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On Infinite-Dimensional Grassmannians
and their Quantum Deformations.

R. FIORESI (*) - C. HACON (**)

ABSTRACT - An algebraic approach is developed to define and study infinite-di-
mensional grassmannians. Using this approach a quantum deformation (i.e. a
deformation of the coordinate ring) is obtained for both the ind-variety union
of all finite-dimensional grassmannians GQ , and the Sato grassmannian UGMA

introduced by Sato in [Sa1], [Sa2]. They are both quantized as homogeneous
spaces, that is together with a coaction of a quantum infinite dimensional
group. At the end, an infinite-dimensional version of the first theorem of in-
variant theory is discussed for both the infinite-dimensional special linear
group and its quantization.

1. Introduction.

A definition of the infinite-dimensional Sato grassmannian is first in-
troduced by Sato in [Sa1], [Sa2], where he explicitly exhibits the points
as infinite-dimensional matrices. Sato proves the remarkable fact that
the points of the Sato grassmannian UGMA are in one to one correspon-
dence with the solutions of the KP hierarchy.

A few years later Segal and Wilson [SW], using mainly analytic tech-
niques, explore more deeply this correspondence.

In a later work [PS] Pressley and Segal study more extensively,
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along the same lines, an infinite-dimensional grassmannian closely relat-
ed to the Sato Grassmannian. In particular they give a stratification and
a Plucker embedding of it. They also produce an action of a certain infi-
nite-dimensional linear group realizing it as an infinite-dimensional ho-
mogeneous space. Though their definition appears quite different from
Sato’s one, they essentially describe the same geometrical object, but in
a slightly more general setting.

A more geometrical approach to the same subject is taken by Mulase
in [Mu1], [Mu2]. He constructs the Sato grassmannian as a scheme of
which he gives the functor of points. Also Plaza-Martin [PM] takes the
same approach, with special attention given to the physical applica-
tions.

Together with the Sato grassmannian, Sato, as well as all the above
mentioned authors, introduces what we denote by GQ , the union of all fi-
nite-dimensional grassmannians. GQ turns out to be an ind-variety [Ku]
and it is dense in various topologies inside UGMA. GQ is an interesting ob-
ject in itself. Using the points of GQ expressed as infinite wedge prod-
ucts, in [Ka] Kac constructs an infinite-dimensional representation of an
infinite-dimensional general linear group and shows the correspondence
between points of the infinite-dimensional grassmannian and solutions
of the KP hierarchy with algebraic methods.

In the present work we want to study the infinite-dimensional grass-
mannians UGMA and GQ using only algebraic methods, exhibiting explic-
itly their coordinate rings. This approach turns to be the most natural
for our goal, that is to obtain their quantum deformations.

This paper is divided in three parts.
In the first part, §2, we consider the inverse and direct limit

of the coordinate rings k[d m , n ] of the finite-dimensional grassmannian
over the algebraically closed field k . Then we give an explicit pre-
sentation for the inverse limit k [dQ

×] and the direct limit k[dQ ]. We
also prove that k [dQ

×] and k[dQ ] can be in some sense regarded
as the homogeneous coordinate rings of GQ and UGMA. In fact the
closed points of Proj (k [dQ

×]) and of Proj (k[dQ ]) turn to be in one-to-one
correspondence with the points of GQ and UGMA respectively. Both
GQ and UGMA admit an action of the infinite-dimensional special linear
group SLQ given by the union of all finite dimensional special linear
groups over k . We also show that there is a corresponding coaction
of the homogeneous coordinate ring of the ind-variety SLQ on both
k [dQ
×] and k[dQ ]. The results in this part are more or less known,
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however since we could not locate rigourous proofs for most statements,
we included them for completeness.

In the second part of the paper, §3, we repeat these same construc-
tions in the quantum groups setting. We give explicit quantum deforma-
tions for both the ind-variety GQ and the Sato grassmannian UGMA. Pro-
ceeding in the same way as in §2, we take the inverse and direct limit of
the quantum finite-dimensional grassmannian kq [D m , n ] ([Fi1], [TT]).
We obtain two non commutative rings, k q [D Q

×] and kq [D Q ] deformations
of k [dQ

×] and k[dQ ] respectively that we call quantum GQ and quantum
Sato grassmannian UGMA. We give an explicit presentation for both of
them. GQ and UGMA are quantized as homogeneous spaces, that is there
is a well defined coaction of the quantum special linear infinite-dimen-
sional group kq [SLQ ] on them.

In the last part, §4, we examine the following problem of classical in-
variant theory for the infinite-dimensional case: given the natural right
action of the special linear group of order r , SLr , 0 (k) on the matrix alge-
bra, find the SLr , 0 (k)-invariants. In complete analogy to what happens in
the finite-dimensional case, the ring of invariants in the infinite-dimen-
sional case coincides with k [dQ

×] the homogeneous coordinate ring for the
ind-variety GQ . We then obtain the corresponding results for the quan-
tum case, generalizing the results in the paper [FH].

The first author wishes to thank Prof. V.S. Varadarajan and Prof. I.
Dimitrov for many fruitful discussions and Prof. R. Achilles for helpful
comments.

2. The infinite-dimensional grassmannians GQ and UGMA.

Let k be an algebraically closed field of characteristic 0.
Let G(m , n) be the grassmannian of m dimensional subspaces in a vec-

tor space of dimension N4m1n .
An element of G(m , n) is represented by a N3m matrix. We will as-

sume (following Sato [Sa2]) that the row indices go from 2m to n21
while the column indices go from 2m to 21.

Let k[ai , j ]m , n be the coordinate ring of the algebra of the N3N ma-
trices, where we assume that both row and column indices go from 2m
to n21.

The homogeneous coordinate ring of G(m , n) is isomorphic to the sub-
ring of the matrix ring k[ai , j ]m , n generated by the determinants dl0 R lm21

of the minors obtained by taking the columns 2mR21 and the rows
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l0 R lm21 . We will denote such subring by k[d m , n ] and the above-men-
tioned set of determinants by d m , n .

DEFINITION (2.1). Let m 8Fm , n 8Fn . Define the inverse family of
rings:

k[d m 8 , n 8 ] K
e(m 8 , n 8 , m , n)

k[d m , n ]

e(m 8 , n 8 , m , n) (dj0 R jm 821
) 4

4

.
/
´

dl0 R lm21

0

if ( j0 R jm 821 ) 4 (2m 8 R2m21, l0 R lm21 )
and 2mG l0 ERE lm21 Gn21

otherwise

with 2m 8G j0 ERE jm 821 Gn 821.
We define:

k [dQ
×] 4 lim

J
k[d m , n ] ,

and denote the induced maps by

e(m , n) : k [dQ
×] Kk[d m , n ] .

We observe that the maps e(m 8 , n 8 , m , n) are induced by maps

E(m 8 , n 8 , m , n) : k[ai , j ]m 8 , n 8Kk[ai , j ]m , n

defined by

E(m 8 , n 8 , m , n) (ai , j ) 4ai , j , ( 2mG iGn21, 2mG jG21

E(m 8 , n 8 , m , n) (ai , j ) 41, ( 2m 8G i4 jG2m21

E(m 8 , n 8 , m , n) (ai , j ) 40 otherwise .

We define:

k[MQ ] 4 lim
J

k[ai , j ]m , n .

REMARK (2.2). Any element b�k[MQ ] is an element of the form
b4 ]b(m , n) ( such that b(m , n) �k[ai , j ]m , n and for all m 8Fm , n 8Fn ,
E(m 8 , n 8 , m , n) (b(m 8 , n 8 ) ) 4b(m , n) . Similarly any element x�k [dQ

×] is of
the form x4 ]x(m , n) ( such that x(m , n) �k[d i , j ]m , n and for all m 8Fm ,
n 8Fn , e(m 8 , n 8 , m , n) (x(m 8 , n 8 ) ) 4x(m , n) .
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There is a corresponding direct system of inclusions of projective
varieties

G(m , n) KG(m 8 , n 8 ) ( m 8Fm , n 8Fn .

Define

GQ4 lim
K

G(m , n) .

Notice that GQ4NG(m , n) .
We want to view GQ as a projective ind-variety.

DEFINITION (2.3). An ind-variety over k is a set X together with a
filtration:

X0 %X1 %X2 %R

such that
1) 0

nF0
Xn 4X

2) Each Xn is a finite-dimensional variety over k such that the inclu-
sion Xn %Xn11 is a closed immersion.

(See [Ku] for more details).
The ind-variety X is naturally a topological space, U%X being open in

X if and only if, for each n , UOXn is open in Xn . The sheaf of regular
functions on X is defined by OX »4 lim

J
OXn

. X is said to be a locally pro-
jective ind-variety if it admits a filtration such that each Xn is projective.
We will say that X is a projective ind-variety if it admits a filtration Xn

and a line bundle L such that each restriction LNXn is very ample and the
corresponding maps

H 0 (Xn , LNXn ) KH 0 (Xn21 , LNXn21 )

are surjective. In other words, for each n there are compatible closed im-
mersions Xn %KPNn 4P(H 0 (Xn , LNXn )q ) with coordinate rings gener-
ated by H 0 (Xn , LNXn ) and hence a closed immersion of ind-varieties
X %KPQ4NP(H 0 (Xn , LNXn )q ). We define

H 0 (X , L) »4 lim
J

H 0 (Xn , LNXn ) .

Let S(PN ) 45dF0 H 0 (PN , OP N (d) ) be the homogeneous coordinate
ring of PN and I(Xn ) be the homogeneous ideal of Xn %PNn , then the ho-
mogeneous coordinate ring of Xn %PNn is given by S(Xn ) 4S(PN ) /I(Xn ).
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We define the homogeneous coordinate ring of the projective ind-vari-
ety X%PQ to be

S(X) »4 lim
J

S(Xn ).

THEOREM (2.4). GQ is a projective ind-variety, with homogeneous
coordinate ring k [dQ

×].

PROOF. It is well-known that the maps G(m , n) KG(m 8 , n 8 ) are closed
immersions (when defined). Let Xn »4G(n , n) , then we have closed im-
mersions G(m , n) %KX(n1m, n1m) . Therefore X4NXn 4NG(m , n) 4GQ is an
ind-variety. For each nD0 we have the Plücker embeddings Xn 4

4Gn , n %KP(Rn C 2n ) 4PNn . The homogeneous coordinate ring S(PNn ) is
generated by elements xI where I4 ]i1 , R , in ( such that 2nG i1 E i2 E

ERE in Gn21 and for n 8Fn , the closed immersions PNn %KPNn 8 corre-
spond to the surjective homomorphisms

S(PNn 8 ) KS(PNn )

defined by

e (m 8 , n 8 , m , n) (xi1 R in 8
) 4

.
/
´

xi1 R in

0

if (i1 R in 8 ) 4 (2n 8 R2n21, i1 R in )
and 2nG i1 ERE in Gn21

otherwise .

The homogeneous coordinate ring of the projective ind-variety PQ4

4 0
nD0

PNn is just generated by lim
J

H 0 (PNn , OP Nn (1) ). The line bundle LNXn

is just the pull-backck of OP(Rn C 2n ) (1 ). The immersions PNn KPNn 8 and
Xn KXn 8 are compatible. The corresponding homogeneous coordinate
ring is S(Xn ) 4k[d n , 2n ]. The maps induced by the inclusions Xn KXn 8

are just the maps e(n 8 , n 8 , n , n) : k[d n 8 , 2n 8 ] Kk[d n , 2n ]. Therefore the homo-
geneous coordinate ring of X is given by

lim
J

k[d n , 2n ] 4 lim
J

k[d m , n ] 4k [dQ
×] . QED.

We now turn our attention to the Sato grassmannian UGMA and its re-
lation with GQ .
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DEFINITION (2.5). Let m 8Fm , n 8Fn . Define a direct family of
rings:

k[d m , n ]

dl0 R lm21

K
r(m , n , m 8 , n 8 )

O

k[d m 8 , n 8 ]

d2m 8 , R2m21, l0 R lm21

for 2mG l0 ERE lm21 Gn21.
It is easy to see using the Plücker relations that this map is well de-

fined. Moreover, the map e(m , n , m 8 , n 8 ) is a left inverse for r(m , n , m 8 , n 8 ) and
in particular r(m , n , m 8 , n 8 ) is injective. We define:

k[dQ ] 4 lim
K

k[d m , n ] .

Denote with r(m , n) the induced inclusions k[d m , n ] Kk[dQ ].

DEFINITION (2.6). Define Maya diagram of virtual cardinality 0 (or
shortly a Maya diagram) a strictly increasing sequence al 4 ]ai (, iF1,
such that ai �Z and ai 4 i for all ic0. Define the order Val V of a Maya
diagram to be the smallest number i such that aj 4 j for all jF i . Any se-
quence l*4 l1 , R , lm with l1 GRG lm Gm induces a Maya diagram al 4

4 lA* of order at most m11 defined by ai 4 li for all 1 G iGm and ai 4 i
for all iFm11. For any Maya diagram al , let aGm denote the ordered
set a1 EREam . Clearly if Val VGm , then al 4 aGm

A.
Given a Maya diagram al of order m11 with Na1NF2n11, we wish

to define corresponding elements dal
�k[dQ ], and d×al

�k [dQ
×]. Define

dal
4r(m , n) daGm

where al 4 aGm
A.

k[dQ ] is generated as a ring by the dal
, since it is generated by the

images of k[d m , n ] under r(m , n) .
We define a map

r (m , n) : k[dQ ] Kk[d m , n ]

r (m , n) (dal
) 4

.
/
´

daGm

0

for all mFVal V , nFNa1N

otherwise .

Then we define

d×al
4 ]r (m , n) dal

( �k [dQ
×] .
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PROPOSITION (2.7). a) There is an injection I : k[dQ ] Kk [dQ
×]

which sends dal
to d×al

.
b) The image of I is dense in k [dQ

×] for the inverse limit topology on
k [dQ
×] induced by the discrete topology on each k[d m , n ].

PROOF. (a) It suffices to check that for m 8Fm and n 8Fn , one
has

e(m 8,m,n 8,n) (r (m 8 , n 8 ) dal
) 4r (m , n) dal

.

(b) Define a fundamental set of neighbourhoods of 0 �k [dQ
×] by U0 4

4k [dQ
×], Uk 4e(k , k)

21 (0). For any x4 ]x(m , n) ( �k [dQ
×], we must define a

Cauchy sequence ]yk ( 4 m!
i41

mk

b k
i d×al

i , 1 R d×al
i , jin lying in the image of I and

converging to x .
Since e(k , k) (x) �k[d k , k ] we have

e(k , k) (x) 4 !
i41

mk

b k
i dLk

i , 1
R dLk

i , ji

where Lk
i , j 4 (lk , 1

i , j
R lk , m

i , j ), 2kG lk , 1
i , j ERE lk , m

i , j Gk21. Set

yk 4 !
i41

mk

b k
i d×

Lk
i , 1A

Rd×
Lk

i , ji
A .

Notice that the summation is finite and hence yk is in the image of I . For
any k 8Dk we have, e(k , k) (yk 8 ) 4e(k , k) (x) i.e. yk 82x�Uk . Hence ]yk ( is a
Cauchy sequence converging to x . QED.

We now give a presentation of the rings k[dQ ] and k [dQ
×].

Define k[j al
] to be the ring generated by the independent variables

j al
, where al is any Maya diagram of virtual cardinality 0.
There is a natural map f : k[j al

] Kk[dQ ] such that j al
Kdal

. This in-
duces a topology on k[j al

] for which a fundamental set of neighborhoods
is given by Vk »4f21 I 21 Uk . Let k [j al

×] be the completion of k[j al
] with

respect to the above topology. In particular the elements of k [j al

×] are of
the form !bi j al

i , 1 Rj al
i , ki where bi �k and the al

i , k are any Maya dia-
grams of virtual cardinality 0. The corresponding natural map between
completions f× : k [j al

×] Kk [dQ
×] is defined by j al

K d×al
.

Define P(m , n) to be the ideal of Plucker relations in k[d m , n ]. Let P4

4NP(m , n) be the corresponding ideal in k[dQ ], and similarly P× 4 lim
J

P(m , n)

be the corresponding ideal in k [dQ
×].
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THEOREM (2.8). We have ring isomorphisms

i) k [dQ]×
`k [j al

×] /P×

ii) k[dQ ] `k[j al
] /P

PROOF. (i) The direct limit is an exact functor.
(ii) The inverse limit functor is left exact, and since the inverse sys-

tem P(m , n) is a surjective system, the corresponding inverse system
sequence

0 K P× Kk [j al

×] KK [dQ
×] K0

is also exact. QED.

We want now to relate our constructions with the Sato grassmannian.
In [Sa2] Sato defines a set of points in an infinite-dimensional projective
space. Already theorem (2.8) suggests to view GQ as the set of zeros of
the ideal P× in an infinite-dimensional projective space whose coordinate
ring is given by k [j al

×]. We want to make this euristic notion more precise
and to relate the ring k[dQ ] with the Sato grassmannian.

Assume that the field k has cardinality strictly greater than ]0 .
Consider the directed system given by rings Rn 4k[z1 , R , zn ] and

homomorphisms of k[z1 , R , zn 8 ] Kk[z1 , R , zn ] (for n 8Dn) defined by
zi Kzi for all iGn , and zi K0 for iDn . This corresponds to an affine
ind-variety A Q4NA n given by the inclusion of affine planes A n 4

4Spec (Rn ) %KA n11 4Spec (Rn11 ). Let

R× 4 lim
J

Rn .

LEMMA (2.9). The set of closed points of A Q is in one to one corre-
spondence with Specm (R×).

PROOF. Notice that each Rn injects in a natural way in R× and set R4

4NRn % R×. If m%R is maximal, R/m4E is a field. By [La] we have E4k
and therefore m is generated by zi 2ki where ki is the image of zi �R/m .
If m 8 is a maximal ideal of R×, and f : R× K R× /m 8 , then by the previous ob-
servations, the induced maps fi : Ri K R× /m 8 have image contained in k .
By the universal property of inverse limits then also f : R× Kk is deter-
mined by ki 4 f (zi ). It is clear that in order for f to be defined, one must
have ki 40 for all but finitely many i . QED.
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Recall that k [j al

×] 4 lim
J

S(PNn ). It follows that PQ4Proj (k [j al

×] ) and
that the closed points of PQ are given by sequences kal

�k where al 40
for all but finitely many Maya diagrams of virtual cardinality 0 we have
al 40 and two sequences are considered equivalent if there exists l�k *
such that kal

4lk 8al
. The assertion can be verified locally on the open cov-

er Spec (k [j al

×](j al ) ) where k [j al

×](j al ) denotes the subring of elements of
degree 0 in the localized ring k [j al

×]j al
. The computation is now analog-

ous to the one above for R×. Similarly one has that the closed points of
Proj (k[j al

] ) correspond to all sequences (not necessarily bounded) kal
�

�k where al runs over all Maya diagrams of virtual cardinality 0 and two
sequences are considered equivalent if there exists l�k * such that kal

4

4lk 8al
. It follows that

PROPOSITION (2.10). Assume that the cardinality of k is strictly
greater than ]0 .

i) The set of closed points of GQ is in one to one correspondence
with the set of closed points of Proj (k [dQ

×] ), i.e. with the sequences ]kal
�

�k( satisfying all Plücker relations, where al Maya diagram of virtual
cardinality 0 and kal

40 for all but finitely many Maya diagrams.

ii) The set of closed points of Proj (k[dQ ] ) is in one to one corre-
spondence with the sequences ]kal

�k( satisfying all Plücker relations,
where al Maya diagram of virtual cardinality 0. Moreover we have that
those points coincide with UGMA the Sato grassmannian (as defined by
Sato, [Sa1], [Sa2]).

REMARK (2.11). Proposition (2.10) shows that the ring k[dQ ] can be
regarded as the «coordinate ring» for the Sato grassmannian in the
sense that its maximal ideals are in one-to-one correspondence with the
points of UGMA. Theorem (2.9) allows us to interpret the Sato grassman-
nian as the set of closed points in an infinite-dimensional projective
space that are subjected to the relations P .

We now want to define an infinite-dimensional special linear group
and show that it has an action on both GQ and UGMA.

DEFINITION (2.12). For all m , n positive integers, define
SL(m , n) (k) `SLN (k) as N3N matrices with determinant 1, whose row
and column indicies are between 2m and n21. The inclusions
c (m , n , m 8 , n 8 ) : SLm , n (k) KSLm 8 , n 8 (k) are defined for all m 8Fm , n 8Fn ,
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c (m , n , m 8 , n 8 ) ( g) 4diag (Idm2m 8 , g , Idn2n 8 ). It is clear that we have an ac-
tion of SLm , n (k) on G(m , n) for all m , n . We have a corresponding projec-
tive system of coordinate rings:

k[SLm 8 , n 8 ] K
f (m 8 , n 8 , m , n)

k[SLm , n ]

f (m 8 , n 8 , m , n) ( gij ) 4
.
/
´

gij

1

0

if 2mG i , jGn21

if 2m 8G i4 jG2m21, nG i4 jGn 821

otherwise .

OBSERVATION (2.13).

SLQ (k) 4def limK
SLm , n 4NSLm , n (k)

is an ind-variety with coordinate ring

k[SLQ ] 4def limJ
k[SLm , n ] .

We want now to show that k[SLQ ] has an Hopf algebra structure. Notice
that while in the finite-dimensional case this is an immediate conse-
quence of the fact that the variety SLm , n (k) is a group, in the infinite-di-
mensional case we need to check the commutativity of certain dia-
grams.

PROPOSITION (2.14). Let (m 8 , n 8 ) D (m , n). The following are com-
mutative diagrams:

i)

k[SLm 8 , n 8 ]

ID (m 8 , n 8 )

k[SLm 8 , n 8 ]7k[SLm 8 , n 8 ]

K
f (m 8 , n 8 , m , n)

K
f (m 8 , n 8 , m , n)7f (m 8 , n 8 , m , n)

k[SLm , n ]

ID (m , n)

k[SLm , n ]7k[SLm , n ]

where D (m , n) is the comultiplication in the Hopf algebra k[SLm , n ].
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ii)

k[SLm 8 , n 8 ]

Ie (m 8 , n 8 )

k

K
f (m 8 , n 8 , m , n)

K
id

k[SLm , n ]

Ie (m , n)

k

where e (m , n) is the counit in the Hopf algebra k[SLm , n ].
iii)

k[SLm 8 , n 8 ]

IS(m 8 , n 8 )

k[SLm 8 , n 8 ]

K
f (m 8 , n 8 , m , n)

K
f (m 8 , n 8 , m , n)

k[SLm , n ]

IS(m , n)

k[SLm , n ]

where S(m , n) is the antipode in the Hopf algebra k[SLm , n ].

PROOF. Direct check.

COROLLARY (2.15). k[SLQ ] has an Hopf algebra structure given
by:

a) comultiplication

k[SLQ ]

]a(m , n) (

K
D Q

O

k[SLQ ] 7×k[SLQ ]

]D (m , n) (a(m , n) )(

b) counit

k[SLQ ]

]a(m , n) (

K
e Q

O

k

e (m , n) (a(m , n) )

c) antipode

k[SLQ ]

]a(m , n) (

K
SQ

O

k[SLQ ]

]S(m , n) (a(m , n) )(

where 7× denotes the completed tensor product and is given by

k[SLQ ] 7×k[SLQ ] 4 lim
J

k[SLm , n ]7k[SLm , n ]

(see [Ku] for more details).
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PROOF. (a) is immediate from proposition (2.14) and from [Ku]. (b),
(c) are immediate from proposition (2.14).

The group SLQ (k) has an action on both GQ and UGMA. In order to
obtain a quantization of these actions we need to describe the corre-
sponding coactions of k[SLQ ] on k [dQ

×] and k[dQ ].

OBSERVATION (2.16). Since SLm , n (k) acts on G(m , n) we have the
coaction:

k[d m , n ]

dl0 R lm21

K
l (m , n)

O

k[SLm , n ]7k[d m , n ]

!
mGk0 R km21Gn21

gl0 k0
R glm21 km21

7dk0 R km21

One can check the commutativity of the following diagram, for m 8Fm ,
n 8Fn:

k[d m , n ]

Ie(m 8 , n 8 , m , n)

k[d m 8 , n 8 ]

K
l (m , n)

K
l (m 8 , n 8 )

k[SLm , n ]7k[d m , n ]

If (m 8 , n 8 , m , n)7e(m 8 , n 8 , m , n)

k[SLm 8 , n 8 ]7k[d m 8 , n 8 ]

PROPOSITION (2.17). There is an coaction of k[SLQ ] on k [dQ
×] and

on k[dQ ].

PROOF. Fix (m0 , n0 ). Let m 8DmDm0 , n 8DnDn0 . We have a com-
mutative diagram (see observation (2.16)):

k[d m , n ]

Ie(m 8 , n 8 , m , n)

k[d m 8 , n 8 ]

K
l (m , n , m0, n0)

K
l (m 8 , n 8 , m0, n0)

k[SLm0 , n0
]7k[d m , n ]

Iid7e(m 8 , n 8 , m , n)

k[SLm0 , n0
]7k[d m 8 , n 8 ]

l (m , n , m0 , n0 ) (dl0 R lm21
) 4def !

mGk0 R km21Gn21
gAl0 k0

R gAlm21 km21
7dk0 R km21

where:

gAij 4

.
/
´

gij

1

0

if 2mG i , jGn21

if 2m 8G i4 jG2m21, nG i4 jGn 821

otherwise
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Hence there is a map:

k [dQ
×] K k[SLm0 , n0

]7k[dQ
×] .

Now taking the inverse limit of k[SLm0 , n0
] on the right side we obtain a

coaction of k[SLQ ] on k [dQ
×], that is a map:

k [dQ
×] K k[SLQ ] 7×k[dQ

×]

where 7× denotes the completed tensor product (see [Ku]).
By theorem (2.7) (iii) k[dQ ] can be identified with a subring of k [dQ

×]
and one can check that the given coaction is a well defined coaction when
restricted to this subring of k [dQ

×]. QED.

3. The quantum infinite-dimensional grassmannians kq [GQ ] and
kq [UGMA].

We want to obtain a deformation of GQ and UGMA as quantum homo-
geneous spaces for a quantum SLQ . In the language of quantum groups
this means that we need to construct deformations of the two rings k [dQ

×]
and k[dQ ] together with a coaction of a deformation of k[SLQ ] on them.
The naturality of the construction in §2 will allow us to repeat the same
arguments used for the commutative case also in the non commutative
case with very small changes.

DEFINITION (3.1). Let kq 4k[q , q 21 ] and let kq aai , j bm , n be the free
algebra over kq with aij as non commutative generators, 2mG i , jGn2

21. Define kq [ai , j ]m , n , as the associative kq-algebra with unit generated
by the elements aij , subject to the relations:

aij akj 4q 21 akj aij , iEk , aij akl 4akl aij , iEk , jD l or iDk , jE l

aij ail 4q 21 ail aij , jE l , aij akl 2akl aij 4 (q 21 2q) akj ail , iEk , jE l

kq [ai , j ]m , n is a bialgebra with counit and comultiplication:

e q
(m , n) (aij ) 4d ij D q

(m , n) (aij ) 4!aik 7akj .

See [Ma1], [Ma2] for more details.

DEFINITION (3.2). We define the quantum determinant obtained
by taking rows i1 R ip , columns j1 R jp as an element Di1 R ip

j1 R jp�kq aai , j bm , n
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given by:

Di1 R ip
j1 R jp4def

4def !
s : (i1 R ip ) K ( j1 R jp )

(2q)2l(s) ai1 s(i1 ) R aim s(ip ) ,
2mG i1 ERE ipGn21

2mG j1 ERE jpGn21

where s runs over all the bijections and l(s) is the length of the permuta-
tion s . p is called the rank of Di1 R ip

j1 R jp. Its image in kq [ai , j ]m , n is then the
usual quantum determinant. We shall write Di1 R ip

j1 R jp for this image also,
the context making clear where the element sits. (See [PW] ch. 4 for
more details). We will drop the upper indices whenever they coincide
with 2pR21.

DEFINITION (3.3). Define the quantum grassmannian ring
kq [D m , n ], as the subring of kq [ai , j ]m , n generated by the quantum deter-
minants Di0 R im21

2mG i0 ERE im21 Gn21 (see [Fi1]). We will refer
to the set of such determinants with D m , n .

An explicit presentation of the ring kq [D m , n ] in terms of generators
and relations is given by (see [TT] 3.5, [Fi1], [FH]):

(c)

q 2[m2p] l J l I 4l I l J 1 !
i41

N

(q 21 2q)i

!
(L , L 8 ) �C i0 R i×k1 R i×kp R im21

i

(2q)2l(s(L) )2 l(s(L 8 ) ) l (L , ik1 R ikp)ord
l (L 8 , ik1 R ikp )ord

I4 (i0 R im21 ) EJ4 ( j0 R jm21 ) IOJ4 ]ik1
R ikp

(

i0 ERE im21 , j0 ERE jm21

!
1 Ga 1EREa sGm1s

(2q)2l(z1 R z×a 1 R z×a s R zr1s za 1 R za s )2 l(za 1 R za s l1 Rlm2s )

l z1 R z×a 1 R z×as R zm1s
l (za 1 R za s l1 R lm2s )ord

40
(y)

Each of the relations in the set (y) is computed for any set of fixed in-
dices: 2mGz1 EREzm1s Gn21, 2mG l1 ERE lm2s Gn21.

All the symbols that appear have been defined in [Fi2].
Notice that the relations labeled (c) reduce for q41 to state the com-

mutativity of the l I’s while the relations labeled (y) for q41 become the
Young (also called symmetry) relations.

We want now to proceed in analogy with §2 and define the following
inverse and direct families.
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DEFINITION (3.4). Let m 8Fm , n 8Fn . Define an inverse family of
rings:

kq [D m 8 , n 8 ]

D2m 8 R2m21 l0 R lm21

Dl0 R lm 821

K
e q

(m 8 , n 8 , m , n)

O

O

kq [D m , n ]

Dl0 R lm21

0 otherwise

where 2mG l0 ERE lm21 Gn21.
We define:

k q [D Q
×] 4 lim

J
kq [D m , n ] .

Denote the induced maps

e q
(m , n) : k q [D Q

×] Kkq [D m , n ] .

We observe that the maps e(m 8 , n 8 , m , n) are induced by maps

E q
(m 8 , n 8 , m , n) : kq [ai , j ]m 8 , n 8Kkq [ai , j ]m , n

defined by

E q
(m 8 , n 8 , m , n) (aij ) 4aij , ( 2mG iGn21, 2mG jG21

E q
(m 8 , n 8 , m , n) (aij ) 41, ( 2m 8G i4 jG2m21

E q
(m 8 , n 8 , m , n) (aij ) 40 otherwise .

We define:

kq [MQ ] 4 lim
J

kq [ai , j ]m , n

DEFINITION (3.5). Let m 8Fm , n 8Fn . Define the direct family of
rings:

kq [D m , n ]

Dl0 R lm21

K
r q

(m , n , m 8 , n 8 )

O

kq [D m 8 , n 8 ]

D2m 8 , R2m21, l0 R lm21

for 2mG l0 ERE lm21 Gn21. We define:

kq [D Q ] 4 lim
K

kq [D m , n ] .

Denote the induced inclusions r q
(m , n) : kq [D m , n ] Kkq [D Q ].
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OBSERVATION (3.6). Both r q
(m , n , m 8 , n 8 ) and e q

(m 8 , n 8 , m , n) are well de-
fined that is they are zero on the relations on the determinants. This can
be directly checked.

In analogy to §2, we can define a map:

r q
(m , n) : k[D Q ] K k[D m , n ]

r q
(m , n) (Dal

) 4
.
/
´

DaGm

0

for all mFVal V , nFNa1N

otherwise

Then we define

D×al
4 ]r q

(m , n) Dal
( �k [D Q

×] .

Let kq aj al
b to be the non commutative ring generated by the inde-

pendent variables j al
, where al is any Maya diagram of virtual cardinali-

ty 0.
In analogy with §2 there is a natural map f q : kaj al

b Kk[D Q ] such
that j al

KDal
. This induces a topology on kaj al

b for which a fundamental
set of neighborhoods is given by V q

k »4f21
q I 21

q Uk
q , where U q

k is a funda-
mental set of neighbourhoods in k [D Q

×], defined by: U q
0 4k [D Q

×], U q
k 4

4 (e q
(k , k) )21 (0) and Iq is the natural map from k[D Q ] and k[D Q ] defined as

Iq (Dal
) 4 D×al

.
Let k aj al

×b be the completion of kaj al
b with respect to the above topol-

ogy. In particular the elements of k aj al

×b are of the form ! bi j al
i , 1 Rj al

i , ki

where bi �k and the al
i , k are any Maya diagrams of virtual cardinality 0.

The corresponding natural map between completions f q×: k aj al

×b K

Kk [D Q
×] is defined by j al

K D×al
.

Define P(m , n), q to be the two-sided ideal generated by the relations
(c) and (y) in kq [D m , n ]. Let Pq 4NP(m , n), q be the corresponding two-sid-
ed ideal in k[D Q ], and similarly Pq

×4 lim
J

P(m , n) be the corresponding ide-
al in k q [D Q

×]. As in the commutative case we have the following
theorem.

THEOREM (3.7). Quantum deformation of the ind-variety GQ and
the Sato grassmannian UGMA.

k q [D Q
×] `kq aj al

×b /Pq
×

kq [D Q ] `kq aj al
b /Pq .

PROOF. Same as (2.9).
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REMARK (3.8). If we specialize q to 1 we obtain theorem (2.9), that is
a presentation of the commutative rings k[dQ ] and k [dQ

×]. Since by (2.11)
Specm (k[dQ ] ) coincides with GQ and Specm (k [dQ

×] ) with UGMA we refer to
the rings kq [D Q ] and k q [D Q

×] as quantum ind-variety GQ and quantum
Sato grassmannian respectively.

Let’s now proceed to show that the quantum ind-variety GQ and the
quantum Sato grassmannian are quantum homogeneous spaces.

DEFINITION (3.9). In complete analogy with §2 define

kq [SLm , n ] 4kq [ai , j ]m , n /(D2m R n21
2m R n21 21) .

kq [SLm , n ] is a quantum group, that is an Hopf algebra, with an-
tipode:

S q
(m , n) (aij ) 4 (2q)i2 j D 2m R j× R n21

2m R i× R n21 .

The coalgebra structure (i.e. the comultiplication and counit maps) is
naturally inherited from the matrix bialgebra kq [ai , j ]m , n . For more de-
tails see [Ma1], [Ma2].

Then define the inverse system:

kq [SLm 8 , n 8 ] K
fq

(m 8 , n 8 , m , n)

kq [SLm , n ]

f (m 8 , n 8 , m , n)
q (gij ) 4

.
/
´

gij

1

0

if 2mG i , jGn21

if 2m 8G i4 jGm 821, nG i4 jGn 821

otherwise

One can directly check that these maps are well defined.
Define quantum infinite-dimensional special linear group:

kq [SLQ ] 4def limJ
kq [SLm , n ]

Notice that for q41 this coincides with the coordinate ring of the ind-va-
riety SLQ (k).

We now intend to show that kq [SLQ ] is a quantum group that is it ad-
mits an Hopf algebra structure. This will be proved in the same exact
way we did for k[SLQ ] in §2.

PROPOSITION (3.10). Let (m 8 , n 8 ) D (m , n). The following dia-
grams are commutative:
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i)

kq [SLm 8 , n 8 ]

IDq
(m 8 , n 8 )

kq [SLm 8 , n 8 ]7kq [SLm 8 , n 8 ]

K
fq

(m 8 , n 8 , m , n)

K
f (m 8 , n 8 , m , n)7fq

(m8 , n 8 , m , n)

kq [SLm , n ]

IDq
(m , n)

kq [SLm , n ]7kq [SLm , n ]

where D q
(m , n) is the comultiplication in kq [SLm , n ].

ii)

kq [SLm 8 , n 8 ]

Ie
q
(m 8 , n 8 )

kq

K
f (m 8 , n 8 , m , n)

K
id

kq [SLm , n ]

Ie
q
(m , n)

k

where e q
(m , n) is the counit in kq [SLm , n ].

iii)

kq [SLm 8 , n 8 ]

IS q
(m 8 , n 8 )

kq [SLm 8 , n 8 ]

K
f (m 8 , n 8 , m , n)

K
f (m 8 , n 8 , m , n)

kq [SLm , n ]

IS q
(m , n)

kq [SLm , n ]

where S(m , n) is the antipode in kq [SLm , n ].

PROOF. Direct check. Notice that here the check involves also the
non commutative relations among the generators.

COROLLARY (3.11). kq [SLQ ] has an Hopf algebra structure given
by:

a) comultiplication

kq [SLQ ]

]a(m , n) (

K
D

q
Q

O

kq [SLQ ] 7×kq [SLQ ]

]D q
(m , n) (a(m , n) )(

b) counit

kq [SLQ ]

]a(m , n) (

K
e

q
Q

O

kq

e q
(m , n) (a(m , n) )
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c) antipode

kq [SLQ ]

]a(m , n) (

K
S q

Q

O

kq [SLQ ]

]S q
(m , n) (a(m , n) )(

where 7× denotes the completed tensor product (see [Ku] for more
details).

Now we are ready to show that k [D Q
×] and k[D Q ] are quantum homo-

geneous spaces.
We have the following coaction (see [Fi1]):

kq [D m , n ]

Dl0 R lm21

K
lq

(m , n)

O

kq [SLm , n ]7kq [D m , n ]

!
mGk0 R km21Gn21

gl0 k0
R glm21 km21

7Dk0 R km21

One can check the commutativity of the following diagram, for m 8Fm ,
n 8Fn:

kq [D m , n ]

Ie q
(m 8 , n 8 , m , n)

kq [D m 8 , n 8 ]

K
lq

(m , n)

K
lq

(m 8 , n 8 )

kq [SLm , n ]7k[d m , n ]

Ifq
(m 8 , n 8 , m , n)7e q

(m 8 , n 8 , m , n)

kq [SLm 8 , n 8 ]7kq [D m 8 , n 8 ]

PROPOSITION (3.12). There is a coaction of kq [SLQ ] on k q [D Q
×] and

on kq [D Q ].

PROOF. Same as (2.18).

4. Infinite-dimensional invariant theory for SLQ and its quantum
deformation kq [SLQ ].

The first fundamental theorem of invariant theory for the special lin-
ear group SLm , 0 (k) (see (2.12) for the notation) states that given the
right action of SLm , 0 (k) on the matrix algebra k[bi , j ]m , n , where mEn ,
2mG iGn21, 2mG jG21:

k[bi , j ]m , n 3SLm , 0 (k)

(bij , g)

K

O

k[bi , j ]m , n

! bik gkj
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the subring of invariants k[bi , j ]m , n
SLm , 0 (k) coincides with the subring gener-

ated by the determinants of rank m in k[bi , j ]m , n . We want to generalize
this result to the infinite-dimensional case.

OBSERVATION. (4.1). There is a natural right action of SLm , 0 (k) on
Mm , n the set of matrices with row indices from 2m to n21 and column
indices from 21 to 2m .

Mm , n 3SLm , 0 (k)

A , g

K

O

Mm , n

Ag

This action gives rise to the following coaction:

k[bi , j ]m , n

bij

K
r (m , n)

O

k[bi , j ]m , n 7k[SLm , 0 ]

!bik 7gkj

An element x�k[bi , j ]m , n is said to be coinvariant under this coaction if
r (m , n) (x) 4x71. The first theorem of coinvariant theory equivalently
states that the subring of coinvariants under the coaction r (m , n) ,
k[bi , j ]m , n

k[SLm , 0 ] coincides with k[d m , n ].

PROPOSITION (4.2). There is a coaction r Q of k[SLQ , 0 ] »4

4 lim
J

k[SLm , 0 ] on k[MQ ].

PROOF. Fix an index m0 and for m , nFm0 define the map:

k[bi , j ]m , n

bij

K
r (m , n , m0)

O

k[bi , j ]m , n 7k[SLm0 , 0 ]

!
k42m0

n21

bik 7gkj 1 !
k42m 8

2m021

bik 7d kj gkj

where d kj 41 if k4 j and 0 otherwise.
For any indices m 8FmFm0 , n 8FnFn0 we have the commutative

diagram:

k[bi , j ]m , n

Ie(m 8 , n 8 , m , n)

k[bi , j ]m 8 , n 8

K
r (m , n , m0)

K
r (m 8 , n 8 , m0)

k[bi , j ]7k[SLm0 , 0 ]

Ie(m 8 , n 8 , m , n)7e q
(m 8 , n 8 , m , n)

k[bi , j ]7kq [D m 8 , n 8 ]
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This gives us a map:

k[MQ ] K
r m0

k[MQ ]7k[SLm0 , 0 ]

Going to the inverse limit we obtain a map:

k[MQ ] K
r Q

k[MQ ] 7×k[SLQ , 0 ]

which is the required coaction. QED.

We remark that the natural inclusion k[SLQ , 0 ] Kk[SLQ ] is not an
isomorphism, however there exist non canonical isomorphisms between
these two rings.

Let k[MQ ]k[SLQ , 0 ] denote the subring of k[SLQ , 0 ]-coinvariants, that is
of those elements X such that r Q (X) 4X71. It is easy to see that x4

4 ]x(m , n) ( �k[MQ ] is k[SLQ , 0 ]-coinvariant if and only if each x(m , n) �
�k[ai , j ]m , n is k[SLm , 0 ]-coinvariant, i.e. if r m , n (xm , n ) 4am , n 71.

THEOREM (4.3). The first fundamental theorem of coinvariant the-
ory for SLQ , 0 (k).

k[MQ ]k[SLQ , 0 ] 4k [dQ
×]

PROOF. The fact that k [dQ]×%k[MQ ]k[SLQ , 0 ] can be shown by checking
directly that the generators of k [dQ

×] are coinvariant, that is:

r Q (d×al
) 4 d×al

71 .

For the other inclusion, let x�k[MQ ]k[SLQ , 0 ] . We need to prove that x can
be written as:

x4!xi d×al
i , 1 R d×al

i , ik

This can be done using exactly the same argument as in (2.7)(b).
We now turn to examine the quantum case.
In [FH] we prove that there is a well defined coaction:

kq [bi , j ]m , n

bij

K
r m , n

q

O

kq [bi , j ]m , n 7kq [SLm , 0 ]

! bik 7gkj

and that:

kq [bi , j ]m , n
kq [SLm , 0 ] 4kq [D m , n ]
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THEOREM (4.4). The first fundamental theorem of quantum coin-
variant theory for kq [SLQ , 0 ].

There is a natural right coaction rQ of kq [SLQ , 0 ] on kq [MQ ]. Under
this coaction the ring of coinvariants coincides with the quantum infi-
nite-dimensional grassmannian k q [DQ

×] i.e.

kq [MQ ]kq [SLQ , 0 ] 4k q [D Q
×] .

PROOF. Same as (4.2) and (4.3).
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