Connections on Distributional Bundles.

Daniel Canarutto (*)

Abstract - A general approach to the geometry of distributional bundles is presented. In particular, the notion of connection on these bundles is studied. A few examples, relevant to quantum field theory, are discussed.

Introduction.

The notion of smoothness introduced by Frölicher [Fr] provides a general setting for calculus in functional spaces [FK, KM] and differential geometry in functional bundles [JM, KM, CK, MK]. An important aspect of that approach is that the essential results can be formulated in terms of finite-dimensional spaces and maps, without heavy involvement in infinite-dimensional topology and other intricated questions. In particular, the notion of a smooth connection on a functional bundle has been applied in the context of the «covariant quantization» approach to Quantum Mechanics [JM, CJM].

In a previous paper [C00a] I applied these ideas to the differential geometry of certain bundles whose fibres are distributional spaces, more specifically scalar-valued generalized half-densities. The main purpose of the present paper is to extend those results to the general case of the bundle of generalized «tube» sections of a 2-fibred «classical» (i.e. finite dimensional) bundle; basic notions of standard differential geometry such as tangent space, jet space, connection and curvature - are intro-
(*) Indirizzo dell'A.: Dipartimento di Matematica Applicata «G. Sansone», Via S. Marta 3, 50139 Firenze, Italia.

E-mail: canarutto@dma.unifi.it; http://www.dma.unifi.it/~ canarutto
duced for this case; adjoint connections and tensor product connections are shown to exist. Furthermore, a suitable connection on the underlying classical bundle is shown to yield a connection on the corresponding distributional bundle; some particularly important cases are the vertical bundle and its tensor algebra, which turn out to be closely related to the notion of adjoint connection. Finally, I consider a few examples which are relevant in view of applications to quantum field theory: the «Dirac connection» on the bundle of 1-electron states for a given observer, and the connections induced on the phase-distributional bundles describing electron and photon fields.

1. Generalized sections.

Let $\mathrm{p}: \boldsymbol{Y} \rightarrow \underline{\boldsymbol{Y}}$ be a real or complex classical vector bundle, namely a finite-dimensional vector bundle over the Hausdorff paracompact smooth real manifold $\underline{\boldsymbol{Y}}$. Moreover assume that $\underline{\boldsymbol{Y}}$ is oriented, let $n:=\operatorname{dim} \underline{\boldsymbol{Y}}$, and denote the positive component of $\wedge^{n} \mathrm{~T} \underline{\boldsymbol{Y}}$ by $\underline{V} \underline{\boldsymbol{Y}}:=$ $:=\left(\wedge^{n} \mathrm{~T} \underline{\boldsymbol{Y}}\right)^{+}$. Then $\mathbb{V} \underline{\boldsymbol{Y}} \rightarrow \underline{\boldsymbol{Y}}$ is a semi-vector bundle [C98, C00a, C00b, CJM], as well as its dual bundle $\mathbb{V}^{*} \underline{\boldsymbol{Y}} \equiv\left(\bigwedge^{n} \mathrm{~T}^{*} \underline{\boldsymbol{Y}}\right)^{+} \rightarrow \underline{\boldsymbol{Y}}$ which is called the bundle of positive densities on $\underline{\boldsymbol{Y}}$.

Let $\boldsymbol{Y}_{0} \equiv \boldsymbol{\omega}_{0}\left(\underline{\boldsymbol{Y}}, \mathbb{V}^{*} \underline{\boldsymbol{Y}} \underset{\underline{\boldsymbol{Y}}}{\otimes} \boldsymbol{Y}^{*}\right)$ be the vector space of all smooth sections $\underline{\boldsymbol{Y}} \rightarrow \mathbb{V}^{*} \underline{\boldsymbol{Y}}{\underset{\boldsymbol{Y}}{ }}_{\otimes}^{\boldsymbol{Y}^{*}}$ which have compact support. A topology on this space can be introduced by a standard procedure [Sc]; its topological dual will be denoted as $\boldsymbol{\mathcal { Y }} \equiv \boldsymbol{\omega}(\underline{\boldsymbol{Y}}, \boldsymbol{Y})$ and called the space of generalized sections, or distribution-sections of the given classical bundle, while \boldsymbol{y}_{0} is called the space of test sections. In particular, a sufficiently regular ordinary section $s: \underline{\boldsymbol{Y}} \rightarrow \boldsymbol{Y}$ can be seen as a generalized section by the rule

$$
\langle s, u\rangle=\int_{\underline{\boldsymbol{Y}}}\langle s(\mathrm{y}), \mathrm{u}(\mathrm{y})\rangle, \quad u \in \boldsymbol{y}_{0}
$$

On turn, \boldsymbol{y} has a natural topology [Sc], and its subspace $\boldsymbol{y}_{0}^{*} \equiv \boldsymbol{\omega}_{0}(\underline{\boldsymbol{Y}}, \boldsymbol{Y})$ of all smooth sections with compact support is dense in it. Some particular cases of generalized sections are that of r-currents $\left(\boldsymbol{Y} \equiv \wedge^{r} \mathrm{~T}^{*} \underline{\boldsymbol{Y}}, r \in\right.$ $\in \mathbb{N})$ and that of half-densities $\left({ }^{1}\right)\left(\boldsymbol{Y} \equiv\left(\mathbb{V}^{*} \underline{\boldsymbol{Y}}\right)^{1 / 2}\right)$.

[^0]The topological dual of \boldsymbol{y}_{0}^{*} is $\boldsymbol{y}^{*} \equiv \boldsymbol{\omega}\left(\underline{\boldsymbol{Y}}, \mathbb{V}^{*} \underset{\underline{\boldsymbol{Y}}}{\underset{\boldsymbol{Y}}{ }} \boldsymbol{Y}^{*}\right)$, that is the space of generalized \boldsymbol{Y}^{*}-valued densities on $\underline{\boldsymbol{Y}}$, or the adjoint space of \boldsymbol{y}.

Remark. If $\theta \in \boldsymbol{y}$ and $\phi \in \boldsymbol{Y}^{*}$ then, possibly, the contraction $\langle\theta, \phi\rangle$ may be defined even if neither one is a test section.

Generalized sections can be naturally restricted to any open subset $\underline{\boldsymbol{Y}} \subset \underline{\boldsymbol{Y}}$ of the base manifold, namely there is a natural linear projection $\overline{\boldsymbol{y}} \rightarrow \breve{\boldsymbol{Y}} \equiv \boldsymbol{\omega}(\underline{\boldsymbol{Y}}, \breve{\boldsymbol{Y}})$, where $\breve{\boldsymbol{Y}}:=\mathrm{p}^{-1}(\underline{\breve{Y}})$. Accordingly, if $\left(\mathrm{b}_{i}\right)$ is a local frame of \boldsymbol{Y}, a generalized section $\zeta \in \boldsymbol{y}$ has the local expression $\zeta=\zeta^{i} \mathbf{b}_{i}$ with $\zeta^{i} \in \boldsymbol{\Theta}(\underline{\breve{Y}}, \mathrm{C})$.

There is no inclusion $\breve{\boldsymbol{y}} \hookrightarrow \boldsymbol{y}$, since elements in $\breve{\boldsymbol{y}}$ cannot be naturally extended to generalized sections on $\underline{\boldsymbol{Y}}$ (such extension may not exist at all). However, a gluing property holds: if $\left\{\underline{\boldsymbol{Y}}_{i}\right\}$ is a covering of $\underline{\boldsymbol{Y}}$ and $\left\{\theta_{i} \in \boldsymbol{y}_{i}\right\}$ is a family of generalized sections such that θ_{i} and θ_{j} coincide on $\underline{\boldsymbol{Y}}_{i} \cap \underline{\boldsymbol{Y}}_{j}$, then there exists a unique $\theta \in \boldsymbol{\mathcal { Y }}$ whose restriction to $\underline{\boldsymbol{Y}}_{i}$ coincides with $\theta_{i} \forall i$.

Let $\mathrm{p}^{\prime}: \boldsymbol{Y}^{\prime} \rightarrow \underline{\boldsymbol{Y}}^{\prime}$ be another classical vector bundle and $\varphi: \boldsymbol{Y} \rightarrow \boldsymbol{Y}^{\prime}$ a smooth fibred isomorphism over the diffeomorphism $\underline{\varphi}: \underline{\boldsymbol{Y}} \rightarrow \underline{\boldsymbol{Y}}^{\prime}$; namely, $\mathrm{p}^{\prime} \circ \varphi=\underline{\varphi} \circ \mathrm{p}$. Clearly, φ determines a natural isomorphism between the spaces of ordinary sections of the two bundles; one easily sees that this restricts to an isomorphism of the corresponding spaces of test sections, and extends to an isomorphism $\varphi_{*}: \boldsymbol{y} \rightarrow \boldsymbol{y}^{\prime}$. One also has the adjoint construction. It is not difficult to see that φ_{*} turns out to be a continuous isomorphism (the proof is essentially the same as given in [C00a] for the particular case of scalar-valued half-densities).

2. F-smoothness in distributional spaces.

Let $\mathbb{I} \subset \mathbb{R}$ be an open interval. A curve $\alpha: \mathbb{I} \rightarrow \boldsymbol{Y}$ is said to be F smooth (Frölicher-smooth) if the map

$$
\langle\alpha, u\rangle: \mathbb{I} \rightarrow \mathbb{C}: t \mapsto\langle\alpha(t), u\rangle
$$

is smooth for every $u \in \boldsymbol{y}_{0}$. Accordingly, a function $\phi: \boldsymbol{y} \rightarrow \mathrm{C}$ is called F-smooth if $\phi \circ \alpha: \mathbb{I} \rightarrow \mathrm{C}$ is smooth for all F -smooth curve α, and a map $\Phi: \boldsymbol{Y} \rightarrow \mathcal{W}$ between any two distributional spaces is called F -smooth if $\phi \circ \Phi \circ \alpha$ is smooth for all F -smooth $\alpha: \mathbb{I} \rightarrow \boldsymbol{Y}$ and $\phi: \mathcal{W} \rightarrow \mathrm{C}$.

It can be proved [Bo] that a function $f: \boldsymbol{M} \rightarrow \mathbb{R}$, where \boldsymbol{M} is a classical manifold, is smooth (in the standard sense) iff the composition $f \circ c$ is a smooth function of one variable for any smooth curve $c: \mathbb{I} \rightarrow \boldsymbol{M}$. Thus one has a unique notion of smoothness based on smooth curves, including both classical manifolds and distributional spaces. This is convenient for dealing with smoothness relatively to product spaces such as $\boldsymbol{M} \times \boldsymbol{Y}$; moreover, one has a natural notion of smoothness for maps $\boldsymbol{M} \rightarrow \boldsymbol{\mathcal { Y }}$ and $\boldsymbol{y} \rightarrow \boldsymbol{M}$. Hence, one may simply write smooth for F-smooth.

Let $\boldsymbol{C}_{\boldsymbol{y}}$ be the set of all F-smooth curves in \boldsymbol{y}; take any $i \in \mathbb{N} \cup\{0\}$ and consider the following binary relation in $\mathbb{R} \times \boldsymbol{\mathcal { C }}_{\boldsymbol{y}}$:

$$
(t, \alpha) \stackrel{i}{\sim}(s, \beta) \Leftrightarrow \mathrm{D}^{k}\langle\alpha, u\rangle(t)=\mathrm{D}^{k}\langle\beta, u\rangle(s) \quad \forall u \in \boldsymbol{y}_{0}, k=0, \ldots, i
$$

Then clearly $\stackrel{i}{\sim}$ is an equivalence relation; the quotient

$$
\mathrm{T}^{i} \boldsymbol{y}:=\boldsymbol{C}_{\boldsymbol{y}} / \stackrel{i}{\sim}
$$

will be called the tangent space of order i of \boldsymbol{y}. The equivalence class of $(t, \alpha) \in \boldsymbol{C}_{\boldsymbol{y}}$ will be denoted by $\partial^{i} \alpha(t)$. Obviously, $\mathrm{T}^{i} \boldsymbol{y}$ is a fibred set over \boldsymbol{y}; the fibre over some $\lambda \in \boldsymbol{y}$ will be denoted by $\mathrm{T}_{\lambda}^{i} \boldsymbol{\mathcal { Y }}$. In particular $\mathrm{T}^{0} \boldsymbol{y}=\boldsymbol{y}$.

The set $\mathrm{T} \boldsymbol{\mathcal { Y }}:=\mathrm{T}^{1} \boldsymbol{y}$ is called simply the tangent space of \boldsymbol{y}, and $\partial \alpha(t):=\partial^{1} \alpha(t)$ is called the tangent vector of α at $\alpha(t)$. Any element in $\mathrm{T} \boldsymbol{Y}$ can be represented as $\partial \alpha(0)$, for a suitable curve α defined on a neighbourhood \mathbb{I} of 0 . It is not difficult to see that there is a natural isomorphism

$$
\boldsymbol{y} \times \boldsymbol{y} \rightarrow \mathrm{T} \boldsymbol{Y}:(\lambda, \mu) \mapsto \partial[\lambda+t \mu]_{t=0}
$$

Proposition 2.1. Let $\boldsymbol{\mathcal { A }}$ and \boldsymbol{B} be smooth spaces (each one is either a classical manifold or a distributional space) and $\Phi: \boldsymbol{A} \rightarrow \boldsymbol{B} a$ smooth map. Then there exists a unique smooth map $\mathrm{T} \Phi: \mathrm{T} \boldsymbol{\mathcal { A }} \rightarrow T \boldsymbol{B}$, called the tangent prolongation of Φ, such that for every smooth curve $\alpha: \mathbb{I} \rightarrow \boldsymbol{\mathcal { G }}$ one has

$$
\partial[\Phi \circ \alpha](t)=\mathrm{T} \Phi \circ \partial \alpha(t), \quad t \in \mathbb{I} .
$$

The proof of this non-trivial statement is omitted because it is essentially similar to that of the particular case considered in [C00a]. It is not difficult to see that tangent prolongations behave naturally in terms of any compositions.

3. Distributional bundles.

The basic classical geometric setting underlying distributional bundles is the following. One considers a classical 2 -fibred bundle

$$
\boldsymbol{V} \xrightarrow{\mathrm{q}} \boldsymbol{E} \xrightarrow{\mathrm{q}} \boldsymbol{B},
$$

where q: $\boldsymbol{V} \rightarrow \boldsymbol{E}$ is a complex (or real) vector bundle, and the fibres of the bundle $\boldsymbol{E} \rightarrow \boldsymbol{B}$ are smoothly oriented. Moreover, one assumes that $\mathrm{q} \circ \underline{\mathrm{q}}: \boldsymbol{V} \rightarrow \boldsymbol{B}$ is also a bundle (not a vector bundle in general), and that for any sufficiently small open subset $\boldsymbol{X} \subset \boldsymbol{B}$ there are bundle trivializations

$$
(\underline{\mathrm{q}}, \underline{\mathrm{y}}): \boldsymbol{E}_{X} \rightarrow \boldsymbol{X} \times \underline{\boldsymbol{Y}}, \quad(\mathrm{q} \circ \underline{\mathrm{q}}, \mathrm{y}): V_{X} \rightarrow \boldsymbol{X} \times \boldsymbol{Y}
$$

(here $\boldsymbol{E}_{\boldsymbol{X}}:=\mathrm{q}^{-1}(\boldsymbol{X})$ and the like) with the following projectability property: there exists a surjective submersion $\mathrm{p}: \boldsymbol{Y} \rightarrow \underline{\boldsymbol{Y}}$ such that the diagram

commutes; this implies that $\boldsymbol{Y} \rightarrow \underline{\boldsymbol{Y}}$ is a vector bundle, not trivial in general.

The above conditions are easily checked to hold in many cases which are relevant for physical applications (as in the cases considered in § 11 and $\S 12$). In particular, the above conditions hold if $\boldsymbol{V}=\boldsymbol{E} \times \boldsymbol{B} \boldsymbol{W}$ where $\boldsymbol{W} \rightarrow \boldsymbol{B}$ is a vector bundle, if $\boldsymbol{V}=\mathrm{V} \boldsymbol{E}$ (the vertical bundle of $\boldsymbol{E} \rightarrow \boldsymbol{B}$) and if \boldsymbol{V} is any component of the tensor algebra of $\mathrm{V} \boldsymbol{E} \rightarrow \boldsymbol{E}$.

Let n be the dimension of the fibres of $\boldsymbol{E} \rightarrow \boldsymbol{B}$. The orientation requirement implies that $\wedge^{n} \mathrm{~V} \boldsymbol{E} \rightarrow \boldsymbol{E}$ is a trivializable bundle with smoothly oriented fibres, and one has the smooth bundle $\mathbb{V}^{*} \boldsymbol{E}:=\left(\wedge^{n} \mathbb{V}^{*} \boldsymbol{E}\right)^{+} \rightarrow$ $\rightarrow \boldsymbol{E}$. Then for each $x \in \boldsymbol{B}$ one may consider the distributional space $\boldsymbol{\vartheta}_{x}:=$ $=\boldsymbol{\omega}\left(\boldsymbol{E}_{x}, \boldsymbol{V}_{x}\right)$, and obtains the fibred set

$$
\wp: \mathfrak{V} \equiv \boldsymbol{\omega}_{\boldsymbol{B}}(\boldsymbol{E}, \boldsymbol{V}):=\underset{x \in \boldsymbol{B}}{\amalg} \boldsymbol{\vartheta}_{x} \rightarrow \boldsymbol{B} .
$$

For any two classical local bundle trivializations $(\underline{q}, \underline{y})$ and $(\mathbf{q} \circ \underline{q}, y)$ as
above, let

$$
\begin{gathered}
\mathrm{Y}: \boldsymbol{\vartheta}_{X} \equiv \wp^{-1}(\boldsymbol{X}) \rightarrow \boldsymbol{y} \equiv \boldsymbol{\omega}(\underline{\boldsymbol{Y}}, \boldsymbol{Y}), \\
\mathrm{Y}_{x}:=\left(\mathrm{y}_{x}\right)_{*}, \quad x \in \boldsymbol{X} .
\end{gathered}
$$

Then $(\wp, Y): \boldsymbol{V}_{X} \rightarrow \boldsymbol{X} \times \boldsymbol{y}$ is a local bundle trivialization of $\boldsymbol{\mathcal { O }} \rightarrow \boldsymbol{B}$. Moreover, if $\left(\underline{q}, \underline{y^{\prime}}\right): \boldsymbol{E}_{\boldsymbol{X}^{\prime}} \rightarrow \boldsymbol{X}^{\prime} \times \underline{\boldsymbol{Y}}^{\prime}$ and $\left(\mathrm{q} \circ \underline{\mathrm{q}}, \mathrm{y}^{\prime}\right): \boldsymbol{V}_{\boldsymbol{X}^{\prime}} \rightarrow \boldsymbol{X}^{\prime} \times \boldsymbol{Y}^{\prime}$ are two other classical bundle trivializations related by the same projectability property, then $\left(\wp, \mathrm{Y}^{\prime}\right) \circ(\wp, \mathrm{Y})^{-1}: \boldsymbol{X} \cap \boldsymbol{X}^{\prime} \times \boldsymbol{Y} \rightarrow \boldsymbol{X} \cap \boldsymbol{X}^{\prime} \times \boldsymbol{Y}^{\prime}$ is F smooth and linear. Hence, suitable classical bundle atlases on $\boldsymbol{V} \rightarrow \boldsymbol{B}$ and $\boldsymbol{E} \rightarrow \boldsymbol{B}$ determine a linear F -smooth bundle atlas on $\boldsymbol{\vartheta} \rightarrow \boldsymbol{B}$, which is said to be an F-smooth distributional bundle $\left(^{(2}\right.$). Clearly, $\boldsymbol{\mathcal { V }}$ turns out to be an F -smooth space in a natural way: a curve $\alpha: \mathbb{I} \rightarrow \mathcal{V}$ is defined to be F-smooth if $(\wp, Y) \circ \alpha$ is such for any local F-smooth trivialization; in general, the F -smoothness of any map from or to \mathcal{V} is equivalent to the F -smoothness of its local trivialized expressions.

If α is F -smooth then it is natural to set

$$
\mathrm{T}((\wp, \mathrm{Y}) \circ \alpha)=(\mathrm{T}(\wp \circ \alpha), \mathrm{T}(\mathrm{Y} \circ \alpha)): \mathbb{I} \times \mathbb{R} \rightarrow \mathrm{T} \boldsymbol{X} \times \mathrm{T} \boldsymbol{y}
$$

One says that two F-smooth curves are first-order equivalent at some point if their trivialized expressions are such; in this way one obtains the definition of the tangent space T $\boldsymbol{\vartheta}$. Obviously, this is a fibred set over \boldsymbol{O}; a local bundle trivialization (\wp, Y) of $\boldsymbol{\mathcal { O }}$ yields the local bundle trivialization

$$
\mathrm{T}(\wp, \mathrm{Y}): \mathrm{T} \boldsymbol{\vartheta}_{\boldsymbol{X}} \rightarrow \mathrm{T}(\boldsymbol{x} \times \boldsymbol{y}) \equiv \mathrm{T} \boldsymbol{X} \times \mathrm{T} \boldsymbol{y}
$$

and the transition maps between two induced trivializations are Fsmooth and linear. Hence $\pi_{\vartheta}: \mathrm{T} \boldsymbol{\vartheta} \rightarrow \boldsymbol{\vartheta}$, the tangent bundle of $\boldsymbol{\vartheta}$, is an F-smooth vector bundle. One has another F-smooth bundle with the same total F-smooth space, namely

$$
\mathrm{T} \wp: \mathrm{T} \mathcal{V} \rightarrow \mathrm{~T} \boldsymbol{B}: \partial \alpha \mapsto \partial(\underline{\mathrm{q}} \circ \alpha) .
$$

Moreover one has the vertical subbundle

$$
\mathrm{V} \boldsymbol{\vartheta}:=\operatorname{Ker} \mathrm{T} \wp \subset \mathrm{~T} \boldsymbol{\vartheta}
$$

the natural identification $\mathrm{VV}=\mathfrak{V} \underset{\boldsymbol{B}}{\times \mathcal{V}}$ and the exact sequence over \mathfrak{V}

$$
0 \rightarrow \mathrm{~V} \boldsymbol{\vartheta} \rightarrow \mathrm{~T} \boldsymbol{\vartheta} \rightarrow \boldsymbol{\mathcal { V }} \underset{\boldsymbol{B}}{\times \mathrm{T}} \boldsymbol{B} \rightarrow 0
$$

$\left(^{2}\right)$ Not every trivialization of a distributional bundle derives from trivializations of the underlying classical 2 -fibred bundle.

The subbundle of $\mathrm{T}^{*} \boldsymbol{B} \underset{\vartheta}{\otimes} \mathrm{~T} \boldsymbol{\mathcal { O }}$ which projects over the identity of $\mathrm{T} \boldsymbol{B}$ is called the first jet bundle, denoted by $\mathrm{J} \boldsymbol{\vartheta} \rightarrow \boldsymbol{\vartheta}$. This is an affine bundle over $\boldsymbol{\vartheta}$, with «derived» vector bundle $\mathrm{T}^{*} \boldsymbol{B} \underset{\vartheta}{\otimes} \mathrm{~V} \vartheta$. The restriction of $T^{*} \wp \otimes T(\wp, Y)$ is a local bundle trivialization which is denoted by

$$
\mathrm{J}(\wp, \mathrm{Y}): \mathrm{J} \boldsymbol{\vartheta}_{\boldsymbol{X}} \rightarrow \mathrm{J}(\boldsymbol{x} \times \boldsymbol{y}) \cong \boldsymbol{y} \times\left(\mathrm{T}^{*} \boldsymbol{X} \otimes \boldsymbol{y}\right)
$$

If $\mathrm{x} \equiv\left(\mathrm{x}^{a}\right): \boldsymbol{X} \rightarrow \mathbb{R}^{m}$ is a coordinate chart then one has the fibred charts

$$
\begin{aligned}
& (\mathrm{x}, \mathrm{Y}): \boldsymbol{\mathcal { V }} \rightarrow \mathbb{R}^{m} \times \boldsymbol{y} \\
& \left(\mathrm{x}^{a}, \mathrm{Y}, \dot{\mathrm{x}}^{a}, \dot{\mathrm{Y}}\right):=\mathrm{T}(\mathrm{x}, \mathrm{Y}): \mathrm{T} \boldsymbol{\vartheta} \rightarrow \mathbb{R}^{m} \times \boldsymbol{y} \times \mathbb{R}^{m} \times \boldsymbol{y} \\
& \left(\mathrm{x}^{a}, \mathrm{Y}, \mathrm{Y}_{a}\right):=\mathrm{J}(\mathrm{x}, \mathrm{Y}): \mathrm{J} \boldsymbol{\mathcal { O }} \rightarrow \mathbb{R}^{m} \times \boldsymbol{y} \times\left(\mathbb{R}^{m} \otimes \boldsymbol{y}\right)
\end{aligned}
$$

Tangent prolongations of F -smooth maps involving \boldsymbol{V} can be expressed through local trivializations; in particular, if $\sigma: \boldsymbol{B} \rightarrow \boldsymbol{\mathcal { V }}$ is an F -smooth section, then $\mathrm{T} \sigma: \mathrm{T} \boldsymbol{B} \rightarrow \mathrm{T} \boldsymbol{\vartheta}$ projects over the identity of $\mathrm{T} \boldsymbol{B}$, so that it can be viewed as a section $\mathrm{j} \sigma: \boldsymbol{B} \rightarrow \mathrm{J} \boldsymbol{\text { ® }}$. Setting $\sigma^{\mathrm{Y}}:=\mathrm{Y} \circ \sigma: \boldsymbol{B} \rightarrow \boldsymbol{y}$ one has

$$
\begin{aligned}
& \left(\mathrm{x}^{a}, \mathrm{Y}, \dot{\mathrm{x}}^{a}, \dot{\mathrm{Y}}\right) \circ \mathrm{T} \sigma=\mathrm{T} \sigma^{\mathrm{Y}}=\left(\mathrm{x}^{a}, \sigma^{\mathrm{Y}}, \dot{\mathrm{x}}^{\mathrm{a}}, \dot{\mathrm{x}}^{a} \partial_{a} \sigma^{\mathrm{Y}}\right) \\
& \left(\mathrm{x}^{a}, \mathrm{Y}, \mathrm{Y}_{a}\right) \circ \mathrm{j} \sigma=\mathrm{J} \sigma^{\mathrm{Y}}=\left(\mathrm{x}^{a}, \sigma^{\mathrm{Y}}, \partial_{a} \sigma^{\mathrm{Y}}\right)
\end{aligned}
$$

For maps $f: \mathcal{\vartheta} \rightarrow \mathbb{R}$ one introduces the notation

$$
\partial_{\mathrm{Y}} f:=\mathrm{V} f \circ\left(\mathbf{1}_{\mathcal{V}} \times(\wp, \mathrm{Y})^{-1}\right): \mathcal{V} \times \boldsymbol{Y} \rightarrow \mathbb{R},
$$

and obtains the local coordinate expression

$$
\mathrm{d} f:=\mathrm{pr}_{1} \circ \mathrm{~T} f=\partial_{a} f \mathrm{~d} \mathrm{x}^{a}+\left(\partial_{\mathrm{Y}} f\right) \circ \mathrm{dY}
$$

REMARK. If $\underline{\breve{\boldsymbol{Y}}} \subset \underline{\boldsymbol{Y}}$ is an open subset such that $\breve{\boldsymbol{Y}}:=\mathrm{p}^{-1}(\underline{\boldsymbol{Y}})$ is trivializable, and $\left(\mathrm{y}^{i}, \mathrm{y}^{A}\right): \breve{\boldsymbol{Y}} \rightarrow \mathbb{R}^{n} \times \mathbb{R}^{p}$ is a linear bundle chart, then σ^{Y} has a coordinate expression whose components are scalar-valued distributions $\sigma^{A} \in \boldsymbol{\omega}_{X}(\underline{\breve{\boldsymbol{Y}}}, \mathbb{R})$.

4. F-smooth fibred morphisms.

Let $\boldsymbol{V}^{\prime} \rightarrow \boldsymbol{E}^{\prime} \rightarrow \boldsymbol{B}^{\prime}$ another 2-fibred bundle with the same properties, and $\wp^{\prime}: \boldsymbol{\vartheta}^{\prime} \rightarrow \boldsymbol{B}^{\prime}$ the induced distributional bundle. Let moreover
$\Phi: \boldsymbol{\vartheta} \rightarrow \boldsymbol{\vartheta}^{\prime}$ be a fibred F -smooth map over the smooth map $\phi: \boldsymbol{B} \rightarrow \boldsymbol{B}^{\prime}$. Then, similarly to the classical case, the tangent prolongation

$$
\mathrm{T} \Phi: \mathrm{T} \boldsymbol{\vartheta} \rightarrow \mathrm{~T} \boldsymbol{\vartheta}^{\prime}
$$

is a linear fibred morphism over Φ and a fibred morphism over $\mathrm{T} \phi: T \boldsymbol{B} \rightarrow T \boldsymbol{B}^{\prime}$. setting $\Phi^{\mathrm{Y}^{\prime}}:=\mathrm{Y}^{\prime} \circ \Phi: \boldsymbol{\vartheta} \rightarrow \boldsymbol{Y}^{\prime}$ one has $\left({ }^{3}\right)$

$$
\left(\mathrm{x}^{\prime}, \mathrm{Y}^{\prime}, \dot{\mathrm{x}}^{\prime}, \dot{\mathrm{Y}}^{\prime}\right) \circ \mathrm{T} \Phi=\left(\phi^{a^{\prime}}, \Phi^{\mathrm{Y}^{\prime}}, \dot{\mathrm{x}}^{a} \partial_{a} \phi^{\mathrm{x}^{\prime}}, \dot{\mathrm{x}}^{a} \partial_{a} \Phi^{\mathrm{Y}^{\prime}}+\partial_{\mathrm{Y}} \Phi^{\mathrm{Y}^{\prime}} \circ \dot{\mathrm{Y}}\right) .
$$

If moreover ϕ is a diffeomorphism, then the restriction of $\phi_{*} \otimes T \Phi$ determines a fibred morphism $J \Phi: \mathrm{J} \boldsymbol{\vartheta} \rightarrow \mathrm{J} \boldsymbol{\vartheta}^{\prime}$ over Φ.

If Φ is linear over ϕ, then one writes

$$
\Phi_{Y}^{\mathrm{Y}^{\prime}}:=\partial_{Y} \Phi^{\mathrm{Y}^{\prime}}=\Phi^{\mathrm{Y}^{\prime}} \circ(\wp, \mathcal{Y})^{-1}: \boldsymbol{X} \rightarrow \operatorname{Lin}\left(\boldsymbol{y}, \boldsymbol{y}^{\prime}\right),
$$

which is analogous to the matrix expression of a linear morphism in fi-nite-dimensional case.

Let now $\varphi: \boldsymbol{V} \rightarrow \boldsymbol{V}^{\prime}$ be a classical linear isomorphism over the fibred diffeomorphism $\underline{\varphi}: \boldsymbol{E} \rightarrow \boldsymbol{E}^{\prime}$, which on turn is projectable over the diffeomorphism $\phi: \boldsymbol{B} \rightarrow \boldsymbol{B}^{\prime}$. Then one has the induced linear isomorphism $\Phi:=\varphi_{*}: \boldsymbol{\vartheta} \rightarrow \boldsymbol{\vartheta}^{\prime}$ over \boldsymbol{B}. In the domain of a local coordinate chart one $\operatorname{has}\left({ }^{4}\right)$
$(\Phi \lambda)^{A^{\prime}}=\left(\Phi^{Y^{\prime}} \lambda^{Y}\right)^{A^{\prime}}=\left(\varphi^{A^{\prime}}{ }_{A} \lambda^{A}\right) \circ \underline{\varphi}, \quad \lambda \in \boldsymbol{\mathcal { V }}$,
$\left(\partial_{a} \Phi^{Y^{\prime}} \lambda^{Y}\right)^{A^{\prime}}=\left(\partial_{a} \varphi^{A^{\prime}}{ }_{A} \circ \underline{\varphi}\right)\left(\lambda^{A} \circ \underline{\varphi}\right)+\left[\partial_{i}\left(\varphi^{A^{\prime}}{ }_{A} \lambda^{A}\right) \circ \underline{\varphi}\right] \partial_{a^{\prime}} \overleftarrow{\varphi}^{i}\left(\partial_{a} \phi^{a^{\prime}} \circ \overleftarrow{\phi}\right)$,
where back pointing arrows indicate the inverse maps. By using these formulas one can write down the coordinate expressions of $\mathrm{T} \Phi$ and $J \Phi$. As a special case, one also gets the transformation formulas in T $\mathcal{\vartheta}$ and J T between any two charts induced by classical charts; a detailed treatment of these aspects lies outside the scope of a short paper and will be exposed in a future survey paper.

When $\boldsymbol{V}=\mathrm{V} \boldsymbol{E}, \boldsymbol{V}^{\prime}=\mathrm{V} \boldsymbol{E}^{\prime}$ and φ is a fibred diffeomorphism over ϕ, then one has the special case $\varphi=\bar{V} \underline{\varphi}$, which extends to any component of the tensor algebra of $\mathrm{VE} \rightarrow \boldsymbol{E}$. In particular, one is interested in the bun-
$\left({ }^{3}\right)$ These partial derivatives are naturally defined as a consequence of proposition 2.1.
$\left({ }^{4}\right)$ The proof of the second formula is not difficult but somewhat delicate, as one must take carefully into account the various involved compositions.
dles of scalar q-densities, where q is a rational number, namely in the distributional bundles $\boldsymbol{\omega}_{\boldsymbol{B}}\left(\boldsymbol{E}, \mathbb{C} \otimes \mathbb{V}^{-q} \boldsymbol{E}\right)$ where $\mathbb{V}^{-q} \boldsymbol{E} \equiv\left(\mathbb{V}^{*} \boldsymbol{E}\right)^{q}$ and the like. One gets

$$
\begin{aligned}
\partial_{a} \Phi^{\mathrm{Y}^{\prime}}(\lambda)=\left(\partial_{i} \lambda^{Y} \circ \underline{\varphi}\right) & \partial_{a^{\prime}} \overleftarrow{\varphi}^{i}\left(\partial_{a} \phi^{a^{\prime}} \circ \overleftarrow{\phi}\right)|V \underline{\varphi}|^{q}+ \\
& +q\left(\lambda^{Y} \circ \overleftarrow{\varphi}\right) \cdot|V \underline{\varphi}|^{q}\left(\partial_{i} \varphi^{i^{\prime}} \circ \overleftarrow{\underline{\varphi}} \varphi\right) \partial_{a^{\prime}} \partial_{i^{\prime}} \underline{\varphi}^{i}\left(\partial_{a} \phi^{a^{\prime}} \circ \overleftarrow{\phi}\right)
\end{aligned}
$$

where $|\mathrm{V} \underline{\underline{\varphi}}|$ denotes the vertical Jacobian determinant of $\underline{\varphi}$.

5. Distributional connections.

Similarly to the standard finite-dimensional case, a connection on the distributional bundle $\boldsymbol{\vartheta}$ is defined to be an F -smooth section

$$
\mathfrak{C}: \vartheta \rightarrow \mathrm{J} \vartheta .
$$

In the domain $\boldsymbol{X} \subset \boldsymbol{B}$ of a local bundle chart (x, Y): $\boldsymbol{\vartheta}_{\boldsymbol{X}} \rightarrow \mathbb{R}^{m} \times \boldsymbol{Y}$ one has the local expression

$$
\mathfrak{C}_{a}^{\mathrm{Y}}:=\mathrm{Y}_{a} \circ \mathfrak{C}: \boldsymbol{\vartheta} \rightarrow \boldsymbol{y}
$$

The existence of global connections then follows from standard arguments, using the paracompactness of \boldsymbol{B}.

Basically, one deals with linear connections, that is connections 5 which are linear morphisms over \boldsymbol{B}. Then one writes

$$
\mathfrak{C}_{a}^{Y}=\mathfrak{C}_{a}{ }^{Y} \mathrm{Y} \circ \mathrm{Y}, \quad \mathfrak{C}_{a}{ }^{Y} \mathrm{Y}: \boldsymbol{X} \rightarrow \operatorname{End}(\boldsymbol{Y})
$$

If $\mathfrak{C}_{a}{ }^{Y^{\prime}}{ }^{\prime}$, is the expression of \mathfrak{C} in a different fibred chart ($\mathrm{X}^{\prime}, \mathrm{Y}^{\prime}$) over the same domain \boldsymbol{X}, then

$$
\mathfrak{S}_{a},{ }^{\mathrm{Y}^{\prime}}{ }_{\mathbf{}^{\prime}}=\partial_{a}, \overleftarrow{\mathrm{k}}^{a} \cdot\left(\partial_{a} \mathcal{K}^{\mathrm{Y}^{\prime}}{ }_{\mathrm{Y}}+\mathcal{K}^{\mathrm{Y}^{\prime}}{ }_{\mathrm{Y}} \circ \mathfrak{S}_{a}{ }_{\mathrm{Y}}\right) \circ \mathcal{K}_{Y^{\prime}},
$$

where

$$
\mathscr{X} \equiv\left(\mathrm{k}, \mathcal{X}^{\mathrm{Y}^{\prime}}\right):=\left(\mathrm{X}^{\prime}, \mathrm{Y}^{\prime}\right) \circ(\mathrm{x}, \mathrm{Y})^{-1}: \mathbb{R}^{m} \times \boldsymbol{y} \rightarrow \mathbb{R}^{m} \times \boldsymbol{y}^{\prime}
$$

denotes the transition map.
As in the finite-dimensional case, a connection yields a number of structures (whose assignment is actually equivalent to that of the connection itself). First, © can be viewed as a linear map $\boldsymbol{\mathcal { V }} \underset{\boldsymbol{B}}{\times} \mathrm{T} \boldsymbol{B} \rightarrow \mathrm{T} \boldsymbol{\mathcal { V }}$,
and $\left(\pi_{\vartheta}, \mathrm{T} \wp\right) \circ \mathfrak{C}$ is the identity of $\boldsymbol{\vartheta} \times \boldsymbol{B} \boldsymbol{B}$. The image

$$
\mathrm{H}_{\mathbb{C}} \boldsymbol{\mathcal { V }}:=\mathfrak{C}(\underset{\boldsymbol{\mathcal { V }}}{\times} \mathrm{T} \boldsymbol{B})
$$

is a vector subbundle of $\mathrm{T} \boldsymbol{\vartheta} \rightarrow \boldsymbol{\vartheta}$, with m-dimensional fibres; the restriction of $\mathfrak{C} \circ\left(\pi_{\vartheta}, \mathrm{T} \wp\right)$ is the identity of $\mathrm{H}_{\mathbb{C}} \boldsymbol{\vartheta}$. If $v: \boldsymbol{B} \rightarrow \mathrm{T} \boldsymbol{B}$ is a smooth vector field, then $\mathfrak{\zeta}_{v}: \boldsymbol{\vartheta} \rightarrow \mathrm{T} \boldsymbol{\vartheta}$ is an F -smooth vector field, called its horizontal lift, with coordinate expression

$$
\dot{\mathbf{x}}^{a} \circ \mathfrak{C}_{v}=v^{a}, \quad \dot{\mathbf{Y}} \circ \mathfrak{C}_{v}=v^{a} \mathfrak{C}_{a}^{\mathrm{Y}} .
$$

One also has the complementary map

$$
\Omega:=1-\mathfrak{C}: \mathrm{T} \boldsymbol{\vartheta} \rightarrow \mathrm{~V} \boldsymbol{\vartheta} \equiv \underset{\boldsymbol{V}}{\times} \boldsymbol{\vartheta}
$$

so that the map $\left(\complement_{\circ} \circ\left(\pi_{\vartheta}, \mathrm{T} \wp\right), \Omega\right)$ determines the decomposition

$$
\mathrm{T} \boldsymbol{\vartheta}=\mathrm{H}_{\mathbb{E}} \boldsymbol{\vartheta} \underset{\vartheta}{\oplus} \mathrm{V} \boldsymbol{\vartheta}
$$

Let $\sigma: \boldsymbol{B} \rightarrow \boldsymbol{V}$ be an F -smooth section. The covariant derivative of σ is defined to be the linear morphsim over \boldsymbol{B}

$$
\nabla \sigma \equiv \nabla[\mathfrak{C}] \sigma:=\mathrm{pr}_{2} \circ \Omega \circ \mathrm{~T} \sigma: \mathrm{T} \boldsymbol{B} \rightarrow \boldsymbol{\mathcal { V }}
$$

If $v: \boldsymbol{B} \rightarrow \mathrm{T} \boldsymbol{B}$ is a vector field, then one also writes $\nabla_{v} \sigma:=\nabla \sigma \circ v$. The local coordinate expression of the covariant derivative is

$$
(\nabla \sigma)^{\mathrm{Y}}:=\mathrm{Y} \circ \nabla \sigma=\dot{\mathbf{x}}^{a}\left(\partial_{a} \sigma^{\mathrm{Y}}-\mathfrak{C}_{a}^{\mathrm{Y}} \circ \sigma\right) .
$$

The curvature tensor of a linear connection \mathfrak{C} can be defined, as in the finite-dimensional case, as the section $\mathfrak{R}: \boldsymbol{B} \rightarrow \wedge^{2} \mathrm{~T}^{*} \boldsymbol{B} \underset{\boldsymbol{B}}{\otimes} \operatorname{End}(\boldsymbol{\mathcal { V }})$ given by

$$
\mathfrak{R}(u, v) s:=\nabla_{u} \nabla_{v} \sigma-\nabla_{v} \nabla_{u} \sigma-\nabla_{[u, v]} \sigma, \quad u, v: \boldsymbol{B} \rightarrow \mathrm{T} \boldsymbol{B}, \sigma: \boldsymbol{B} \rightarrow \boldsymbol{\vartheta}
$$

which has the local chart expression

$$
\mathfrak{R}_{Y}^{Y}=\mathfrak{R}_{a b}{ }_{Y}{ }^{Y} d x^{a} \wedge d x^{b}=2\left(\partial_{b} \mathfrak{C}_{a}^{Y}{ }_{Y}+\mathfrak{C}_{a}^{Y}{ }_{Y} \circ \mathfrak{C}_{b}^{Y}{ }_{Y}\right) d x^{a} \wedge d x^{b} .
$$

A more general definition of curvature, valid also in the non-linear case, can be given in terms of the Frölicher-Nijenhuis bracket [FN, MK, MM, KMS]. First, one must define the Lie bracket of any two F-smooth vector fields $W, Z: \boldsymbol{\vartheta} \rightarrow \mathrm{T} \boldsymbol{\vartheta}$. Using the canonical involution $s: \mathrm{TT} \boldsymbol{\vartheta} \rightarrow$
$\rightarrow \mathrm{TT} \boldsymbol{\vartheta}$, and $\mathrm{T} Z \circ W-s(\mathrm{~T} W \circ Z): \boldsymbol{\vartheta} \rightarrow \mathrm{VT} \boldsymbol{\vartheta} \cong \mathrm{T} \boldsymbol{\vartheta} \underset{\boldsymbol{\vartheta}}{\times \mathrm{T} \boldsymbol{\vartheta} \text {, one sets }}$

$$
[W, Z]:=\operatorname{pr}_{2}(\mathrm{~T} Z \circ W-s(\mathrm{~T} W \circ Z)): \vartheta \rightarrow \mathrm{T} \boldsymbol{\vartheta}
$$

which has the local expression

$$
\begin{aligned}
& {[W, Z]^{a}=W^{b} \partial_{b} Z^{a}-Z^{b} \partial_{b} W^{a}+\partial_{Y} Z^{a} \circ W^{Y}-\partial_{Y} W^{a} \circ Z^{Y},} \\
& {[W, Z]^{Y}=W^{b} \partial_{b} Z^{Y}-Z^{b} \partial_{b} W^{Y}+\partial_{Y} Z^{Y} \circ W^{Y}-\partial_{Y} W^{Y} \circ Z^{Y} .}
\end{aligned}
$$

The Frölicher-Nijenhuis bracket of F-smooth tangent-valued forms $\boldsymbol{\vartheta} \rightarrow \wedge \mathrm{T}^{*} \boldsymbol{B} \otimes \underset{\vartheta}{\otimes} \mathrm{~T} \boldsymbol{\vartheta}$ can now be introduced by a straightforward extension of the standard definition, namely by the requirement that for decomposable forms one has
$[\alpha \otimes W, \otimes Z]=\alpha \wedge \otimes[W, Z]+\alpha \wedge(W . \beta) \otimes Z-(Z . \alpha) \wedge \otimes W+$

$$
+(-1)^{r}(Z \mid \alpha) \wedge \mathrm{d} \beta \otimes W+(-1)^{r} \mathrm{~d} \alpha(W \mid \beta) \otimes Z
$$

where $\alpha: \boldsymbol{B} \rightarrow \wedge^{r} \mathrm{~T}^{*} \boldsymbol{B}, \beta: \boldsymbol{B} \rightarrow \wedge^{s} \mathrm{~T}^{*} \boldsymbol{B}$, and $W, Z: \boldsymbol{B} \rightarrow \mathrm{T} \boldsymbol{B}$.
If $\mathfrak{C}: \boldsymbol{\vartheta} \rightarrow \mathrm{J} \boldsymbol{\vartheta}$ is an F -smooth connection then its curvature is defined to be

$$
\mathfrak{R}:=-[\mathfrak{C}, \mathfrak{C}]: \boldsymbol{\vartheta} \rightarrow \wedge^{2} \mathrm{~T}^{*} \boldsymbol{B} \underset{\vartheta}{\otimes} \mathrm{~V} \boldsymbol{\mathcal { V }} .
$$

6. Adjoint connections.

The distributional bundle $\boldsymbol{O}^{*}:=\boldsymbol{\omega}_{\boldsymbol{B}}\left(\boldsymbol{E}, \mathbb{V}^{*} \boldsymbol{E} \underset{\boldsymbol{E}}{\otimes} \boldsymbol{V}^{*}\right) \rightarrow \boldsymbol{B}$ is called the adjoint bundle of $\boldsymbol{\vartheta} \rightarrow \boldsymbol{B}$; its fibre type is \boldsymbol{y}^{*}, the adjoint of \boldsymbol{y} (§ 1).

An endomorphism $A \in \operatorname{End}(\boldsymbol{\omega})$ of an arbitrary distributional space $\boldsymbol{\omega}$ determines a dual endomorphism $A^{\prime} \in \operatorname{End}\left(\boldsymbol{\omega}_{0}\right)$ of the test space, defined by $A^{\prime} u:=u \circ A$, that is $\left\langle A^{\prime} u, \phi\right\rangle=\langle u, A \phi\rangle$. Moreover it may happen that A^{\prime} can be extended to an endomorphism A^{*} of the distributional completion $\boldsymbol{\omega}^{*}$ of $\boldsymbol{\omega}_{0}$; this possible extension is called the adjoint of A. This requirement is fulfilled, in particular, by the polynomial derivation operators [C01].

Proposition 6.1. Let the F-smooth connection $\mathfrak{C}: \boldsymbol{\vartheta} \rightarrow \mathrm{J} \boldsymbol{\vartheta}$ be such that, in every local F-smooth chart $(\mathrm{x}, \mathrm{Y}): \boldsymbol{\vartheta} \rightarrow \boldsymbol{X} \times \boldsymbol{\mathcal { Y }}$, the
local expression $\mathfrak{5}^{-\gamma}: T \boldsymbol{B} \rightarrow \operatorname{End}(\boldsymbol{y})$ admits an adjoint $\left(\mathfrak{C}^{\Upsilon}\right)^{*}: T \boldsymbol{B} \rightarrow$ \rightarrow End (\boldsymbol{y}^{*}).

Then, there exists a unique F-smooth connection $\mathfrak{C}^{*}:$ ® $^{*} \rightarrow \mathrm{~J} \boldsymbol{Q}^{*}$ such that $\mathrm{J} c \circ\left(\mathfrak{C}^{5}, \mathfrak{C}^{*}\right)=0$, where $c: \boldsymbol{\vartheta} \times \boldsymbol{\vartheta}^{*} \rightarrow \boldsymbol{B} \times \mathrm{C}:(\sigma, \lambda) \mapsto(\wp(\sigma)$, $\langle\lambda\rangle, \sigma)$. Its chart expression is

$$
\mathfrak{C}_{a \mathrm{Y}}^{*}{ }^{\mathrm{Y}}=-\left(\mathfrak{C}_{a}^{Y}{ }_{\mathrm{Y}}\right)^{*},
$$

that is

$$
\left(\nabla_{v}^{*} \lambda\right)_{\mathrm{Y}}=v^{a}\left(\partial_{a} \lambda_{\mathrm{Y}}-\mathfrak{5}_{a}^{*}{ }_{\mathrm{Y}}^{\mathrm{Y}} \circ \lambda_{\mathrm{Y}}\right)=v^{a}\left(\partial_{a} \lambda_{\mathrm{Y}}+\lambda_{\mathrm{Y}} \circ\left(\mathfrak{C}_{a Y}^{Y}\right) .\right.
$$

Equivalently, 5* is determined by the requirement that

$$
v \cdot\langle\lambda, \sigma\rangle=\left\langle\nabla_{v}^{*} \lambda, \sigma\right\rangle+\left\langle\lambda, \nabla_{v} \sigma\right\rangle
$$

hold for all smooth sections $\lambda: \boldsymbol{B} \rightarrow \boldsymbol{\vartheta}^{*}$ and $\sigma: \boldsymbol{B} \rightarrow \boldsymbol{\vartheta}$, and for all vector field $v: \boldsymbol{B} \rightarrow \mathrm{T} \boldsymbol{B}$, whenever all contractions are well-defined.

Proof. Let $\mathfrak{C}^{*}: \boldsymbol{O}^{*} \rightarrow \mathrm{~J} \boldsymbol{\vartheta}^{*}$ be any linear connection; denote by $\mathbf{z} \equiv$ $\equiv \mathrm{pr}_{2}$ the (trivial) fibre coordinate on $\boldsymbol{B} \times \mathrm{C} \rightarrow \boldsymbol{B}$, and observe that

$$
\mathrm{Jc} \circ\left(\mathfrak{C}, \mathfrak{C}^{*}\right): \boldsymbol{\vartheta} \times \mathbf{\vartheta}^{*} \rightarrow \mathrm{C} \times \mathrm{T}^{*} \boldsymbol{B}
$$

has the chart expression

$$
\mathbf{Z}_{a} \circ \mathrm{~J} c \circ\left(\mathfrak{C}, \mathfrak{C}^{*}\right)(\sigma, \lambda)=\left\langle\lambda_{\mathrm{Y}}, \mathfrak{C}_{a}{ }_{Y}^{\mathrm{Y}}\left(\sigma^{\mathrm{Y}}\right)\right\rangle+\left\langle\mathfrak{C}_{a \mathrm{Y}}^{*}\left(\lambda_{\mathrm{Y}}\right), \sigma^{\mathrm{Y}}\right\rangle,
$$

which holds for any $(\sigma, \lambda) \in \boldsymbol{\mathcal { V }} \underset{\boldsymbol{B}}{ } \boldsymbol{\mathcal { O }}^{*}$ whenever all contractions are welldefined. This expression vanishes iff $\mathfrak{C}_{a}^{*}{ }^{Y}{ }^{Y}=-\left(\mathfrak{C}_{a}{ }^{Y}\right)^{*}$. If $s: \boldsymbol{B} \rightarrow \boldsymbol{\mathcal { O }}_{0}^{*} \subset \boldsymbol{\mathcal { V }}$ is a section of the subbundle of test maps in \boldsymbol{V}, one has $\nabla_{v} s: \boldsymbol{B} \rightarrow \boldsymbol{\vartheta}$ in general. For every $u: B \rightarrow \boldsymbol{\vartheta}_{0}$, the map

$$
\nabla_{v}^{*} u: \boldsymbol{\vartheta}_{0}^{*} \rightarrow \mathbb{C}: s \mapsto v \cdot\langle s, u\rangle-\left\langle\nabla_{v} s, u\right\rangle
$$

is linear continuous, hence $\nabla_{v}^{*} u: \boldsymbol{B} \rightarrow \boldsymbol{\vartheta}^{*}$. Its chart expression is

$$
\begin{aligned}
\left\langle s, \nabla_{v}^{*} u\right\rangle=v^{a} \partial_{a}\left\langle s^{\mathrm{Y}}, u_{\mathrm{Y}}\right\rangle-\left\langle v^{a} \partial_{a} s^{\mathrm{Y}}, u_{\mathrm{Y}}\right\rangle+ & \left\langle v^{a}{\left.\tilde{G_{a}}{ }_{\mathrm{Y}}^{\mathrm{Y}} \circ s^{\mathrm{Y}}, u_{\mathrm{Y}}\right\rangle=}=\left\langle s^{\mathrm{Y}}, v^{a}\left(\partial_{a} u_{\mathrm{Y}}+\mathfrak{C}_{a}{ }^{\mathrm{Y}}\right)^{*} u_{\mathrm{Y}}\right\rangle .\right.
\end{aligned}
$$

By continuity, the operation ∇_{v}^{*} can be extended to all sections $\lambda: \boldsymbol{B} \rightarrow$ $\rightarrow \boldsymbol{0}^{*}$, and is seen to define a covariant derivative.

Remark. The adjoint connection © © is not reducible to the subbundle $\boldsymbol{\vartheta}_{0} \rightarrow \boldsymbol{B}$.

Remark. Similarly to the finite-dimensional case, a distributional connection \mathfrak{E} determines connections on any tensor bundle over \boldsymbol{B} constructed from $\boldsymbol{\vartheta} \rightarrow \boldsymbol{B}$. Together with its possible adjoint \mathbb{E}^{*}, it determines connections on the tensor algebra of $\boldsymbol{\vartheta} \rightarrow \boldsymbol{B}$ and its subspaces.

7. Connection induced by a classical connection.

In this section, I'll show that a suitable underlying classical structure determines a connection on a distributional bundle (though not all distributional connections arise in this way).

Consider again the classical 2 -fibred bundle $\boldsymbol{V} \rightarrow \boldsymbol{E} \rightarrow \boldsymbol{B}$ as before. By $\mathrm{V} \boldsymbol{V}$ and $\mathrm{J} \boldsymbol{V}$ one denotes the vertical and jet spaces of \boldsymbol{V} relatively to base \boldsymbol{B}, while vertical and jet spaces relatively to base \boldsymbol{E} will be denoted by $\mathrm{V}_{\boldsymbol{E}} \boldsymbol{V}$ and $\mathrm{J}_{\boldsymbol{E}} \boldsymbol{V}$.

A connection $\Gamma: V \rightarrow \mathrm{JV}$ is said to be projectable if there is a connection $\underline{\Gamma}: \boldsymbol{E} \rightarrow \mathrm{J} \boldsymbol{E}$ such that the diagram

commutes; moreover, Γ is said to be linear if it is a linear morphism over Γ.
Let $\left(\mathrm{x}^{a}, \mathrm{y}^{i}, \mathrm{y}^{A}\right): \boldsymbol{V} \rightarrow \mathbb{R}^{m} \times \mathbb{R}^{n} \times \mathbb{R}^{p}$ be a local 2-fibred coordinate chart, linear over ($\mathrm{x}^{a}, \mathrm{y}^{i}$): $\boldsymbol{E} \rightarrow \mathbb{R}^{m} \times \mathbb{R}^{n}$; the coordinate expression of a linear projectable connection is then

$$
\begin{aligned}
& \Gamma=d \mathrm{x}^{a} \otimes\left(\partial \mathrm{x}_{a}+\Gamma_{a}^{i} \partial \mathrm{y}_{i}+\Gamma_{a}^{A}{ }_{B} \mathrm{y}^{B} \partial \mathrm{y}_{A}\right), \\
& \Gamma=d \mathrm{x}^{a} \otimes\left(\partial \mathrm{x}_{a}+\Gamma_{a}^{i} \partial \mathrm{y}_{i}\right),
\end{aligned}
$$

with $\Gamma_{a}^{i}, \Gamma_{a}{ }_{a}{ }_{B}: \boldsymbol{E} \rightarrow \mathbb{R}$.
A smooth section $\sigma: \boldsymbol{E} \rightarrow \boldsymbol{V}$ can be viewed as a section of a functional bundle, whose fibre over each $x \in \boldsymbol{M}$ is the space of all smooth sections $\boldsymbol{E}_{x} \rightarrow \boldsymbol{V}_{x}$; in the case when one considers local sections $\boldsymbol{E} \rightarrow \boldsymbol{V}$, these must be defined on a «tubelike» open subset of \boldsymbol{E}. Moreover, this functional bundle can be viewed as a subbundle of $\boldsymbol{\vartheta}:=\boldsymbol{\omega}_{\boldsymbol{B}}(\boldsymbol{E}, \boldsymbol{V}) \rightarrow \boldsymbol{B}$.

Observe now that the above σ can be viewed as the vertical-valued 0 -form

$$
\left(\mathbf{1}_{V}, \sigma\right): V \rightarrow \underset{E}{V} \times \boldsymbol{V} \equiv \mathrm{V}_{E} \boldsymbol{V} \subset \mathrm{~T} \boldsymbol{V}
$$

which has the same coordinate expression $\sigma=\sigma^{A} \partial \mathrm{y}_{A}$. One may also view Γ as a projectable tangent-valued 1-form

$$
\Gamma: \boldsymbol{V} \rightarrow \mathrm{T}^{*} \boldsymbol{M} \underset{V}{\otimes} \mathrm{~T} \boldsymbol{V} \subset \mathrm{~T}^{*} \boldsymbol{V} \underset{\boldsymbol{V}}{\otimes} \mathrm{~T} \boldsymbol{V},
$$

and consider the Frölicher-Nijenhuis bracket

$$
[\Gamma, \sigma]: \boldsymbol{V} \rightarrow \mathrm{T}^{*} \boldsymbol{V} \underset{\boldsymbol{V}}{\otimes} \mathrm{~T} \boldsymbol{V}
$$

Actually, $[\Gamma, \sigma]$ turns out to be a basic vertical-valued form $\boldsymbol{V} \rightarrow$ $\rightarrow \mathrm{T}^{*} \boldsymbol{M} \otimes_{\boldsymbol{V}} \mathrm{V}_{\boldsymbol{E}} \boldsymbol{V}$, as one immediately sees from its coordinate expression

$$
[\Gamma, \sigma]=\left(\partial_{a} \sigma^{A}+\Gamma_{a}^{i} \partial_{i} \sigma^{A}-\Gamma_{a}{ }_{B}{ }_{B} \sigma^{B}\right) \mathrm{dx}{ }^{a} \otimes \partial \mathrm{y}_{A}
$$

From this, it is clear that $[\Gamma, \sigma]$ can be extended to the case when σ is a section $\boldsymbol{B} \rightarrow \boldsymbol{V}$; moreover, it can be seen as the covariant derivative of a linear connection $\mathbb{C}: \vartheta \rightarrow \mathrm{J} \boldsymbol{\vartheta}$, which in the considered chart has the expression $\mathfrak{C}_{a}{ }^{Y}{ }_{Y}\left(\sigma^{\mathrm{Y}}\right)=\Gamma_{a}{ }^{A}{ }_{B} \sigma^{B}-\Gamma_{a}^{i} \partial_{i} \sigma^{A}$, that is

$$
\left(\mathfrak{C}_{a}{ }^{Y}{ }_{Y}\right)^{A}{ }_{B}=\Gamma_{a}{ }^{A}{ }_{B}-\delta_{B}^{A}{ }_{B} \Gamma_{a}^{i} \partial_{i} .
$$

It is not difficult (just a somewhat intricated calculation) to check that the above expression transforms in the right way under the distributional bundle chart transformation induced by a classical chart transformation.

There is a natural relation between the curvature R of Γ and the curvature \mathfrak{R} of the induced distributional connection \mathfrak{C}. Actually one has $R=\mathrm{dx}^{a} \wedge \mathrm{dx}{ }^{b}\left(R_{a b}{ }^{i} \partial_{i}+R_{a b}{ }^{A}{ }_{B} \mathrm{y}^{B} \partial_{A}\right)$ with

$$
\begin{aligned}
& R_{a b}{ }^{i}=-\partial_{a} \Gamma_{b}^{i}+\partial_{b} \Gamma_{a}^{i}-\Gamma_{a}^{j} \partial_{j} \Gamma_{b}^{i}+\Gamma_{b}^{j} \partial_{j} \Gamma_{a}^{i}, \\
& R_{a b}{ }^{A}{ }_{B}=-\partial_{a} \Gamma_{b}{ }^{A}{ }_{B}+\partial_{b} \Gamma_{a}{ }^{A}{ }_{B}-\Gamma_{a}^{j} \partial_{j} \Gamma_{b}{ }^{A}{ }_{B}+\Gamma_{b}^{j} \partial_{j} \Gamma_{a}{ }^{A}{ }_{B}-\Gamma_{b}{ }^{A}{ }_{C} \Gamma_{a}{ }^{C}{ }_{B}+\Gamma_{a}{ }^{A}{ }_{C} \Gamma_{b}{ }^{C}{ }_{B} .
\end{aligned}
$$

A direct calculation then gives

$$
\mathfrak{R}_{a b}{ }^{Y}{ }_{Y} \sigma^{\curlyvee}=R_{a b}{ }^{A}{ }_{B} \sigma^{B}-R_{a b}{ }^{i} \partial_{i} \sigma^{A},
$$

that is, simply, the Frölicher-Nijenhuis bracket

$$
\mathfrak{R}(\sigma)=-[R, \sigma] .
$$

8. Induced connection and horizontal transport.

In this section it will be showed that the notion of distributional connection induced by a classical connection arises in a natural and somewhat more intuitive way in terms of the parallel (i.e. horizontal) transports related to the two connections.

Let $\mathbb{I} \subset \mathbb{R}$ be an open neighbourhood of 0 , and $c: \mathbb{I} \rightarrow \boldsymbol{B}$ a smooth curve. For any $v_{0} \in \boldsymbol{V}_{c(0)}$ one has, locally, a unique Γ-horizontal curve $C_{v_{0}}: \mathbb{I}_{v_{0}} \rightarrow \boldsymbol{V}$, with $\mathbb{I}_{v_{0}} \subset \mathbb{I}$, such that $C_{v_{0}}(0)=v_{0}$. Moreover $C_{v_{0}}$ is linear projectable over $\underline{C}_{v_{0}}: \mathbb{I}_{v_{0}} \rightarrow \boldsymbol{E}$, the horizontal $\underline{\Gamma}$-lift of c starting from $\underline{v}_{0} \equiv \mathrm{q}\left(v_{0}\right)$.

If $t \in \mathbb{I}_{v_{0}}$, so that the horizontal transport of $v_{0} \in \boldsymbol{V}_{c(0)}$ to $\boldsymbol{V}_{c(t)}$ is defined, then there is a neighbourhood $\boldsymbol{U} \subset \boldsymbol{V}_{c(0)}$ of v_{0} such that the horizontal transport of every $u \in \boldsymbol{U}$ to $\boldsymbol{V}_{c(t)}$ is defined too (this is a consequence of the continuity of Γ). From a general result in the theory of ordinary differential equations, on the other hand, it follows that horizontal transport relatively to a linear connection on a vector bundle determines an isomorphism of any two fibres along any smooth curve connecting their base points. This is not the case of the presently considered setting, since $\boldsymbol{V} \rightarrow \boldsymbol{B}$ is not a vector bundle in general. But the whole fibre $\boldsymbol{V}_{\underline{v}_{0}}$ is linearly sent to the whole fibre $\boldsymbol{V}_{\underline{v}_{t}}$, where $\underline{C}_{v_{0}}(t) \equiv \underline{v}_{t} \in \boldsymbol{E}_{c(t)}$; namely horizontal transport determines an isomorphism between these two fibres.

Momentarily forgetting these locality issues, assume horizontal transport along c determines, for all $t \in \mathbb{I}$, a fibred isomorphism $C_{t}: \boldsymbol{V}_{c(0)} \rightarrow \boldsymbol{V}_{c(t)}$ over a diffeomorphism $\underline{C}_{t}: \boldsymbol{E}_{c(0)} \rightarrow \boldsymbol{E}_{c(t)}$. In other terms one has a 1-parameter familiy of fibred isomorphisms over a 1-parameter familiy of diffeomorphisms, denoted by

$$
C: \mathbb{I} \times \boldsymbol{V}_{c(0)} \rightarrow \boldsymbol{V}, \quad \underline{C}: \mathbb{I} \times \boldsymbol{E}_{c(0)} \rightarrow \boldsymbol{E} .
$$

Let now $\lambda \in \boldsymbol{\vartheta}_{c(0)} \equiv \boldsymbol{\omega}\left(\boldsymbol{E}_{c(0)}, \boldsymbol{V}_{c(0)}\right)$. Then

$$
\left(C_{t}\right)_{*} \lambda \in \boldsymbol{\vartheta}_{c(t)} \equiv \boldsymbol{\omega}\left(\boldsymbol{E}_{c(t)}, \boldsymbol{V}_{c(t)}\right)
$$

Namely, the classical horizontal transport locally determines a lift

$$
C_{*}: \mathbb{I} \times \boldsymbol{\vartheta}_{c(0)} \rightarrow \boldsymbol{\mathcal { V }}
$$

of the base curve c. It can be seen that this is exactly the horizontal lift of c relatively to the distributional connection $\mathbb{E}^{\mathscr{E}}$ induced by Γ, namely that

$$
\mathfrak{C}: \mathrm{T} \boldsymbol{M} \times \underset{M}{ } \mathfrak{V} \rightarrow \mathrm{~T} \mathfrak{\vartheta}:(\partial c(0), \lambda) \mapsto \partial\left(C_{*} \lambda\right)(0) .
$$

This result follows from a coordinate calculation; from the definition of a horizontal curve one has

$$
\frac{\partial}{\partial t} \underline{C}^{i}\left(0, \underline{v}_{0}\right)=\dot{c}^{a}(0) \Gamma_{a}^{i}\left(\underline{v}_{0}\right), \quad \frac{\partial}{\partial t} C^{A}{ }_{B}\left(0, \underline{v}_{0}\right)=\dot{c}^{a}(0) \Gamma_{a}^{A}{ }_{B}\left(\underline{v}_{0}\right),
$$

while the induced horizontal curve $C_{*} \lambda: \mathbb{I} \rightarrow \mathcal{V}$ can be written, by some abuse of language, as

$$
\left(C_{*} \lambda\right)^{A}(t, \underline{y})=C^{A}{ }_{B}(t, \underline{C}(t, \underline{y})) \lambda^{B}(\overleftarrow{\mathbb{C}}(t, \underline{y})) .
$$

Calculating the tangent vector $\partial\left(C_{*} \lambda\right): \mathbb{I} \rightarrow \mathrm{T} \vartheta$ is now a straightforward (though not immediate) task; using the relation between Γ and \mathbb{C} one gets the claimed result.

As already observed, in general this horizontal lift of c through \mathfrak{E} may not exist for every $\lambda \in \boldsymbol{\vartheta}_{c(0)}$, but it can defined for the restriction of λ to a suitable open subset. Furtherermore, the horizontal lift construction can be done whenever λ has compact support $\boldsymbol{K} \subset \boldsymbol{E}_{c(0)}$, by the following argument. For every $e \in \boldsymbol{E}_{c(0)}$ choose an open neighbourhood of $e, \boldsymbol{U} \subset$ c $\boldsymbol{E}_{c(0)}$, such that the restriction of λ to \boldsymbol{U} is horizontally transported over c up to $t=t_{\boldsymbol{U}}>0$; from this open covering of \boldsymbol{K} select a finite subcovering \boldsymbol{u}, and define $t_{\boldsymbol{K}}:=\min \left\{t_{\boldsymbol{U}}, \boldsymbol{U} \in \boldsymbol{u}\right\}$. Then by a partition of unity subjected to \boldsymbol{U} one has horizontal transport of λ over c up to $t=t_{\boldsymbol{K}}$.

9. Induced connections and tensor products.

Consider another 2-fibred bundle $\boldsymbol{V}^{\prime} \rightarrow \boldsymbol{E}^{\prime} \rightarrow \boldsymbol{B}$ over the same lower base manifold \boldsymbol{B}. The fibred tensor product of \boldsymbol{V} and \boldsymbol{V}^{\prime} is defined to be the 2 -fibred bundle

$$
\boldsymbol{W}:=\boldsymbol{V} \underset{F}{\otimes} \boldsymbol{V}^{\prime} \rightarrow \boldsymbol{F}:=\boldsymbol{E} \times \boldsymbol{E}_{\boldsymbol{B}} \rightarrow \boldsymbol{B} .
$$

Let ($\mathrm{x}^{a}, \mathrm{y}^{i}, \mathrm{y}^{A}$) and ($\mathrm{x}^{a}, \mathrm{y}^{i^{\prime}}, \mathrm{y}^{A^{\prime}}$) be 2-fibred coordinate charts on \boldsymbol{V} and \boldsymbol{V}^{\prime}; then one has induced coordinates $\left(\mathrm{x}^{a}, \mathrm{y}^{i}, \mathrm{y}^{A}, \mathrm{y}^{i^{\prime}}, \mathrm{y}^{A^{\prime}}, \mathrm{w}^{A A^{\prime}}\right.$) on \boldsymbol{W}, where

$$
\begin{gathered}
\mathrm{w}^{A A^{\prime}} \equiv \mathrm{y}^{A} \otimes \mathrm{y}^{A^{\prime}} \quad \text { i.e. } \quad \mathrm{w}^{A A^{\prime}} \circ \otimes=\mathrm{y}^{A} \mathrm{y}^{A^{\prime}} \\
\otimes: \underset{\boldsymbol{B}}{\times} \boldsymbol{V}^{\prime} \rightarrow \boldsymbol{W}:\left(v, v^{\prime}\right) \mapsto v \otimes v^{\prime}
\end{gathered}
$$

The jet prolongation $\mathrm{J} \otimes: \mathrm{J} \boldsymbol{V} \underset{\boldsymbol{B}}{\times} \mathrm{J} \boldsymbol{V}^{\prime} \rightarrow \mathrm{J} \boldsymbol{W}$ is characterized by the requirement that the diagram

commutes for any two sections $\sigma: \boldsymbol{B} \rightarrow \boldsymbol{V}, \sigma^{\prime}: \boldsymbol{B} \rightarrow \boldsymbol{V}^{\prime}$. Thus one finds the coordinate expression

$$
\mathrm{w}_{a}^{A A^{\prime}} \circ \mathrm{J} \otimes=\mathrm{y}_{a}^{A} \mathrm{y}^{A^{\prime}}+\mathrm{y}^{A} \mathrm{y}_{a}^{A^{\prime}}
$$

Let now $\Gamma: \boldsymbol{V} \rightarrow \mathrm{J} \boldsymbol{V}$ and $\Gamma^{\prime}: \boldsymbol{V}^{\prime} \rightarrow \mathrm{J} \boldsymbol{V}^{\prime}$ be linear projectable connections over $\underline{\Gamma}: \boldsymbol{E} \rightarrow \mathrm{J} \boldsymbol{E}$ and $\underline{\Gamma}^{\prime}: \boldsymbol{E}^{\prime} \rightarrow \mathrm{J} \boldsymbol{E}^{\prime}$, respectively; then there exists a unique connection $\Gamma \otimes \Gamma^{\prime}: \boldsymbol{W} \rightarrow \mathrm{J} \boldsymbol{W}$ such that the diagram

commutes; moreover, $\Gamma \otimes \Gamma^{\prime}$ is linear projectable over

$$
\left(\underline{\Gamma}, \underline{\Gamma}^{\prime}\right): \boldsymbol{E} \underset{\boldsymbol{B}}{\times} \boldsymbol{E}^{\prime} \rightarrow \mathrm{J} \boldsymbol{E} \underset{\boldsymbol{B}}{\times} \mathrm{J} \boldsymbol{E}^{\prime},
$$

and its ccordinate expression is

$$
\begin{aligned}
& \left(\mathrm{y}_{a}^{i}, \mathrm{y}_{a}^{A}, \mathrm{y}_{a}^{i^{\prime}}, \mathrm{y}_{a}^{A^{\prime}}, \mathrm{w}_{a}^{A A^{\prime}}\right) \circ\left(\Gamma \otimes \Gamma^{\prime}\right)= \\
& \quad=\left(\Gamma_{a}^{i}, \Gamma_{a}{ }^{A}{ }_{B} \mathrm{y}^{B}, \Gamma_{a}^{i^{\prime}}, \Gamma_{a}{ }^{A^{\prime}}{ }_{B^{\prime}} \mathrm{y}^{B^{\prime}}, \Gamma_{a}{ }^{A}{ }_{B} \mathrm{y}^{B} \mathrm{y}^{A^{\prime}}+\mathrm{y}^{A} \Gamma_{a}{ }^{A^{\prime}}{ }_{B^{\prime}} \mathrm{y}^{B^{\prime}}\right)
\end{aligned}
$$

where the components of Γ^{\prime} are recognized by primed indices.
The distributional bundle $\mathfrak{W}:=\boldsymbol{\omega}_{\boldsymbol{B}}(\boldsymbol{F}, \boldsymbol{W}) \rightarrow \boldsymbol{B}$ is easily seen to co-
incide with the fibred tensor product of $\boldsymbol{\vartheta}$ and $\boldsymbol{\vartheta}^{\prime}$, namely

$$
\begin{aligned}
& \mathfrak{W}:=\boldsymbol{\omega}_{\boldsymbol{M}}(\boldsymbol{F}, \boldsymbol{W})=\boldsymbol{\omega}_{\boldsymbol{M}}\left(\boldsymbol{E} \times \boldsymbol{E}^{\prime}, \boldsymbol{V}_{\boldsymbol{E} \times{ }_{M} \boldsymbol{E}^{\prime}}^{\otimes} \boldsymbol{V}^{\prime}\right)= \\
& =\boldsymbol{\omega}_{\boldsymbol{M}}(\boldsymbol{E}, \boldsymbol{V}) \underset{\boldsymbol{M}}{\otimes} \boldsymbol{\omega}_{\boldsymbol{M}}\left(\boldsymbol{E}^{\prime}, \boldsymbol{V}^{\prime}\right) \equiv \boldsymbol{\mathcal { V }} \underset{\boldsymbol{M}}{\otimes} \boldsymbol{\vartheta}^{\prime} .
\end{aligned}
$$

Let $\mathfrak{S}^{\mathfrak{S}}: \boldsymbol{\vartheta} \rightarrow \mathrm{J} \boldsymbol{\mathcal { V }}$ and $\mathfrak{C}^{\prime}: \boldsymbol{\vartheta}^{\prime} \rightarrow \mathrm{J} \boldsymbol{\vartheta}^{\prime}$ be the distributional connections induced by Γ and Γ^{\prime}. These yield, exactly by the same argument which is valid in the finite-dimensional case, a linear connection $\mathfrak{C} \otimes \mathfrak{C}^{\prime}: \mathfrak{W} \rightarrow$ $\rightarrow \mathrm{J}$ W; it is not difficult to proof:

Proposition 9.1. The tensor product connection $\mathfrak{C} \otimes \mathfrak{C}^{\prime}$ is exactly the distributional connection associated with the classical connection $\Gamma \otimes \Gamma^{\prime}$. For $\omega \in \mathbb{W}$ one has
$\left(\mathfrak{C} \otimes \mathfrak{S}^{\prime}\right)_{a}{ }^{\mathrm{YY}}{ }^{\prime}{ }_{\mathrm{YY}}{ }^{\prime} \omega^{\mathrm{YY}}=\Gamma_{a}{ }^{A}{ }_{B} \omega^{B A^{\prime}}-\Gamma_{a}^{i} \partial_{i} \omega^{A A^{\prime}}+\Gamma_{a}{ }^{A^{\prime}}{ }_{B^{\prime}} \omega^{A B^{\prime}}-\Gamma_{a}^{i^{\prime}} \partial_{i^{\prime}} \omega^{A A^{\prime}}$.
If $\boldsymbol{E}=\boldsymbol{E}^{\prime}$ then one also has the 2-fibred bundle $\boldsymbol{V} \underset{\boldsymbol{E}}{\otimes} \boldsymbol{V}^{\prime} \rightarrow \boldsymbol{E} \rightarrow \boldsymbol{B}$. The distributional bundle $\boldsymbol{\omega}_{\boldsymbol{M}}\left(\boldsymbol{E}, \boldsymbol{V} \underset{\boldsymbol{E}}{\otimes} \boldsymbol{V}^{\prime}\right)$ is different from $\boldsymbol{\mathcal { O }} \otimes_{\boldsymbol{M}}^{\otimes} \boldsymbol{\vartheta}^{\prime}$. If $\Gamma: \boldsymbol{V} \rightarrow \mathrm{J} \boldsymbol{V}$ and $\Gamma^{\prime}: \boldsymbol{V}^{\prime} \rightarrow \mathrm{J} \boldsymbol{V}^{\prime}$ are now linear projectable connections over the same connection $\underline{\Gamma}: \boldsymbol{E} \rightarrow \mathrm{J} \boldsymbol{E}$, then, besides $\Gamma \otimes \Gamma^{\prime}$, they also determine a different kind of tensor connection, that is

$$
\Gamma \underline{\otimes} \Gamma^{\prime}: \boldsymbol{V} \underset{\boldsymbol{E}}{\otimes} \boldsymbol{V}^{\prime} \rightarrow \mathrm{J}\left(\boldsymbol{V} \otimes \boldsymbol{E} \boldsymbol{V}^{\prime}\right),
$$

which is characterized by the commuting diagram

and has the coordinate expression

$$
\begin{aligned}
\left(\mathrm{y}_{a}^{i}, \mathrm{y}_{a}^{A}, \mathrm{y}_{a}^{A^{\prime}}, \mathrm{w}_{a}^{A A^{\prime}}\right) & \circ\left(\Gamma \underline{\otimes} \Gamma^{\prime}\right)= \\
& =\left(\Gamma_{a}^{i}, \Gamma_{a}{ }^{A}{ }_{B} \mathrm{y}^{B}, \Gamma_{a}{ }^{A^{\prime}}{ }_{B^{\prime}} \mathrm{y}^{B^{\prime}}, \Gamma_{a}{ }^{A}{ }_{B} \mathrm{y}^{B} \mathrm{y}^{A^{\prime}}+\mathrm{y}^{A} \Gamma_{a}{ }^{A^{\prime}}{ }_{B^{\prime}} \mathrm{y}^{B^{\prime}}\right) .
\end{aligned}
$$

The induced distributional connection

$$
\mathfrak{S} \underline{\otimes} \mathfrak{S}^{\prime}: \boldsymbol{\omega}_{M}\left(\boldsymbol{E}, \boldsymbol{V} \underset{\boldsymbol{E}}{\otimes} \boldsymbol{V}^{\prime}\right) \rightarrow \mathrm{J} \boldsymbol{\omega}_{M}\left(\boldsymbol{E}, \boldsymbol{V} \underset{\boldsymbol{E}}{\otimes} \boldsymbol{V}^{\prime}\right)
$$

has the cordinate chart expression

$$
\left(\mathbb{C} \otimes \underline{\mathbb{C}^{\prime}}\right)_{a}{ }^{Y Y^{\prime}}{ }_{Y}{ }^{\prime} \omega^{\mathrm{YY}^{\prime}}=\Gamma_{a}{ }_{a}{ }_{B} \omega^{B A^{\prime}}+\Gamma_{a}{ }^{A^{\prime}}{ }_{B^{\prime}} \omega^{A B^{\prime}}-\Gamma_{a}^{i} \partial_{i} \omega^{A A^{\prime}} .
$$

10. Induced connection: vertical bundle and adjoint case.

A linear projectable connection $\Gamma: \boldsymbol{V} \rightarrow \mathrm{J} \boldsymbol{V}$, as considered in the previous sections, determines a unique «dual» connection $\Gamma^{*}: V^{*} \rightarrow \mathrm{~J} V^{*}$; this is again linear projectable over the same $\underline{\Gamma}$, and is characterized by

$$
\mathrm{J} c \circ\left(\Gamma, \Gamma^{*}\right)=0,
$$

where $c: \underset{\boldsymbol{E}}{\boldsymbol{V} \times \boldsymbol{V}^{*}} \rightarrow \boldsymbol{E} \times \mathrm{C}$ denotes the duality contraction; it has the coordinate expression

$$
\Gamma_{a A A}^{*}{ }^{B}=-\Gamma_{a}{ }_{B}^{A} .
$$

On turn, Γ^{*} determines a connection on the distributional bundle $\boldsymbol{\omega}_{\boldsymbol{B}}\left(\boldsymbol{E}, \boldsymbol{V}^{*}\right)$. In general, this is not the adjoint connection \mathfrak{E}^{*} of \mathfrak{C}, which is actually a connection on a different distributional bundle. In order to study the relation between $巳^{*}$ and the classical connection Γ one has to perform some further constructions.

The first step consists in the vertical extension of $\underline{\Gamma}: \boldsymbol{E} \rightarrow \mathrm{J} \boldsymbol{E}$. Recalling the natural isomorphism $\mathrm{JV} \boldsymbol{E} \cong \mathrm{VJ} \boldsymbol{E}$, one gets the morphism

$$
\check{\Gamma}:=\mathrm{V} \underline{\Gamma}: \mathrm{V} \boldsymbol{E} \rightarrow \mathrm{~J} \mathrm{~V} \boldsymbol{E},
$$

which turns out to be a linear projectable connection over $\underline{\Gamma}$. Its coordinate expression is

$$
\check{\Gamma}_{a j}^{i}{ }_{j}=\partial_{j} \Gamma_{a}^{i} .
$$

Its dual connection $\check{I}^{*}: \mathrm{V}^{*} \boldsymbol{E} \rightarrow \mathrm{JV}^{*} \boldsymbol{E}$ has the coordinate expression

$$
\left(\check{\Gamma}^{*}\right)_{a j}^{i}=-\check{\Gamma}_{a j}^{i}=-\partial_{j} \Gamma_{a}^{i} .
$$

Now one finds induced linear projectable connections over $\underline{\Gamma}$ in all tensor product bundles over $\boldsymbol{E} \rightarrow \boldsymbol{B}$ constructed from $\mathrm{V} \boldsymbol{E}$ and $\mathrm{V}^{*} \boldsymbol{E}$. Most noticeably, one has projectable linear connections over $\underline{\Gamma}$ on the 2 -fibre bundles

$$
\begin{aligned}
& \wedge^{r} \mathrm{~V}^{*} \boldsymbol{E} \rightarrow \boldsymbol{E} \rightarrow \boldsymbol{B}, \quad r \in \mathbb{N}, \\
& \mathbb{V}^{*} \boldsymbol{E} \rightarrow \boldsymbol{E} \rightarrow \boldsymbol{B}
\end{aligned}
$$

and, using Γ, in their tensor products with \boldsymbol{V} and \boldsymbol{V}^{*} over \boldsymbol{E}. In particular, the connection $\widehat{\Gamma}: \mathbb{V}^{*} \boldsymbol{E} \rightarrow \mathbf{J V}^{*} \boldsymbol{E}$ has the coordinate expression

$$
\widehat{\Gamma}_{a}=\left(\check{\Gamma}^{*}\right)_{a i}{ }^{i}=-\partial_{i} \Gamma_{a}^{i} .
$$

All these classical connections determine linear connections on the corresponding distributional bundles, and, in particular, in the distributional bundle

$$
\mathfrak{刃}^{*}:=\boldsymbol{\omega}_{B}\left(\boldsymbol{E}, \mathbb{V}^{*} \boldsymbol{E}{\underset{E}{*}}_{\otimes} V^{*}\right) .
$$

The classical connection

$$
\Gamma^{\prime} \equiv\left(\widehat{\Gamma} \otimes \Gamma^{*}\right): \mathbb{V}^{*} \boldsymbol{E} \underset{\boldsymbol{E}}{\otimes} \boldsymbol{V}^{*} \rightarrow \mathrm{~J}\left(\mathbb{V}^{*} \boldsymbol{E} \underset{\boldsymbol{E}}{\otimes} \boldsymbol{V}^{*}\right),
$$

which is again linear projectable over $\underline{\Gamma}$, has the coordinate expression

$$
\mathrm{z}_{B a} \circ \Gamma^{\prime}=\left(-\delta_{B}{ }^{A} \partial_{i} \Gamma_{a}^{i}+\Gamma_{a b}^{*}{ }^{A}\right) \mathrm{y}_{A}=-\left(\delta_{B}{ }^{A} \partial_{i} \Gamma_{a}^{i}+\Gamma_{a}{ }^{A}{ }_{B}\right) \mathrm{y}_{A},
$$

where $\left(z_{B}\right)$ and $\left(y_{A}\right)$ are the induced coordinates in the fibres of $\mathbb{V}^{*} \boldsymbol{E} \underset{\boldsymbol{E}}{\otimes} \boldsymbol{V}^{*} \rightarrow \boldsymbol{E}$ and $\boldsymbol{V}^{*} \rightarrow \boldsymbol{E}$, respectively.

Now, Γ^{\prime} induces a linear distributional connection $\mathfrak{C}^{\prime}: \mathfrak{V}^{*} \rightarrow \mathrm{~J} \mathbb{刃}^{*}$; if $\tau: \boldsymbol{B} \rightarrow \boldsymbol{\vartheta}^{*}$ is an F-smooth section, with coordinate expression $\tau=$ $=\tau_{A} \mathrm{~d}^{n} \underline{\mathbf{y}} \otimes \mathrm{y}^{A}$, then one finds

$$
\mathfrak{C}^{\prime}{ }_{a Y}{ }^{Y} \tau_{Y_{B}}=\Gamma^{\prime}{ }_{a B}{ }^{A} \tau_{A}-\Gamma_{a}^{i} \partial_{i} \tau_{B}=-\Gamma_{a}{ }_{a}{ }_{B} \tau_{A}-\partial_{i} \Gamma_{a}^{i} \tau_{B}-\Gamma_{a}^{i} \partial_{i} \tau_{B} .
$$

Now it is a straightforward matter to proof:
Proposition 10.1. The distributional connection $\mathfrak{C}^{\prime}: \Im^{*} \rightarrow \mathrm{~J}$ Ү* coincides with the adjoint connection \mathfrak{C}^{*} of $\mathfrak{C}: \vartheta \rightarrow \mathrm{J}$ (proposition 6.1).

11. Quantum Dirac connection.

Let (\boldsymbol{M}, g) be an Einstein spacetime. A time map is a bundle $\mathrm{t}: \boldsymbol{M} \rightarrow$ $\rightarrow \boldsymbol{T}$, where \boldsymbol{T} is an oriented 1-dimensional real manifold whose fibres $\boldsymbol{M}_{t} \equiv$ $\equiv \mathrm{t}^{-1}(t), t \in \boldsymbol{T}$, are spacelike (this is one possible extension of the notion of observer to the curved spacetime case). The assignment of t determines a splitting of the spacetime's tangent bundle as $\mathrm{T} \boldsymbol{M}=\mathrm{T}^{\|} \boldsymbol{M} \underset{\boldsymbol{M}}{\oplus} \mathrm{T}^{\perp} \boldsymbol{M}$, where, for each $\boldsymbol{x} \in \boldsymbol{M}, \mathrm{T}_{x}^{\|} \boldsymbol{M}$ is defined to be the timelike subspace of $\mathrm{T}_{x} \boldsymbol{M}$
which is orthogonal to the spacelike fibre through x, and $\mathrm{T}_{x}^{\perp} \boldsymbol{M}$ is the subspace orthogonal to $\mathrm{T}_{x}^{\|} \boldsymbol{M}$; namely $\mathrm{T}^{\perp} \boldsymbol{M} \equiv \mathrm{V} \boldsymbol{M}$ is constituted by all vectors tangent to the spacelike fibres.

The bundle $\boldsymbol{M} \rightarrow \boldsymbol{T}$ has a natural trivialization $(\mathrm{t}, \mathrm{x}): \boldsymbol{M} \rightarrow \boldsymbol{T} \times \boldsymbol{X}$, determined by the integral lines of any vector field $\boldsymbol{M} \rightarrow \mathrm{T}^{\|} \boldsymbol{M}$: the family of these lines can be identified with the fibre type \boldsymbol{X} of t . It should be noted that, in general (differently from the flat case), the manifolds \boldsymbol{T} and \boldsymbol{X} do not inherit distinguished metric structures. One may choose adapted coordinate charts $\left(\mathbf{x}^{a}\right)=\left(\mathrm{x}^{i}, \mathrm{x}^{4}\right)$ on \boldsymbol{M}, determined by a chart (x^{4}) on \boldsymbol{T} and a chart (x^{i}) on \boldsymbol{X}. Obviously, one has $g_{4 i}=0, i=1,2,3$.

Besides adapted charts, it is also convenient to work with a tetrad, which is defined to be an ortonormal frame $\left(\Theta_{\lambda}\right) \equiv\left(\Theta_{0}, \Theta_{j}\right)$ such that $\Theta_{0}: \boldsymbol{M} \rightarrow \mathrm{T}^{\|} \boldsymbol{M}$ and $\Theta_{j}: \boldsymbol{M} \rightarrow \mathrm{T}^{\perp} \boldsymbol{M}, j=1,2,3$. One also sets $\partial \mathrm{x}_{a}=$ $=\Theta_{a}^{\lambda} \Theta_{\lambda}$, with $\Theta_{a}^{\lambda}: \boldsymbol{M} \rightarrow \mathbb{R}$.

The given time and spacetime orientations of \boldsymbol{M} yield a space orientation, namely an orientation of each \boldsymbol{M}_{t}; one has the positive semi-vector bundle

$$
\mathbb{V}^{\perp}:=\left(\wedge^{3} \mathrm{~T}^{\perp} \boldsymbol{M}\right)^{+} \subset \wedge^{3} \mathrm{~T} \boldsymbol{M} \rightarrow \boldsymbol{M}
$$

and the spacetime volume form can be decomposed as $\eta=\Theta^{0} \wedge \eta_{0}$, $\eta_{0}: \boldsymbol{M} \rightarrow \mathbb{V}^{\perp^{*}}$. It is not difficult to see that the spacetime connection determines connections on $\mathrm{T}^{\|} \boldsymbol{M} \rightarrow \boldsymbol{M}$ and $\mathrm{T}^{\perp} \boldsymbol{M} \rightarrow \boldsymbol{M}$ by the rules

$$
\begin{aligned}
\nabla_{a}^{\|} u:=\left(\nabla_{a} u\right)^{\|}, & u: \boldsymbol{M} \rightarrow \mathrm{T}^{\|} \boldsymbol{M} \\
\nabla_{a}^{\perp} v & :=\left(\nabla_{a} u\right)^{\perp},
\end{aligned} \quad v: \boldsymbol{M} \rightarrow \mathrm{T}^{\perp} \boldsymbol{M}, ~ l
$$

and that $\nabla^{\|} \Theta_{0}=0, \nabla^{\perp} \eta_{0}=0$.
Next, consider a 4-spinor bundle (see also [CJ, C00b] for details); this is defined to be a complex vector bundle $\boldsymbol{W} \rightarrow \boldsymbol{M}$ with 4-dimensional fibres, endowed with a fibred Hermitian metric k with signature $(++--)$, a Clifford map $\gamma: \mathbf{T} \boldsymbol{M} \rightarrow \operatorname{End}(\boldsymbol{W})$ over \boldsymbol{M} fulfilling $k\left(\gamma(v) \psi^{\prime}, \psi\right)=$ $=k\left(\psi^{\prime}, \gamma(v) \psi\right) \forall\left(v, \psi^{\prime}, \psi\right) \in \mathrm{T} \boldsymbol{M} \underset{\boldsymbol{M}}{\times} \underset{\boldsymbol{M}}{\boldsymbol{W}} \boldsymbol{W}$, and a k-preserving linear connection $\Gamma: W \rightarrow J \boldsymbol{W}$ such that $\nabla[\Gamma \otimes K] \gamma=0$. Then, in suitable linear fibre coordinates, F is related to the spacetime connection Γ by the expression

$$
\Gamma_{a}^{\alpha}{ }_{\beta}=\mathrm{i} A_{a} \delta^{\alpha}{ }_{\beta}+\frac{1}{4} \Gamma_{a}^{\lambda \mu}\left(\gamma_{\lambda} \gamma_{\mu}\right)^{\alpha}{ }_{\beta}, \quad \gamma_{\lambda} \equiv \gamma\left(\Theta_{\lambda}\right), \quad \alpha, \beta=1,2,3,4,
$$

where the functions $A_{a}: \boldsymbol{M} \rightarrow \mathbb{R}$ can be seen as the components of the
connection induced on $\wedge^{2} \boldsymbol{S} \rightarrow \boldsymbol{M}, \boldsymbol{S} \subset \boldsymbol{W}$ being a maximal k-isotropic subbundle (2-dimensional fibres). The time fibration yields a further Hermitian structure h in the fibres of \boldsymbol{W}, given by

$$
h\left(\psi^{\prime}, \psi\right):=k\left(\gamma^{0} \psi^{\prime}, \psi\right)=k\left(\psi^{\prime}, \gamma^{0} \psi\right),
$$

which turns out to have positive signature.
The Dirac equation for a (generalized) section $\psi: \boldsymbol{M} \rightarrow \boldsymbol{W}$,

$$
\mathrm{i} \gamma^{\lambda} \nabla_{\lambda} \psi-\mu \psi+\frac{\mathrm{i}}{2} T_{\lambda} \gamma^{\lambda} \psi=0, \quad \mu \in \mathbb{R}^{+}
$$

(here $\gamma^{\lambda}:=g^{\lambda \nu} \gamma_{\nu}$ and $T_{\lambda}:=T_{\lambda}{ }^{\nu}{ }_{\nu}, T$ being the torsion of the spacetime connection), can be rewritten, after composition by γ^{0} on the left, as $\left({ }^{5}\right)$

$$
\partial_{4} \psi-\Gamma_{4} \psi+\Theta_{4}^{0}\left(\Theta^{-1}\right)_{j}^{h} \gamma^{0} \gamma^{j}\left(\partial_{h} \psi-\Gamma_{h} \psi\right)+\Theta_{4}^{0}\left(\mathrm{i} \mu \gamma^{0} \psi+\frac{1}{2} T_{\lambda} \gamma^{0} \gamma^{\lambda} \psi\right)=0 .
$$

Let now $\mathfrak{W}:=\boldsymbol{\omega}_{\boldsymbol{T}}(\boldsymbol{M}, \boldsymbol{W}) \rightarrow \boldsymbol{T}$ be the distributional bundle whose fibre over any $t \in \boldsymbol{T}$ is the space of all generalized sections of the classical bundle $\boldsymbol{W}_{\boldsymbol{M}_{t}} \rightarrow \boldsymbol{M}_{t}$. This is called the bundle of 1 -electron states, and a section $\psi: \boldsymbol{T} \rightarrow \mathfrak{W}$ is called a 1-electron quantum history. It is clear, from the latter way of writing it, that the Dirac equation can be seen as an equation for quantum histories of the form $\nabla[\mathscr{C}] \psi=0$, relatively to a linear connection $\mathfrak{E}: \mathfrak{W} \rightarrow \mathrm{J}$ W which I call the quantum Dirac connection. It should be noted that \mathfrak{C} does not derive from a connection on the underlying classical bundle (§7).

The adjoint bundle of $\boldsymbol{w} \rightarrow \boldsymbol{T}$ is

$$
\mathfrak{W}^{*}=\boldsymbol{\omega}_{\boldsymbol{T}}\left(\boldsymbol{M}, \mathbb{V}^{+*} \boldsymbol{M} \underset{\boldsymbol{M}}{\otimes} \boldsymbol{W}^{*}\right) \rightarrow \boldsymbol{T},
$$

its fibres being constituted by \boldsymbol{W}^{*}-valued generalized densities on the spacelike fibres of t . Because the Hermitian metric k determines an antiisomorphism $\boldsymbol{W} \leftrightarrow \boldsymbol{W}^{*}$, the conjugate Dirac equation is a field equation for (generalized) sections $\phi: \boldsymbol{M} \rightarrow \boldsymbol{W}^{*}$, namely

$$
\mathrm{i} \nabla_{\lambda} \phi \gamma^{\lambda}+\mu \phi+\frac{\mathrm{i}}{2} T_{\lambda} \phi \gamma^{\lambda}=0 .
$$

As one has a connection on $\mathbb{V}^{+*} \rightarrow \boldsymbol{M}$, determined by the spacetime con-
$\left({ }^{5}\right)$ As customary, here spinor indices are not explicitely shown.
nection, and since $\nabla \eta_{0}=0$, one can equivalently write the above equation for ϕ as a formally identical equation for $\check{\phi} \equiv \eta_{0} \otimes \phi: \boldsymbol{M} \rightarrow \mathbb{V}^{\perp^{*}}{\underset{\boldsymbol{M}}{ }}_{\otimes}^{\boldsymbol{W}^{*}}$ (coordinates expressions, however, are not exactly the same). One can rewrite the equation for $\check{\phi}$ using the same procedure used for ψ above, getting
$0=\partial_{4} \check{\phi}-\left(\partial_{4} \log \operatorname{det} \Theta^{\perp}\right) \check{\phi}+\check{\phi} \Gamma_{4}+$

$$
\begin{array}{r}
+\Theta_{4}^{0}\left(\Theta^{-1}\right)_{j}^{h}\left[\partial_{h} \check{\phi}-\left(\partial_{h} \log \operatorname{det} \Theta^{\perp}\right) \check{\phi}+\check{\phi} F_{j}\right] \gamma^{j} \gamma^{0}+ \\
+\Theta_{4}^{0}\left(-\mathrm{i} \mu \check{\phi} \gamma^{0}+\frac{1}{2} T_{\lambda} \check{\phi} \gamma^{\lambda} \gamma^{0}\right),
\end{array}
$$

where $\left(\Theta^{\perp}\right)$ denotes the «spacelike» matrix $\left(\Theta_{i}^{k}\right), k, i=1,2,3$. Then, one sees that the equation for $\check{\phi}$ can be also written in the form $\nabla\left[\mathfrak{C}^{b}\right] \check{\phi}=0$, relatively to a connection $\mathfrak{C}^{b}: \mathcal{W}^{*} \rightarrow \mathrm{~J} \mathcal{W}^{*}$. Naturally, one wishes to compare this connection with the distributional adjoint of \mathfrak{C}. It turns out that \mathfrak{C}^{b} is not \mathfrak{C}^{*}, but rather it is the adjoint of \mathfrak{C}^{5} relatively to a contraction mediated by the observer through γ_{0} (thus related to the positive Hermitian metric h). In fact:

Proposition 11.1. Whenever all contractions are defined, one has

$$
\partial_{4}\left\langle\check{\phi}, \gamma_{0} \psi\right\rangle=\left\langle\nabla_{4}\left[\mathscr{C}^{b}\right] \check{\phi}, \gamma_{0} \psi\right\rangle+\left\langle\check{\phi}, \gamma_{0} \nabla_{4}[\mathfrak{C}] \psi\right\rangle .
$$

Proof. By an argument similar to the proof of proposition 6.1 there is a connection $\mathfrak{5}^{\prime}: \mathbb{W}^{*} \rightarrow \mathrm{~J} \mathbb{W}^{*}$ determined by the requirement $\partial_{4}\left\langle\check{\phi}, \gamma_{0} \psi\right\rangle=\left\langle\nabla_{4}\left[\mathfrak{C}^{\prime}\right] \check{\phi}, \gamma_{0} \psi\right\rangle+\left\langle\check{\phi}, \gamma_{0} \nabla_{4}[\mathfrak{C}] \psi\right\rangle$. The operator $\nabla_{4}\left[\mathfrak{C}^{\prime}\right]$ can be calculated by assuming that $\check{\phi}$ and ψ are represented in each fibre by ordinary sections, and $\check{\phi}$ in particular by a test section. Then contractions can be written as integrals, and integration by parts gives

$$
\begin{array}{r}
\nabla_{4}\left[\breve{5}^{\prime}\right] \check{\phi}=\partial_{4} \check{\phi}+\check{\phi} F_{4}+\tilde{\Gamma}_{4}^{0}{ }_{j} \check{\phi} \gamma^{j} \gamma^{0}+\Theta_{4}^{0}\left(\Theta^{-1}\right)_{j}^{h}\left(\partial_{h} \check{\phi}+\check{\phi} F_{h}\right) \gamma^{j} \gamma^{0}+ \\
+\partial_{h}\left[\Theta_{4}^{0}\left(\Theta^{-1}\right)_{j}^{h}\right] \check{\phi} \gamma^{j} \gamma^{0}+\Theta_{4}^{0}\left(\Theta^{-1}\right)_{j}^{h} \tilde{\Gamma}_{h}^{j}{ }_{\lambda} \check{\phi} \gamma^{\lambda} \gamma^{0}+ \\
-\mathrm{i} \Theta_{4}^{0} \mu \check{\phi} \gamma^{0}-\frac{1}{2} \Theta_{4}^{0} T_{\lambda} \check{\phi} \gamma^{\lambda} \gamma^{0} .
\end{array}
$$

The comparison between \mathfrak{C}^{b} and \mathfrak{C}^{\prime} now involves some coordinate calculations by which one relates the derivatives of the tetrad components to the torsion; eventually, these two distributional connections are seen to coincide.

By similar arguments, one can show that $\mathfrak{5}^{*}$ is related to the field equation obeyed by ψ^{\dagger}, the adjoint of ψ through the positive Hermitian metric h.

12. Connections in phase-distributional bundles.

A convenient way of describing quantum states consists in viewing them as distributions on the phase bundle of the particle under consideration. Let $\mu \in\{0\} \cup \mathbb{R}^{+}$be the particle's mass $\left({ }^{6}\right)$ and consider the subbundle $\boldsymbol{K}_{\mu}^{+} \subset \mathbf{T M}$ over \boldsymbol{M} constituted by all future-pointing vectors $v \in \mathrm{TM}$ such that $g(v, v)=\mu^{2}$ (using spacetime metric signature $(+---)$); the fibres are 3-hyperboloids for $\mu>0$, null half-cones for $\mu=0$.

Let $\left(\mathrm{y}^{0}, \mathrm{y}^{i}\right)$ be (not necessarily orthonormal) coordinates in the fibres of $\mathbf{T} \boldsymbol{M} \rightarrow \boldsymbol{M}$ such that $g_{00}>0$ (namely y^{0} is timelike) and $g_{0 i}=0, i=$ $=1,2,3$. Then the restrictions of $\left(\mathrm{y}^{i}\right)$ are coordinates in the fibres of $\boldsymbol{K}_{\mu}^{+} \rightarrow \boldsymbol{M}$.

The following is a generalization of a result by Janyška and Modugno [JM96].

Proposition 12.1. The spacetime connection Γ is reducible to a (non-linear) connection Γ_{μ} in $\boldsymbol{K}_{\mu}^{+} \rightarrow \boldsymbol{M}$; in orthonormal fibred coordinates $\left(\mathrm{y}^{0}, \mathrm{y}^{i}\right)$, its expression is

$$
\left(\Gamma_{\mu}\right)_{a}^{i}=\Gamma_{a}{ }_{0}^{i}\left(\mu^{2}+\delta_{h k} \mathbf{y}^{h} \mathbf{y}^{k}\right)^{1 / 2}+\Gamma_{a}{ }_{j}^{i} \mathbf{y}^{j} .
$$

Proof. The subbundle $\boldsymbol{K}_{u} \subset$ TM over \boldsymbol{M}, constituted by all $v \in \mathrm{~T} \boldsymbol{M}$ (of any time orientation) such that $g(v, v)=\mu^{2}$, is characterized in coordi-
$\left({ }^{6}\right)$ For a precise physical setting, physical constants should be described as elements of certain «unit spaces», namely 1-dimensional vector spaces or semivector spaces [3, 5, 7, 12]. Accordingly, some geometric structures and fields, such as the spacetime metric, the Dirac map γ and a quantum history ψ have unit spaces attached to them as tensor products. The metric, in particular, is valued into $\mathbb{L}^{2} \equiv \mathbb{L} \otimes \mathbb{L}$ where \mathbb{L} is the unit space of lengths. For the purpose of this paper, however, one can simply work with (arbitrarily) chosen units.
nates by the condition $g_{\lambda \nu} \mathrm{y}^{\lambda} \mathrm{y}^{\nu}=\mu^{2}$; hence, $\mathrm{T} \boldsymbol{K}_{\mu}$ is the submanifold of TTM characterized by

$$
g_{\lambda v} \mathrm{y}^{\lambda} \mathrm{y}^{v}=\mu^{2}, \quad \dot{\mathrm{x}}^{a} \partial_{a} g_{\lambda v} \mathrm{y}^{\lambda} \mathrm{y}^{v}+2 g_{\lambda v} \mathrm{y}^{\lambda} \dot{\mathrm{y}}^{v}=0
$$

and $\mathrm{V} \boldsymbol{K}_{\mu}$ is the submanifold of $\boldsymbol{K}_{\mu} \times \mathrm{T} \boldsymbol{M}$ characterized by $g_{\lambda \nu} \mathrm{y}^{\lambda} \dot{\mathrm{y}}^{v}=0$.
The vertical-valued form $\Omega: \mathrm{TTM} \rightarrow \mathrm{VT} \boldsymbol{M} \cong \mathrm{T} \boldsymbol{M} \underset{\boldsymbol{M}}{\mathrm{T}} \boldsymbol{M}$, associated with the spacetime connection restricts to a form $\Omega_{\mu}: \mathrm{T} \boldsymbol{K}_{\mu} \rightarrow \boldsymbol{K}_{\mu} \times \mathrm{T} \boldsymbol{M}$; using the above coordinates identities, and $\Omega=\left(\dot{\mathbf{y}}^{\lambda}-\dot{\mathbf{x}}^{a} \Gamma_{a}{ }_{\nu}{ }_{\nu} \mathrm{y}^{\nu}\right) \partial_{\lambda}$, it is immediate to check that Ω_{μ} is actually valued onto $\mathrm{V} \boldsymbol{K}_{\mu}$, namely it is the vertical-valued form associated with a connection on $\boldsymbol{K}_{\mu} \rightarrow \boldsymbol{M}$. On turn, this is obviously reducible to the subbundle $\boldsymbol{K}_{\mu}^{+} \subset \boldsymbol{K}_{\mu}$ of future-pointing vectors. In orthonormal fibre coordinates, on $\mathrm{T} \boldsymbol{K}_{\mu}^{+}$one has

$$
\begin{gathered}
\mathrm{y}^{0}=\sqrt{\mu^{2}+\delta_{h k} \mathrm{y}^{h} \mathrm{y}^{k}}, \quad g_{\lambda v} \mathrm{y}^{\lambda} \dot{\mathrm{y}}^{v}=0, \quad \Gamma_{a \lambda \nu} \mathrm{y}^{\lambda} \mathrm{y}^{v}=0 \\
\Rightarrow \dot{\mathrm{y}}^{i} \circ \Omega_{\mu}=\dot{\mathrm{y}}^{i}-\dot{\mathbf{x}}^{a}\left(\Gamma_{a}{ }^{i}{ }_{0} \mathrm{y}^{0}+\Gamma_{a}^{i}{ }_{j} \mathrm{y}^{j}\right), \quad \mathrm{y}^{0}=\sqrt{\mu^{2}+\delta_{h k} \mathrm{y}^{h} \mathrm{y}^{k}} .
\end{gathered}
$$

Let $\boldsymbol{W} \rightarrow \boldsymbol{M}$ be the spinor bundle introduced in $\S 11$ and $\boldsymbol{V} \equiv \boldsymbol{K}_{\mu}^{+} \underset{\boldsymbol{M}}{\times} \boldsymbol{W}$. The couple $\left(\Gamma_{\mu}, K\right)$ is a classical connection on the 2 -fibred bundle $\boldsymbol{V} \rightarrow$ $\rightarrow \boldsymbol{K}_{\mu}^{+} \rightarrow \boldsymbol{M}$, linear projectable over Γ_{μ}; thus one gets (§ 7) a linear connection \mathfrak{C} on the distributional bundle $\boldsymbol{\vartheta}:=\boldsymbol{\omega}_{\boldsymbol{M}}\left(\boldsymbol{K}_{\mu}^{+}, \boldsymbol{V}\right) \rightarrow \boldsymbol{M}$ (which is related to the quantum description of electrons and other massive $\frac{1}{2}$-spin particles: here \boldsymbol{K}_{μ}^{+}is the particle's phase bundle). Its coordinate expression is

$$
\left(\mathfrak{C}_{a}{ }^{Y} \mathrm{Y}\right)^{\alpha}{ }_{\beta}=\Gamma_{a}^{\alpha}{ }_{\beta}-\delta^{\alpha}{ }_{\beta}\left[\Gamma_{a}{ }_{0}^{i}\left(\mu^{2}+\delta_{h k} \mathbf{y}^{h} \mathbf{y}^{k}\right)^{1 / 2}+\Gamma_{a}{ }_{a}{ }_{j} \mathrm{y}^{j}\right] \partial_{i} .
$$

For massless particles, the phase bundle is not $\boldsymbol{K}^{+} \equiv \boldsymbol{K}_{0}^{+}$but rather its projective bundle over \boldsymbol{M}

$$
\boldsymbol{P} \equiv \mathrm{P} \boldsymbol{K}^{+}:=\boldsymbol{K}^{+} / \mathbb{R}^{+}
$$

That is, \boldsymbol{P} is the quotient of \boldsymbol{K}^{+}by the action of the multiplicative group \mathbb{R}^{+}: its fibres are the sets of generatrices of the future null cone, namely 2 -spheres (the so-called celestial spheres).

Proposition 12.2. There exists a unique connection $\Gamma_{P}: \boldsymbol{P} \rightarrow \mathrm{J} \boldsymbol{P}$ such that the diagram

commutes, where $\mathrm{P}: \boldsymbol{K}^{+} \rightarrow \boldsymbol{P}$ is the natural projection.
Proof. Let $k \in \boldsymbol{K}^{+}, r \in \mathbb{R}^{+}$; then, by means of coordinate expressions, it is not difficult to see that $\Gamma_{0}(k), \Gamma_{0}(r k) \in \mathrm{J} \boldsymbol{K}^{+}$are in the same orbit of the prolonged \mathbb{R}^{+}-action.

In order to write down a coordinate expression for Γ_{P}, one may take spherical fibre coordinates (r, θ, ϕ) associated with orthonormal fibre coordinates $\left(\mathrm{y}^{i}\right)$. Then (θ, ϕ) are fibre coordinates for \boldsymbol{P}, and after some calculations one finds

$$
\begin{aligned}
\left(\Gamma_{\boldsymbol{P}}\right)_{a}^{\theta}=\cos \theta \cos \phi \Gamma_{a}{ }_{0}{ }_{0}+\cos \theta \sin \phi \Gamma_{a}{ }^{2}{ }_{0}-\sin \theta \Gamma_{a}{ }^{3}{ }_{0} & + \\
& +\cos \phi \Gamma_{a}{ }^{1}{ }_{3}+\sin \phi \Gamma_{a}{ }^{2},
\end{aligned}
$$

$$
\begin{aligned}
\left(\Gamma_{\boldsymbol{P}}\right)_{a}^{\phi} & =-\Gamma_{a}{ }^{1}{ }_{2}+ \\
& +\frac{1}{\sin \theta}\left(-\sin \phi \Gamma_{a}{ }^{1}{ }_{0}+\cos \phi \Gamma_{a}{ }^{2}{ }_{0}-\cos \theta \sin \phi \Gamma_{a}{ }^{1}{ }_{3}+\cos \theta \cos \phi \Gamma_{a}{ }^{2}{ }_{3}\right) .
\end{aligned}
$$

A classical photon field can be described as a section $\Phi: \boldsymbol{M} \rightarrow \mathrm{V} \boldsymbol{P}$ (see [C00b] for details). Accordingly, in view of its quantum description one is lead to consider the distributional bundle $\boldsymbol{\mathscr { P }}:=\boldsymbol{\omega}_{\boldsymbol{M}}(\boldsymbol{P}, \mathrm{V} \boldsymbol{P})$. The vertical prolongation of Γ_{P} is a connection (§10) $\mathrm{V} \boldsymbol{P} \rightarrow \mathrm{JV} \boldsymbol{P}$ which is linear projectable over Γ_{P}, thus one obtains a linear connection $\boldsymbol{P} \rightarrow$ $\rightarrow \mathrm{J} \boldsymbol{P}$.

Applications of these constructions to quantum field theory will be expounded in a forthcoming paper.

REFERENCES

[Bo] J. Boman, Differentiability of a function and of its composition with functions of one variable, Math. Scand., 20 (1967), pp. 249-268.
[CK] A. Cabras - I. KoLář, Connections on some functional bundles, Czech. Math. J., 45, 120 (1995), pp. 529-548.; On the iterated absolute differentiation on some functional bundles, Arch. Math. Brno, 33 (1997), pp. 23-

35; The universal connection of an arbitrary system, Ann. Mat. Pura e Appl. (IV), Vol. CLXXIV (1998), pp. 1-11.
[C98] D. Canarutto, Possibly degenerate tetrad gravity and Maxwell-Dirac fields, J. Math. Phys., 39, no. 9 (1998), pp. 4814-4823.
[C00a] D. Canarutto, Smooth bundles of generalized half-densities, Archivum Mathematicum, Brno, 36 (2000), pp. 111-124.
[C00b] D. Canarutto, Two-spinors, field theories and geometric optics in curved spacetime, Acta Appl. Math., 62, no. 2 (2000), pp. 187-224.
[C01] D. Canarutto, Generalized densities and distributional adjoints of natural operators, Rendiconti del Seminario Matematico dell’Università e del Politecnico di Torino, 59, no. 4 (2001), pp. 27-36.
[CJM] D. Canarutto - A. Jadczyk - M. Modugno, Quantum mechanics of a spin particle in a curved spacetime with absolute time, Rep. Math. Phys., 36 (1995), pp. 95-140.
[CJ] D. CANARUTTO - A. JADCZYK, Fundamental geometric structures for the Dirac equation in General Relativity, Acta Appl. Math., 50, no. 1 (1998), pp. 59-92.
[FN] A. Frölicher - A. Nijenhuis, Theory of vector valued differential forms, I^{\prime}, Indag. Math., 18 (1956), pp. 338-359.
[Fr] A. Frölicher, Smooth structures, LNM 962, Springer-Verlag (1982), pp. 69-81.
[FK] A. Frölicher - A. Kriegl, Linear spaces and differentiation theory, John Wiley \& sons (1988).
[JM] A. Jadczyk - M. Modugno, An outline of a new geometrical approach to Galilei general relativistic quantum mechanics, in Proc. XXI Int. Conf. on Differential Geometric Methods in Theoretical Physics, Tianjin 5-9 June 1992, ed. Yang, C.N. et al., World Scientific, Singapore (1992), pp. 543-556; A scheme for Galilei general relativistic quantum mechanics, in General Relativity and Gravitational Physics, M. Cerdonio, R. D’Auria, M. Francaviglia, G. Magnano eds., World Scientific, Singapore (1994), pp. 319-337.
[JM96] J. Janyška - M. Modugno, Phase space in general relativity, in Differential Geometry and its applications, Proceedings of the 6th International Conference held in Brno, Czech Republic, 28 August-1 September 1995, J. Janyška, I. Kolář and J. Slovák, editors, Masaryk University, Brno (1996), pp. 573-602.
[KM] A. Kriegl - P. Michor, The convenient setting of global analysis, American Mathematical Society (1997).
[KMS] I. Kolář - P. Michor - J. Slovák, Natural Operations in Differential Geometry, Springer-Verlag (1993).
[MK] M. Modugno - I. Kolář, The Frölicher-Nijenhuis bracket on some functional spaces, Ann. Pol. Math., LXVIII. 2 (1998), pp. 97-106.
[MM] L. Mangiarotti - M. Modugno, Graded Lie algebras and connections on fibred spaces, J. Math. Pures Appl., 83 (1984), pp. 111-120.
[Sc] L. Schwartz, Théorie des distributions, Hermann, Paris (1966).
Manoscritto pervenuto in redazione il 3 febbraio 2003.

[^0]: ${ }^{1}$) The «square root» bundle $\left(\mathbb{V}^{*}\right)^{1 / 2}$ is characterized, up to isomorphism, by $\left(\mathbb{V}^{*}\right)^{1 / 2} \otimes\left(\mathbb{V}^{*}\right)^{1 / 2} \cong \mathbb{V}^{*}$.

