G, G 8)H
V3

E
V8

K
J7

K
7

J(V7
E

V8 )

HG7G 8

V7
E

V8

and has the coordinate expression

(ya
i , ya

A , ya
A 8 , wa

AA 8 ) i (G7G 8 ) 4

4 (G a
i , G a

A
B yB , G a

A 8
B 8 yB 8 , G a

A
B yB yA 81yA G a

A 8
B 8 yB 8 ) .

The induced distributional connection

÷7÷8 : DDDM (E , V7
E

V8 ) K J DDDM (E , V7
E

V8 )
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has the cordinate chart expression

(÷7÷8 )a
YY8

YY8 v
YY84G a

A
B v BA 81G a

A 8
B 8 v

AB 82G a
i ¯i v AA 8 .

10. Induced connection: vertical bundle and adjoint case.

A linear projectable connection G : VK JV, as considered in the pre-
vious sections, determines a unique «dual» connection G*: V*K JV*;
this is again linear projectable over the same G, and is characterized by

Jc i (G , G*) 40 ,

where c : V3
E

V*KE3C denotes the duality contraction; it has the co-

ordinate expression

G*aA
B 42G a

A
B .

On turn, G* determines a connection on the distributional bundle
DDDB (E , V*). In general, this is not the adjoint connection ÷* of ÷, which
is actually a connection on a different distributional bundle. In order to
study the relation between ÷* and the classical connection G one has to
perform some further constructions.

The first step consists in the vertical extension of G : EK JE. Recall-
ing the natural isomorphism JVE`VJE, one gets the morphism

G
q

»4VG : VEKJVE ,

which turns out to be a linear projectable connection over G. Its coordi-
nate expression is

G
q

a
i
j 4¯j G

i
a .

Its dual connection G
q

*: V* EKJV* E has the coordinate expression

(G
q

*)aj
i 42G

q

a
i
j 42¯j G

i
a .

Now one finds induced linear projectable connections over G in all
tensor product bundles over EKB constructed from VE and V* E. Most
noticeably, one has projectable linear connections over G on the 2-fibre
bundles

Rr V* EKEKB , r�N ,

V* EKEKB ,
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and, using G, in their tensor products with V and V* over E. In particu-
lar, the connection G× : V* EK JV* E has the coordinate expression

G×a 4 (G
q

*)ai
i 42¯i G i

a .

All these classical connections determine linear connections on the
corresponding distributional bundles, and, in particular, in the distribu-
tional bundle

VVV* »4 DDDB (E , V* E7
E

V*) .

The classical connection

G 8f (G×7G*) : V* E7
E

V*K J(V* E7
E

V*) ,

which is again linear projectable over G, has the coordinate expres-
sion

zBa i G 84 (2d B
A ¯i G i

a 1G*aB
A ) yA 42(d B

A ¯i G i
a 1G a

A
B ) yA ,

where (zB ) and (yA ) are the induced coordinates in the fibres of
V* E7

E
V*KE and V*KE, respectively.

Now, G 8 induces a linear distributional connection ÷8 : VVV*K J VVV*; if
t : BK VVV* is an F-smooth section, with coordinate expression t4

4t A dn y7yA, then one finds

÷8aY
Y t YB

4G 8aB
A t A 2G a

i ¯i t B 42G a
A

B t A 2¯i G a
i t B 2G a

i ¯i t B .

Now it is a straightforward matter to proof:

PROPOSITION 10.1. The distributional connection ÷8 : VVV*K J VVV*
coincides with the adjoint connection ÷* of ÷ : VVV K J VVV (proposition
6.1).

11. Quantum Dirac connection.

Let (M , g) be an Einstein spacetime. A time map is a bundle t : MK

KT, where T is an oriented 1-dimensional real manifold whose fibres Mt f

f t21 (t), t�T, are spacelike (this is one possible extension of the notion of
observer to the curved spacetime case). The assignment of t determines a
splitting of the spacetime’s tangent bundle as TM4 TV M5

M
T» M,

where, for each x�M, Tx
V M is defined to be the timelike subspace of Tx M
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which is orthogonal to the spacelike fibre through x, and Tx
» M is the

subspace orthogonal to Tx
V M; namely T» MfVM is constituted by all

vectors tangent to the spacelike fibres.
The bundle MKT has a natural trivialization (t , x) : MKT3X, de-

termined by the integral lines of any vector field MK TV M: the family of
these lines can be identified with the fibre type X of t. It should be noted
that, in general (differently from the flat case), the manifolds T and X do
not inherit distinguished metric structures. One may choose adapted co-
ordinate charts (xa ) 4 (xi , x4 ) on M, determined by a chart (x4 ) on T and
a chart (xi ) on X. Obviously, one has g4 i 40, i41, 2 , 3.

Besides adapted charts, it is also convenient to work with a tetrad,
which is defined to be an ortonormal frame (U l ) f (U 0 , U j ) such that
U 0 : MK TV M and U j : MK T» M, j41, 2 , 3. One also sets ¯xa 4

4U a
l U l , with U a

l : MKR.
The given time and spacetime orientations of M yield a space orienta-

tion, namely an orientation of each Mt ; one has the positive semi-vector
bundle

V» »4 (R3 T» M)1%R3 TMKM ,

and the spacetime volume form can be decomposed as h4U 0 Rh 0 ,
h 0 : MKV»*. It is not difficult to see that the spacetime connection de-
termines connections on TV MKM and T» MKM by the rules

˜a
V u»4 (˜a u)V , u : MK TV M ,

˜a
» v»4 (˜a u)» , v : MK T» M ,

and that ˜V U 0 40, ˜» h 0 40.
Next, consider a 4-spinor bundle (see also [CJ, C00b] for details);

this is defined to be a complex vector bundle WKM with 4-dimensional
fibres, endowed with a fibred Hermitian metric k with signature (1122),
a Clifford map g : TMKEnd (W) over M fulfilling k(g(v) c 8 , c) 4

4k(c 8 , g(v) c) ((v , c 8 , c) � TM3
M

W3
M

W, and a k-preserving linear

connection G4 : WKJW such that ˜[G7G4] g40. Then, in suitable linear
fibre coordinates, G4 is related to the spacetime connection G by the
expression

G4a
a

b4 iAa da
b1

1

4
G a

lm (g l g m )a
b , g lfg(U l ) , a , b41, 2 , 3 , 4 ,

where the functions Aa : MKR can be seen as the components of the
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connection induced on R2 SKM, S%W being a maximal k-isotropic sub-
bundle (2-dimensional fibres). The time fibration yields a further Hermi-
tian structure h in the fibres of W, given by

h(c 8 , c) »4k(g 0 c 8 , c) 4k(c 8 , g 0 c) ,

which turns out to have positive signature.
The Dirac equation for a (generalized) section c : MKW,

igl ˜l c2mc1
i

2
Tl gl c40 , m�R1

(here gl »4g ln g n and Tl »4Tl
n
n , T being the torsion of the spacetime

connection), can be rewritten, after composition by g0 on the left, as (5)

¯4 c2G44 c1U 4
0 (U21 )h

j g 0 g j (¯h c2G4h c)1U 4
0 gimg 0 c1

1

2
Tl g 0 gl ch40 .

Let now WWW »4 DDDT (M , W) KT be the distributional bundle whose fi-
bre over any t�T is the space of all generalized sections of the classical
bundle WMt

KMt . This is called the bundle of 1-electron states, and a
section c : TK WWW is called a 1-electron quantum history. It is clear,
from the latter way of writing it, that the Dirac equation can be seen as
an equation for quantum histories of the form ˜[÷] c40, relatively to a
linear connection ÷ : WWW KJ WWW which I call the quantum Dirac connec-
tion. It should be noted that ÷ does not derive from a connection on the
underlying classical bundle (§ 7).

The adjoint bundle of WWW KT is

WWW*4 DDDT (M , V»* M7
M

W*) KT ,

its fibres being constituted by W*-valued generalized densities on the
spacelike fibres of t. Because the Hermitian metric k determines an anti-
isomorphism WDW*, the conjugate Dirac equation is a field equation
for (generalized) sections f : MKW*, namely

i˜l fgl1mf1
i

2
Tl fgl40 .

As one has a connection on V»*KM, determined by the spacetime con-

(5) As customary, here spinor indices are not explicitely shown.
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nection, and since ˜h 0 40, one can equivalently write the above equation
for f as a formally identical equation for f

q

fh 0 7f : MKV»* 7
M

W*

(coordinates expressions, however, are not exactly the same). One can
rewrite the equation for f

q

using the same procedure used for c above,
getting

0 4¯4 f
q

2(¯4 log det U» ) f
q

1f
q

G44 1

1U 4
0 (U21 )h

j [¯h f
q

2(¯h log det U» ) f
q

1f
q

G4 j ] g j g 0 1

1U 4
0 (2imf

q

g 0 1
1

2
Tlf

q

gl g 0 ) ,

where (U» ) denotes the «spacelike» matrix (U i
k ), k , i41, 2 , 3. Then,

one sees that the equation for f
q

can be also written in the form
˜[÷Y ] f

q

40, relatively to a connection ÷Y : WWW*KJ WWW*. Naturally, one
wishes to compare this connection with the distributional adjoint of ÷. It
turns out that ÷Y is not ÷*, but rather it is the adjoint of ÷ relatively to a
contraction mediated by the observer through g 0 (thus related to the po-
sitive Hermitian metric h). In fact:

PROPOSITION 11.1. Whenever all contractions are defined, one
has

¯4 af
q

, g 0 cb 4 a˜4 [÷Y ] f
q

, g 0 cb1 af
q

, g 0 ˜4 [÷] cb .

PROOF. By an argument similar to the proof of proposition 6.1 there
is a connection ÷8 : WWW*KJ WWW* determined by the requirement
¯4 af

q

, g 0 cb 4 a˜4 [÷8 ] f
q

, g 0 cb1 af
q

, g 0 ˜4 [÷] cb. The operator ˜4 [÷8 ]
can be calculated by assuming that f

q

and c are represented in each fibre
by ordinary sections, and f

q

in particular by a test section. Then contrac-
tions can be written as integrals, and integration by parts gives

˜4 [÷8 ] f
q

4¯4 f
q

1f
q

G44 1G
A

4
0
j f

q

g j g 0 1U 4
0 (U21 )h

j (¯h f
q

1f
q

G4h ) g j g 0 1

1¯h [U 4
0 (U21 )h

j ] f
q

g j g 0 1U 4
0 (U21 )h

j G
A

h
j
lf

q

gl g 0 1

2iU 4
0 mf

q

g 0 2
1

2
U 4

0 Tlf
q

gl g 0 .
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The comparison between ÷Y and ÷8 now involves some coordinate calcu-
lations by which one relates the derivatives of the tetrad components to
the torsion; eventually, these two distributional connections are seen to
coincide. r

By similar arguments, one can show that ÷* is related to the field
equation obeyed by c †, the adjoint of c through the positive Hermitian
metric h.

12. Connections in phase-distributional bundles.

A convenient way of describing quantum states consists in viewing
them as distributions on the phase bundle of the particle under considera-
tion. Let m� ]0(NR1 be the particle’s mass (6) and consider the subbun-
dle Km

1%TM over M constituted by all future-pointing vectors v�TM such
that g(v , v) 4m2 (using spacetime metric signature (1222)); the fibres
are 3-hyperboloids for mD0, null half-cones for m40.

Let (y0 , yi ) be (not necessarily orthonormal) coordinates in the fibres
of TMKM such that g00 D0 (namely y0 is timelike) and g0 i 40, i4

41, 2 , 3. Then the restrictions of (yi ) are coordinates in the fibres of
Km

1KM.
The following is a generalization of a result by Janyška and

Modugno [JM96].

PROPOSITION 12.1. The spacetime connection G is reducible to a
(non-linear) connection G m in Km

1KM ; in orthonormal fibred coordi-
nates (y0 , yi ), its expression is

(G m )a
i 4G a

i
0 (m 2 1d hk yh yk )1/2 1G a

i
j yj .

PROOF. The subbundle Km%TM over M, constituted by all v�TM (of
any time orientation) such that g(v , v) 4m 2, is characterized in coordi-

(6) For a precise physical setting, physical constants should be described as
elements of certain «unit spaces», namely 1-dimensional vector spaces or semi-
vector spaces [3, 5, 7, 12]. Accordingly, some geometric structures and fields, such
as the spacetime metric, the Dirac map g and a quantum history c have unit spa-
ces attached to them as tensor products. The metric, in particular, is valued into
L2

fL7L where L is the unit space of lengths. For the purpose of this paper,
however, one can simply work with (arbitrarily) chosen units.
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nates by the condition gln yl yn4m 2 ; hence, TKm is the submanifold of
TTM characterized by

gln yl yn4m 2 , x
.

a ¯a gln yl yn12gln yly
.

n40 ,

and VKm is the submanifold of Km3
M

TM characterized by gln yly
.

n40.

The vertical-valued form V : TTMKVTM` TM3
M

TM, associated

with the spacetime connection restricts to a form V m : TKmKKm3
M

TM;

using the above coordinates identities, and V4 (y
.

l2x
.

a G a
l
n yn ) ¯l , it is

immediate to check that V m is actually valued onto VKm , namely it is the
vertical-valued form associated with a connection on KmKM. On turn,
this is obviously reducible to the subbundle Km

1%Km of future-pointing
vectors. In orthonormal fibre coordinates, on TKm

1 one has

y0 4km 2 1d hk yh yk , gln yly
.

n40 , G aln yl yn40 ,

¨ y
.

i
i V m4 y

.
i 2x

.
a (G a

i
0 y0 1G a

i
j yj ) , y0 4km 2 1d hk yh yk . r

Let WKM be the spinor bundle introduced in § 11 and VfKm
13

M
W.

The couple (G m , G4) is a classical connection on the 2-fibred bundle VK

KKm
1KM, linear projectable over G m ; thus one gets (§ 7) a linear connec-

tion ÷ on the distributional bundle VVV »4 DDDM (Km
1 , V) KM (which is re-

lated to the quantum description of electrons and other massive d-spin
particles: here Km

1 is the particle’s phase bundle). Its coordinate expres-
sion is

(÷a
Y

Y )a
b4 G4a

a
b2da

b [G a
i
0 (m 2 1d hk yh yk )1/2 1G a

i
j yj ] ¯i .

For massless particles, the phase bundle is not K1
fK0

1 but rather
its projective bundle over M

PfPK1 »4K1 /R1 .

That is, P is the quotient of K1 by the action of the multiplicative group
R1 : its fibres are the sets of generatrices of the future null cone, namely
2-spheres (the so-called celestial spheres).
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PROPOSITION 12.2. There exists a unique connection G P : PK JP
such that the diagram

K1

PI
P

K
G 0

K
G P

JK1

IJP

JP

commutes, where P : K1KP is the natural projection.

PROOF. Let k�K1, r�R1 ; then, by means of coordinate expres-
sions, it is not difficult to see that G 0 (k), G 0 (rk) � JK1 are in the same
orbit of the prolonged R1-action. r

In order to write down a coordinate expression for G P , one may take
spherical fibre coordinates (r , u , f) associated with orthonormal fibre
coordinates (yi ). Then (u , f) are fibre coordinates for P, and after some
calculations one finds

(G P )a
u4cos u cos fG a

1
0 1cos u sin fG a

2
0 2sin uG a

3
0 1
1cos fG a

1
3 1sin fG a

2
3 ,

(G P )a
f42G a

1
2 1

1
1

sin u
(2sin fG a

1
0 1cosfG a

2
0 2cos u sin fG a

1
3 1cos u cos fG a

2
3 ) .

A classical photon field can be described as a section F : MKVP
(see [C00b] for details). Accordingly, in view of its quantum description
one is lead to consider the distributional bundle PPP »4 DDDM (P , VP). The
vertical prolongation of G P is a connection (§ 10) VPKJVP which is lin-
ear projectable over G P , thus one obtains a linear connection PPP K

K J PPP.
Applications of these constructions to quantum field theory will be

expounded in a forthcoming paper.
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[JM96] J. JANYŠKA - M. MODUGNO, Phase space in general relativity, in Differ-
ential Geometry and its applications, Proceedings of the 6th Interna-
tional Conference held in Brno, Czech Republic, 28 August-1 Septem-
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