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Fields of CR Meromorphic Functions.

C. DENSON HILL (*) - MAURO NACINOVICH (**)

ABSTRACT - Let M be a smooth compact CR manifold of CR dimension n and CR
codimension k , which has a certain local extension property E . In particular,
if M is pseudoconcave, it has property E . Then the field K(M) of CR mero-
morphic functions on M has transcendence degree d , with dGn1k . If
f1 , f2 , R , fd is a maximal set of algebraically independent CR meromorphic
functions on M , then K(M) is a simple finite algebraic extension of the field
C( f1 , f2 , R , fd ) of rational functions of the f1 , f2 , R , fd . When M has a pro-
jective embedding, there is an analogue of Chow’s theorem, and K(M) is iso-
morphic to the field R(Y) of rational functions on an irreducible projective al-
gebraic variety Y , and M has a CR embedding in reg Y . The equivalence be-
tween algebraic dependence and analytic dependence fails when condition E
is dropped.

Introduction.

In a beautiful paper Siegel [Si], improving upon an idea of Serre [Se],
managed to give simple proofs of the basic theorems concerning algebra-
ic dependence and transcendence degree for the field of meromorphic
functions on an arbitrary compact complex manifold; thereby generaliz-
ing classical results about the field of Abelian functions on a complex n
dimensional torus. For a detailed discussion of the now nearly 150 year
history of these matters, see the paper of Siegel. His proofs were based
on his extension to n dimensions of the classical Schwarz lemma. Later,

(*) Indirizzo dell’A.: Department of Mathematics, SUNY at Stony Brook,
Stony Brook NY 11794, USA. E-mail: dhillHmath.sunysb.edu

(**) Indirizzo dell’A.: Dipartimento di Matematica, Università di Roma Tor
Vergata, via della Ricerca Scientifica, 00133 - Roma, Italy.

E-mail: nacinoviHmat.uniroma2.it



C. Denson Hill - Mauro Nacinovich180

following almost exactly Siegel’s argument, Andreotti and Grauert [AG]
were able to show that the Siegel modular group, which plays a pivotal
role in the study of algebraic fields of automorphic functions, is pseudo-
concave. Later Andreotti [A] generalized these kinds of results to gen-
eral pseudoconcave complex manifolds and spaces; again following
Siegel’s method.

In the present work we replace the compact complex manifold of
Siegel by a smooth compact pseudoconcave CR manifold M of general
CR dimension n and CR codimension k , and study algebraic dependence,
transcendence degree and related matters for the field K(M) of CR
meromorphic functions on M . Again we follow the method of Siegel,
based on the Schwarz lemma, and we incorporate some ideas used by
Andreotti. Actually we are able to obtain results under a condition on the
CR manifold that is weaker than pseudoconcavity, which we call condi-
tion E . In particular we obtain an analogue of Chow’s theorem [C] for
compact CR manifolds. In the situation where M has a projective embed-
ding, we are able to identify K(M) with the field D(Y) of rational func-
tions on an irreducible algebraic variety Y , in which M has a generic CR
embedding that avoids the singularities of Y . We show that the possibility
for M to have a projective embedding is equivalent to the existence of a
complex CR line bundle over M having certain properties. In this context,
it is interesting to note that the general abstract notion of a complex CR
line bundle F over a CR manifold is such that F may fail to be locally CR
trivializable, even in the case where M is CR embeddable [HN8].

For more information about pseudoconcave CR manifolds, we refer the
reader to the foundational paper [HN3], to the many examples in [HN8],
and to [HN1], [HN2], R, [HN11], as well as [BHN], [DCN], and [L].

1. Preliminaries.

An abstract smooth almost CR manifold of type (n , k) consists of: a
connected smooth paracompact manifold M of dimension 2n1k , a
smooth subbundle HM of TM of rank 2n , that we call the holomorphic
tangent space of M , and a smooth complex structure J on the fibers of
HM .

Let T 0, 1 M be the complex subbundle of the complexification CHM of
HM , which corresponds to the 2k21 eigenspace of J:

T 0, 1 M4 ]X1k21JXNX�HM(.(1.1)
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We say that M is a CR manifold if, moreover, the formal integrability
condition

[CQ (M , T 0, 1 M), CQ (M , T 0, 1 M) ] % CQ (M , T 0, 1 M)(1.2)

holds. When k40, via the Newlander-Nirenberg theorem, we recover
the definition of a complex manifold.

Next we define T *1, 0 M as the annihilator of T 0, 1 M in the complexi-
fied cotangent bundle CT * M . We denote by Q 0, 1 M the quotient bundle
CT * M/T *1, 0 M , with projection p Q . It is a rank n complex vector bundle
on M , dual to T 0, 1 M . The ¯M-operator acting on smooth functions is de-
fined by ¯M 4p Q i d . A local trivialization of the bundle Q 0, 1 M on an
open set U in M defines n smooth sections L1 , L2 , R , Ln of T 0, 1 M in U;
hence

¯M u4 (L1 u , L2 u , R , Ln u) ,(1.3)

where u is a function in U . Solutions u of ¯M u40 are called CR func-
tions. We denote by C R(U) the space of smooth (CQ ) functions on an
open subset U of M that satisfy ¯M u40. Note that ¯M is a homogeneous
first order partial differential operator and hence the space C R(U) is a
commutative algebra with respect to the multiplication of functions. We
denote by C RM , a 4 lim

K
U�a

C R(U) the local ring of germs of smooth C R

functions at a�M .
Let M1 , M2 be two abstract smooth CR manifolds, with holomorphic

tangent spaces HM1 , HM2 , and partial complex structures J1 , J2 , re-
spectively. A smooth map f : M1 KM2 is CR if f*(HM1 ) %HM2 , and
f*(J1 v) 4J2 f*(v) for every v�HM1 .

A CR embedding (1) f of an abstract CR manifold M into a complex
manifold X , with complex structure JX , is a CR map which is a smooth
embedding satisfying f *(Ha M) 4f *(Ta M)OJX (f *(Ta M) ) for every
a�M . We say that the embedding is generic if the complex dimension of
X is (n1k), where (n , k) is the type of M .

Let M be a smooth abstract CR manifold of type (n , k). We say that
M is locally embeddable at a�M , if a has an open neighborhood v a in M
which admits a CR embedding into some complex manifold Xa . In this
case we can always take for Xa an open subset of Cn1k and assume that
the embedding v a %KXa is generic. The property of being locally embed-

(1) In this case we shall often identify M with the submanifold f(M) of X .
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dable at a is equivalent to the fact that there exist an open neighborhood
v a of a and functions f1 , f2 , R , fn1k � C R(v a ) such that

df1 (a)Rdf2 (a)RRRdfn1k (a) c0 .(1.4)

The functions f1 , f2 , R , fn1k can be taken to be the restrictions to v a of
the coordinate functions z1 , z2 , R , zn1k of Xa %Cn1k . For this reason
one can say that they provide CR coordinates on M near a .

The characteristic bundle H 0 M is defined to be the annihilator of
HM in T * M . Its purpose it to parametrize the Levi form: recall that the
Levi form of M at x is defined for j�H 0

x M and X�Hx M by

L(j ; X) 4dj
A(X , JX) 4 aj , [JXA, XA]b ,(1.5)

where j
A

� CQ (M , H 0 M) and XA � CQ (M , HM) are smooth extensions of
j and X . For each fixed j it is a Hermitian quadratic form for the com-
plex structure Jx on Hx M .

A CR manifold M is said to be q-pseudoconcave if the Levi form
L(j ; Q) has at least q negative and q positive eigenvalues for every a�M
and every nonzero j�Ha

0 M .
By the term pseudoconcave CR manifold M we mean an abstract CR

manifold which is: (i) locally embeddable at each point, and (ii)
1-pseudoconcave.

In this paper we shall be concerned with CR manifolds M of type
(n , k) which have a certain property E (E is for extension). M is said to
have property E iff there is an E-pair (M , X). By an E-pair we mean
that

(i) M is a generic CR submanifold of the complex manifold X ,
and

(ii) for each a�M , the restriction map induces an isomorphism
OX , a K C RM , a .

REMARK. If M is a pseudoconcave CR manifold, then M has proper-
ty E.

In fact, property (i) for a pseudoconcave M was proved in Proposition
3.1 of [HN3]; however, Theorem 1.3 below gives a new simplified proof of
this fact. Property (ii) for a pseudoconcave M was proved in [BP], [NV];
however, a very short proof of this fact is also given by Theorem 13.2 in
[HN7]. Thus property E is to be regarded as a somewhat weaker hypoth-
esis on M than pseudoconcavity.
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When k40, so M is of type (n , 0 ), then M is an n-dimensional com-
plex manifold, and we obtain an E pair by choosing X4M . Hence we
adopt the convention that any complex manifold has property E .

When n40, so M is of type (0 , k), then M is a smooth totally real k-
dimensional manifold, and we can never obtain an E-pair, (unless M4

4X4a point), because then any smooth function belongs to C R(M).

THEOREM 1.1. Let (M , X) be an E-pair. Then for any open set v%
%M there is a corresponding open set V%X such that

(i) VOM4v , and
(ii) r : O(V) K C R(v) is an isomorphism.

PROOF. We fix a Hermitian metric g on X , with associated distance
d(x , y). Let a�v and consider

Fn 4 m( f , fA) � C R(v)3 O gB ga ,
1

n
hhN fA 4 f on B ga ,

1

n
hOvn .(1.6)

Here B ga , 1

n
h denotes the ball of radius 1

n
in X , centered at a . Note

that each Fn is a closed subspace of a Fréchet-Schwartz space, and hence
a Fréchet-Schwartz space itself. For each n , the map

p n : Fn � ( f , fA) K f� C R(v)(1.7)

is linear and continuous. By our hypothesis,

0
n41

Q

p n (Fn ) 4 C R(v) .(1.8)

Hence by the Baire category theorem, some p n0
(Fn0

) is of the second cat-
egory. It follows from a theorem of Banach that p n0

: Fn0
K C R(v) is sur-

jective. Now we denote B ga , 1

n0
h by Ba .

Next we fix a tubular neighborhood U of M in X , with p : UKM de-
noting the orthogonal projection. By letting r� CQ (v , R1 ) vary, we
produce a fundamental system of open neighborhoods

V r4 ]z�UNp(z) �v , and d(z , p(z) ) Er(p(z) )((1.9)

of v in X . We choose r 0 � CQ (v , R1 ) such that

V r 0
% 0

a�v
Ba .(1.10)
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Since M is a deformation retract of V r 0
, and the local holomorphic ex-

tension of CR functions from the generic M is unique, the different ex-
tensions to each Ba of a given f� C R(v) match at points of V r 0

. This
completes the proof with V4V r 0

.

COROLLARY 1.2. In the situation of Theorem 1.1 we have, in addi-
tion, that

(iii) If f� C R(v), and f vanishes of infinite order at a�v , then
ff0 in the connected component of a in v .

(iv) (r * f )(V) 4 f (v).
(v) If NfN has a local maximum at a point a�v , then f is constant

on the connected component of a in v .

PROOF. If f� C R(v) vanishes of infinite order at a�v , then also r * f
vanishes of infinite order at a and, by the strong unique continuation of
holomorphic functions, r * f vanishes identically in the connected compo-
nent of V containing a , and we obtain (iii).

To prove (iv), we assume by contradiction that r * f takes some value
z0 �C at some point of V , but that f does not assume that value at any
point of v . Then the function

g4
1

f2z0

(1.11)

belongs to C R(v), and has no holomorphic extension to V , contradicting
(ii).

By (ii) and (iv), a local maximum of f� C R(v) at a�v , is also a local
maximum of r * f at a�V; thereby r * f is constant on the connected com-
ponent of a in V and we obtain (v).

COROLLARY 1.3. Let (M , X) and (N , Y) be E-pairs, and let f : MK

KN be a smooth CR isomorphism. Then there are E-pairs (M , X 8 ) and
(N , Y 8 ), with X 8%X and Y 8%Y , such that f extends to a biholomorphic
diffeomorphism fA: X 8KY 8 .

PROOF. We first consider the case where X and Y are open sets in
Cn1k . By Theorem 1.1, there is an open neighborhood V of M in X where
f has a holomorphic extension fA: VKCn1k . By shrinking V to V 8 , we
can arrange that fA(V 8 ) %Y and the Jacobian determinant of fA is differ-
ent from zero on V 8 . Likewise there is an open neighborhood V 9 of N in
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Y where f 21 4g extends to gA, with g(V 9 ) %V 8 and the Jacobian determi-
nant of gA being nonzero in V 9 . By uniqueness of holomorphic extension
of CR functions from M to gA(V 9 ), it follows that gA i fA 4 identity on a
neighborhood of M in X .

Now we consider the general case. Introducing local holomorphic co-
ordinates charts on X and Y , we may use the special case above to pro-
duce local holomorphic extensions. The local holomorphic extensions
patch together, by unique continuation, to give the desired fA.

We may now use Corollary 1.3 to show that M having property E is
actually a local property of M .

THEOREM 1.4. M has property E if and only if for each a�M , there
is an open neighborhood v a of a in M such that v a has property E .

PROOF. By hypothesis we have an E-pair (v a , Xa ), for each a�M .
We can assume that v a L M , and that p a : Xa Kv a is the orthogonal
projection from a tubular neighborhood, with a distance function
da (x , y). By Corollary 1.3, whenever v a Ov b c¯ , there are open neigh-
borhoods Xab of v a Ov b in Xa and Xba of v a Ov b in Xb , and a unique bi-
holomorphic map fAab : Xab KXba , extending the identity map on v a Ov b .
We may select a locally finite open covering ]v a ( of M , parametrized by
a�A%M . By shrinking, we refine the ]v a ( to an open covering ]v a8 (,
with v 8a L v a . With e a D0 sufficiently small, we define

X 8a 4p a
21 (v a8 )O ]da (x , v 8a ) Ee a ( ,(1.12)

so as to have

p a
21 (v 8a Ov 8b )OX 8a %Xab ,(1.13)

for all b�A such that v 8b Ov 8a c¯. Set

X 8ab 4 f ab
21 (Xab )OX 8a .(1.14)

Then X is obtained by gluing together the X 8a ’s, by

X 8a &X 8abK
f
A

ab
X 8ba %X 8b .(1.15)

This completes the proof.
We now turn to the object of main concern in this paper, which are

the CR meromorphic functions on an M satisfying property E. The ring
C R(v) of smooth (CQ) CR functions on v%M is an integral domain if v
is connected. Let D(v) be the subset of C R(v) of divisors of zero; i.e.
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D(v) is the set of those CR functions on v which vanish in some connect-
ed component of v. Let M(v) be the quotient ring of C R(v) with re-
spect to C R(v)0D(v). This means that M(v) is the set of the equiva-
lence classes of pairs (p , q) with p� C R(v) and q� C R(v)0D(v). The
equivalence relation (p , q) A (p 8 , q 8 ) is defined by pq 84p 8 q. If v 8%v
is an inclusion of open subsets of M, the restriction map r v 8

v : C R(v) K

K C R(v 8 ) sends C R(v)0D(v) into C R(v 8 )0D(v 8 ) and thus induces a
homomorphism of rings:

r v 8
v : M(v) K M(v 8 ) .(1.16)

We obtain in this way a presheaf of rings. We shall call the correspond-
ing sheaf M the sheaf of CR meromorphic functions on M. By a CR
meromorphic function on an open set v%M , we mean a continuous sec-
tion f of M over v . If v is connected, the space of all such sections K(v)
forms a field. Since we always assume that M is connected, we have in
particular K(M), the field of CR meromorphic functions on M.

We recall these standard notions: Let F be a field and F0 %F a sub-
field. Then f1 , f2 , R , fl �F are said to be algebraically dependent over
F0 iff there is a nonzero polynomial P�F0 [x1 , x2 , R , xl ] with coeffi-
cients in F0 such that

P( f1 , f2 , R , fl ) 40 ;(1.17)

otherwise they are called algebraically independent. The transcendence
degree of F over F0 is the cardinality of a maximal set S%F such that
every finite subset of S is algebraically independent over F0 . If the tran-
scendence degree of F over F0 is zero, we say that F is algebraic over (or
is an algebraic extension of ) F0 . The cardinal [F : F0 ] denotes the dimen-
sion of F over F0 , as a vector space. The field F is said to be a simple alge-
braic extension of F0 if there exists an element u�F such that any f�F
can be written as a polynomial in u with coefficients in F0 . When F0 has
characteristic zero, the primitive element theorem says that any finite
algebraic extension of F0 is simple.

Finally we discuss the general notion of a smooth complex CR line
bundle FK

p
M , which was introduced in [HN8]. By this we mean that F

is a smooth complex line bundle over M such that:

(i) F and M are smooth abstract CR manifolds of type (n11, k)
and (n , k), respectively,

(ii) p : FKM is a smooth CR submersion,
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(iii) F5F� (j 1 , j 2 ) Kj 1 1j 2 �F and C3F� (l , j) Kl Qj�F are
CR maps.

Note that the Whitney sums F5F and C3F have natural struc-
tures of smooth CR manifolds of type (n12, k); see [HN8]. There we
also introduced the notion of the tangential CR operator ¯F

M , acting on
smooth sections of F . We may take a smooth (not necessarily CR) trivial-
ization (Ua , s a ) of F , where s a is a smooth non vanishing section of F on
Ua . Then a smooth section s of F has a local representation s4sa s a in
Ua , where sa is a smooth complex valued function in Ua , and sa4gab sb in
UaOUb , with gab4sb /sa . In each Ua the tangential CR operator acting
on s has a representation of the form:

¯F
M s4 (¯M sa1Aa sa )7s a ,(1.18)

where Aa� CQ (Ua , Q0, 1 M) and ¯M Aa40. On UaOUb we have:

Ab2Aa4gba¯M gab , with gba4gab
21 .(1.19)

If s satisfies ¯F
M s40, it is called a CR section of F .

The l -th tensor power F l of F is still a smooth complex CR line bun-
dle over M , which can be defined in the same trivialization, and we
have

¯F l

M t4 (¯M ta1 l Aa ta )7s a
l(1.20)

in Ua , where t is a smooth section of F l , with t4 ta s a
l in Ua .

If the local trivialization is a CR trivialization, then the (0 , 1 ) forms
Aa in (1.18) and (1.20) are equal to zero. On the other hand, if the ¯M-
closed forms Aa are locally ¯M-exact, then F and F l are locally CR
trivializable.

Let f� K(M), where we now assume that M has property E . Then we
can associate to f a smooth complex line bundle FK

p
M , which is locally

CR trivializable. By definition, f has local representations

f4
pa

qa

on v a ,(1.21)

with pa , qa � C R(v a ). Moreover we may arrange that their holomorphic
extensions pAa and qAa to a neighborhood V a of v a in X have no nontrivial
common factor at each point of V a . Then there are uniquely determined
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non vanishing functions gab � C R(v a Ov b ) such that

qa 4gab qb on v a Ov b .(1.22)

The ]gab ( are then the transition functions of a smooth complex CR line
bundle F over M , and F is therefore locally CR trivializable. The ]pa (

and ]qa ( give global smooth sections p and q of F over M , whose quo-
tient p/q is the CR meromorphic function f .

Let us return now to the smooth complex CR line bundle FK
p

M ,
which may not be locally CR trivializable. In this context, it is natural to
consider smooth abstract CR manifolds M , which may not have property
E , but which are essentially pseudoconcave, as defined (2) in [HN8]. The
important consequence of the assumption of essential pseudoconcavity
on M is that one has the weak unique continuation property for CR sec-
tions of F . Note that 1-pseudoconcave abstract CR manifolds are essen-
tially pseudoconcave. Under these assumptions we can give a more gen-
eral notion of what is a CR meromorphic function on M: We associate a
CR meromorphic function f to any pair (p , q), where p and q are smooth
global CR sections of a smooth complex CR line bundle FK

p
M , with qg

g0. Another pair (p 8 , q 8 ), which are smooth CR global sections of another
such F 8K

p 8
M , with q 8g0, define the same f iff pq 84p 8 q as sections of

F7F 8 . Note that f4p/q is a well defined smooth CR function where qc

c0. With this more general definition, we get a new collection K×(M) of ob-
jects called CR meromorphic functions on M . Observe that K×(M) is a
field. For an essentially pseudoconcave M , which has property E , K(M)
is a subfield of K×(M). If in addition M is 2-pseudoconcave, then all
smooth complex CR line bundles over M are locally CR trivializable, and
then K(M) 4 K×(M).

2. CR meromorphic functions on compact CR manifolds.

Let M be a connected smooth compact CR manifold of type (n , k),
having property E . Then:

(2) M is essentially pseudoconcave iff it is minimal, i.e. does not contain ger-
ms of CR manifolds with the same CR dimension and a smaller CR codimension,
and admits a Hermitian metric on HM for which the traces of the Levi forms are
zero at each point.
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THEOREM 2.1. The field K(M) of CR meromorphic functions on
M has transcendence degree over C less or equal to n1k .

Setting k40 above, we recover Satz 1 in Siegel [Si].

PROOF. According to the discussion in § 1, the statement means:
Given n1k11 CR meromorphic functions f0 , f1 , R , fn1k on M , there
exists a non zero polynomial with complex coefficients
F(x0 , x1 , R , xn1k ) such that

F( f0 , f1 , R , fn1k ) f0 on M .(2.1)

From the preceding section, we may regard M as a generic CR submani-
fold of an n1k dimensional complex manifold X .

For each point a�M there is a connected open coordinate neighbor-
hood V a , in which the holomorphic coordinate za is centered at a . We
choose V a in such a way that v a 4V a OM is a connected neighborhood
of a in M . Moreover we can arrange that, for j40, 1 , R , n1k , each fj

has a representation

fj 4
pja

qja

on v a(2.2)

with pja and qja being smooth CR functions in v a . According to Theorem
1.1 we may also assume that the restriction map O(V a ) K C R(v a ) is an
isomorphism. For each CR function g on v a , we denote its unique holo-
morphic extension to V a by gA. By a careful choice of the pja and qja , and
an additional shrinking of v a , V a , we can also arrange that

fAj 4
pAja

qAja

on V a ,(2.3)

with the functions pAja and qAja being holomorphic and having no nontrivial
common factor at each point in a neighborhood of Va . For each pair of
points a , b on M we have the transition functions

qAja 4gjab qAjb ,(2.4)

which are holomorphic and non vanishing on a neighborhood of Va OVb .
Again, for each a�M we consider the polydiscs:

Ka 4 ]NzaNGra ( and La 4 ]NzaNEe 21 ra ( ,(2.5)
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where NzaN denotes the max norm in Cn1k , and ra D0 is chosen so that
Ka L V a . By the compactness of M , we may fix a finite number of points
a1 , a2 , R , am on M , such that the La1

, La2
, R , Lam

provide an open cov-
ering of M . Then we choose positive real numbers m and n to provide the
bounds:

Ng0abNEe m and N »
j41

n1k

gjabN Ee n(2.6)

on Va OVb for a , b4a1 , a2 , R , am .
Consider a polynomial with complex coefficients to be determined

later, F(x0 , x1 , R , xn1k ) of degree s with respect to x0 and of degree t
with respect to each xi for i41, 2 , R , n1k . The number of coefficients
to be determined is

A4 (s11) Q (t11)n1k .(2.7)

Now, letting a stand for any one of the a1 , a2 , R , am , we introduce the
functions

Qa 4 qAs
0a »

j41

n1k

qAja
t , Pa 4Qa F(fA0 , fA1 , R , fAn1k )(2.8)

which are holomorphic on a neighborhood of Va . For a positive integer
h , to be made precise later, we wish to impose the condition, for a4

4a1 , a2 , R , am , that Pa vanishes to order h at a . In terms of our local co-
ordinates za , this means that all partial derivatives of order Gh21 must
vanish at za 40. This imposes a certain number of linear homogeneous
conditions on the unknown coefficients of the polynomial F . The number
of such conditions is

B4m gn1k1h21

n1k
hGmh n1k .(2.9)

If we can arrange that BEA , then this system of linear homogeneous
equations has a non trivial solution.

However, in order to apply the Schwarz lemma later, we need also to
arrange that s , t and h satisfy

ms1ntEh .(2.10)

To this end we fix s to be an integer with sDmn n1k . Thus, for each posi-
tive h , we denote by th the largest positive integer satisfying sth

n1k E
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Emh n1k . In this way we obtain that

BGmh n1k Gs(th 11)n1k E (s11)(th 11)n1k 4A .(2.11)

On the other hand, since th KQ as hKQ , by choosing h sufficiently
large we have

m g ms

th

1nhn1k

Es ,(2.12)

which implies (2.10) for t4 th . Set

Y4 max
1 G iGm

max
Kai

NPai
N .(2.13)

This maximum is obtained at some point z * belonging to some Ka * , for
a * equal to some one of a1 , a2 , R , am . Since z *�Ka * %V a * , because of
our choices of the v a , V a , according to (iv) in Corollary 1.2, there is an-
other point z **�v a * such that

Pa * (z *) 4Pa * (z **) .(2.14)

But the point z ** belongs to some La ** %Ka ** , where a ** is one of the a1 ,
a2 , R , am . Hence by the Schwartz lemma of Siegel [Si] we obtain

NPa ** (z **)NGYe 2h .(2.15)

However

Pa * (z **) 4Pa ** (z **) kg0a * a **
s (z **) »

j41

n1k

g t
ja * a ** (z **)l .(2.16)

Hence from (2.6), (2.14), (2.15) we obtain

Y4NPa * (z **)NGY e ms1nt2h .(2.17)

By (2.10) this implies that Y40. Hence each Paj
f0, which in turn yields

F( fA0 , fA1 , R , fAn1k ) f0. Therefore restricting to M we get (2.1). This
completes the proof.

3. Analytic and algebraic dependence of CR meromorphic functions.

Let f0 , f1 , R , fl � K(M). We say that they are analytically depen-
dent if

df0 Rdf1 RRRdfl 40 where it is defined.(3.1)
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THEOREM 3.1. Let M be a connected smooth compact CR manifold
of type (n , k), having property E . Let f0 , f1 , R , fl � K(M). Then they
are algebraically dependent over C if and only if they are analytically
dependent.

PROOF. First we observe that algebraic dependence implies analytic
dependence. Assume that there is a nontrivial polynomial F , with com-
plex coefficients, of minimal total degree, such that F( f0 , f1 , R , fl ) f0.
Then

!
j40

l
¯F

¯xj

( f0 , f1 , R , fl ) dfj 40(3.2)

where it is defined. It follows that some coefficient in (3.2) is a nonzero
CR meromorphic function on M . This implies (3.1) on an open dense sub-
set of M , and hence whenever it is defined.

For the proof in the other direction, we can assume that f1 , R , fl are
analytically independent. Our task is to show that there exists a nonzero
polynomial with complex coefficients F(x0 , x1 , R , xl ) such that

F( f0 , f1 , R , fl ) f0 on M .(3.3)

To this end we repeat the proof of Theorem 2.1, with n1k replaced by l ,
down to the line below (2.8). We shall replace s , t , n , A , B by new
s 8 , t 8 , n 8 , A 8 , B 8 . After that we choose additional points a18 , a28 , R , am8

with a 8j �v aj
and a 8j sufficiently close to aj , for j41, 2 , R , m . These

points are chosen so that

Ka 8j 4 ]Nzaj
2zaj

(aj8 )NGraj
( L V aj

,(3.4)

the La 8j 4 ]Nzaj
2zaj

(aj8 )NEe 21 raj
( still give an open covering of M , the

fA0 , fA1 , R , fAl are holomorphic at each aj8 , and fA1 , R , fAl can be completed
to a system of holomorphic coordinates in a neighborhood of each a 8j .
This is possible because the set of points on M , where the fA1 , R , fAl are
holomorphic, and the dfA1 , R , dfAl are linearly independent, is open and
dense. Our assumption (3.1) that the f0 , f1 , R , fl are analytically depen-
dent implies that, near each point a 8j , fA0 is a holomorphic function of
fA1 , R , fAl . We modify the proof of Theorem 2.1 by requiring that the
holomorphic functions Paj

vanish to order h at a 8j , for j41, R , m . To ac-
complish this, we require that F( fA0 , fA1 , R , fAl ) vanish to order h at each
a 8j . This amount to requiring that all partial derivatives of order G (h2
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21) of F( fA0 , fA1 , R , fAl ) with respect to fA1 , R , fAl should vanish at a 8j . The
number of homogeneous linear equations is now

B 84m gl 1h21

l
hGmh l .(3.5)

Now we fix an integer s 8 with s 8Dm(n 8 )l . Just as in the proof of Theo-
rem 2.1, we choose h sufficiently large, and take t 8 to be the largest posi-
tive integer satisfying s 8 (t 8 )l Emh l , so as to obtain

B 8Gmh l E (s 811)(t 811)l 4A 8 ,(3.6)

ms 81n 8 t 8Eh .(3.7)

By (3.6) we can choose a nontrivial F , of degree s 8 in x0 and of degree t 8

in each x1 , R , xl , such that all Paj
vanish to order h at a 8j . Set

Y4 max
1 G jGm

max
Ka 8j

NPaj
N .(3.8)

This maximum is attained at some point z 8 belonging to some Ka 8j0
. Since

z 8�Ka 8j0
%V aj0

, as before by (iv) in Corollary 1.2 there is another point
z 9�v aj0

such that

Paj0
(z 8 ) 4Paj0

(z 9 ) .(3.9)

This point z 9 belongs to some La 8j1
%Ka 8j1

. So by the Schwarz lemma we
obtain

NPaj1
(z 9 )NGY e ms 81nt 82h .(3.10)

Thus as before we obtain

Y4NPaj1
(z 9 )NGYe ms 81nt 82h ,(3.11)

showing that Y40. This implies (3.3), completing the proof.
In order to make the exposition more clear, we have divided the dis-

cussion into two parts; however Theorem 2.1 is a direct consequence of
Theorem 3.1.

Algebraic dependence always implies analytic dependence. However,
in the absence of property E , the converse may be false. We give a gen-
eral counterexample:
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PROPOSITION 3.2. Let M be a connected smooth compact CR mani-
fold of type (n , k). Assume that M has a smooth CR immersion into
some Stein manifold. Then

(1) condition E is violated, and
(2) there exists an infinite sequence of smooth CR functions on

M , any two of which are analytically dependent, and which are alge-
braically independent over C .

PROOF. By the embedding theorem for Stein manifolds, we can as-
sume that M has a smooth CR immersion in some CN . Then by a result in
[HN1], there exists a point x0 in M and a j�H 0

x0
M such that the Levi

form Lx0
(j , Q) is positive definite on Hx0

M . This implies that a small
neighborhood of x0 in M is contained in the smooth boundary of a strictly
pseudoconvex domain V in CN . It is well known that there are holomor-
phic functions in V , which are smooth on V, and cannot be holomorphi-
cally extended beyond x0 . Thus condition E is violated at x0 .

To prove (2) we first observe that some coordinate z1 must be non
constant on M . Consider the sequence of holomorphic functions ] fl (z) 4

4e z1
l
Nl�N( % O(CN ), and denote their pull-backs to M by ] f *l (. Clearly

any two of them are analytically dependent. Assume, by contradiction,
that some finite collection f *l 1

, f *l 2
, R , f *l m

, are algebraically dependent.
Then there is a nontrivial polynomial P , with complex coefficients, such
that

P( f *l 1
, f *l 2

, R , f *l m
) 40 on M .(3.12)

Since e z1
l 1 , e z1

l 2 , R , e z1
l m are algebraically independent in O(C), the en-

tire function z1 KP(e z1
l 1 , e z1

l 2 , R , e z1
l m ) is not constant and has isolated

zeroes. Because M is connected, it follows that the pullback on M of the
function z1 is constant, contradicting our assumption that the coordinate
z1 was not constant on M .

4. The field of CR meromorphic functions.

Suppose M is a connected compact CR manifold of type (n , k), having
property E . We have:

THEOREM 4.1. Let d be the transcendence degree of K(M) over C ,
and let f1 , f2 , R , fd be a maximal set of algebraically independent CR
meromorphic functions in K(M). Then K(M) is a simple finite algebra-
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ic extension of the field C( f1 , f2 , R , fd ) of rational functions of
f1 , f2 , R , fd .

Setting k40 above, and taking the special case where d4n , we re-
cover Satz 2 of Siegel [Si].

The theorem is a consequence of the following:

PROPOSITION 4.2. Let f1 , f2 , R , fl be CR meromorphic functions in
K(M). Then there exists a positive integer k4k( f1 , f2 , R , fl ) such that
every f0 � K(M), which is algebraically dependent on f1 , f2 , R , fl , satis-
fies a nontrivial polynomial equation of degree Gk whose coefficients
are rational functions of f1 , f2 , R , fl .

PROOF. Without any loss of generality we may assume that
f1 , f2 , R , fl are algebraically independent. By Theorem 3.1 they are also
analytically independent. This puts us in the situation of the second half
of Theorem 3.1. The difference, however, is that we use only the func-
tions f1 , f2 , R , fl in (2.2), (2.3) and (2.4) to determine the v a , V a . In this
way the numbers m and n 8 depend only on f1 , f2 , R , fl . We fix the inte-
ger s 8Dm(n 8 )l as before. The proof of Theorem 3.1 shows that any CR
meromorphic function f� K(M), which can be represented on each v ai

,
for i41, 2 , R , m , as the quotient pi /qi of two CR functions globally de-
fined on v ai

, satisfies a nontrivial polynomial equation of degree less or
equal to k4s 8 , with coefficients in C( f1 , f2 , R , fl ). This reduces our
task to showing that f0 has such a representation.

By hypothesis our given f0 satisfies an equation

G0 f 0
l1G1 f 0

l21 1R1Gl40(4.1)

where G0 , G1 , R , Gl are polynomials in f1 , f2 , R , fl , and G0 is not iden-
tically 0 in M . Let s be an upper bound for the degrees of the
G0 , G1 , R , Gl , with respect to each of the f1 , f2 , R , fl . We set

QAa 4 »
j41

l

qAja
s ,(4.2)

HAaa4 QAa
a GA0

a21 GAa (a41, 2 , R , l) ,(4.3)

SAa 4 QAa GA0 fA0 .(4.4)
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Multiplying (4.1) by QAa
l GA0

l21 , we obtain that

SAl1HAa1 SAl21 1R1HAal40 on V a .(4.5)

Note that QAa GAb (b40, 1 , R , l) and the HAaa (a41, 2 , R , l) are holo-
morphic functions on V a , and SAa is meromorphic on an open neighbor-
hood of v a in V a . Since SAa satisfies (4.5), it is locally bounded, and hence
actually holomorphic. Then the restrictions

p0a 4 SAa Nv a
and q0a 4 QAa GA0 Nv a

.(4.6)

are CR functions on v a , and

f0 4
p0a

q0a

on v a .(4.7)

The proof is complete.
Now we explain what is the point of Theorem 4.1. Consider a maximal

set f1 , f2 , R , fd of algebraically independent CR meromorphic functions
on M , where d is the transcendence degree of K(M). Consider an f�
� K(M). Then f is algebraically dependent on f1 , f2 , R , fd ; i.e. it satisfies
an equation

f l1g1 f l21 1R1gl40 ,(4.8)

where g1 , g2 , R , gl�C( f1 , f2 , R , fd ). The minimal l for which such an
equation holds is called the degree of f over C( f1 , f2 , R , fd ). The content
of Proposition 4.2 is that this degree is bounded from above by k4

4k( f1 , f2 , R , fd ). Now choose an element U� K(M) so that its degree a is
maximal. For any f� K(M) consider the algebraic extension field
C( f1 , f2 , R , fd , U , f). By the primitive element theorem this extension is
simple; i.e. there exists an element h�C( f1 , f2 , R , fd , U , f) such that
C( f1 , f2 , R , fd , U , f ) 4C( f1 , f2 , R , fd , h). Then

(4.9) aF [C( f1 , f2 , R , fd , h) : C( f1 , f2 , R , fd ) ] 4

4 [C( f1 , f2 , R , fd , U , f ) : C( f1 ,f2 ,R ,fd ,U) ]3

3[C( f1 , f2 , R , fd , U) : C( f1 , f2 , R , fd ) ] Fa .

Hence the first factor on the right must be one; therefore f�
�C( f1 , f2 , R , fd , U). The conclusion is that

K(M) 4C( f1 , f2 , R , fd , U) 4C( f1 , f2 , R , fd )[U] ,(4.10)
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and any f� K(M) can be written as a polynomial of degree Ea having
coefficients that are rational functions of f1 , f2 , R , fd .

From the above remark we derive the

PROPOSITION 4.3. There is an open neighborhood U of M in X such
that the restriction map

K(U) KK(M)(4.11)

is an isomorphism. Here K(U) denotes the field of meromorphic func-
tions on U .

Let M be a connected smooth abstract CR manifold of type (n , k).
Consider a complex CR line bundle FK

p
M over M . Introduce the graded

ring

A(M , F) 4 0
l 40

Q

C R(M , F l ) ,(4.12)

where C R(M , F l ) are the smooth global CR sections of the l -th tensor
power of F . Note that if s 1 � C R(M , F l 1 ) and s 2 � C R(M , F l 2 ), then
s 1 s 2 � C R(M , F l 11 l 2 ).

Assume that we are in a situation where smooth sections of F have
the weak unique continuation property; e.g. we could take M to be essen-
tially pseudoconcave (see [HN8]). Then A(M , F) is an integral domain
because M is connected. Let

(4.13) Q(M , F)4m s 1

s 2
Ns 1 , s 2 � C R(M , F l ) for some l , and s 0g0n

denote the field of quotients.
Then Q(M , F) % K×(M), and C R(M) 4 A(M , trivial bundle).

PROPOSITION 4.4. Assume that M is compact and has property E .

(1) If F is locally CR trivializable, then Q(M , F) is an algebraically
closed subfield of K(M).

(2) There exists a choice of a locally CR trivializable F such that
Q(M , F) 4 K(M).

Assume that M is compact and essentially pseudoconcave. Then
(3) Q(M , F) is algebraically closed in K×(M).
In case M is compact and satisfies both hypothesis, then
(4) K(M) is algebraically closed in K×(M).
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PROOF. To prove (1) [or (3)] we take an h� K(M) [or h� K×(M)]
which is algebraic over Q(M , F); i.e. h satisfies an equation of minimal
degree

h m1k1 h m21 1R1kmf0 ,(4.14)

where ki � Q(M , F). Let ki 4
si

ti

with si , ti � C R(M , F l i ). Multiplying by

s 0 4 »
i41

m

ti we obtain

s 0 h m1s 1 h m21 1R1s mf0 ,(4.15)

where s 0 g0 and s i � C R(M , F l ) for l 4 !
i41

m

l i . Multiplying by s 0
m21 we

have:

(4.16) P(s 0 h) 4

4 (s 0 h)m1s 1 (s 0 h)m21 1R1s 0
m22 s m22 (s 0 h)1s 0

m21 s mf0 .

Note that (s 0 h) is bounded, and hence is a smooth section of F l over M .
In a local smooth trivialization of the bundle F , the tangential Cauchy-
Riemann operator on sections s of F has the form (see [HN8])

¯F
M s4 ¯M s1As ,(4.17)

where A is a smooth ¯M-closed (0 , 1 ) form on M . For the l -th tensor
power F l of F , in the same trivialization, we have

¯F l

M s4 ¯M s1 l As .(4.18)

We apply ¯F l m

M to both sides of (4.16) and obtain

(4.19) 0 4 ¯F l m

M P(s 0 h) 4P 8 (s 0 h)[¯M (s 0 h)1 l A Q (s 0 h) ] 4

4P 8 (s 0 h) ¯F l

M (s 0 h) .

Because m is minimal in (4.14), we obtain that P 8 (s 0 h) g0, and therefore
t4s 0 h� C R(M , F l ). Since s 0 � C R(M , F l ), we obtain that h4

t

s 0

�
� Q(M , F). This completes the proof of (1) and (3).

To prove (2) it suffices to observe that it is possible to choose a locally
trivializable smooth complex CR line bundle F over M such that the
f1 , f2 , R , fd , U appearing in (4.10) belong to Q(M , F). Then by (4.10),
Q(M , F) 4 K(M).

Finally (4) is a consequence of (2) and (3). This completes the proof of
the proposition.
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Let M be a connected smooth compact CR manifold of type (n , k),
having property E . Then

THEOREM 4.5. Let FK
p

M be a locally C R trivializable smooth
complex CR line bundle over M . Then

dimC C R(M , F) EQ .(4.20)

PROOF. For each point a�M , we fix an open neighborhood v a of a in
M , and an open coordinate neighborhood V a of a in X , such that v a 4

4V a OM and the restriction map O(V a ) K C R(v a ) is an isomorphism.
These v a are to be chosen to give a local CR trivialization of F . Denote
the C R transition functions by gab . We may assume that the gab are
bounded on v a Ov b . Introduce the polydiscs Ka and La as in (2.5), and
choose a1 , a2 , R , am on M so that the La1

, La2
, R , Lam

provide an open
covering of M . Choose an integer m such that

NgabNEe m on v a Ov b(4.21)

for a , b4a1 , a2 , R , am . Consider a section s� C R(M , F) which vanish-
es at each point ai of order Fm11. The section s is represented by a
smooth CR function si on each v ai

. Let

Y4 max
1 G iGm

max
Kai

NsAi N ,(4.22)

as before. This maximum is attained at some point z * belonging to some
Ka * , where a * is one of the a1 , a2 , R , am . Then by (iv) in Corollary 1.2,
there is some z **�v a * such that

sAa * (z *) 4sa * (z **) .(4.23)

But z ** belongs to some La ** , where a ** is one of the a1 , a2 , R , am . By
the Schwarz lemma,

Nsa ** (z **)NGYe 2(m11) .(4.24)

On the other hand we have

Y4Nsa * (z **)N4Nga * a ** (z **)N QNsa ** (z **)NGMe 21 .(4.25)

This shows that the Taylor expansion of the representatives si , at ai , up
to order m , completely determine a section s . Hence dimC C R(M , F) G

Gmgn1k1m11

m11
hEQ .
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5. The Chow theorem for CR manifolds.

Again M is a connected smooth compact CR manifold of type (n , k),
having property E . We have:

THEOREM 5.1. Let t : MKCPN be a smooth CR map. Suppose that
t has maximal rank 2n1k at one point of M . Then t(M) is contained
in an irreducible algebraic subvariety of complex dimension n1k , and
the transcendence degree of K(M) over C is n1k .

PROOF. Let Y be the smallest algebraic subvariety of CP N contain-
ing t(M). Certainly Y exists and is irreducible; it is defined by the homo-
geneous prime ideal

PY 4 ]p�C0 [z0 , z1 , R , zN ]Np i t40( ,(5.1)

where C0 [z0 , z1 , R , zN ] is the graded ring of homogeneous polynomials
on CPN .

Let R(Y) be the field of rational functions on Y . Any element f�
� R(Y) is represented as the quotient of two homogeneous polynomials
f4p/q , with q� PY . If f4p/q4p 8 /q 8 , then pq 82p 8 q� PY . By (5.1) this
shows that f i t is a well defined CR meromorphic function in K(M), and
that the homomorphism

t*: R(Y) KK(M)(5.2)

is injective. By the assumption that t has maximum rank at one point,
and by Theorem 2.1, we obtain

(5.3) n1kGdimC Y4 transcendence degree of R(Y)

G transcendence degree of K(M) Gn1k .

This completes the proof of the theorem.
As a corollary we obtain for compact CR manifolds an analogue of

Chow’s theorem:

THEOREM 5.2. Let M be a connected smooth compact CR embedded
submanifold of CPN , of type (n , k) and having property E . Then M is a
generically embedded CR submanifold of an irreducible algebraic sub-
variety Y of CPN ; moreover M is contained in the set reg Y of regular
points of Y , and the map (5.2) is an isomorphism.

Setting k40 above, we recover the theorem of Chow [C].
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PROOF. We verify that M avoids any singularity of Y . Consider a
point x0 �M . We can assume that near x0 , the inhomogeneous coordi-
nates are z1 , z2 , R , zN , centered at x0 , and that z1 , z2 , R , zn1k are coor-
dinates for the smallest affine complex linear subspace containing Tx0

M .
Let p : CN KCn1k be the holomorphic projection onto this affine sub-
space. Then locally near x0 , M 84p(M) is a smooth generic CR submani-
fold of Cn1k , having property E . But f4 (pNM )21 is a CR map on M 8 , so
by property E it has a local holomorphic extension f

A to a neighborhood v
of p(x0 ) in Cn1k . Then zj 2f

A
j (z1 , z2 , R , zn1k ), for j4n1k11, R , N ,

give N2 (n1k) holomorphic functions in p21 (v) which vanish locally
on M near x0 , and have independent differentials. In particular they de-
fine germs in PY 7 Ox0

. Using the fact that Ox0
is faithfully flat over the

ring C[z1 , z2 , R , zN ], we obtain that Y is locally a smooth complete in-
tersection at x0 . Thus M%reg Y .

Since (5.2) is injective, K(M) has a transcendence basis
f1 , f2 , R , fn1k with each fi 4 fAi NM , where fi � R(Y). Thus any f� K(M) is
the solution of an irreducible algebraic equation of the form

f l1g1 f l21 1R1gl40 ,(5.4)

with coefficients g1 , g2 , R , gl� R(Y). Take a point x0 �M where
g1 , g2 , R , gl are smooth CR functions, and

jl1g1 jl21 1R1gl40 ,(5.5)

has l distinct complex roots. Since R(Y) is algebraically closed, there is
some root fA � R(Y) of (5.4) such that fA(x0 ) 4 f (x0 ). As the roots of (5.5)
depend continuously on the coefficients, we have that fA(x) 4 f (x) for x in
a neighborhood of x0 on M . By unique continuation, f4 fA NM . This com-
pletes the proof of the theorem.

6. Projective embedding.

Let M be a connected smooth compact CR manifold of type (n , k),
having property E . Then

THEOREM 6.1. The following are equivalent:

(1) M has a smooth CR embedding as a CR submanifold of some
CPN .
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(2) There exists over M a smooth complex CR line bundle F such

that the graded ring A(M , F) 4 0
l 40

Q

C R(M , F l ) separates

points and gives «local coordinates» at each point of M .

PROOF. First we explain the meaning of (2). To say that A(M , F)
separates points means that, given xcy on M , there exists an integer
l 4 l (x , y) D0, and smooth sections s0 , s1 � C R(M , F l ) such that

det
C
`
D

s0 (x)

s1 (x)

s0 (y)

s1 (y)

E
`
F

c0 .(6.1)

To say that A(M , F) gives «local coordinates» means that, given x in M ,
there exists an integer l 4 l (x) D0 and smooth sections
s0 , s1 , R , sn1k � C R(M , F l ) such that

!
i40

n1k

(21)i si ds0 RRRdsi
×RRRdsn1k c0 at x .(6.2)

In other words, the CR meromorphic function s1 /s0 takes different
values at x and y; and (assuming s0 (x) c0) the CR meromorphic func-
tions s1 /s0 , s2 /s0 , R , sn1k /s0 provide analytically independent local CR
functions at x . Note that a line bundle F satisfying (2) is locally CR trivi-
alizable; hence also F l .

First we show that (2) implies (1): By row reduction we may assume
that the matrix (6.1) is in diagonal form; i.e. s0 (y) 4s1 (x) 40 and s0 (x) Q
Qs1 (y) c0. Hence, for any mD0,

det
C
`
D

s0
m (x)

s1
m (x)

s0
m (y)

s1
m (y)

E
`
F

c0 .(6.3)

This shows that if two points x and y are separated by s0 , s1 �
� C R(M , F l ), they are also separated by s0

m , s1
m � C R(M , F l m ). Next we

consider sections s0 , s1 , R , sn1k � C R(M , F l ) which satisfy (6.2) at a
given point x�M . We can assume s0 (x) c0. By changing si to si 2

2 (si (x) /s0 (x) )s0 , we can also assume that si (x) 40 for i41, 2 , R , n1k .
Then for any mD0, we have that s0

m , s0
m21 s1 , R , s0

m21 sn1k �
� C R(M , F l m ) also satisfy (6.2). For each l D0 we define the following
subset of M3M:

(6.4) Ul 4 ](x , y)N)(s0 , s1 ) � C R(M , F l ) such that (6.1) holds(N

N](x , x)N)s0 , s1 , R , sn1k � C R(M , F l ) such that (6.2) holds(( .
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Each Ul is open in M3M , and Ul % Ul Qm for mD0. By our hypothesis
(2) the ]Ul ( give an open covering of M3M . By compactness M3M is
covered by Ul 1

, Ul 2
, R , Ul r

. Therefore M3M4 Ul 0
where l 0 4 l 1 Q

Q l 2 R l r . Now let s0 , s1 , R , sN be a basis for smooth sections of the com-
plex vector space C R(M , F l 0 ), which is finite dimensional by Theorem
4.5. Consider the map t : MKCPN defined by xK (s0 (x) :
s1 (x) : R : sN (x) ). It is a CR map, which is one-to-one, and an immersion
at each point; thereby giving a CR embedding of M into CPN .

Next we show that (1) implies (2): It suffices to take F equal to the
pull-back to M of the hyperplane section line bundle on CPN . With this F
we may take l 41 in (6.1) and (6.2).

This completes the proof.
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