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Mixed Hodge Structures on Log Deformations.

TARO FUJISAWA (*) - CHIKARA NAKAYAMA (**)

ABSTRACT - We study the relationship of constructions of cohomological mixed
Hodge complexes and related l-adic constructions by various authors system-
atically.

Introduction.

J. H. M. Steenbrink showed in [13] that a semistable degeneration
over a disk in C yields a cohomological mixed Hodge complex (CMHC)
on the central fiber.

He also proved in [14], by means of Koszul complexes, that the cen-
tral fiber paired with the induced log structure in the sense of Fontaine-
Illusie already determines this CMHC and further established that log
analytic spaces over the origin locally like the central fibers of
semistable degenerations (called log deformations, see 2.15) yield
CMHCs even if they do not come from the actual families over disks.
These results were independently proved by Y. Kawamata and Y.
Namikawa [9] (which were formulated with the log structures in their
sense): their CMHC is constructed by means of real blow ups. Both
methods are different and we can ask whether both the CMHCs coincide
or not for log deformations that do not come from the semistable
degenerations.
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The purpose of this article is to study the relationships between the
above two CMHCs and their variants systematically. In particular we
see that the above two are essentially the same.

On the other hand, M. Rapoport and Th. Zink [12] made a similar con-
struction in the l-adic context and it can be also generalized to the case of
(algebraic) log deformations ([11]). Another topic in this article is to com-
pare their construction and the Q-structures of the above CMHCs.

In Section 1 we recall double complex constructions due to J. H. M.
Steenbrink and S. Zucker in an abstract way, which will appear repeat-
edly in the sequel. In Section 2 we review some necessary definitions and
a few facts in log geometry of Fontaine-Illusie. In Section 3 we prove
that a log deformation yields a CMHC. Here we use ringed real blow ups
introduced in [8], which are (families of) real blow ups in [9] endowed
with the structure rings of log holomorphic functions. In Proposition
3.19, we see that our CMHC coincides with Kawamata-Namikawa’s. In
Section 4, we consider the case of semistable degeneration as in [13],
[15]. In Section 5 we prove that our CMHC coincides also with the one in
[14] (Theorem 5.8). In Section 6 we introduce some variants, which inter-
vene between the Hodge construction and the l-adic construction. Using
this, we compare in Section 7 the Q-structures of the CMHCs with the
construction of Rapoport-Zink.

The authors are very thankful to Y. Nakkajima who suggested this
work. They are also thankful to the referees for their careful reading of
the manuscript and valuable suggestions. Both authors are partly sup-
ported by the Grants-in-Aid for Encouragement of Young Scientists, the
Ministry of Education, Science, Sports and Culture, Japan.

1. Steenbrink-Zucker construction.

In this section we present a method of constructing complexes which
will turn out to be cohomological mixed Hodge complexes. The method is
an analogue of the one used in the article [15] by Steenbrink and Zucker.
First of all we review the construction in the article [15, § 5] for the sake
of convenience.

DEFINITION 1.1. Let X be a complex manifold, and D the unit disk
in C . A morphism of complex manifolds f : XKD is said to be a
semistable degeneration if the fiber Y»4 f 21 (0) is a reduced simple nor-
mal crossing divisor and if f is smooth over D* »4D0]0(.
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(1.2) Assume that a semistable degeneration f : XKD is given. The
upper half plane in C is denoted by H . The morphism u O t4

4exp (2pk21u) makes H into a universal covering of D*. Let X *4

4 f 21 (D*) 4X0Y , XQ4X3D H4X *3D* H , p : XQKX * be the canoni-
cal morphism, j : X *KX the open immersion, i : YKX the closed im-
mersion, and k4 jp : XQKX . These objects fits in the following
diagram:

XQ

I
H

K
p

K

X *

I
D*

K
j

K

X

I
D

J
i

J

Y

I
]0(

in which all the squares are Cartesian.
For any topological space Z , C Q (Z) denotes the complex of sheaves of

germs of rational-valued singular cochains on Z . In the situation above,
the complex K Q (X *) and K Q (XQ ) is defined by

K Q (X *) 4 i 21 j* C Q (X *), K Q (XQ ) 4 i 21 k* C Q (XQ ).

Then there exists an isomorphism in the derived category i 21 Rk* QXQ
K

KK Q (XQ ). On the other hand the complex K Q (XQ ) carries a monodromy
automorphism

T : K Q (XQ ) KK Q (XQ ).

We remark that the kernel of T2 id coincides with the complex
K Q (X *). For every nonnegative integer m the kernel of the morphism
(T2 id )m11 : K Q (XQ ) KK Q (XQ ) is denoted by Bm . A subcomplex B of
K Q (XQ ) is defined by B4 0

mF0
Bm . Then B also carries the monodromy

automorphism T . By definition of the subcomplex B the logarithm of the
automorphism T is well-defined on B .

On a topological space Z an abelian sheaf Z(r) is defined by Z(r) 4

4 (2pk21)r ZZ %CZ for every integer r . For a complex of abelian sheaves
K on Z and for an integer r , we define a complex K(r) by K(r) 4K7
7Z(r). Then the morphism

d42
1

2pk21
log T : BKB(21)(1.2.1)

is obtained. From the data (B , d) above Steenbrink and Zucker con-
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structed a complex r(B) by

r(B)p 4B p 5B p21 (21)

with the differential

d : r(B)p 4B p 5B p21 (21) KB p11 5B p (21) 4r(B)p11

defined by

d(x , y) 4 (dx , 2dy1d(x) ).

Then the obvious morphism K Q (X *) Kr(B) is shown to be a quasi-iso-
morphism. Moreover the morphism of complexes

u : r(B) Kr(B)(1)[1](1.2.2)

is defined by u(x , y) 4 (0 , x). Here we remark that for a given complex
(K , dK ) the differential dK[1] of the complex K[1] is given by dK[1] 42dK

as in [4].
For a complex K the canonical filtration t is defined by

t r K p 4
.
/
´

K p

( Ker d)OK p

0

if pEr

if p4r

if pDr

(1.2.3)

for every p , r .
Finally a double complex C Q Q is defined by

C p , q 4r(B)p1q11 (q11) /t q r(B)p1q11 (q11)

for every p , q with the first differential

d 8 : C p , q KC p11, q

induced by the differential d of the complex r(B) and the second
differential

d 9 : C p , q KC p , q11

induced by the morphism of complexes u in (1.2.2). On the single complex
sC Q Q associated to the double complex C Q Q a finite increasing filtration L
is defined by

Lm (sC Q Q )n 4 5
p1q4n

t m12q11 r(B)p1q11 (q11) /t q r(B)p1q11 (q11).

In the article [15] Steenbrink and Zucker proved that the complex
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sC Q Q is isomorphic to the complex i 21 Rk* QXQ
in the derived category

and that the filtered complex (sC Q Q , L) underlies a CMHC on Y .

(1.3) Now we come to the point to present an abstract analogue of
the Steenbrink-Zucker construction above.

DEFINITION 1.4. Let Y be a topological space. For every non-nega-
tive integer n , we are given a complex of abelian sheaves Kn equipped
with an increasing filtration W and a morphism of complexes u n : Kn K

KKn11 [1] satisfying the conditions

(1.4.1) Kn
p 40 for every pE0

(1.4.2) W21 Kn 40
(1.4.3) Wm Kn

p 4Kn
p for every p , m with mDp

(1.4.4) u n (Wm Kn
p ) %Wm11 Kn11

p11 for every p , m
(1.4.5) u n11 u n 40.

Then we define a double complex D4D(Kn , W , u n ) by

(1.4.6) D p , q 4Kq
p1q11 /Wq

(1.4.7) d 8 : D p , q KD p11, q is induced by the differential of Kq

(1.4.8) d 9 : D p , q KD p , q11 is induced by the morphism u q : Kq K

KKq11 [1]

for every non-negative integers p , q . We denote by sD4sD(Kn , W , u n )
the single complex associated to the double complex above. We define an
increasing filtration L on the complex sD by

Lm sD n 4 5
p1q4n

Wm12q11 D p , q ,

where Wm D p , q is the image of Wm Kq
p1q11 by the canonical projection

Kq
p1q11 KD p , q . We call the single complex sD4sD(Kn , W , u n ) with

the filtration L the Steenbrink complex associated to the data
](Kn , W), u n (.

REMARK 1.5. We can easily see that

Grm
L sD4 5

qF0
qF2m

Grm12q11
W Kq [1]

for every m .
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REMARK 1.6. We define a decreasing filtration F on the Steenbrink
complex by

F p sD n 4 5
p 81q4n

p 8Fp

D p 8 , q

for every p and n .

REMARK 1.7. We have the following functoriality for the construc-
tion above. Let ](Kn , W), u n ( and ](K 8n , W), u n8 ( be data satisfying the
conditions in Definition 1.4 and fn : Kn KK 8n a morphism of filtered com-
plexes with the equality u 8n fn 4 fn11 [1]u n :

Kn

uI
Kn11 [1]

K
fn

K
fn11 [1]

Kn8

Iu 8n

K 8n11 [1] .

Then we have a morphism of double complexes

D( fn ) : D(Kn , W , u n ) KD(Kn8 , W , u n8 )

and its associated morphism of single complexes

sD( fn ) : sD(Kn , W , u n ) KsD(Kn8 , W , u n8 )

preserving the increasing filtration L on both sides.

PROPOSITION 1.8. In the situation above the morphism of complex-
es sD( fn ) is a filtered quasi-isomorphism with respect to the filtration L
if the morphism fn is a filtered quasi-isomorphism with respect to the
filtration W for every non-negative integer n .

PROOF. Easy by Remark 1.5. r

Now we treat the case that we are given a complex K and a morphism
d : KKK(21). This case is an abstract analogue of the complex B with
the monodromy logarithm d (1.2.1). We can construct a double complex
(and the single complex associated to it) from the data (K , d) by the
same way as in (1.2).

DEFINITION 1.9. Let K be a complex of abelian sheaves on a
topological space Y and d : KKK(21) a morphism of complexes.
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We assume the condition K p 40 for pE0. Then we define a complex
of abelian sheaves r(K , d) by

(1.9.1) r(K , d)p 4K p 5K p21 (21) for every p
(1.9.2) d : r(K , d)p Kr(K , d)p11 is defined by d(x , y) 4 (dx ,

2dy1d(x) ), where x�K p and y�K p21 (21).

Let (K , d) be as above. We set K0 4 Ker (d : KKK(21) ). We define
a morphism of sheaves K0

p Kr(K , d)p by

K0
p �x O (x , 0 ) �r(K , d)p 4K p 5K p21 (21).

These morphisms for all p form a morphism of complexes K0 K

Kr(K , d).

LEMMA 1.10. In the situation above the morphism K0 Kr(K , d) is
a quasi-isomorphism if the morphism d : KKK(21) is surjective.

PROOF. Easy by definition. r

DEFINITION 1.11. Let (K , d) be as above. We define a morphism of
complexes

u : r(K , d) Kr(K , d)(1)[1]

by u(x , y) 4 (0 , x) for x�K p , y�K p21 (21). We consider a complex of
abelian sheaves Kn 4r(K , d)(n11) with the canonical filtration W4t
for every non-negative integer n . Then the morphism u above defines a
morphism

u n 4u(n11) : Kn 4r(K , d)(n11) Kr(K , d)(n12)[1] 4Kn11 [1]

for every n . We can easily see that the data ](Kn , W), u n ( satisfies the
conditions in Definition 1.4. Thus we obtain a double complex
D(Kn , W , u) and the associated single complex sD(Kn , W , u) with the
filtration L . The complex sD(Kn , W , u) with the filtration L is called the
Steenbrink-Zucker complex for the data (K , d) and denoted by
(SZ(K , d), L).

REMARK 1.12. We have

Grm
L SZ(K , d) 4 5

qF0
qF2m

Grm12q11
t r(K , d)(q11)[1]
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by Remark 1.5. Therefore we have a quasi-isomorphism

5
qF0

qF2m

Hm12q11 (r(K , d) )(q11)[2m22q] K Grm
L SZ(K , d)

for every m .

REMARK 1.13. In the situation above we define a morphism of
sheaves m : K p Kr(K , d)(1)p11 4K p11 (1)5K p by

m(x) 4 (0 , (21)p x)

for x�K p . Then the morphism m above induces a morphism

K p KD(Kn , W , u)p , 0 4r(K , d)(1)p11 /W0

for every p . We can easily see that these morphisms induce a morphism
of complexes

KKsD(Kn , W , u) 4SZ(K , d)

which is denoted by the same letter m for simplicity.

LEMMA 1.14. The morphism m : KKSZ(K , d) above is a quasi-iso-
morphism if the morphism d : KKK(21) induces a zero map from
Hp (K) to Hp (K(21) ) for every integer p .

PROOF. We can find the proof in [15, (5.13) Lemma]. r

REMARK 1.15. The construction above has the following functoriali-
ty. Let (K , d) and (K 8 , d 8 ) be data as above and W : KKK 8 a morphism
of complexes such that the following diagram commutes:

K
WI
K 8

K
d

K
d 8

K(21)

IW(21)

K 8 (21) .

Then morphisms of sheaves

r(W) : r(K , d)p Kr(K 8 , d 8 )p

defined by r(W)(x , y) 4 (W(x), W(y) ) form a morphism of complexes

r(W) : r(K , d) Kr(K 8 , d 8 )
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which has the commutativity r(W)(1)[1]u4ur(W):

r(K , d)
r(W)I
r(K 8 , d 8 )

K
u

K
u

r(K , d)(1)[1]

Ir(W)(1)[1]

r(K 8 , d 8 )(1)[1].

Then we easily obtain a morphism of complexes

SZ1 (W) : SZ(K , d) KSZ(K 8 , d 8 )

which preserves the filtration L on both sides.

COROLLARY 1.16. Let (K , d), (K 8 , d 8 ) and W be as above. Assume
that the morphism W induces a quasi-isomorphism between the kernels
of d and d8 and that the morphisms d : KKK(21) and d8 : K 8KK 8(21)
are surjective. Then the morphism r(W) : r(K , d) Kr(K 8 , d 8 ) is a
quasi-isomorphism. In particular the morphism SZ1 (W) : SZ(K , d) K

KSZ(K 8 , d 8 ) is a filtered quasi-isomorphism with respect to the filtra-
tion L on both sides.

PROOF. Easy by Lemma 1.10. r

REMARK 1.17. The construction of the Steenbrink-Zucker complex
has another functoriality which plays an essential role in Section 6.

Let K be a complex of abelian sheaves on a topological space Y with
the assumption K p 40 for every pE0, d , d 8 : KKK(21) morphisms of
complexes and W : KKK a morphism of complexes with the condi-
tions

(1.17.1) d 8 W4d
(1.17.2) W(21) d 84d 8 W.

Notice that the conditions (1.17.1) and (1.17.2) imply the analogue of
(1.17.2) for the morphism d . We define a morphism of sheaves

r(W)p
n : r(K , d)(n11)p 4K p (n11)5K p21 (n) K

Kr(K , d 8 )(n11)p 4K p (n11)5K p21 (n)
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by

r(W)p
n (x , y) 4 (W(n11) i R i W(n11)

˘×=
(n11) times

(x), W(n) i R i W(n)
˘×=n times

(y) )

for x�K p (n11) and y�K p21 (n). Then we can see that the morphisms
for all p form a morphism of complexes by the conditions (1.17.1) and
(1.17.2) for the morphism W . Moreover we have a commutative dia-
gram

r(K , d)(n11)
uI

r(K , d)(n12)[1]

K
r(W)n

K
r(W)n11

r(K , d 8 )(n11)

Iu

r(K , d 8 )(n12)[1]

for every n . Thus we obtain a morphism of complexes

SZ2 (W) : SZ(K , d) KSZ(K , d 8 )

which preserves the filtration L on both sides by Remark 1.7.

COROLLARY 1.18. In the situation above the morphism SZ2 (W) is a
quasi-isomorphism if the morphism W : KKK is a quasi-isomorphism
and if the morphism d : KKK(21) induces a zero map from Hp (K) to
Hp (K(21) ) for every integer p .

PROOF. We can easily obtain the conclusion by Lemma 1.14 because
the assumptions imply that the morphism d 8 : KKK(21) induces zero
maps on all cohomologies. r

2. A review on log geometry.

In this section we review briefly some definitions and facts on log
analytic spaces which we shall need later. We do not give the details. See
[14] and [8] for them. See [7] and [5] for more on log geometry.

DEFINITION 2.1. ([14] Definition (3.1) and [8] Definition (1.1.1)) Let
X be an analytic space. A pre-log structure on X is a pair of a sheaf of
monoids (4 a sheaf of commutative semigroups with unit elements) M
on X and a homomorphism a : MK OX with respect to the multiplication
on OX . A pre-log structure (M , a), or simply denoted by M , is said to be
a log structure if the induced homomorphism a21 (OX*) K OX* is an iso-
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morphism. A homomorphism of (pre-)log structures (M1 , a 1 ) K

K (M2 , a 2 ) is a homomorphism h : M1 KM2 of sheaves of monoids satisfy-
ing a 2 i h4a 1 .

The inclusion functor from the category of log structures on X to that
of pre-log structures on X has the left adjoint M4 (M , a) O M a , which
is constructed explicitly as the inductive limit (or push-out) of the dia-
gram MJa21 (O*X ) K O*X in the category of sheaves of monoids on X .

DEFINITION 2.2. ([14] Definition (3.4)) Let f : XKY be a morphism
of analytic spaces, and let M be a log structure on Y . Then we call the log
structure ( f 21 MK f 21 OY K OX )a on X the pull-back log structure of M
and denote it by f * M .

DEFINITION 2.3. ([14] Definition (4.1) and [8] Definition (1.1.1)) A log
analytic space is a pair of an analytic space and a log structure on it. For
a log analytic space X , we denote by X

i

the underlying analytic space and
by MX the log structure: X4 (X

i

, MX ). A morphism of log analytic spaces
f : XKY is a pair of a morphism of analytic spaces f

i

: X
i

K Y
i

and a homo-
morphism of log structures f

i

* MY KMX (2.1).

(2.4) Let N be the monoid of nonnegative integers with respect to
addition. For a log analytic space X , we consider the following condition:
Locally on X

i

, there is a homomorphism from the constant sheaf N r
X for

some rF0 to MX such that the induced homomorphism of log structures
(N r

X )a KMX is an isomorphism.
In the rest of this article, we consider only the log analytic spaces

satisfying the above condition except Remark 2.5 and Section 7.

REMARK 2.5. In the above condition, if we allow any fs monoid in-
stead of Nr , we get the definition of fs log analytic spaces ([8] Definition
(1.1.2)). Therefore a log analytic space satisfying the above condition is
an fs log analytic space. Most parts of the rest in this section (including
2.7, 2.11, 2.18 etc.) hold also for fs log analytic spaces.

(2.6) Let X be a log analytic space satisfying the condition in (2.4),
and let f : YKX be a morphism of analytic spaces. Then (Y

i

, f
i

* MX ) also
satisfies the condition in (2.4). This is deduced from the fact that when
Nr

X KMX induces an isomorphism of log structures, its pull-back Nr
Y K

K f
i

* MX also induces an isomorphism of log structures.
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(2.7) To a log analytic space X satisfying the condition in (2.4), a
ringed space X log 4 (X log , Olog

X ) and the natural morphism t : X log K X
i

of
ringed spaces are associated, which we explain in this subsection.

As a set

X log4{(x, h)Nx�X, h�Hom (MX, x, S 1), h( f )4
f (x)

Nf (x)N
for any f�O*X, x} ,

where S 1 4 ]x�C ; NxN41(. The morphism t sends (x , h) to x . When
there is a homomorphism b : NX

r KMX as in 2.4 globally on X
i

, we endow
X log with the induced topology from the embedding X log KX3

3 (S 1 )r ; (x , h) O (x , h(e1 ), R , h(er ) ), where (ei )i is the canonical base of
Nr . This topology is independent on the choices of r and b so that the
topology of X log is well-defined for the general case.

The sheaf of rings O log
X is a t21 OX-algebra generated by «logarithms»

of local sections of t21 MX . This is defined by

OX
log 4 (t21 (OX )7Z SymZ (LX )) /M ,

where LX is a sheaf of abelian groups which sits in the commutative
diagram

0 K

0 K

2pk21ZX log

V

2pk21ZX log

K

K

t21 OX

Ih

LX

K
t21 ( exp )

K
exp

t21 O*X

I
t21 M gp

X

K 0

K 0

(2.7.1)

with exact rows and M is the ideal generated locally by local sections of
the form

f71217h( f ) for a local section f of t21 (OX ).

Here 1 means the 1 �Z4Sym0 (LX ), whereas h( f ) belongs to LX 4

4Sym1 (LX ). See [8] or [16] for the precise definitions of LX and h .
We describe some properties of (X log , Olog

X ). For an open log subspace
(U , MXNU ) of X , U log is an open subspace of X log and Olog

U 4 Olog
X NU log . For

each x�X , the fiber t21 (x) is homeomorphic to the product of r 8 copies
of S 1 and the stalk of Olog

X at any point y over x is isomorphic as an OX , x-
algebra to the polynomial ring of r 8 indeterminates over OX , x , where r 8

is the rank of the free monoid MX , x / O*X , x . This r 8 also equals to the num-
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ber of the indexes i such that the image of ei in MX , x by b does not belong
to OX , x* , where (ei )i and b : Nr

X KMX are as above. See [8] Lemma (1.3)(2)
and Lemma (3.3).

We note that (2)log is a functor from the category of log analytic
spaces satisfying the condition in (2.4) to that of ringed spaces and that t
is a natural transformation from (2)log to (2

i
).

REMARK 2.8. It is the ringed space defined above that we called in
the introduction a ringed real blow up.

We will use the following two propositions later in Section 3.

PROPOSITION 2.9. Let f : XKY be a proper morphism of log ana-
lytic spaces satisfying the condition in (2.4). Then f log is also proper.

PROOF. Since t in (2.7) is proper, we see that both X log KY and
Y log KY are proper. Then f log is proper. r

PROPOSITION 2.10. Let f : XKY be a morphism of log analytic
spaces satisfying the condition in (2.4). Assume that the homomor-
phism of log structures f

i

* MY KMX is an isomorphism. Then the natu-
ral homomorphism t21 (OX )7( ft)21 (OY ) f log21 (OY

log ) K OX
log is an isomor-

phism.

PROOF. This is checked at stalks by using the descriptions of the
stalks of O X

log and O Y
log [8] Lemma (3.3). Cf. 2.7 above. r

The following proposition and its variant 2.17 were proved by T.
Matsubara.

PROPOSITION 2.11. Let X be a log analytic space satisfying the con-
dition in (2.4). Let F be a locally free OX-module of finite rank and
t : X log KX the natural morphism in 2.7. Then the natural homomor-
phism

FKRt * t* F

is a quasi-isomorphism.

PROOF. This is a special case of [10] Proposition 4.6. For reader’s
convenience, we recall the proof briefly: We may assume that F4 OX .
We have to show that for any x�X , (Rq t * O log

X )x 40 for qD0 (resp. 4

4 OX , x for q40). Since t is proper and separated, we can work fiberwise.
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As described in 2.7, t21 (x) is homeomorphic to (S 1 )r 8 and all the stalks of
O log

X Nt21 (x) are isomorphic to OX , x [T1 , R , Tr 8 ], where r 8 is as in 2.7 and
Ti’s are indeterminates. Further O log

X Nt21 (x) is in fact a locally constant
sheaf and the action of p 1 (t21 (x) ) can be described as gi (Tj ) 4Tj 1

1d ij 2pk21 (1 G i , jGr 8 ) in taking a suitable (Tj )j and ( gi )i such that
the set ] g1 , R , gr 8 ( generates p 1 (t21 (x) ). It is enough to show that
Hq (t21 (x), O log

X Nt21 (x) ) 40 for qD0 (resp. 4 OX , x for q40). The case
where r 841 is deduced from the exactness of 0 K OX , x K

K OX , x [T1 ] K
g12 id

OX , x [T1 ] K0. Here we use the fact that the cohomologies
of S 1 with a locally constant coefficient sheaf M are calculated by the
complex Mx K

g2 id
Mx , where x�S 1 and g is the monodromy. The general

case is reduced to this case by the Künneth formula. r

NOTATION 2.12. ([14] (2.6) and [8] (1.2.3)) Let X be a manifold and D a
reduced divisor with normal crossings on X . Let i : DKX be the closed
immersion and let j : U»4X0D %KX be the open immersion from the
complement. In the next definition we denote by MD , X the pull-back log
structure i *(OX O j* O*U %K

a
OX ) on D .

DEFINITION 2.13. Let f : XKD be a semistable degeneration and
Y4 f 21 (0) (Definition 1.1). Then f induces a morphism of log analytic
spaces (Y , MY , X ) K (]0(, M]0(, D ), which we call the log central fiber of
f . We denote (]0(, M]0(, D ) simply by 0 and call it the standard log
point.

EXAMPLE 2.14. Let 0 be the standard log point. Then 0log 4S 1 and
O 0

log is a locally constant sheaf whose local value is C [log t], the polynomi-
al ring over C , where t is a global section of the log structure M0 that
generates G(0 , M0 ) over G(0 , O0*) 4C*.

DEFINITION 2.15. ([14] Definition (3.8)) A morphism YK0 from a
log analytic space to the standard log point is said to be a log deforma-

tion if locally on Y
i

, Y is isomorphic over 0 to the log central fiber of a
semistable degeneration (Definition 2.13) and if each irreducible compo-

nent of Y
i

is smooth over C .
The log central fiber of a semistable degeneration is clearly a log

deformation.

REMARK 2.16. In 2.12, (X , OX O j* O*U ) satisfies the condition in (2.4)
(cf. [7] Example (2.5)(1)); and by 2.6, (D , MD , X ) also satisfies the condi-
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tion in (2.4). Hence any log deformation (and in particular the standard
log point also) satisfies the condition in (2.4).

PROPOSITION 2.17. Let f : YK0 be a log deformation. Let Y1 be the

log analytic space (Y
i

, f
i

* M0 ), which satisfies the condition in (2.4) by
(2.6). Let g be the natural morphism YKY1 induced by f . Let F be a lo-

cally free OY-module of finite rank and let t : Y log K Y
i

and t 1 : Y log
1 K Y

i

be the natural morphisms in (2.7) for Y and Y1 respectively. Then the
natural homomorphism

t 1* FKRg log
* t* F

is a quasi-isomorphism.

PROOF. This is a special case of [10] Lemma 4.5. The properness of f
i

is assumed there for another purpose; but as for [10] Lemma 4.5 only,
this assumption is not necessary. The proof is similar to the previous
Proposition 2.11. We calculate the cohomologies of the fibers of g log ,
which are again the products of some copies of S 1 . r

(2.18) Here we explain log de Rham complexes on a semistable de-
generation and on a log deformation.

First, let f : XKD be a semistable degeneration and Y4 f 21 (0). We

denote by v 1
X the sheaf of differential forms with log poles V 1

X (log Y
i

) in
the usual sense ([2]). We have the log de Rham complex v Q

X .
Next let YK0 be a log deformation. We denote by v 1

Y the sheaf of
differential forms with log poles on Y ([8] (3.5)). (In the case that Y is the
log central fiber of a semistable degeneration XKD , v 1

Y is isomorphic to

the pull-back of v 1
X to Y

i

as a coherent sheaf.) We have the log de Rham
complex v Q

Y .
Further we consider the O log

Y -module v 1, log
Y »4t* v 1

Y . This module is
endowed with the derivation d : O log

Y Kv 1, log
Y , which is compatible with

the usual derivation and d log : MY Kv 1
Y . For the precise definition, see

[8] (3.5). Thus we have the complex v Q , log
Y

. We also have the log Poincaré
lemma as follows.

PROPOSITION 2.19. Let f : YK0 be a log deformation. Then the nat-
ural homomorphism CY log Kv Q , log

Y
is a quasi-isomorphism.
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PROOF. This is a part of [8] Theorem (3.8). We see that the condition
in [8] (0.4) is satisfied for a log deformation by taking Pl4Nr for some
rF1 and S l4 a(1 , R , 1 )b in the notation there. r

3. CMHC on a log deformation.

In this section we construct a CMHC on a log deformation. This is an
analogue of the Steenbrink’s result in [13] in the context of the log geom-
etry. As mentioned in the Introduction, Kawamata-Namikawa [9] and
Steenbrink [14] obtained such result independently. Here we present
another way to construct CMHC on a log deformation, which is a «loga-
rithmic» analogue of the argument in [15], and prove the coincidence of
our CMHC and Kawamata-Namikawa’s.

(3.1) Let f : YK0 be a log deformation. Then we have a commuta-
tive diagram

Y log

f logI
S 1 40log

K
t

K
t

Y

If

0

by the functoriality of (2)log . As in the article [16] by S. Usui, we define a
topological space YQ and the morphisms p : YQKY log , fQ : YQKR by
the cartesian square

YQ

fQI
R

K
p

K

Y log

If log

S 1 40log

(3.1.1)

where the morphism of the bottom line RKS 1 40log is the universal cov-
ering given by s O exp (2pk21s), where s denotes the coordinate func-
tion of R . The covering transformation of RKS 1 given by s O s11
gives rise to an automorphism of YQ over Y log . This automorphism in-
duces the monodromy automorphism

T : p * p21 FKp * p21 F

for every abelian sheaf F on Y log . The direct image

t * p * p21 FKt * p * p21 F
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of the monodromy automorphism above is called the monodromy auto-
morphism too and denoted by the same letter T by abuse of the
language.

LEMMA 3.2. In the situation above we have an exact sequence

0 KFKp * p21 FK
T2 id

p * p21 FK0(3.2.1)

on Y log . In particular we have an exact sequence

0 Kt * FKt * p * p21 FK
T2 id

t * p * p21 FK0

if the abelian sheaf F is t *-acyclic.

PROOF. Take an open subset U of Y log such that the morphism p co-
incides with the projection U3ZKU . Then we have

G(U , p * p21 F) 4Map (Z , G(U , F) ),

where Map (Z , G(U , F) ) denotes the set of all mappings from Z to
G(U , F) as sets. Then the canonical morphism FKp * p21 F induces the
diagonal morphism G(U , F) KMap (Z , G(U , F) ) sending a of G(U , F) to
the constant map with values a . Moreover the monodromy automor-
phism T acts on this set by T(a)(i) 4a(i11) for every element a of
Map (Z , G(U , F) ). Thus we can see that the diagonal morphism above
coincides with the kernel of the morphism T2 id . Now we prove the sur-
jectivity of the morphism T2 id . Take an element b of Map (Z , G(U , F) ).
Define an element a of Map (Z , G(U , F) ) by

a(i) 4

.
`
/
`
´

!
k40

i21

b(k)

0

2 !
k4 i

21

b(k)

for iD0

for i40

for iE0 .

Then we can easily check the equality (T2 id )(a) 4b . Thus the mor-
phism T2 id on G(U , p * p21 F) 4Map (Z , G(U , F) ) is surjective. Thus
we obtain the exact sequence (3.2.1) r

LEMMA 3.3. In the situation above, let F be a locally free OY-mod-
ule of finite rank. Then there is a quasi-isomorphism

F7C C[u] KR(tp)* p21 t* F
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that sends the indeterminate u to (2pk21)21 log t , where t is a genera-
tor of the log structure of the standard log point 0 (cf. Example
2.14).

PROOF. Let the notation be as in Proposition 2.17. Define gQ4g log 3

3S1 R : YQKY1, Q4 Y
i

3R and denote by p 1 the projection Y1, Q4 Y
i

3

3RKY log
1 4 Y

i

3S 1 . These spaces make a commutative diagram

YQ

pI
Y log

tI
Y

K
gQ

K
g log

K
g

Y1, Q

Ip 1

Y1
log

It 1

Y1

where the upper square is cartesian. Then R(tp)* p21 t* F4

4 R(t 1 p 1 )*RgQ* p21 t* F , which equals to R(t 1 p 1 )* p 1
21 Rg log

* t* F by
proper base change theorem with respect to the proper map g log (g log is
proper by Proposition 2.9).

Further by Proposition 2.17, p 1
21 Rg log

* t* F is naturally quasi-isomor-
phic to

p 1
21 t*1 F4p 1

21 (t 1
21 F7OY

O log
Y1

) 4
2.10

p 1
21 (t 1

21 F7C ( f log
1 )21 O log

0 ) 4

4 (t 1 p 1 )21 F7C (p 1
21 ( f log

1 )21 O log
0 ) ,

where f1 : Y1 K0 is the induced map from f . By Example 2.14, we know
that O log

0 is locally constant and that p 1
21 ( f log

1 )21 O log
0 is constant valued

by C [u], u4 (2pk21)21 log t . Thus we have R(tp)* p21 t* F4

4 R(t 1 p 1 )*(t 1 p 1 )21 (F7C C [u] ), which is seen to be quasi-isomorphic to

F7C C [u] by applying [6] Proposition 2.7.8, taking Yn there to be Y
i

1 3

3 [2n , n] for each n . r

(3.4) Assume that we are given an injective resolution QY log KI . Then
we have a quasi-isomorphism

QYQ
4p21 QY log Kp21 I .

The Q-sheaf p21 I p is an injective Q-sheaf for every p because I p is injec-
tive and because the injectivity of the sheaf is a local property (see [6]
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Proposition 2.4.10). Therefore we obtain an isomorphism

R(tp)* QYQ
Kt * p * p21 I

in the derived category. Moreover we have an exact sequence

0 Kt * IKt * p * p21 IK
T2 id

t * p * p21 IK0

by Lemma 3.2 because of the t*-acyclicity of the sheaf I p for every p .
We define subcomplexes B(I)m and B(I) of t * p * p21 I by

B(I)m 4 Ker (T2 id )m11 %t * p * p21 I(3.4.1)

for non-negative integer m and by

B(I) 4 0
mF0

B(I)m .(3.4.2)

The subcomplex B(I)0 is identified with the complex t * I via the canoni-
cal morphism t * IKt * p * p21 I .

The morphism log T is well-defined on the subcomplex B(I) by defini-
tion. We define an automorphism U : B(I) KB(I) by

U4 !
k40

Q (21)k

k11
(T2 id )k

which satisfies the following conditions:

(3.4.3) U Q (T2 id ) 4 (T2 id) QU
(3.4.4) U Q log T4 log T QU
(3.4.5) UNB(I)0

4 id
(3.4.6) (T2 id) QU4 log T .

Then we see that the morphism log T : B(I) KB(I) is surjective be-
cause the morphism T2 id: B(I) KB(I) is surjective by Lemma 3.2.
Moreover we have Ker (log T : B(I) KB(I) ) 4 Ker (T2 id) 4B(I)0 C

Ct * I .

LEMMA 3.5. For an injective resolution QY log KI the inclusion
B(I) Kt * p * p21 I is a quasi-isomorphism.

PROOF. It is sufficient to prove that the morphism

B(I)C 4B(I)7CKt * p * p21 IC 4t * p * p21 I7C
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obtained by tensoring C is a quasi-isomorphism. By Proposition 2.19 in
the last section the canonical morphism CY log Kv Q , log

Y
is a quasi-isomor-

phism. Then there exists a quasi-isomorphism v Q , log
Y

KIC which sits in
the commutative diagram

CY log

V

CY log

K

K

v Q , log
Y

I
IC

(3.5.1)

because CY log KIC is an injective resolution of CY log . Then we have a
quasi-isomorphism

v Y
Q [u] C R(tp)* p21 v Q , log

Y
K R(tp)* p21 IC Ct * p * p21 IC

by using Lemma 3.3. We remark that the monodromy automorphism T
on the right hand side corresponds to the automorphism on v Y

Q [u] in-
duced by the homomorphism of algebras C[u] KC[u] sending u to u11
via the quasi-isomorphism above. Thus we see that the quasi-isomor-
phism above factors through the subcomplex B(I)C 4B(I)7C . There-
fore it is sufficient to prove that the morphism v Y

Q [u] KB(I)C is a
quasi-isomorphism.

An increasing filtration fil on v Q
Y [u] is defined by the degree of the

indeterminate u . On the other hand the subcomplex B(I)m of B(I) de-
fines a filtration on B(I). It is easy to see that the morphism above sends
film v Q

Y [u] to B(I)m , C . Therefore it suffices to prove that the induced
morphism

Grm
fil v Q

Y [u] KB(I)m , C /B(I)m21, C

is a quasi-isomorphism. Trivially we have an isomorphism v Q
Y K

K Grm
fil v Q

Y [u] by sending x to xu m . On the other hand the morphism
(T2 id)m induces an isomorphism B(I)m , C /B(I)m21, C KB(I)0, C . More-
over these isomorphisms make the following diagram commutative

v Q
Y

I
B(I)0, C

K

J

Grm
fil v Q

Y [u]

I
B(I)m , C /B(I)m21, C ,
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where the left vertical arrow stands for the composite of the quasi-iso-
morphism

v Q
Y K Rt * v Q , log

Y

in Proposition 2.11 and the quasi-isomorphism

Rt * v Q , log
Y

K Rt * IC CB(I)0, C

induced by the quasi-isomorphism v Q , log
Y

KIC before. Thus we complete
the proof. r

(3.6) Now we fix an injective resolution QY log KI and a quasi-iso-
morphism v Q , log

Y
KIC as above which we call a reference morphism. Then

the reference morphism induces a quasi-isomorphism W : v Y
Q [u] KB(I)C

as in the proof of the last lemma.
We denote the morphism of complexes

2
1

2pk21
log T : B(I) KB(I)(21)

by d . Then we obtain the Steenbrink-Zucker complex (SZ(B(I), d), L)
which is a complex of Q-sheaves on Y .

On the other hand a morphism of complexes

d42
1

2pk21

d

du
: v Y

Q [u] Kv Y
Q [u]

gives us the Steenbrink-Zucker complex (SZ(v Y
Q [u], d), L).

We can easily see that the morphism W fits in the commutative
diagram

v Y
Q [u]
dI

wY
Q [u]

K
W

K
W

B(I)C

Id

B(I)C .

Therefore we have a morphism of the Steenbrink-Zucker complexes

SZ1 (W) : SZ(v Y
Q [u], d) KSZ(B(I)C , d) 4SZ(B(I), d)C(3.6.1)

preserving the filtration L on both sides by the functoriality in Remark 1.15.
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LEMMA 3.7. The morphism SZ1 (W) is a filtered quasi-isomor-
phism with respect to the filtration L on both sides.

PROOF. We have

Ker (d : v Y
Q [u] Kv Y

Q [u] ) 4v Y
Q

and

Ker (d : B(I)C KB(I)C ) 4B(I)0, C Ct * IC .

The morphism W induces a quasi-isomorphism from v Y
Q to B(I)0, C as in

the proof of Lemma 3.5. Moreover the endomorphisms d on v Q
Y [u] and

B(I)C are surjective. Thus we obtain the conclusion by Corollary
1.16. r

(3.8) On the complex v Y
Q Steenbrink defines a finite increasing fil-

tration W in [14, § 4] which is an analogue of the usual weight
filtration.

A morphism of complexes

u : v Y
Q Kv Y

Q [1](3.8.1)

is given by

u(x) 4d log tRx

for a local section x of v Y
p , where t is the generator of the log structure of

the standard log point 0 (cf. Example 2.14).
Then we define a data ](Kn , W), u n ( by

(3.8.2) Kn 4v Y
Q with the increasing filtration W for every n

(3.8.3) u n 4u for every n.

We can easily see that this data satisfies the conditions (1.4.1)-(1.4.5)
by definition. Thus we obtain the Steenbrink complex of the data
](Kn , W), u n ( which is denoted by (AC , L) as in [13] and in [14].

(3.9) Now we will establish the relation between the complexes
SZ(v Y

Q [u], d) and AC constructed above.
We define a morphism

c : r(v Y
Q [u], d)p 4v Y

p [u]5v Y
p21 [u] Kv Y

p
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by

c(x , y) 4x0 1d log tRy0 ,(3.9.1)

where x4 !
j40

r

xj (u j /j! ) and y4 !
j40

r

yj (u j /j! ) are elements of v Y
p [u] and

v Y
p21 [u]. We can easily see that the morphisms c for all p form a mor-

phism of complexes c : r(v Y
Q [u], d) Kv Y

Q .

LEMMA 3.10. The morphism c above is a quasi-isomorphism.

PROOF. The inclusion v Y
Q Kv Y

Q [u] induces a quasi-isomorphism
i : v Y

Q Kr(v Y
Q [u], d) by Lemma 1.10 because the inclusion above coin-

cides with the kernel of the morphism d and because the morphism d is
surjective. We can easily see that the composite of the morphisms
ci : v Y

Q Kv Y
Q is nothing but the identity. Thus we obtain the conclu-

sion.
By definition the identity on v Y

Q induces a morphism of filtered
complexes

(v Y
Q , t) K (v Y

Q , W) ,

where t denotes the canonical filtration. In [14] this is proved to be a fil-
tered quasi-isomorphism. Thus the morphism of complexes c induces a
filtered quasi-isomorphism

(r(v Y
Q [u], d), t) K (v Y

Q , W)

which we denote by the same letter c .
The morphism u : r(v Y

Q [u], d) Kr(v Y
Q [u], d)[1], the morphism

u : v Y
Q Kv Y

Q [1] and the morphism c : r(v Y
Q [u], d) Kv Y

Q satisfies the
equality uc4cu . By setting

c n 4c :(r(v Y
Q [u], d), t) K (v Y

Q , W)

for every n , we obtain a morphism of the Steenbrink complexes

sD(c) : SZ(v Y
Q [u], d) 4sD(r(v Y

Q [u], d), t , u) KAC

by the functoriality.

LEMMA 3.11. The morphism

sD(c) : SZ(v Y
Q [u], d) KAC
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is a filtered quasi-isomorphism with respect to the filtration L on both
sides.

PROOF. Easy by Proposition 1.8 and by the fact that c :
(r(v Y

Q [u], d), t) K (v Y
Q , W) is a filtered quasi-isomorphism. r

The filtered quasi-isomorphisms sD(c) : SZ(v Y
Q [u], d) KAC and

SZ1 (W) : SZ(v Y
Q [u], d) KSZ(B(I), d)C in (3.6.1) define an isomorphism

a : SZ(B(I), d)C KAC

in the derived category.
On the other hand we have a finite decreasing filtration F on AC 4

4sD(v Y
Q , W , u) defined in Remark 1.6.

THEOREM 3.12. Assume that the analytic space Y is compact and
that the irreducible components of Y are Kähler. Then the data

( (SZ(B(I), d), L), (AC , L , F), a)(3.12.1)

is a cohomological mixed Hodge complex on Y .

PROOF. Let Y1 , Y2 , R , Yl be the irreducible components of the ana-
lytic space Y . We set

Y[m] 4 I2I
1Gi1Ei2EREimGl

Yi1
OYi2

OROYim

for every m . Then every Y[m] is nonsingular because Y is the underlying
analytic space of a log deformation. Thus every Y[m] is a compact Kähler
complex manifold by the assumption. In [14] Steenbrink constructed an
isomorphism of complexes

Rm : Grm
W v Y

Q KV Y[m]
Q [2m]

for every m which is the analogue of the Poincaré residue isomorphism.
By using this isomorphism we obtain the conclusion as in [13],
[15]. r

REMARK 3.13. We can easily see that the same conclusion holds for
the case that Y is algebraic.

REMARK 3.14. The C-structure AC of the CMHC above is the same
as the ones in [9] and [14]. But the method to construct Q-structure is
different from the methods used in [9] and [14]. We will see later that
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the resulting Q-structures are essentially the same. (cf. Proposition 3.19
and Theorem 5.8 below.)

REMARK 3.15. We can see that the CMHC in the theorem above is
independent of the choice of the reference morphism v Q , log

Y
KIC as fol-

lows. Let us assume that we have two reference morphisms
n 1 , n 2 : v Q , log

Y
KIC . These morphisms induce morphisms

W 1 , W 2 : v Y
Q [u] KB(I)C as before. There exist a complex J consisting of

injective C-sheaves bounded below and a quasi-isomorphism n : IC KJ
such that the morphisms nn 1 , nn 2 : v Q , log

Y
KJ are homotopic because of

the commutativity of the diagram (3.5.1). The morphism n : IC KJ in-
duces a morphism W : B(I)C KB(J). Then the homotopy between nn 1 and
nn 2 induces the homotopy between the morphisms

SZ1 (W)SZ1 (W 1 ), SZ1 (W) SZ1 (W 2 ) : SZ(v Y
Q [u], d) KSZ(B(J), d)

which preserves the filtration. Therefore the morphisms SZ1 (W 1 ) and
SZ1 (W 2 ) from SZ(v Y

Q [u], d) to SZ(B(I), d)C coincide in the filtered de-
rived category. Hence the morphisms n 1 and n 2 induce the same mor-
phism from SZ(B(I), d)C to AC in the derived category.

REMARK 3.16. We see that our CMHC is independent of the choice
of an injective resolution QY log KI as follows. Let I and I 8 be injective
resolutions of QY log . Then we have a morphism of complexes n : I 8KI
such that the diagram

QY log

V

QY log

K

K

I 8

In

I

is commutative. By the remark above we may assume that the reference
morphisms make the following commutative square

v Y
Q , log

V

v Y
Q , log

K

K

I 8C

In

IC .
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Then we have a commutative diagram

v Y
Q [u]

V

v Y
Q [u]

K

K

B(I 8 )

In

B(I)

K

K

t * p * p21 I 8C

In

t * p * p21 IC

from which we obtain an isomorphism

( (SZ(B(I 8 ), d), L), (AC , L , F), a 8 ) C ( (SZ(B(I), d), L), (AC , L , F), a)

of CMHC on Y . In addition the isomorphism above depends only on the
homotpy class of the morphism n : I 8KI as in the last remark.

(3.17) The morphism of complexes m : B(I) KSZ(B(I), d) is defined
in Remark 1.13. For this morphism to be a quasi-isomorphism it is suffi-
cient that the morphism d induces a zero map from Hp (B(I) ) to
Hp (B(I)(21) ) by Lemma 1.14.

This is checked stalkwise as follows. Take a point y of Y and put r»4

4 rank (MY
gp / O*Y )y . Consider y as an fs log analytic space endowed with the

pull-back log structure of MY . Let yQK
p y

y log K
t y

y be the base change of
YQK

p
Y log K

t
Y with respect to the closed immersion yKY . Since Y log is

locally contractible and t is proper, we have (Rq (tp)* QYQ
)y `Hq (yQ , Q)

by base change. The space yQ is homeomorphic to (S 1 )r21 3R , and the
monodromy acts on the cohomology via the transformation RKR ;
u O u11. Since Hq (yQ , Q) `Hq ( (S1 )r21 , Q), the action is trivial.

Thus we obtain isomorphisms

R(tp)* QYQ
C R(tp)* p21 QY log Ct * p * p21 IJB(I) KSZ(B(I), d)

in the derived category. Therefore we obtain the following by Theorem
3.12.

COROLLARY 3.18. The cohomology group Hp (YQ , Q) carries a
mixed Hodge structure.

In [9] Y. Kawamata and Y. Namikawa define their CMHC for a com-
pact Kähler normal crossing variety with a log structure in their sense,
which corresponds to our log deformation Y in a natural way. Then the
real blow up YA in their sense is nothing but the fiber of the morphism
Y log K0log 4S 1 over the point 1 �S 1 , and the Q-structure of their CMHC
is R(tNYA)* QYA.
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PROPOSITION 3.19. Our CMHC (3.12.1) coincides with Kawamata-
Namikawa’s CMHC in [9].

PROOF. It is sufficient to check the coincidence of the Q-structures
because of Remark 3.14. Because YA is isomorphic to the fiber YQ , 0 of the
morphism YQKR over the point 0 , the sheaf R(tNYA)* QYA is identified
with the sheaf R(tp)* i* QYQ , 0

, where i denotes the inclusion YQ , 0 KYQ .
Then it is sufficient to prove that the canonical morphism R(tp)* QYQ

K

K R(tp)* i* QYQ , 0
is a quasi-isomorphism. We consider the stalk of both

sides over a point y of Y . Let yQ , 0 K
iy

yQK
p y

y log K
t y

y be the base change
of YQ , 0 K

i
YQK

p
Y log K

t
Y as in (3.17). We remarked in (3.17) that the

stalk (Rq (tp)* QYQ
)y is identified with the cohomology group Hq (yQ , Q).

Moreover the stalk (Rq (tp)* i* QYQ , 0
)y is identified with Hq (yQ , 0 , Q) by

base change because YQ , 0 KY is proper. The space yQ is homeomorphic
to (S 1 )r21 3R as in (3.17) and the space yQ , 0 is homeomorphic to the
closed subspace (S 1 )r21 4 (S 1 )r21 3 ]0( of (S 1 )r21 3R . Therefore the
canonical morphism Hq (yQ , Q) KHq (yQ , 0 , Q) is an isomorphism. Thus
we complete the proof. r

4. CMHC for a semistable degeneration.

(4.1) In this section we consider the case that the log deformation Y
comes from a semistable degeneration as in [13], [15].

Let f : XKD be a semistable degeneration as in Definition 1.1. We
denote by Y the central fiber f 21 (0) which is a reduced simple normal
crossing divisor on X and the inclusion YKX by i . The coordinate func-
tion of D is denoted by t and the pull back f * t on X is denoted by t again
by abuse of the language if there is no danger of confusion. Then the
morphism f : XKD turns out to be a morphism of log analytic spaces
and defines a log deformation YK0 as in Notation 2.12 and in Definition
2.13. We denote the morphism YK0 above by f again by abuse of the
language.

Then we obtain a cartesian square

Y log

f logI
S 1 40log

K
i log

K

X log

If log

D log .

The open immersion j : X *KX induces an open immersion jlog : X *K
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KX log . The closed subsets 0log of D log and Y log of X log are the complements
of the open subsets D* and X * respectively. The open immersions D*K

KD and jlog : X *KX coincide with the restriction of the morphisms
t : D log KD and t : X log KX respectively.

We denote the universal covering of the topological space D log by H.
Then the upper half plane H is an open subset of H and the complement
H 0H is the universal covering R of the closed subset 0log 4S 1 of
D log .

We define a topological space XQ by the cartesian square

XQ

I
H

K

K

X log

I
D log .

We denote the morphism in the top line by p : XQKX log . Then the com-
plex manifold XQ defined in (1.2) is an open subset of XQ and the comple-
ment XQ 0XQ coincides with YQ . We denote the open immersion XQK

K XQ by jQ and the closed immersion YQK XQ by iQ . The morphisms
p : XQKX * and p : YQKY log coincide with the restriction of the mor-
phism p : XQKX log to the open subset XQ and to the closed subset YQ

respectively. Moreover the monodromy action on XQ , XQ and YQ is com-
patible with the inclusions jQ : XQK XQ and iQ : YQK XQ . We summa-
rize the situation in the diagram

XQ

Ip

X *

V

X *

K
j Q

K
j log

K
j

XQ

Ip

X log

It

X

J
iQ

J
i log

J
i

YQ

Ip

Y log

It

Y

in which the four squares are cartesian.

(4.2) Let C Q (XQ ), K Q (XQ ), T , B and d be as in (1.2). As we reviewed
in (1.2) the Q-structure of the CMHC in [15] is the Steenbrink-Zucker
complex SZ(B , d).

The log de Rham complex v Q
X in (2.18) carries the weight filtration W
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as usual. A morphism of complexes u : v Q
X Kv Q

X [1] is defined by

u(x) 4
dt

t
Rx

for a local section x of v p
X . Then the C-structure of the CMHC in [13],

[15] is the Steenbrink complex sD(v Q
X , W , u).

The morphism

( jp)21 v Q
X 4V Q

XQ
KC Q (XQ )C

defined by integrating differential forms on singular chains induces a
morphism of complexes

i 21 v Q
X [u] KK Q (XQ )C

which factors through the subcomplex BC . The morphism d : BC KBC

corresponds to the morphism

d42
1

2pk21

d

du
: i 21 v Q

X [u] K i 21 v Q
X [u]

as before. Thus a morphism between Steenbrink-Zucker complex

SZ(i 21 v Q
X [u], d) KSZ(B , d)C

is obtained. Moreover a morphism r(i 21 v Q
X [u], d)p K i 21 v p

X is defined
by the same formula as (3.9.1). Hence a morphism of complexes

SZ(i 21 v Q
X [u], d) KsD(v Q

X , W , u)(4.2.1)

is obtained by the same way as in Lemma 3.11. Steenbrink-Zucker [15]
shows that these morphisms define an isomorphism a : SZ(B , d)C K

KsD(v Q
X , W , u) in the derived category and that the data

( (SZ(B , d), L), (sD(v Q
X , W , u), L , F), a)(4.2.2)

is a CMHC on Y .
Now we fix an injective resolution QX log KJ and a quasi-isomor-

phism

v Q , log
X

KJC

which is compatible with the morphisms CX log KJC and CX log Kv Q , log
X

as
before. Then the complex i 21 t * p * p21 J carries the monodromy auto-
morphism T and a subcomplex B(J) is defined by the same formula as
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(3.4.1)-(3.4.2). We can define the morphism log T on B(J) and denote the
morphism

2
1

2pk21
log T : B(J) KB(J)(21)

by d as before. Then we obtain the Steenbrink-Zucker complex
SZ(B(J), d) on Y . On the other hand the morphism v Q , log

X
KJC induces a

morphism i 21 v Q
X [u] K i 21 t * p * p21 JC which factors through the sub-

complex B(J)C as before. Moreover the morphism d on B(J)C corre-
sponds to the morphism

2
1

2pk21

d

du
: i 21 v Q

X [u] K i 21 v Q
X [u]

which we denote by d again. Thus we obtain a morphism of complexes
SZ(i 21 v Q

X [u], d) KSZ(B(J)C , d) which turns out to be a quasi-isomor-
phism as before. Combining with the morphism (4.2.1) we obtain an iso-
morphism a : SZ(B(J), d)C KsD(v Q

X , W , u) in the derived category. By
the similar way as before we can prove that the data

( (SZ(B(J), d), L), (sD(v Q
X , W , u), L , F), a)(4.2.3)

is a CMHC on Y . This CMHC is independent of the choice of the injec-
tive resolution QX log KJ and of the quasi-isomorphism v Q , log

X
KJC as

before.

(4.3) At first we will prove that these two CMHC’s are isomor-
phic.

By pulling back the injective resolution QX log KJ by p : XQKX log we
obtain an injective resolution QXQ

Kp21 J . Restricting to the open sub-
set XQ we have an injective resolution QXQ

K jQ
21 p21 J . Then we can find

a quasi-isomorphism of complexes

C Q (XQ ) K jQ
21 p21 J

which is compatible with the morphisms QXQ
KC Q (XQ ) and QXQ

K

K jQ
21 p21 J . Then we have a quasi-isomorphism of complexes

K Q (XQ ) K i 21 j* p * jQ
21 p21 J

4 i 21 t * j log
* p * jQ

21 p21 J

4 i 21 t * p *( jQ )* jQ
21 p21 J
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which is compatible with the monodromy automorphism. In the local
situation such as X is a polydisc, the topological space XQ is identified
with the space ([0 , 1 )3S 1 )k 3D l and the space XQ with ((0 , 1 )3S 1 )k 3

3D l for some k , l . Therefore the canonical morphism of complexes

p21 JK ( jQ )* jQ
21 p21 J

is a quasi-isomorphism. Then we obtain a quasi-isomorphism of complexes

i 21 t * p * p21 JK i 21 t * p *( jQ )* jQ
21 p21 J

which is also compatible with the monodromy automorphism. Therefore
we obtain a morphism in the derived category

BKB(J)(4.3.1)

which turns out to be a quasi-isomorphism because both sides are quasi-
isomorphic to the complexes K Q (XQ ) and i 21 t * p * p21 J . Then the
quasi-isomorphism (4.3.1) induces an isomorphism of complexes
SZ(B , d) KSZ(B(J), d) in the derived category. We can easily see that
this isomorphism induces an isomorphism of CMHC’s (4.2.2) and (4.2.3)
in the derived category.

Next we will prove that the CMHC (4.2.3) is isomorphic to our CMHC
(3.12.1). The pull back QY log K (i log )21 J of the injective resolution QX log K

KJ is a quasi-isomorphism. Then we have a quasi-isomorphism of complex-
es (i log )21 JKI which is compatible with the morphisms QY log KI and
QY log K (i log )21 J , where QY log KI is the injective resolution fixed in (3.6).
Then we have a morphism of complexes

i 21 t * p * p21 JKt * p * iQ
21 p21 J

4t * p * p21 (i log )21 J

Kt * p * p21 I ,

where the morphism in the top line is the canonical base change mor-
phism. By definition the left hand side is identified with i 21 R(tp)* QXQ

and the right with R(tp)* QYQ
4 R(tp)* i 21

Q QXQ
and the morphism above

is also identified with the canonical base change morphism. Thus we can
see that the morphism above is a quasi-isomorphism by using the base
change theorem as in (3.17). Because the morphism above is compatible
with the monodromy automorphism, we obtain a quasi-isomorphism of
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complexes B(J) KB(I). This morphism induces a quasi-isomorphism

SZ(B(J), d) KSZ(B(I), d)

by functoriality. This gives us an isomorphism between the Q-structures
of CMHC (4.2.3) and of our CMHC (3.12.1). The C-structure of these
CMHC’s are isomorphic because we have v p1q11

X /Wq C i*(v p1q11
Y /Wq )

for every p , qF0. These data gives us an isomorphism between the
CMHC (4.2.3) and our CMHC (3.12.1).

5. Koszul complex construction.

In this section we will prove that our CMHC (3.12.1) constructed in
last the section 3 is isomorphic to the one constructed by J. Steenbrink in
[14]. In this section we use the same terminology as in [14, §1] for divided
power envelopes and for Koszul complexes.

(5.1) At first we briefly recall the Koszul complex construction by
Steenbrink in [14].

Let YK0 be a log deformation. We denote the log structure on Y by
MY . We denote by MY

gp the abelian sheaf associated to the monoid sheaf
MY . A morphism e : OY KMY

gp is defined by e( f ) 4exp (2pk21f ) for a
local section f of OY . We fix the positive integer N4dim Y11.

In [14] Steenbrink constructed torsion free abelian sheaves L 0 and
L 1 such that the following conditions are satisfied:

(5.1.1) the sheaves L 0 and L 1 fit in the commutative diagram

0 K

0 K

Ker (e)

I
ZY

K

K

L 0

Iv0

OY

K
e

K
e

L 1

Iv1

MY
gp

K

K

Coker (e)

I
Coker (e)

K 0

K 0 ,

where the morphisms Ker (e) KZY and Coker (e) KCoker (e) are iso-
morphisms.

(5.1.2) there exists a global section of L 1 whose image by v1 is the
global section t of MY

gp .

We denote by t the global section of L 1 mentioned in (5.1.2) by abuse
of the language.

Now the Koszul complex Kosn (e) is considered for every non-nega-
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tive integer n . An increasing filtration W is defined on Kosn (e) in [14]
which is an analogue of the weight filtration on v Y

Q . Moreover a mor-
phism of complexes

u : Kosn (e)p K Kosn11 (e)(1)p11

is defined by u(x7y) 4 (2pk21) x7 tRy as in [14] for a local section x

and y of G n2p (L 0 ) and R
p

L 1 respectively. It is easy to check that the
morphism u defines a morphism of complexes

u : Kosn (e) K Kosn11 (e)(1)[1].

A morphism of abelian sheaves

G(v0 ) : G(L 0 ) K OY

is defined by

(5.1.3) G(v0 )(x1
[a1 ] x2

[a2 ]
R xk

[ak ] )4
1

a1 ! a2 ! R ak !
v0 (x1 )a1 v0 (x2 )a2

R v0 (xk )ak ,

where x1 , x2 , R , xk are local sections of L 0 and a1 , a2 , R , ak are non-
negative integers. We can easily check that this is a morphism of sheaves
of rings. On the other hand the morphism of abelian sheaves

d log Qv1 : L 1 Kv 1
Y

induces a morphism

Rp (d log Qv1 ) : R
p

L 1 Kv p
Y

for every p , where the symbol Q stands for the composition of the mor-
phisms. Then the morphism of abelian sheaves f : Kosn (e)p Kv Y

p is de-
fined by

f(x7y) 4 (2pk21)2p G(v0 )(x) R
p

(d log Qv1 )(y)(5.1.4)

for local sections x of G n2p (L 0 ) and y of R
p

L 1 . It is easy to see that this
morphism gives us a morphism of complexes f : Kosn (e) Kv Y

Q preserv-
ing the filtration W on both sides.

The data consisting of the complexes Kn4KosN1n11(e)(n11), the filtra-
tion W and the morphism of complexes u : Kn4KosN1n11(e)(n11)K
KKn11 [1] 4 KosN1n12 (e)(n12)[1] satisfies the conditions (1.4.1)-
(1.4.5). Thus the Steenbrink complex sD(Kn , W , u) is obtained as in Def-
inition 1.4.

The morphism of complexes f : KosN1n11 (e) Kv Y
Q induces a mor-
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phism of complexes f : Kn 4 KosN1n11 (e)(n11) Kv Y
Q in the trivial

way. Then the morphisms u : v Y
Q Kv Y

Q [1] in (3.8.1) and u : Kn KKn11 [1]
are compatible via the morphism f . Thus the morphism of complexes

sD(f) : sD(Kn , W , u)C KsD(v Y
Q , W , u) 4AC

is obtained by the functoriality of the Steenbrink complex. Then the
data

( (sD(Kn , W , u), L), (AC , L , F), sD(f) )(5.1.5)

is proved to be a CMHC on Y in [14].

(5.2) We define an abelian sheaf LA0 by LA0 4L 0 5ZY . The projection
pr : LA0 4L 0 5ZY KL 0 induces a morphism pr : G n (LA0 ) KG n (L 0 ) for
every non-negative integer n .

Now l denotes the global section 051 of the abelian sheaf L 0 5ZY 4

4LA0 . Then we have

G n (LA0 ) 4 5
k40

n
G n2k (L 0 ) l [k](5.2.1)

for every n . The morphism pr : G n (LA0 ) KG n (L 0 ) is given by

pr g !
k40

n

xk l [k]h4x0 ,

where xk is a local section of G n2k (L 0 ) and then !
k40

n

xk l [k] is a local sec-

tion of G n (LA0 ). We define a morphism of abelian sheaves d 8 : G n (LA0 ) K

KG n21 (LA0 ) for every positive integer n by

d 8g !
k40

n

xk l [k]h42 !
k40

n21

xk11 l [k]

by using the direct sum decomposition (5.2.1).
We denote by e the image of the global section 1 of ZY by the canoni-

cal injection ZY 4 Ker (e) KL 0 . Then the multiplication with e in G(L 0 )
gives us a morphism of abelian sheaves

m : G n (L 0 ) KG n11 (L 0 )

for every n . Moreover e can be regarded as a global section of LA0 by the
inclusion L 0 KLA0 . Then the multiplication with e in G(LA0 ) defines a mor-
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phism of abelian sheaves

mA : G n (LA0 ) KG n11 (LA0 )

for every n .
On the other hand we define an automorphism T : G n (LA0 ) KG n (LA0 )

by

T g !
k40

n

xk l [k]h4 !
k40

n

xk (l1e)[k]

by using the direct sum decomposition (5.2.1). Then we can see that the
logarithm of the automorphism T coincides with the morphism 2mAd 8.

(5.3) The global section t of L 1 gives us a morphism of abelian
sheaves ZY KL 1 which is denoted by e 8 here. We define a morphism of
sheaves eA : LA0 4L 0 5ZY KL 1 by eA 4e1e 8 . Then we have Coker (eA) C

CMY
gp / OY* Q t Z and Ker (eA) 4 Ker (e) CZY .

Now we have a complex of abelian sheaves Kosn (eA) for every non-
negative integer n . The morphisms above induce morphisms of
sheaves

pr : Kosn (eA)p K Kosn (e)p(5.3.1)

d 8 : Kosn (eA)p K Kosn21 (eA)p(5.3.2)

m : Kosn (e)p K Kosn11 (e)p(5.3.3)

mA : Kosn (eA)p K Kosn11 (eA)p(5.3.4)

T : Kosn (eA)p K Kosn (eA)p(5.3.5)

by tensoring with the identity. We can easily see that the morphisms
d 8 , m , mA and T define morphisms of complexes by the fact that the glob-
al section e is contained in Ker (e) C Ker (eA). As for the morphism pr, we
have the equality

pr Qd4d Qpr2 (2pk21)21 u Qpr Qd 8 : Kosn (eA)p K Kosn (e)p11 .(5.3.6)

On the other hand we have the equality 2 log T4mAd8 . We define a mor-
phism of complexes d : Kosn(eA)KKosn(eA)(21) by d42(2pk21)21log T4

4 (2pk21)21 mAd 8 .
Now we have a morphism of complexes d : KosN (eA) K KosN (eA)(21).
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Thus we obtain the Steenbrink-Zucker complex

SZ(KosN (eA), d) 4sD(r(KosN (eA), d)(n11), t , u).

We define a morphism

c : r(KosN (eA), d)(n11)p 4

4 KosN (eA)(n11)p 5KosN (eA)(n)p21 KKn
p 4 KosN1n11 (e)(n11)p

by

c(x , y) 4m n11 Qpr (x)1m n Qu Qpr (y) ,

where x and y are local sections of KosN (eA)p and KosN (eA)p21 . Then the
morphisms c for all p define a morphism of complexes

c : r(KosN (eA), d)(n11) KKn

because of the equalities (5.3.6) and u 2 40.

LEMMA 5.4. The morphism

c Q : r(KosN (eA), d)(n11)Q KKn , Q

is a quasi-isomorphism, where the subscript stands for the tensor prod-
uct with Q .

PROOF. The inclusion i : L 0 KLA0 4L 0 5ZY induces a morphism of
complexes i : KosN (e) K KosN (eA) because of the equality e4eAi . We can
easily see that the morphism i : KosN (e)p K KosN (eA)p factors through the
kernel of the morphism d . Therefore the composite of the morphism i
above and the canonical morphism KosN (eA)p Kr(KosN (eA), d)p 4

4 KosN (eA)p 5KosN (eA)(21)p21 for every p defines a morphism of
complexes i : KosN (e) Kr(KosN (eA), d). Then the composite ci :
KosN (e)(n11) KKn 4 KosN1n11 (e)(n11) coincides with the mor-
phism m n11 . Thus it suffices to prove that the morphism i Q is a quasi-iso-
morphism because the morphism mQ : Kosk (e)Q K Kosk11 (e)Q is a quasi-
isomorphism for every kFN by Lemma (1.4) in [14].

We have an exact sequence of complexes

0 K KosN (eA)(21)[21] Kr(KosN (eA), d) K KosN (eA) K0
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by definition. Then we obtain a long exact sequence

Q Q QKHp21 (KosN (eA)(21) )KHp (r(KosN (eA), d) )KHp (KosN (eA) )

KHp (KosN (eA)(21) )K Q Q Q

for every p . We can easily see that the morphism Hp (KosN (eA) ) K

KHp (KosN (eA)(21) ) is induced from the morphism d . On the other hand
we have a long exact sequence

Q Q QKHp (KosN (e) )KHp (KosN (eA) )KHp (KosN21 (eA) )K Q Q Q

from an exact sequence

0 KKosN (e)KKosN (eA)K
d 8

KosN21 (eA)K0 .

Then we can easily see that these two long exact sequences fit in the
commutative diagram

Q Q QK

Q Q QK

Hp (KosN (e) )

Ii

Hp (r(KosN (eA), d) )

K

K

Hp (KosN (eA) )

Iid

Hp (KosN (eA) )

K

K

Hp (KosN21 (eA) ) K Q Q Q

I(2pk21)21 mA

Hp (KosN (eA)(21) ) K Q Q Q

because the morphism Hp (KosN (eA) ) KHp (KosN (eA)(21) ) in the bottom
line is induced from the morphism d . Thus the morphism i Q is a quasi-
isomorphism because the morphism mAQ : KosN21 (eA)Q K KosN (eA)Q is a
quasi-isomorphism by Lemma (1.4) in [14].

In [14] it is proved that the identity on Kn induces a filtered
quasi-isomorphism

(Kn , t) K (Kn , W),

where t denotes the canonical filtration. Therefore the morphism of com-
plexes c induces a morphism of filtered complexes

c :(r(KosN (eA), d)(n11), t) K (Kn , W)

which is a quasi-isomorphism after tensoring with Q . Then the mor-
phism of filtered complexes

c :(r(KosN (eA), d)(n11), t) K (Kn , W)

is compatible with the morphisms u : r(KosN (eA), d)(n11) K

Kr(KosN (eA), d)(n12)[1] and u : Kn KKn11 [1]. Therefore we obtain a
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morphism of the Steenbrink complexes

sD(c) : SZ(KosN (eA), d) 4sD(r(KosN (eA), d)(n11), t , u) KsD(Kn , W , u)

preserving the filtration L on both sides.

PROPOSITION 5.5. The morphism sD(c)Q is a filtered quasi-isomor-
phism with respect to the filtration L . Therefore the data

(SZ(KosN (eA), d), (AC , L , F), sD(f) sD(c) )(5.5.1)

give us a CMHC on Y which is isomorphic to the Steenbrink’s CMHC
(5.1.5) after tensoring with Q .

PROOF. Easy by Lemma 5.4. r

(5.6) Now we use the same notation such as Y log , YQ , 0log as in the
previous sections. We fix an injective resolution QY log KI and a reference
quasi-isomorphism v Q , log

Y
KIC .

From the diagram (2.7.1) we obtain a commutative diagram

t21 L 0

It21 e

t21 L 1

K

K
t21 v1

t21 OY

It21 e

t21 MY
gp

K
(2pk21)id

4

t21 OY

It21 exp

t21 MY
gp

K
h

4

LY

Iexp

t21 MY
gp .

(5.6.1)

For the later use we denote the morphism exp : LY Kt21 MY
gp by

expLY
. Now we consider the Koszul complex KosN ( expLY

). Because
of the exactness of the bottom line in the diagram (2.7.1) the morphism
2pk21ZY log K LY induces a quasi-isomorphism

(2pk21)N ZY log 4G N ( (2pk21) ZY log ) K KosN ( expLY
)(5.6.2)

by Lemma (1.4) in [14]. Therefore we have a quasi-isomorphism

n : KosN ( expLY
)Q KI

which fits in the commutative diagram

(2pk21)N QY log

I
QY log

K

K

KosN ( expLY
)Q

In

I ,

(5.6.3)
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where the left vertical arrow stands for the morphism given by sending
(2pk21)N a to a/N! .

On the topological space YQ we have a commutative diagram

p21 t21 L 0

I
p21 LY

K
p21 t21 e

K
p21 expLY

p21 t21 L 1

Ip21 t21 v1

p21 t21 MY
gp

by pulling back the diagram (5.6.1). On the other hand there exists a
global section log t of p21 LY such that its image by p21 expLY

coincides
with the global section t of p21 t21 MY

gp . This global section defines a
morphism of abelian sheaves

ZYQ
Kp21 LY

and this morphism fits in the commutative diagram

ZYQ

I
p21 LY

K
p21 t21 e 8

K
p21 expLY

p21 t21 L 1

Ip21 t21 v1

p21 t21 MY
gp

by definition. Therefore we obtain a commutative diagram

p21 t21 L
A0 4p21t21 L 0 5

I
p21 LY

ZYQ
K
p21 t21 eA

K
p21 expLY

p21 t21 L 1

Ip21 t21 v1

p21 t21 MY
gp

which induces a morphism of complexes

p21 t21 KosN (eA) 4 KosN (p21 t21 eA) K

K KosN (p21 expLY
) 4p21 KosN ( expLY

).
(5.6.4)

By composing this morphism and the morphism p21 n we obtain a
morphism of complexes

k : p21 t21 KosN (eA)Q Kp21 I(5.6.5)
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which fits in the commutative diagram

QYQ

I
QYQ

K

K

p21 t21 KosN (eA)Q

Ik

p21 I ,

where the left vertical arrow stands for the morphism given by sending a
to a/N! . Hence we obtain a morphism

t * p * k : KosN (eA)Q Kt * p * p21 I

by taking adjoint.
The automorphism T (5.3.5) on KosN (eA)Q corresponds to the mon-

odromy automorphism T on t * p * p21 I via the morphism t * p * k . Then
the morphism t * p * k factors through the subcomplex B(I) of
t * p * p21 I because the morphism T2 id on KosN (eA) is nilpotent. Hence
we obtain a morphism of complexes KosN (eA)Q KB(I) which is denoted by
t * p * k by abuse of the language. The morphisms d : B(I) KB(I)(21)
and d : KosN (eA)Q K KosN (eA)(21)Q are compatible via the morphism
t * p * k . Therefore we obtain a morphism of the Steenbrink-Zucker
complexes

SZ1 (t * p * k) : SZ(KosN (eA)Q , d) KSZ(B(I), d)(5.6.6)

by the functoriality.

PROPOSITION 5.7. The morphism SZ1 (t * p * k) above induces an
isomorphism from the CMHC (5.5.1) to the CMHC (3.12.1).

PROOF. It is sufficient to prove that the diagram in the filtered de-
rived category

SZ(KosN (eA), d)C

SZ1 (t * p * k)I
SZ(B(I), d)C

K
sD(c)

K
a

sD(Kn , W , u)

IsD(f)

AC

is commutative. Because the morphism a in the derived category is rep-
resented by the morphisms

SZ(B(I), d)CJ
SZ1 (W)

SZ(v Q
Y [u], d)K

sD(c)
AC ,
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it is sufficient to find a morphism of complexes

f
A : KosN (eA)C Kv Q

Y [u]

such that we have the equalities SZ1 (W)SZ1 (fA) 4SZ1 (t * p * k) and
sD(c) SZ1 (fA) 4sD(f) sD(c) in the filtered derived category.

Now we define a morphism f
A : KosN (eA)p Kv p

Y [u] for every p by

f
A g!

k40

n2p

xk l [k] 7yh4 !
k40

n2p
1

(2pk21)k1p k!
G(v0 )(xk ) R

p

(d log Qv1 )(y) u k ,

where xk is a local section of G n2p2k (L 0 ) for every k . We can easily
check that these morphisms form a morphism of complexes which we de-
note by f

A : KosN (eA) Kv Q
Y [u] again. By tensoring C we obtain a mor-

phism KosN (eA)C Kv Q
Y [u] which we denote by f

A too. Then we can easily
see that the diagram

r(KosN (eA), d)(n11)
r(fA)I

r(v Q
Y [u], d)

K
c

K
c

Kn

If

v Q
Y

is commutative. Then we have the equality sD(c) SZ1 (fA) 4

4sD(f) sD(c).
On the topological space Y log we have a morphism of abelian

sheaves

v0 (LY ) : LY K O log
Y

by the definition of O log
Y . Then we obtain a morphism of sheaves of rings

G(v0 (LY ) ) : G LY K O log
Y by the same formula as (5.1.3). On the other hand

the morphism d log : MY
gp Kv 1

Y is extended to the morphism

t21 MY
gp Kv 1, log

Y

on Y log which we denote by d log again. Thus we obtain a morphism of
abelian sheaves

f log : KosN ( expLY
)p 4G N2p LY 7R

p

t21 MY
gp Kv Y

p , log

by

f log (x7y) 4 (2pk21)2N G(v0 (LY ) )(x) R
p

(d log)(y)
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for every p as in (5.1.4). These morphisms for all p define a morphism of
complexes

f log : KosN ( expLY
) Kv Q , log

Y

because we have the equality d Qv0 (LY ) 4d log QexpLY
: LY Kv 1, log

Y , where
d on the left hand side denotes the differential on the complex v Q , log

Y
.

Then we have a commutative diagram

(2pk21)N ZY log

I
CY log

K

K

KosN ( expLY
)

If log

v Q , log
Y

,

where the top horizontal arrow denotes the morphism (5.6.2) and the
bottom the canonical one and the left vertical arrow is given by sending
(2pk21)N a to a/N! . Therefore the diagram

KosN ( expLY
)C

nI
IC

K
f log

4

v Q , log
Y

I
IC

commutes in the derived category because of the commutative diagram
(5.6.3).

On the other hand we can easily see that the diagram

p21 t21 KosN (eA)C

I
p21 KosN ( expLY

)C

K
p21 t21 f

A

K
p21 f log

p21 t21 v Q
Y [u]

I
p21 v Q , log

Y

is commutative, where the left vertical arrow is the morphism (5.6.4) and
the right is the morphism defined by sending the indeterminate u to the
global section log t of O log

Y . Thus we have the diagram

p21 t21 KosN (eA)C

kI
p21 IC

K
p21 t21 f

A

4

p21 t21 v Q
Y [u]

I
p21 IC

which commutes in the derived category. Because the canonical isomor-
phism v Q

Y [u] Kt * p * p21 IC is the adjoint of the right vertical arrow, we
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obtain the commutative diagram

SZ(KosN (eA), d)C

SZ1 (t * p * k)I
B(I)C

K
SZ1 (fA)

4

SZ(v Q
Y [u], d)

ISZ1 (W)

B(I)C

and complete the proof. r

Now we obtain the following:

THEOREM 5.8. Steenbrink’s CMHC (5.1.5) is isomorphic to ours
(3.12.1).

6. An analogue of Rapoport-Zink construction.

In this section we present another construction of the Q-structure of
our CMHC (3.12.1) which is an analogue of Rapoport-Zink construction
in [12].

(6.1) Let YK0 be a log deformation. We use the same notation such
as Y log , YQ , 0log as before. We fix an injective resolution QY log KI and a
reference morphism v Q , log

Y
KIC as in (3.6). Then we obtain the complex

t * p * p21 I on Y with the monodromy automorphism T . We denote the
morphism

1

2pk21
(T2 id) : t * p * p21 IKt * p * p21 I(21)

by d 8 . Now we obtain the Steenbrink-Zucker complex

SZ(t * p * p21 I , d 8 )

with the increasing filtration L . This is an analogue of the complex con-
structed by Rapoport-Zink in [12].

(6.2) We will prove that the complex SZ(t * p * p21 I , d 8 ) is filtered
quasi-isomorphic to the Q-structure of our CMHC (3.12.1) SZ(B(I), d)
with respect to the filtration L .

We denote the restriction of d 8 on the subcomplex B(I) by the same



Taro Fujisawa - Chikara Nakayama264

letter d 8 . Thus we obtain a morphism of complexes

d 8 : B(I) KB(I)(21)

from which we obtain the Steenbrink-Zucker complex SZ(B(I), d 8 ) with
the filtration L .

Because the inclusion i : B(I) Kt * p * p21 I is compatible with the
morphism d 8 , it defines a morphism of complexes

SZ1 (i) : SZ(B(I), d 8 ) KSZ(t * p * p21 I , d 8 )

preserving the filtration L on both sides by the functoriality in Remark
1.15.

LEMMA 6.3. The morphism SZ1 (i) above is a filtered quasi-isomor-
phism with respect to the filtration L on both sides.

PROOF. We have

B(I)0 4 Ker (d 8 : B(I) KB(I)(21) ) 4

4 Ker (d 8 : t * p * p21 IKt * p * p21 I(21) ) .

Then we obtain the conclusion by Corollary 1.16 because the morphisms
d 8 : t * p * p21 IKt * p * p21 I(21) and d 8 : B(I) KB(I)(21) are surjec-
tive by Lemma 3.2. r

On the other hand there exists a morphism of complexes

U : B(I) KB(I)

such that the conditions (3.4.3)-(3.4.6) are satisfied. Therefore the mor-
phism 2U satisfies the conditions (1.17.1) and (1.17.2). Thus we obtain a
morphism of complexes

SZ2 (2U) : SZ(B(I), d) KSZ(B(I), d 8 )

preserving the filtration L by the functoriality in Remark 1.17.

LEMMA 6.4. The morphism SZ2 (2U) is a filtered quasi-isomor-
phism with respect to the filtration L .

PROOF. Notice that the morphism U is an isomorphism of complexes.
By Corollary 1.18 it is sufficient to prove that the morphisms d and d 8 in-
duce zero maps from Hp (B(I) ) to Hp (B(I)(21) ) for every p . This is
proved in (3.17). Thus we complete the proof. r
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Composing these filtered quasi-isomorphisms we obtain the following:

PROPOSITION 6.5. There exists a filtered quasi-isomorphism

SZ(B(I), d) KSZ(t * p * p21 I , d 8 )

with respect to the filtration L on both sides.

7. Degeneracy of l-adic weight spectral sequences.

In this section we compare our construction and the construction in [11].

THEOREM 7.1. Let l be a prime number and T a topological genera-
tor of Zl (1). Let f : YK ( Spec C , N-constant log structure) be a proper
semistable morphism of fs log schemes (loc. cit. Definition (1.2)). As-

sume that each irreducible component of Y
i

is smooth over Spec C . Then
the Steenbrink-Rapoport-Zink l-adic spectral sequence

E1
2r, q1r 4 5

kF0
kF2r

5
E% ]1, R , m(

Card E4r12k11

Hq2r22k (YE , Ql (2r2k) ) ¨ Hq (Ytl , Ql )

(see loc. cit. Proposition (1.8.3) for the notation) is isomorphic to the Ql-
tensored spectral sequence associated to the Q-structure of CMHC in
Theorem 3.12 for Yan (cf. Remark 3.13).

For the proof, we need a lemma:

LEMMA 7.2. Let YK0 be a log deformation, and 08K0 the endo-
morphism of the standard log point induced by multiplication by n on
the monoid N, nF1. Let Y 8 »4Y30 08 the fiber product in the category
of fs log analytic spaces. Then Y 8log is the fiber product of Y log and 08log

over 0log in the category of topological spaces.

PROOF. Since the problem is local, it is enough to prove that
( Spec C[P] )log

an K lim
J

( Spec (C[D] ) )log
an is a homeomorphism, where P is the

push-out of the diagram D : NJ
n

N K
diag.

Nr (rF1) in the category of fs

monoids. In general (Spec C[Q] )log
an 4Hom (Q , RF0

mult )3Hom (Q , S 1 ) as
topological spaces for any fs monoid Q . Further Hom (2 , S 1 ) sends
push-outs to fiber products. Finally Hom (P , RF0

mult ) 4

4 lim
J

Hom (D , RF0
mult ) since P is actually the push-out of D in the category

of monoids. r
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PROOF OF 7.1. First we modify the construction in the proof of [11]
Proposition (1.4) slightly in the following three points. Let the notation
be as in there.

1. Replacing the quasi-isomorphism KJs(B Q Q ) Ks(A Q Q ) there with

the quasi-isomorphism K K
id7T

s(A Q Q ) as in [15, (5.13) Lemma], we have a
spectral sequence which is isomorphic to the one in [11] Proposition
(1.8.3).

2. Replacing L4s(K K
T21

K) there with L 8 »4s(K K
(T21)7 T

q

K(21) ), we
have an isomorphic spectral sequence, which is associated to the double
complex A 8Q Q that is isomorphic to A Q Q , where T

q

is the generator of
Zl (21) such that T7T

q

41.

3. Replacing T with another T 8 , we have an isomorphic spectral se-
quence by [11] Lemma (1.3.1) and (the algebraic version of) the functori-
ality in 1.17.

Thus in the following we may assume that T is the image of (s O s1

11) �AutS 1 (R) 4p 1 (0log ) by the natural homomorphism p 1 (0log ) K

Kp 1, loget (0 ) ` Z×(1) KZl (1), and compare the spectral sequence associat-
ed to A 8Q Q for this T with the Hodge-theoretic one.

In the following we denote by eX the natural morphism of topoi
(X log

an )AK (X log
ét )A in [8] (2.1) for an fs log scheme X that is locally of fi-

nite type over C . Let LKI be a resolution as in [11] (1.3), and eY
21 IKJ

an injective resolution on Y log
an . Here L is the constant sheaf Z/l h Z for an

integer hF1. We claim that then there is a natural homomorphism
e

Y
i
21 e Y*p * p* IKt *p *p21 J , where e Y is the forgetting log morphism.

In fact, first, there is a natural homomorphism

e
Y
i
21 e Y*p *p* I4e

Y
i
21 e Y*lim

K
n

(p 1/l n*p*1/l n I) 4

4 lim
K

n

e
Y
i
21 e Y*p 1/l n* p*1/l n IK lim

K
n

t *p 8n*
p 8n

21 eY
21 I .

Here the second equality comes from the fact that e Y is quasi-compact
and quasi-separated. See [11] (1.3) for p 1/l n ; p 8n is (p 1/l n )log

an : (Y1/l n )log
an K

KY log
an . Note that the fs log analytic space (Y1/l n )an no longer satisfies the

condition in (2.4). Second, Lemma 7.2 implies that (Yan )QKY log
an uniquely

factors through p 8n . Hence we have p 8n*
p 8n

21 eY
21 IKp * p21 eY

21 IK

Kp * p21 J . Thus we have e
Y
i
21 KKt * p * p21 J , which is compatible with
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(T21)7T
q

and d 84
1

2pk21
(T21), and we have e

Y
i
21 (A 8Q Q ) K

KSZ(t * p * p21 J , d 8 ).
We consider the associated spectral sequences. By [1] XVI Théorème

4.1, we see that the associated spectral sequence of e
Y
i
21 (A 8Q Q ) is isomor-

phic to the one associated to A 8Q Q . Hence we have a homomorphism i of
spectral sequences from the one associated to A 8Q Q to the one associated
to SZ(t * p * p21 J , d 8 ). Now the calculation of E1-terms of the latter is
the same as in [11] Proposition (1.8.3):

E1
2r, q1r 4 5

kF0
kF2r

5
E% ]1, R , m(

Card E4r12k11

Hq2r22k ( (YE )an , L(2r2k) )

in virtue of [8] Lemma (1.5) and [14] (3.9), which are analytic analogues
of [8] Theorem (2.4) and [11] Lemma (1.8.1) respectively. Again by [1]
XVI Théorème 4.1, we see that i is an isomorphism.

In the following we denote by s.s. (L), where L is the constant sheaf
Z/l h Z (hF1), Zl , Ql , or Q on Yan , the spectral sequence associated to
SZ(t * p * p21 J , d 8 ) for an injective resolution LKJ . By taking lim

J
h

of

the above i , we see that the l-adic one with Zl-coefficient is isomorphic to

lim
J

h

s.s. (Z/l h Z). The rest is to show that lim
J

h

s.s. (Z/l h Z) J
`

s.s. (Zl ),

s.s. (Zl )7Zl
Ql K

`

s.s. (Ql) and s.s. (Ql ) J
`

s.s. (Q)7Q Ql because Proposi-
tion 6.5 says that s.s. (Q) is isomorphic to the spectral sequence associat-
ed to SZ(B(I), d). It is enough to show that there are suitable maps as
above; for once maps exist, they are isomorphisms because E1-terms of
various s.s. (L) are all calculated similarly as before and the claims are
reduced to the universal coefficients theorem and the finiteness of coho-
mologies of compact manifolds. Only the existence of the first map may
not be trivial. But it comes from the fact that the map s.s. (Zl ) K

s.s. (Z/l h Z) is independent of the choices of compatible resolutions of Zl

and Z/l h Z (cf. the last sentence of Remark 3.16). r

REMARK 7.3. By [3] Scholie (8.1.9)(iv), we know that the Hodge the-
oretic spectral sequence in Theorem 7.1 degenerates in E2-terms. Theo-
rem 7.1 and [11] Theorem (2.1) give an algebraic proof for this fact. Con-
versely, Theorem 7.1 and [3] Scholie (8.1.9)(iv) give an alternative proof
of [11] Theorem (2.1) under the assumption where the characteristic is
zero. In fact, by [11] Lemma (2.2) and a standard argument in [11] (2.3),
we reduce the above case of [11] (2.1) to the case where F4C .
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