On Unions of Scrolls Along Linear Spaces.

Margherita Barile (*) - Marcel Morales (**)

Introduction.

According to the classification resulting from the successive contributions by Bertini [2], Del Pezzo [4] and Xambó [9], the equidimensional varieties of minimal degree which are connected in codimension one are of three types: quadric hypersurfaces, cones over the Veronese surface in \boldsymbol{P}^{5} and unions of scrolls embedded in linear subspaces. In this paper we give a complete constructive characterization of the ideals defining varieties of the latter type, which were presented in [9]. We also show that for these varieties, equidimensionality and minimal degree imply connectivity in codimension one, which provides a better understanding of the results in [9]. Finally we give a complete description of all rulings of a scroll. Throughout the paper we deal with projective varieties not contained in any hyperplane.

1. Preliminaries.

Let K be an algebraically closed field, and let $\underline{T}=\left\{T_{0}, \ldots, T_{n}\right\}$ be a finite set of variables over K. Let $R=K[\underline{T}]$ be the corresponding polynomial ring. For a subset S of R, by $\langle S\rangle$ we shall denote the linear subspace of R generated by S. If A is a matrix with entries in R, we shall use the notation $\langle A\rangle$ for the linear subspace generated by the set of all entries of A. We recall some basic definitions.
(*) Indirizzo dell'A.: Dipartimento di Matematica, Università degli Studi di Bari, Via Orabona 4, 70125 Bari, Italy.
(**) Indirizzo dell'A.: Université de Grenoble I, Institut Fourier, Laboratoire de Mathématiques associé au CNRS, URA 188, B.P.74, 38402 Saint-Martin D'Hères Cedex, and IUFM de Lyon, 5 rue Anselme, 69317 Lyon Cedex, France.

A simple scroll matrix will be a matrix of the form

$$
\left(\begin{array}{cccc}
l_{0} & l_{1} & \ldots & l_{m-1} \\
l_{1} & l_{2} & \ldots & l_{m}
\end{array}\right),
$$

where l_{0}, \ldots, l_{m} are linearly independent linear elements of R.
A scroll matrix will be a matrix of the form

$$
\left(\beta_{1}\left|\beta_{2}\right| \ldots \mid \beta_{s}\right)
$$

where for all $i=1, \ldots, s$, the submatrix β_{i} is a simple scroll matrix and

$$
\left\langle\beta_{i}\right\rangle \cap\left(\sum_{j \neq i}\left\langle\beta_{j}\right\rangle\right)=0 .
$$

A projective variety defined by the vanishing of the 2-minors of a scroll matrix will be called a scroll.

Let J be a reduced ideal of R having an irredundant prime decomposition

$$
J=\bigcap_{i=1}^{r} J_{i} .
$$

Definition 1.1. A reducible variety $X \subset \boldsymbol{P}^{n}$ is a scroller if \boldsymbol{P}^{n} contains linear subspaces L_{1}, \ldots, L_{r} and there are scrolls $X_{i} \subseteq L_{i}$ such that $X=\bigcup_{i=1}^{r} X_{i}$, and for each $k=1, \ldots, r$ we have

$$
\begin{equation*}
X_{k} \cap\left(X_{1} \cup \ldots \cup X_{k-1}\right)=L_{k} \cap\left(\overline{L_{1} \cup \ldots \cup L_{k-1}}\right) . \tag{*}
\end{equation*}
$$

Our first aim is to provide an explicit description of the ideal $J \subset R$ of a scroller X. This extends our previous result in [1]. By definition J can be written as $J=\bigcap_{i=1}^{r} J_{i}$, where J_{i} is the defining ideal of X_{i}, for all $i=1, \ldots, r$. Then

$$
J_{i}=\left(M_{i}, Q_{i}\right),
$$

where

- Q_{i} is a set of linear forms defining L_{i}, and
- M_{i} is the set of all 2-minors of a scroll matrix B_{i} consisting of c_{i} columns: $\left(M_{i}\right)$ is the defining ideal of the scroll X_{i} in its space
of immersion L_{i}. If $c_{i}=1$, the set M_{i} is empty. In this case the ideal J_{i} is generated by linear forms.

Note that the entries of B_{i} can be considered as a system of coordinates of L_{i}. In particular

$$
\left\langle B_{i}\right\rangle \cap\left\langle Q_{i}\right\rangle=0 .
$$

Up to replacing R with a polynomial ring $S \subseteq R$ we may assume that

$$
\bigcap_{i=1}^{r}\left\langle Q_{i}\right\rangle=0 .
$$

Of course the entries of B_{i} are defined up to linear combination with the elements of Q_{i}. Any such modification - which of course leaves the ideal J_{i} untouched - will be called an admissible change.

Condition (*) in Definition 1.1 can be re-formulated as follows:
(**) $\quad J_{k}+\bigcap_{i=1}^{k-1} J_{i}=\left(Q_{k}\right)+\left(\bigcap_{i=1}^{k-1}\left\langle Q_{i}\right\rangle\right)$
for all $k=1, \ldots, r-1$. In the sequel we shall stick to the notation just introduced. We are now ready to state our main theorem.

2. The Main Theorem.

THEOREM 2.1. The following two conditions are equivalent:
(I) J is the ideal of a scroller $X \subset \boldsymbol{P}^{n}$.
(II) There exist, for all $i=1, \ldots, r$, two subsets D_{i}, P_{i} of $\left\langle Q_{i}\right\rangle$ such that

$$
\left\langle P_{i}\right\rangle \oplus\left\langle D_{i}\right\rangle=\left\langle Q_{i}\right\rangle,
$$

and the following axioms are satisfied:
(a) $D_{1} \supseteq D_{2} \supseteq \ldots \supseteq D_{r}=\emptyset$, and $\left\langle D_{1}\right\rangle=\left\langle Q_{1}\right\rangle$; and, up to admissible changes for B_{1}, \ldots, B_{r}, one has that
(b) $M_{i} \subseteq\left(D_{i-1}\right)$ for all $i=2, \ldots, r$, and
(c) $\underset{k-1}{M_{i} \subseteq}\left(P_{j}\right)$ for all $i=1 \ldots, r-1$ and all $j=i+1, \ldots, r$.
(d) $\bigcap_{i=1}\left(Q_{i}\right) \subseteq\left(P_{k}, D_{k-1}\right)$ for all $k=2, \ldots, r$.

We prove this Theorem in several steps. The first auxiliary result generalizes Prop. 5.1 in [6], and is taken from [1]. We refer to that paper for the proof.

Lemma 2.2. Assume that the axioms (a), (b) and (c) of 2.1 are satisfied. Then

$$
\bigcap_{i=1}^{k} J_{i}=\left(M_{1}, \ldots, M_{k}, \bigcap_{i=1}^{k}\left(Q_{i}\right)\right)
$$

for all $k=1, \ldots r$.
Proof of 2.1 «(II) $\Rightarrow(\mathrm{I}) »$. In view of 2.2 , for all $k=1, \ldots, r-1$ we have

$$
\begin{aligned}
J_{k}+\bigcap_{i=1}^{k-1} J_{i} & =\left(M_{1}, \ldots, M_{k-1}, M_{k}, \bigcap_{i=1}^{k-1}\left(Q_{i}\right), P_{k}, D_{k}\right)=\left(M_{k}, P_{k}, D_{k}\right)+\bigcap_{i=1}^{k-1}\left(Q_{i}\right) \\
& \subseteq\left(P_{k}, D_{k}, D_{k-1}\right)=\left(P_{k}, D_{k-1}\right)
\end{aligned}
$$

where the equalities follow easily from (a), (b) and (c), and the inclusion is a consequence of (d). Since by (a)

$$
D_{k-1} \subseteq \bigcap_{i=1}^{k-1}\left(Q_{i}\right) \subseteq \bigcap_{i=1}^{k-1} J_{i},
$$

and $P_{k} \subseteq J_{k}$, the above inclusion can be reversed, so that

$$
J_{k}+\bigcap_{i=1}^{k-1} J_{i}=\left(P_{k}, D_{k-1}\right)=\left(Q_{k}\right)+\left(D_{k-1}\right) \subseteq\left(Q_{k}\right)+\left(\bigcap_{i=1}^{k-1}\left\langle Q_{i}\right\rangle\right) .
$$

By d) this suffices to conclude that (**) is fulfilled.
Now we turn to the proof of the other implication.
Definition 2.3. Let $D_{1} \supseteq D_{2} \supseteq \ldots \supseteq D_{r}$ be a chain of sets such that for all $i=1, \ldots, r$, the set D_{i} is a basis of $\bigcap_{j=1}^{i}\left\langle Q_{i}\right\rangle$. In particular $D_{r}=\emptyset$. For all $i=2, \ldots, r$ let Δ_{i} be a set completing D_{i} to a basis of $\left\langle D_{i-1}\right\rangle$, and for all $i=1, \ldots, r$ let P_{i} be a set of linear forms completing D_{i} to a basis of $\left\langle Q_{i}\right\rangle$. In particular $P_{1}=\emptyset$.

Corollary 2.4. For all $i=2, \ldots, r,\left\langle P_{i}\right\rangle \cap\left\langle D_{i-1}\right\rangle=0$.
Proof. By Definition 2.3 one has that

$$
\left\langle P_{i}\right\rangle \cap\left\langle D_{i-1}\right\rangle \subseteq\left\langle Q_{i}\right\rangle \cap\left(\bigcap_{j=1}^{i-1}\left\langle Q_{j}\right\rangle\right)=\bigcap_{j=1}^{i}\left\langle Q_{j}\right\rangle=\left\langle D_{i}\right\rangle,
$$

but $\left\langle P_{i}\right\rangle \cap\left\langle D_{i}\right\rangle=0$.

As a consequence of Corollary 2.4, for all $i=2, \ldots, r$ there is a decomposition

$$
\left\langle Q_{i}, D_{i-1}\right\rangle=\left\langle D_{i}\right\rangle \oplus\left\langle\Delta_{i}\right\rangle \oplus\left\langle P_{i}\right\rangle
$$

where $D_{i} \cup \Delta_{i}$ is a basis of $\left\langle D_{i-1}\right\rangle$. It follows that

$$
\begin{equation*}
\left\langle D_{i}\right\rangle=\bigoplus_{j=i+1}^{r}\left\langle\Delta_{j}\right\rangle \quad \text { for all } i=1, \ldots, r-1 \tag{1}
\end{equation*}
$$

Moreover, we can rewrite condition (**) as follows:
$(* *) \quad J_{k}+\bigcap_{i=1}^{k-1} J_{i}=\left(Q_{k}, D_{k-1}\right)=\left(P_{k}, D_{k-1}\right)=\left(P_{k}, \Delta_{k}, D_{k}\right)$
Remark 2.5. Axioms (a) and (d) immediately follow from Definition 2.3 and (**) respectively.

Lemma 2.6. Assume condition (**) is fulfilled. Then there are admissible changes for B_{1}, \ldots, B_{r} such that $M_{i} \subseteq\left(\Delta_{i}\right)$ for all $i=2, \ldots, r$. In particular axiom (b) is satisfied.

Proof. Fix an index $i \in\{2, \ldots, r\}$. Condition ($* *$) implies that

$$
\begin{equation*}
M_{i} \subseteq J_{i} \subseteq\left(D_{i}, \Delta_{i}, P_{i}\right) \tag{2}
\end{equation*}
$$

Choose a system of variables \underline{T} such that $D_{i} \cup \Delta_{i} \cup P_{i} \subseteq \underline{T}$. For all entries x of B_{i} write $x=u+v$, where

$$
u=\sum_{T \in D_{i} \cup P_{i}} \alpha_{T} T \quad \text { and } \quad v=\sum_{T \in \underline{T} \backslash\left(D_{i} \cup P_{i}\right)} \alpha_{T} T, \quad\left(\alpha_{T} \in K\right) .
$$

Replace x by v. This is an admissible change for B_{i}, because $u \in\left\langle Q_{i}\right\rangle$. After this operation, condition (2) for the modified set M_{i} implies that $M_{i} \subseteq\left(\Delta_{i}\right)$, because no variable of $D_{i} \cup P_{i}$ appears in the polynomials belonging to M_{i}.

Now the sets D_{i} are completely determined. Next we modify the sets P_{i} introduced above. To this end we shall again resort to admissible changes of B_{1}, \ldots, B_{r}. Simultaneously we shall have to modify the sets Δ_{i} (and, consequently, the sets D_{i}) in order to preserve the validity of the claim of Lemma 2.6. These modifications will also be called admissible changes.

Lemma 2.7. Assume (I) is true. For all $i=1, \ldots, r$ we can choose P_{i} in such a way that after suitable admissible changes for B_{1}, \ldots, B_{r} and $\Delta_{2}, \ldots, \Delta_{r}, M_{i} \subseteq\left(P_{j}\right)$ for all $i=1, \ldots, r-1$ and all $j=$ $=i+1, \ldots, r$.

Proof. We define P_{i} and the subsets Δ_{i} for $i=2, \ldots, r$ by recursion. We proceed by induction on $k=1, \ldots, r-1$ showing that there are subsets P_{1}, \ldots, P_{k} and admissible changes for B_{1}, \ldots, B_{k} and $\Delta_{2}, \ldots, \Delta_{k}$ such that the claim is fulfilled for $i \leqslant k-1$ and $i<j \leqslant k$. At the k-th step we assume that this is true, and choose P_{k+1} in such a way that the claim is true for $i=k$ and $j=k+1$. To this end we shall perform admissible changes on B_{1}, \ldots, B_{k} and $\Delta_{2}, \ldots, \Delta_{k}$, and also suitable modifications on P_{1}, \ldots, P_{k}, so that the claim will finally be true for $i \leqslant k$ and $i<j \leqslant k+1$.

Let P_{k+1} be as required in 2.3. In view of Corollary 2.4, there is a system of variables \underline{T} such that $P_{k+1} \cup D_{k} \subseteq \underline{T}$. Let $i \in\{2, \ldots, k\}$ and $x \in P_{i}$. Write $x=u+v$, where

$$
u=\sum_{T \in D_{k}} \alpha_{T} T \quad \text { and } \quad v=\sum_{T \in \underline{T} \backslash D_{k}} \alpha_{T} T, \quad\left(\alpha_{T} \in K\right)
$$

Replace x by v in P_{i}. Perform this substitution for all $x \in P_{i}$ and all entries x of B_{i}, for $i=1, \ldots, k$. Since $D_{k} \subseteq D_{i} \subseteq\left(Q_{i}\right)$, these substitutions are admissible changes and respect the definition of P_{i}. By Lemma 2.6, $M_{i} \subseteq$ $\subseteq\left(D_{i-1}\right) \subseteq\left(D_{j}\right) \subseteq J_{j}$ for all $j=1, \ldots, i-1$, and this condition is preserved by the changes, since $\left(D_{k}\right) \subseteq\left(D_{i-1}\right)$. Similarly, it remains true that $M_{i} \subseteq$ $\subseteq\left(P_{j}\right) \subseteq J_{j}$, for all $j=i+1, \ldots, k$, so that, in view of $(* *)$:

$$
M_{i} \subseteq \bigcap_{j=1}^{k} J_{j} \subseteq\left(P_{k+1}, D_{k}\right)
$$

But by construction the elements of M_{i} do not contain any variable from D_{k}. Hence $M_{i} \subseteq\left(P_{k+1}\right)$. Furthermore, by Lemma 2.6, for all $i=1, \ldots, k-1$, it holds that $M_{k} \subseteq\left(D_{k-1}\right) \subseteq\left(D_{i}\right)$. Moreover $M_{k} \subseteq J_{k}$. By virtue of (**) it follows that

$$
M_{k} \subseteq \bigcap_{j=1}^{k} J_{j} \subseteq\left(P_{k+1}, D_{k}\right),
$$

which implies that $M_{k} \subseteq\left(P_{k+1}\right)$, since the elements of M_{k} do not contain any variable of the subset D_{k}. This proves the claim for $i \leqslant k$ and $j=k+1$.

Theorem 2.1 is completely proven now: the required subsets D_{i} and P_{i} are those fulfilling the claim of Lemma 2.7.

Next we prove that every equidimensional scroller of minimal degree is connected in codimension 1. Recall that, according to the definition given by Hartshorne [8], J is connected in codimension 1 if - up to rear-
ranging the indices - for all $k=1, \ldots, r$ it holds:

$$
\operatorname{codim}\left(J_{k}+\bigcap_{i=1}^{k-1} J_{i}\right)=\operatorname{codim} J_{k}+1
$$

Lemma 2.8. If M is the set of maximal minors of a scroll matrix with $c \geqslant 2$ columns, and L_{1}, \ldots, L_{n} are n linear forms such that $M \subseteq$ $\subseteq\left(L_{1}, \ldots, L_{n}\right)$, then $n \geqslant c$.

Proof. If $M \subset\left(L_{1}, \ldots, L_{n}\right)$, then $V\left(L_{1}, \ldots, L_{n}\right) \subset V(M)$, where $V(M)$ is the variety defined by M. But $\operatorname{codim} V(M)=c-1$, and codim $V\left(L_{1}, \ldots, L_{n}\right)=n$. It follows that $n \geqslant c-1$. In fact, since $V(M)$ is irreducible and $V(M) \neq V\left(L_{1}, \ldots, L_{n}\right)$, we must have $n>c-1$, so that $n \geqslant c$.

This lemma also follows from the results we will give in Section 4.
The following result is quoted from Eisenbud-Goto ([5], Th. 4.2 and 4.3):

Theorem 2.9 (Del Pezzo-Bertini-Xambó). Let J be a reduced ideal of R. Suppose it is connected in codimension 1, and it has pure dimension d. Let X be the variety of \boldsymbol{P}^{n} defined by J. Let $\operatorname{deg} J$ denote the degree of J. If $\operatorname{deg} J \leqslant \operatorname{codim} J+1$, then J is Cohen-Macaulay, and either:
(1) X is a quadric hypersurface; $R / J=K\left[T_{0}, \ldots, T_{n}\right] /(Q)$, for some quadratic polynomial Q;
(2) X is a cone over the Veronese surface in $\boldsymbol{P}^{5} ; R / J$ is isomorphic to a polynomial ring over $K\left[T_{00}, T_{01}, T_{02}, T_{11}, T_{12}, T_{22}\right]$ modulo the ideal of 2-minors of the generic symmetric matrix:

$$
\left(\begin{array}{lll}
T_{00} & T_{01} & T_{02} \\
T_{01} & T_{11} & T_{12} \\
T_{02} & T_{12} & T_{22}
\end{array}\right),
$$

or
(3) \boldsymbol{P}^{n} contains linear subspaces L_{1}, \ldots, L_{r} and there are d-dimensional scrolls $X_{i} \subseteq L_{i}$ such that $X=\bigcup_{i=1}^{r} X_{i}$, and for each $k=1, \ldots$, r we

have

(*)

$$
X_{k} \cap\left(X_{1} \cup \ldots \cup X_{k-1}\right)=L_{k} \cap\left(\overline{L_{1} \cup \ldots \cup L_{k-1}}\right)
$$

which is a linear subspace of dimension $d-1$.
We refer to the paper of Xambó [9] for a proof.
The next result shows that the hypothesis of connectivity in codimension 1 in the above characterization is not restrictive for varieties of type (3). In fact we have:

Corollary 2.10. A scroller $X \subset \boldsymbol{P}^{n}$ of pure dimension and minimal degree is connected in codimension 1.

Proof. Let d be the pure dimension of X, and let $J=\bigcap_{i=1}^{r} J_{i}$ be its defining ideal. Then, for all $i=1, \ldots r$,

$$
\begin{equation*}
n-d=\operatorname{codim} J_{i}=\left|P_{i}\right|+\left|D_{i}\right|+c_{i}-1 \tag{3}
\end{equation*}
$$

and, in particular,

$$
\begin{equation*}
n-d=\operatorname{codim} J_{1}=\left|Q_{1}\right|+c_{1}-1, \tag{4}
\end{equation*}
$$

for all $i=1, \ldots, r$. It is well known that the degree of the cylinder over a scroll is equal to the number of its columns (see [7]). Hence for all $i=1, \ldots, r$ one has that

$$
\operatorname{deg} J_{i}=c_{i}
$$

and

$$
\begin{equation*}
\operatorname{deg} J=\sum_{i=1}^{r} \operatorname{deg} J_{i}=\sum_{i=1}^{r} c_{i} . \tag{5}
\end{equation*}
$$

Now, by Lemma 2.6 and Lemma 2.8, $\left|\Delta_{i}\right| \geqslant c_{i}$ for all $i=2, \ldots, r$. Hence, by (4), and in view of Definition 2.3,

$$
n-d+1=\left|Q_{1}\right|+c_{1}=\sum_{i=2}^{r}\left|\Delta_{i}\right|+c_{1} \geqslant \sum_{i=1}^{r} c_{i}
$$

This, together with (5) and minimality of degree, yields

$$
\left|\Delta_{i}\right|=c_{i}
$$

for all $i=2, \ldots, r$. Finally, by ($* *$), and (3)

$$
\operatorname{codim}\left(J_{k}+\bigcap_{i=1}^{k-1} J_{i}\right)=\left|P_{k}\right|+\left|D_{k}\right|+\left|\Delta_{k}\right|=n-d+1-c_{k}+c_{k}=n-d+1
$$

which proves connectivity in codimension 1.

Example 2.11. Let

$$
B_{1}=\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right), \quad B_{2}=\left(\begin{array}{ll}
d & e \\
e & g
\end{array}\right), \quad B_{3}=\left(\begin{array}{lll}
h & i & j \\
i & j & k
\end{array}\right) .
$$

Then

$$
\begin{aligned}
& J_{1}=\left(a c-b^{2}, d, e, h, i, j, k\right) \\
& J_{2}=\left(d g-e^{2}, b, c, h, i, j, k\right) \\
& J_{3}=\left(h j-i^{2}, h k-i j, i k-j^{2}, a, b, d, e\right)
\end{aligned}
$$

are linear scrolls associated to B_{1}, B_{2} and B_{3} respectively, where

$$
\begin{aligned}
& \quad D_{1}=(d, e, h, i, j, k) \\
& P_{2}=(b, c) \quad D_{2}=(h, i, j, k) \\
& P_{3}=(a, b, d, e)
\end{aligned}
$$

It is easy to verify that part (II) of Theorem 2.1 is fulfilled. Hence ideal

$$
\begin{aligned}
& J=J_{1} \cap J_{2} \cap J_{3}= \\
& =(b e, c e, e h, e i, e j, e k, b d, c d, d h, d i, d j, d k, b h, b i, b j, b k, a h, a i, \\
& \left.\quad a j, a k, b^{2}-a c, e^{2}-d g, i^{2}-h j, i j-h k, j^{2}-i k\right)
\end{aligned}
$$

defines a scroller $X \subset \boldsymbol{P}^{10}$. Note that J_{1} and J_{2} are of degree 2 and codimension $7, J_{3}$ is of degree 3 and codimension 6 , so that J is of degree 3 and codimension 6.

In the next Section we will show that the ideals of all scrollers are generated by elements of degree 2 .

3. A constructive method.

Our next aim is to give an explicit constructive method for the defining ideals of scrollers. This will be a generalization of the one described in our previous paper [1], to which we refer for a proof of the next auxiliary result.

Lemma 3.1. Assume (I) is true. For all $i=1, \ldots, r$, a set P_{i} fulfilling Definition 2.3 can be chosen in such a way that after suitable admissible changes for B_{1}, \ldots, B_{r} and $\Delta_{2}, \ldots, \Delta_{r}$ preserving the statement of Lemma 2.6, the following properties are satisfied.
(i) For all $j=2, \ldots, r$ let

$$
P_{j} \times \Delta_{j}=\left\{p \delta \mid p \in P_{j}, \delta \in \Delta_{j}\right\}
$$

Set $G_{1}=\emptyset$, and

$$
G_{i}=\bigcup_{j=1}^{i} P_{j} \times \Delta_{j}
$$

for all $j=2, \ldots, r$. Then $G_{i} \subseteq\left(P_{i+1}\right)$ for all $i=1, \ldots, r-1$
(ii) For all $i=1, \ldots, r-1$ there is an index $l(i+1), 1 \leqslant l(i+1) \leqslant i$, such that

$$
\left\langle P_{i+1}\right\rangle \supseteq\left\langle\Pi_{i+1}\right\rangle+\left\langle P_{l(i+1)}\right\rangle \oplus\left\langle\Delta_{l(i+1)+1}\right\rangle \oplus \ldots \oplus\left\langle\Delta_{i}\right\rangle,
$$

where Π_{i+1} is a subset of $\left\langle Q_{i+1}\right\rangle$ for which $M_{l(i+1)} \subseteq\left(\Pi_{i+1}\right)$.
We are now ready for the required characterization: we show that, given scroll matrices B_{1}, \ldots, B_{r}, whenever the sets Δ_{i}, D_{i}, P_{i} and Q_{i} are chosen so as to fulfil Definition 2.3, Lemma 2.6 and Lemma 3.1 (ii), then the resulting ideal J defines a scroller. By virtue of Theorem 2.1 and Remark 2.5, there remains to prove that (d) and (e) are satisfied. But this can be easily settled by induction on i, as we have done in [1].

The next result, together with Lemma 2.2, yields an explicit description of the generators of ideal J.

Proposition 3.2. For all $k=2, \ldots r+1$ one has that $G_{k-1} \subseteq\left(P_{k}\right)$. Moreover it holds

$$
\bigcap_{i=1}^{k-1}\left(Q_{i}\right)=\left(G_{k-1}, D_{k-1}\right) .
$$

As in [1], we conclude that
Corollary 3.3. For all $i=1, \ldots$, r let $J_{i}=\left(M_{i}, Q_{i}\right)$. Let $J=J_{1} \cap$ $\cap \ldots \cap J_{r}$. Then

$$
J=\left(M_{1}, \ldots, M_{r}, G_{r}\right) .
$$

In particular the ideal J is generated by elements of degree 2.
Finally we give a constructive method for the defining ideal of any scroller, which is a generalization of Theorem 3.1 in [1]. We fix the number r of scroll matrices, with c_{1}, \ldots, c_{r} columns respectively; then we
construct, for all $i=1, \ldots, r$, the scroll matrix B_{i} and the set of linear forms Q_{i} fulfilling the required conditions. As a consequence of Lemma 2.8, for all indices $i \geqslant 2$, the sets Δ_{i} and Π_{i} must be chosen in such a way that $\left|\Delta_{i}\right| \geqslant c_{i}$ and $\left|\Pi_{i}\right| \geqslant c_{l(i-1)}$, whenever $c_{i} \geqslant 2$ and $c_{l(i-1)} \geqslant 2$ respectively. Otherwise Δ_{i} and Π_{i} are subject to no restriction and may even be empty. In either case, the sets will be called suitable.

Theorem 3.4. Let $R=K\left[T_{0}, \ldots, T_{n}\right]$ be a polynomial ring over the field K. Let r, c_{1}, \ldots, c_{r} be positive integers. Let $\Delta_{1}, \Delta_{2}, \ldots, \Delta_{r}$ be suitable independent sets of linear forms of R. Set

$$
D_{i}=\Delta_{i+1} \cup \ldots \cup \Delta_{r}
$$

for all $i=1, \ldots, r-1$, and let $D_{r}=\emptyset$. Then set $P_{1}=\emptyset$, and $P_{2}=\Delta_{1} . A p$ ply the following recursive construction.

1. Let $i=3, \Pi_{1}=\Delta_{1}$.
2. Choose an index $l=l(i), 1 \leqslant l \leqslant i-1$. If $l=l(j)$ and $\left\langle\Pi_{j}\right\rangle \neq\left\langle\Delta_{l}\right\rangle$, for some $j<i$, then goto 5 .
3. Choose a suitable set Π_{i} of independent linear forms such that
(\star

$$
\left\langle\Pi_{i}\right\rangle \cap\left(\left\langle P_{l}\right\rangle \oplus\left\langle\Delta_{l+1}\right\rangle \oplus \ldots \oplus\left\langle\Delta_{r}\right\rangle\right)=0 .
$$

If $\left\langle\Pi_{i}\right\rangle=\left\langle\Delta_{l}\right\rangle$ or $c_{l}=1$, then goto 6.
4. Choose a scroll matrix B_{l} with c_{l} columns such that the set M_{l} of its 2-minors is contained in $\left(\Delta_{l}\right)$ and $\left(\Pi_{i}\right)$, and $\Delta_{l}, \Pi_{i} \subseteq\left\langle B_{l}\right\rangle$. Goto 6.
5. Choose a suitable set Π_{i} of c_{l} independent linear forms such that $M_{l} \subseteq\left(\Pi_{i}\right)$, and (\star) is true.
6. Set

$$
P_{i}=P_{l} \cup \Pi_{i} \cup \Delta_{l+1} \cup \ldots \cup \Delta_{i-1}
$$

If $i<r$, replace i with $i+1$ and goto 2 .
7. For all $i=1, \ldots, r$, if $i \neq l(j)$ for all indices j, choose B_{i} to be a scroll matrix with c_{i} columns such that the set M_{i} of its minors is contained in $\left(\Delta_{i}\right), \Delta_{i} \subseteq\left\langle B_{i}\right\rangle$, and $\left\langle B_{i}\right\rangle \cap\left\langle P_{i}, D_{i}\right\rangle=0$. End.

Then axioms (a), (c), (d), (e), (f) of Theorem 2.1 are satisfied.
Remark 3.5. Note that the above recursive construction is always possible. The only step that really has to be justified is 4 . But one easily sees that it is possible to find a scroll matrix B_{l} such that $\left\langle\Delta_{l}\right\rangle$ and $\left\langle\Pi_{l}\right\rangle$ (which are supposed to be distinct) are generated
by the set of entries of the first and the second row of B_{l} respectively. And in step 5 one can always choose $\Pi_{i}=\Delta_{l}$.

The ideal constructed according to Theorem 3.4 is equidimensional and of minimal degree iff, for all $i=1, \ldots, r,\left|\Delta_{i}\right|=\left|\Pi_{i}\right|=c_{i}$. It follows that every scroller can be obtained from a minimal variety by adding linear forms to some of the sets Δ_{i} and Π_{i}, with the only restriction that linear independence be preserved, and/or by eliminating linear forms corresponding to one-column matrices.

Example 3.6. In $K[a, \ldots, q]$ we consider the ideal

$$
J=J_{1} \cap \ldots \cap J_{5},
$$

where $J_{i}=\left(M_{i}, Q_{i}\right)$, and

- $M_{2}=M_{5}=\emptyset$ and M_{1}, M_{3}, M_{4} are the sets of 2-minors of the scroll matrices B_{1}, B_{3}, B_{4} given below;
- for all $i=1, \ldots, 5$ the set Q_{i} is constructed as follows.

	B_{1}			B_{2}	B_{3} h i i j	B_{4}		B_{5}
	a b	c d	$\begin{aligned} & d \\ & e \end{aligned}$			k	m $a+j$	
Q_{1}				$f \boldsymbol{n}$	$h \quad i$	m	$a+j$ o	$l+b$
				Δ_{2}	Δ_{3}		Δ_{4}	Δ_{5}
Q_{2}	$a+b$	$c+d$	$d+e$		$h \quad i$	m	$a+j$ o	$l+b$
		Π			Δ_{3}		Δ_{4}	Δ_{5}
Q_{3}	$a+b$	$c+d$	$d+e$	g		m	$a+j$ o	$l+b$
		P		Π_{3}			Δ_{4}	Δ_{5}
Q_{4}	c	d	$e \boldsymbol{p}+\boldsymbol{k q}+\boldsymbol{n}$	$f \boldsymbol{n}$	$h \quad i$			$l+b$
		Π		Δ_{2}	Δ_{3}			Δ_{5}
Q_{5}	$a+b$	$c+d$	$d+e$	g	$i j$	m	$a+j$ o	
	P_{3}				Π_{5}		Δ_{4}	

Eliminating the linear forms in boldface we get a minimal variety.

Another scroller can be obtained by choosing Π_{3} to be the empty set.

4. More on rulings.

In this section we give a complete characterization of the set of linear subspaces of a scroll. In [7] it is proven that a d-dimensional scroll $X \in \boldsymbol{P}^{n}$ is a ruled variety: if B is the associated scroll matrix, then X is the union of all $(n-d)$-planes (rulings) defined by the annulation of a non trivial linear combination of the row vectors of B. Our Corollary 4.2 is a stronger version of this result.

Lemma 4.1. Let B be a scroll matrix with $c>1$ columns. Let M be the set of its 2-minors. Let Q be a set of independent linear forms such that $M \subseteq(Q)$. Let L_{1}, L_{2} be the row vectors of B. Then one of the following cases occurs:
(1) There is $(\lambda, \mu) \in K^{2} \backslash\{(0,0)\}$ such that $\left\langle\lambda L_{1}+\mu L_{2}\right\rangle \subseteq\langle Q\rangle$,
(2) B contains an isolated column $\widehat{\beta}$ such that $\langle\widehat{\beta}\rangle \cap\langle Q\rangle=0$, and for every other small block β of B either
(i) $\langle\beta\rangle \subseteq\langle Q\rangle$, or
(ii) β is an isolated column and $\langle\beta+\alpha \widehat{\beta}\rangle \subseteq\langle Q\rangle$ for some $\alpha \in K$.

Proof. We first prove the claim in the case where B is a simple scroll matrix, say

$$
B=\left(\begin{array}{cccc}
l_{0} & l_{1} & \ldots & l_{c-1} \\
l_{1} & l_{2} & \ldots & l_{c}
\end{array}\right) .
$$

Let \underline{T} be a set of variables such that $\underline{T} \supseteq Q$. For all $i=0, \ldots, c$ write $l_{i}=l_{i}^{\prime}+l_{i}^{\prime \prime}$, where

$$
l_{i}^{\prime}=\sum_{T \in Q} \alpha_{T} T \quad \text { and } \quad l_{i}^{\prime \prime}=\sum_{T \in \underline{T} \backslash Q} \alpha_{T} T \quad\left(\alpha_{T} \in K\right) .
$$

Let

$$
\bar{B}=\left(\begin{array}{cccc}
l_{0}^{\prime \prime} & l_{1}^{\prime \prime} & \ldots & l_{c-1}^{\prime \prime} \\
l_{1}^{\prime \prime} & l_{2}^{\prime \prime} & \ldots & l_{c}^{\prime \prime}
\end{array}\right)
$$

be the image of B in the polynomial ring $\bar{R}=K[\underline{T}] /(Q)$. All 2 -minors of \bar{B}
are zero in \bar{R}. First assume that $l_{1}^{\prime \prime}=0$. Then

$$
0=\left|\begin{array}{ll}
l_{1}^{\prime \prime} & l_{2}^{\prime \prime} \\
l_{2}^{\prime \prime} & l_{3}^{\prime \prime}
\end{array}\right|=l_{1}^{\prime \prime} l_{3}^{\prime \prime}-l_{2}^{\prime \prime 2}=l_{2}^{\prime \prime 2},
$$

so that $l_{2}^{\prime 2}=0$. Suppose that $l_{0}^{\prime \prime} \neq 0$. Let $i \in\{3, \ldots, c\}$. One has that

$$
0=\left|\begin{array}{ll}
l_{0}^{\prime \prime} & l_{i-1}^{\prime \prime} \\
l_{1}^{\prime \prime} & l_{1}^{\prime \prime}
\end{array}\right|=l_{0}^{\prime \prime} l_{i}^{\prime \prime}-l_{1}^{\prime \prime} l_{i-1}^{\prime \prime}=l_{0}^{\prime \prime} l_{i}^{\prime \prime},
$$

so that $l_{i}^{\prime \prime}=0$. It follows that $L_{2}=\left(l_{1}^{\prime}, l_{2}^{\prime}, \ldots, l_{c}^{\prime}\right)$, whence $\left\langle L_{2}\right\rangle \subseteq\langle Q\rangle$. Now suppose that $l_{0}^{\prime \prime}=0$. We prove that $l_{i}^{\prime \prime}=0$ for all $i=3, \ldots, c-1$. Fix such an index i and assume that $l_{i-1}^{\prime \prime}=0$. We have that

$$
0=\left|\begin{array}{ll}
l_{i-1}^{\prime \prime} & l_{i}^{\prime \prime} \\
l_{i}^{\prime \prime} & l_{i+1}^{\prime \prime}
\end{array}\right|=l_{i-1}^{\prime \prime} l_{i+1}^{\prime \prime}-l_{i}^{\prime \prime 2}=-l_{i}^{\prime \prime 2},
$$

so that $l_{i}^{\prime \prime}=0$. Hence $L_{1}=\left(l_{0}^{\prime}, l_{1}^{\prime}, \ldots, l_{c-1}^{\prime}\right)$, so that $\left\langle L_{1}\right\rangle \subseteq\langle Q\rangle$. Now assume that $l_{1}^{\prime \prime} \neq 0$. We prove that for all $i=0, \ldots, c$ there is $\alpha_{i} \in K \backslash\{0\}$ such that $l_{i}^{\prime \prime}=\alpha_{i} l_{1}^{\prime \prime}$. The claim is obviously fulfilled for $i=1$ with $\alpha_{1}=1$. We proceed by induction on $i=0, \ldots, c$. First note that

$$
0=\left|\begin{array}{ll}
l_{0}^{\prime \prime} & l_{1}^{\prime \prime} \\
l_{1}^{\prime \prime} & l_{2}^{\prime \prime}
\end{array}\right|=l_{0}^{\prime \prime} l_{2}^{\prime \prime}-l_{1}^{\prime \prime 2} .
$$

Since \bar{R} is a UFD, and the elements $l_{i}^{\prime \prime}$ are all linear forms, it follows that $l_{0}^{\prime \prime}=\alpha_{0} l_{1}^{\prime \prime}$ and $l_{2}^{\prime \prime}=\alpha_{2} l_{1}^{\prime \prime}$ for some $\alpha_{0}, \alpha_{2} \in K \backslash\{0\}$. Hence the claim is true for $i=0,1,2$. Now let $i \in\{3, \ldots, c\}$ and suppose that $l_{i-2}^{\prime \prime}=\alpha_{i-2} l_{1}^{\prime \prime}$, $l_{i-1}^{\prime \prime}=\alpha_{i-1} l_{1}^{\prime \prime}$ for some $\alpha_{i-2}, \alpha_{i-1} \in K \backslash\{0\}$. It holds

$$
0=\left|\begin{array}{ll}
l_{i-2}^{\prime \prime} & l_{i-1}^{\prime \prime} \\
l_{i-1}^{\prime \prime} & l_{i}^{\prime \prime}
\end{array}\right|=l_{i-2}^{\prime \prime} l_{i}^{\prime \prime}-l_{i-1}^{\prime \prime 2}=\alpha_{i-2} l_{1}^{\prime \prime} l_{i}^{\prime \prime}-\alpha_{i-1}^{2} l_{1}^{\prime 2}
$$

Hence

$$
l_{i}^{\prime \prime}=\frac{\alpha_{i-1}^{2}}{\alpha_{i-2}} l_{1}^{\prime \prime} .
$$

This completes the induction.
We have just proven that

$$
\bar{B}=\left(\begin{array}{cccc}
\alpha_{0} l_{1}^{\prime \prime} & \alpha_{1} l_{1}^{\prime \prime} & \ldots & \alpha_{c-1} l_{1}^{\prime \prime} \\
\alpha_{1} l_{1}^{\prime \prime} & \alpha_{2} l_{1}^{\prime \prime} & \ldots & \alpha_{c} l_{1}^{\prime \prime}
\end{array}\right) .
$$

Since all minors of \bar{B} are zero in \bar{R}, its rows are proportional: there is $\lambda \in$ $\in K \backslash\{0\}$ such that $\alpha_{i}=\lambda \alpha_{i+1}$ for all $i=0, \ldots, c-1$. Therefore $L_{1}-$ $-\lambda L_{2}=\left(l_{0}^{\prime}-\lambda l_{1}^{\prime}, \ldots, l_{c-1}^{\prime}-\lambda l_{c}^{\prime}\right)$, whose entries all belong to $\langle Q\rangle$. This completes the proof of the claim in the case where B is simple: in this case (1) holds.

Now suppose that B consists of more than one small block. Let

$$
\tilde{\beta}=\binom{\tilde{L}_{1}}{\tilde{L}_{2}}
$$

be a small block of B. If $\tilde{\beta}$ is not an isolated column and \widetilde{M} is the set of its minors, then

$$
\widetilde{M} \subseteq M \subseteq(Q),
$$

so that by the first part of the proof there is $(\tilde{\lambda}, \tilde{\mu}) \in K^{2} \backslash\{(0,0)\}$ for which

$$
\left\langle\tilde{\lambda} \tilde{L}_{1}+\tilde{\mu} \tilde{L}_{2}\right\rangle \subseteq\langle Q\rangle .
$$

Let $B^{\prime}=\left(\beta_{1}|\ldots| \beta_{s}\right)$ be the submatrix of B formed by all small blocks for which (1) holds. Then $B^{\prime}=B$ if B has no isolated column. We show that the claim is true for B^{\prime}. For all $i=1, \ldots, s$ let $L_{1}^{(i)}, L_{2}^{(i)}$ be the row vectors of β_{i}. For all $i=1 \ldots, s$ let $\left(\lambda^{(i)}, \mu^{(i)}\right) \in K^{2} \backslash\{(0,0)\}$ be such that

$$
\left\langle\lambda^{(i)} L_{1}^{(i)}+\mu^{(i)} L_{2}^{(i)}\right\rangle \subseteq\langle Q\rangle
$$

Suppose for a contradiction that (1) is not true for B^{\prime}. Then one can easily prove that there are two indices $i, j, 1 \leqslant j<i \leqslant s$ such that there is an entry x of $\lambda^{(i)} L_{1}^{(j)}+\mu^{(i)} L_{2}^{(j)}$ and an entry y of $\lambda^{(j)} L_{1}^{(i)}+\mu^{(j)} L_{2}^{(i)}$ such that $x, y \notin\langle Q\rangle$. This implies that

$$
\left|\begin{array}{ll}
\lambda^{(i)} & \mu^{(i)} \\
\lambda^{(j)} & \mu^{(j)}
\end{array}\right| \neq 0 .
$$

Therefore there is an invertible row transformation mapping B into the matrix

$$
\widetilde{B}=\binom{\lambda^{(i)} L_{1}+\mu^{(i)} L_{2}}{\lambda^{(j)} L_{1}+\mu^{(j)} L_{2}} .
$$

In particular the ideals of the 2 -minors of B and \widetilde{B} coincide. Consider the
following minor of \widetilde{B} :

$$
m=\left|\begin{array}{cc}
x & y^{\prime} \\
x^{\prime} & y
\end{array}\right|=x y-x^{\prime} y^{\prime}
$$

Then $m \in(M) \subseteq(Q)$. Since x^{\prime} is an entry of $\lambda^{(j)} L_{1}^{(j)}+\mu^{(j)} L_{2}^{(j)}$, it follows that $x^{\prime} \in\langle Q\rangle$. But then $x y \in(Q)$. Since (Q) is a prime ideal and $x, y \notin(Q)$, this provides the required contradiction.

Now suppose that there is a small block $\widehat{\beta}$ such that (1) is not true. Then it is an isolated column

$$
\widehat{\beta}=\binom{l_{0}}{l_{1}},
$$

and $\langle\widehat{\beta}\rangle \cap\langle Q\rangle=0$. We fix another small block of B :

$$
\beta=\left(\begin{array}{cccc}
l_{2} & l_{3} & \ldots & l_{m-1} \\
l_{3} & l_{4} & \ldots & l_{m}
\end{array}\right)
$$

By the first part of the proof, if β is not an isolated column, up to inverting the rows of B we may assume that $l_{i}+\nu l_{i+1} \in\langle Q\rangle$ for all $i=$ $=2, \ldots, m-1$, and for some $v \in K \backslash\{0\}$. For all $i=0, \ldots, m$ let l_{i}^{\prime} and $l_{i}^{\prime \prime}$ have the same meaning as above.

In \bar{R} it holds

$$
\left|\begin{array}{ll}
l_{0}^{\prime \prime} & l_{m-1}^{\prime \prime} \\
l_{1}^{\prime \prime} & l_{m}^{\prime \prime}
\end{array}\right|=l_{0}^{\prime \prime} l_{m}^{\prime \prime}-l_{1}^{\prime \prime} l_{m-1}^{\prime \prime}=0
$$

First we show that $l_{0}^{\prime \prime}$ and $l_{1}^{\prime \prime}$ cannot be proportional. Suppose that $\lambda l_{0}^{\prime \prime}+$ $+\mu l_{1}^{\prime \prime}=0$ for some $(\lambda, \mu) \in K^{2} \backslash\{(0,0)\}$. Then

$$
\lambda l_{0}+\mu l_{1}=\lambda\left(l_{0}^{\prime}+l_{0}^{\prime \prime}\right)+\mu\left(l_{1}^{\prime}+l_{1}^{\prime \prime}\right)=\lambda l_{0}^{\prime}+\mu l_{1}^{\prime} \in\langle Q\rangle,
$$

against our assumption on $\widehat{\beta}$. Since \bar{R} is a UFD, it follows that one of the following cases occurs.
(1) $l_{m}^{\prime \prime}=l_{m-1}^{\prime \prime}=0$. We show that in this case $\langle\beta\rangle \subseteq\langle Q\rangle$. We have that $l_{m}, l_{m-1} \in\langle Q\rangle$. If β is an isolated column, there is nothing left to prove. Otherwise $l_{i}+v l_{i+1} \in\langle Q\rangle$ for all $i=2, \ldots, m-1$. By finite descending induction one concludes that $l_{i} \in\langle Q\rangle$ for $i=2, \ldots, m-1$. Hence case (2)(i) holds.
(2) There is $\alpha \in K \backslash\{0\}$ such that $l_{m-1}^{\prime \prime}+\alpha l_{0}^{\prime \prime}=0$ and $l_{m}^{\prime \prime}+\alpha l_{1}^{\prime \prime}=0$. Then

$$
l_{m-1}+\alpha l_{0}=l_{m-1}^{\prime}+l_{m-1}^{\prime \prime}+\alpha\left(l_{0}^{\prime}+l_{0}^{\prime \prime}\right)=l_{m-1}^{\prime}+\alpha l_{0}^{\prime} \in\langle Q\rangle,
$$

and, similarly,

$$
l_{m}+\alpha l_{1}=l_{m}^{\prime}+\alpha l_{1}^{\prime} \in\langle Q\rangle .
$$

We prove that in this case β is an isolated column. Suppose this were not the case. Then $l_{m-1}+v l_{m} \in\langle Q\rangle$, for some $v \in K \backslash\{0\}$. But then

$$
l_{0}+v l_{1}=l_{0}^{\prime}+v l_{1}^{\prime}+l_{0}^{\prime \prime}+v l_{1}^{\prime \prime}=l_{0}^{\prime}+v l_{1}^{\prime}-\alpha^{-1}\left(l_{m-1}^{\prime \prime}+v l_{m}^{\prime \prime}\right) \in\langle Q\rangle
$$

against our assumption on $\widehat{\beta}$. In this case (2)(ii) holds.
Note that the number of isolated columns of B is equal to the number of linear components of X. Hence the previous result has the following immediate consequence:

Corollary 4.2. If X does not contain any d-plane, then for every linear subspace V contained in X there is a ruling $W \subseteq X$ containing V.

The next claim describes all $(n-d)$-planes contained in a scroll X. It follows easily from 4.1 and 4.2.

Corollary 4.3. Let B be a scroll matrix with $c>1$ columns. Let M be the set of its 2-minors. Let Q be a set of linear forms such that $M \subseteq$ $\subseteq(Q)$. If $|Q|=c$, then either
(i) $\langle Q\rangle$ is generated by the entries of a non trivial linear combination of the row vectors of B, or
(ii) $B=\left(\beta_{1} \mid \bar{B}\right)$, where β_{1} is an isolated column, and $\langle\bar{B}\rangle=\langle Q\rangle$, or
(iii) $B=\left(\beta_{1} \mid \beta_{2}\right)$, where β_{1} and β_{2} are isolated columns and $\langle Q\rangle$ is generated by the entries of a non trivial linear combination of β_{1} and β_{2}.

Proof. If B has no isolated columns, by 4.1, case (i) holds. If B consists of two isolated columns, then there is nothing to prove. Suppose $B=\left(\beta_{1} \mid \bar{B}\right)$, where β_{1} is an isolated column such that $\left\langle\beta_{1}\right\rangle \cap\langle Q\rangle=0$, and \bar{B} is not an isolated column. We show that \bar{B} contains no isolated column γ such that $\langle\gamma\rangle \cap\langle Q\rangle=0$: then, by 4.1, case (ii) is fulfilled. Suppose for a contradiction that $\gamma_{2}, \ldots, \gamma_{s}$ are the isolated columns of \bar{B} such that $\left\langle\beta_{1}+\alpha_{i} \gamma_{i}\right\rangle \subseteq\langle Q\rangle$ for suitable $\alpha_{i} \in K \backslash\{0\}$, for all $i=1, \ldots, s$. It follows
that $\langle Q\rangle$ contains $2 s$ linearly independent forms; in addition, by $4.1,\langle Q\rangle$ contains at least $c-s$ linearly independent entries from the remaining $c-s-1$ columns, but $2 s+c-s>c$, against our assumption.

REFERENCES

[1] M. Barile - M. Morales, On the Equations Defining Minimal Varieties, Comm. Alg., 28 (2000), pp. 1223-1239.
[2] E. Bertini, Introduzione alla geometria proiettiva degli iperspazi, Enrico Spoerri, Pisa, Italy, 1907.
[3] C. De Concini - D. Eisenbud - C. Procesi, Hodge algebras, Astérisque, 91 (1982).
[4] P. Del Pezzo, Sulle superficie di ordine n immerse nello spazio di $n+1$ dimensioni, Nap. rend., 24 (1885), pp. 212-216.
[5] D. Eisenbud - S. Gото, Linear Free Resolutions and Minimal Multiplicity, J. of Algebra, 88 (1984), pp. 89-133.
[6] Ph. Gimenez - M. Morales - A. Simis, The analytic spread of codimension two monomial varieties, Results-Math., 35 (3-4) (1999), pp. 250-259.
[7] J. Harris, Algebraic Geometry; Springer Verlag: New York, 1992.
[8] R. Hartshorne, Complete intersections and connectedness, Amer. J. Math., 96 (1974), pp. 602-639.
[9] S. Xambó, On projective varieties of minimal degree, Collect. Math., 32 (1981), pp. 149-163.

Manoscritto pervenuto in redazione il 5 luglio 2003.

