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Cohomological Descent of Rigid Cohomology
for Etale Coverings.

BRUNO CHIARELLOTTO (*) - NOBUO TSUZUKI (**)

1. Introduction.

Rigid cohomology (introduced by P. Berthelot [3]) is thought to be a
good p-adic cohomology theory for schemes of positive characteristic p.
It is known that rigid cohomology with trivial coefficient sheaf is of finite
dimension [4] (see also [17]), and admits Poincaré duality, satisfies the
Künneth formula [5]. However, in the general case of non-trivial coeffi-
cients, it is still unknown whether or not rigid cohomology satisfies the
analogous good properties.

In this paper we shall discuss rigid cohomology from the point of view
of cohomological descent. The theory of cohomological descent was stud-
ied by B. Saint-Donat [1, Vbis]. A direct translation to the case of rigid co-
homology is not straightforward, so we will first develop a cohomological
descent theory for the cohomology of coherent sheaves over overconver-
gent functions on tubular neighbourhoods and then we will study a coho-
mological descent theory for coherent sheaves with integrable connec-
tions. We will extend Berthelot’s definition of rigid cohomology to
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schemes which are separated and locally of finite type over a field of
characteristic p by means of cohomological descent theory. One of the
main results is that an étale hypercovering is universally de Rham de-
scendable. This means that, for rigid cohomology, we have cohomological
descent for étale hypercoverings, and there exists a spectral sequence of
rigid cohomology for étale hypercoverings.

Let us now briefly explain the contents of this paper.

1.1. Let k be a field of characteristic p , which is the residue field of a
complete discrete valuation ring V having K as fraction field. We call
(X , X) «a pair separated locally of finite type over Spec k» if X and X are
k-schemes separated locally of finite type endowed with an open immer-
sion XK X, and we say that J4 (X , X, X) is «a triple separated locally
of finite type over Spf V» if (X , X) is a pair locally of finite type over
Spec k and X is a formal separated V-scheme locally of finite type and
endowed with a closed immersion X K X. Let Xan

K be the rigid analytic
space associated to the generic fiber of X in the sense of M. Raynaud and
let ] X[X (resp. ]X[X) be a tube of X (resp. X) in Xan

K . We denote by j † O] X[X

the sheaf of rings of overconvergent functions on ] X[X along a comple-
ment of X in X. A morphism w : KKJ of triples is a diagram as in 2.3.

Let J4 (X , X, J) be a triple separated locally of finite type over
Spf V and let KQ4 (YQ , YQ , YQ ) be a simplicial triple separated locally of
finite type over J. Then one has a simplicial rigid analytic space ] YQ [YQ
over ] X[X and a sheaf j † O] YQ [YQ

of rings of overconvergent functions on
] YQ [YQ along a complement of YQ in YQ . In this situation we construct a
Čech complex C † (J , KQ ; w †

Q E) and a derived Čech complex
R C † (J , KQ ; w †

Q E) for a sheaf E of coherent j † O] X[X
-modules (4.1 and

4.2). The Čech complex is the usual complex of sheaves on ] X[X for the
simplicial triple wQ : KQKJ and the derived Čech complex is a derived
version of the Čech complex.

We say that wQ : KQKJ is cohomologically descendable (resp. univer-
sally cohomologically descendable) if wQ is exact (Definition 6.1.1) and
the natural morphism

EKR C † (J , KQ ; w †
Q E)

is an isomorphism for any sheaf E of coherent j † O] X[X
-modules (resp. if

wQ is cohomologically descendable after any base change by LKJ of
triples locally of finite type) (Definition ). We also say that a morphism
w : KKJ is cohomologically descendable (resp. universally cohomologi-
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cally descendable) if the Čech diagram

J J K K
J

J
K3J K J

K
J

K
J

R

associated to w (Example 3.1.1 (4)) is so.
Let w : LKK be a morphism of triples separated locally of finite

type over J and suppose that w is universally cohomologically descend-
able. Then, KKJ is universally cohomologically descendable if and only
if LKJ is so (Theorem 6.3.1). This is an expected property for cohomo-
logical descent theory. Since a strict Zariski covering of J (see 2.3.3 and
2.3.4) and a covering of J associated to a finite Zariski covering of X are
universally cohomologically descendable (Propositions 6.2.5 and 6.2.6),
the notion of universally cohomological descendability of a morphism
KKJ is Zariski local both on J and on K. Suppose that K and K8 are
triples separated locally of finite type over J such that Y4Y 8 , both Y
and Y8 are proper over X, and both Y and Y8 are smooth over J around Y
and Y 8. Then KKJ is universally cohomologically descendable if and
only if K8KJ is so by the fibration theorem of tubular neighbourhoods
(Corollary 6.4.2).

The cohomological descent theory of rigid cohomology for étale cov-
erings is as follows. Let w : KKJ be a morphism of triples separated lo-
cally of finite type over Spf V such that Y K X is étale surjective,
w21 (X) 4Y and Y K X is smooth around Y. Then w is universally coho-
mologically descendable (Theorem 7.3.1). Now we give a sketch of the
proof. By the properties of cohomological descent given above, one can
reduce the universally cohomological descendability of w to the case
where w×(X) 4 Y (see 2.3). In this case the natural homomorphism

C † (J , KQ ; w †
Q E) KR C† (J , KQ ; w †

Q E)

is an isomorphism for any sheaf E of coherent j † O] X[X
-modules, as follows

from a theorem on the vanishing of higher cohomology of coherent
sheaves over sheaves of rings of overconvergent functions (Theorems
5.2.1 and 5.2.2). Since there exists a lattice over formal schemes for
sheaves of coherent modules on affinoids, one can reduce our problem to
the faithfully flat descent theorem of coherent sheaves on formal
schemes (Proposition 7.1.2). We also have a version for a morphism w
such that YKX is étale surjective, Y K X is proper and Y K X is smooth
around Y (Theorem 7.4.1). By using a homotopy theory of simplicial



Bruno Chiarellotto - Nobuo Tsuzuki66

triples (Corollary 6.5.4), we obtain more generally that étale-étale and
étale-proper hypercoverings (Definition 7.2.2) are universally cohomo-
logically descendable (Corollaries 7.3.3 and 7.4.3).

L e t J b e a tr i p l e s e p a r a t e d l o c a l l y o f f i n i t e t y p e o v e r S p f V

s u c h t h a t X i s s m o o t h o v e r S p f V a r o u n d X. Le t (E , ˜) be a sh e a f E
o f c o h e r e n t j † O] X[X

- m o d u l e s w i t h a n i n t e g r a b l e c o n n e c t i o n
˜ : EKE7j † O] X[X

j † V 1
] X[X /Spm K . If we replace coherent sheaves by the de

Rham complex associated to the integrable connection (E , ˜) in the de-
rived Čech complex, then we can define a notion of de Rham descent and
universal de Rham descent for simplicial triples over J just as in the case
of the cohomological descent discussed above (Definition 8.3.2).

The typical universally de Rham descendable hypercovering is a con-
stant simplicial triple KDo

KJ associated to a separated morphism KK

KJ of finite type such that X4Y , Y K X is proper and Y K X is smooth
around Y (Corollary 8.3.6). This example plays an important role in the
proof that our definition of rigid cohomology in section 10 coincides with
the original definition of Berthelot. Another important example is that
KKJ is universally cohomologically descendable if and only if it is uni-
versally de Rham descendable (Corollary 8.5.2). As a consequence, étale-
étale and étale-proper hypercoverings are universally de Rham de-
scendable (Theorem 9.1.1).

1.2. In general a scheme over Spec k can not be embedded in a for-
mal smooth scheme over Spf V. To define a notion of universally de
Rham descendable hypercoverings in general cases, we use base
changes. In fact, let (X , X) be a pair separated locally of finite type over
Spec k and let KQ4 (YQ , YQ , YQ ) be a simplicial triple separated locally of
finite type over Spf V such that (YQ , YQ ) is a simplicial pair over (X , X).
We say that KQ is a universally de Rham descendable hypercovering of
(X , X) if, for any triple L4 (Z , Z, Z) locally of finite type over Spf V,
(YQ3X Z , YQ3X Z, YQ3Spec V Z) KL is de Rham descendable (Definition
10.1.3).

Our definition of rigid cohomology uses universally de Rham de-
scendable hypercoverings (10.4). Let (X , X) be a pair separated locally
of finite type over Spec k and let KQ be a universally de Rham descen-
dable hypercovering of (X , X). We define a rigid cohomology
Hrig

l ( (X , X) /K , E) by the cohomology of derived Čech complexes for de
Rham complexes E7j † O] X[X

j † V Q
] X[X /Spm K associated to overconvergent

isocrystals (E , ˜) on (X , X) /K. Then this definition is independent of the
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choice of universally de Rham descendable hypercoverings. For
example, if X is a completion of X , then our rigid cohomology is indepen-
dent of the choice of completions of X and we denote it by H *rig (X/K , E)
as in the cases considered by Berthelot. Since constant simplicial triples
as above are universally de Rham descendable, our rigid cohomology co-
incides with that of Berthelot (Theorem 10.6.1).

Let X be a scheme separated of finite type over Spec k and let
gQ : YQKX be an étale hypercovering. In this case we construct a truncat-
ed universally de Rham descendable hypercovering LQ4 (ZQ , ZQ , ZQ ) of
X such that ZQ is a refinement of YQ over X (Definition 11.3.1) and ZQ is
proper over Spec k (11.4 and 11.5). Using an argument involving limits of
truncations, we obtain a spectral sequence

E1
qr 4Hrig

r (Yq /K , g *q E) ¨ Hrig
q1r (X/K , E)

with respect to the étale hypercovering YQKX for an overconvergent
isocrystal E on X/K (Theorem 11.7.1).

If one consider overconvergent F-isocrystals, then our rigid cohomol-
ogy has a Frobenius structure and it coincides with the Frobenius struc-
ture in Berthelot’s definition. The Frobenius structure commutes with
spectral sequences for étale hypercoverings (Section 12).

1.3. We fix terminology and notations.

1.3.1. All rings in this paper are commutative rings with a unity 1.

1.3.2. Throughout this paper, we fix a rational prime number p. Let
us fix a multiplicative valuation N N on the quotient field Qp of the ring Zp

of p-adic integers. We define a category CDVRZp
as follows.

– An object of CDVRZp
is a complete discrete valuation ring V over

Zp with a multiplicative valuation N N on the field K4K(V) of fractions of
V such that Qp KK is an isometry.

– A morphism of CDVRZp
is an isometric ring homomorphism V K

K W over Zp .

We denote by k(V) the residue field of V and put kNKN4NK 3 N7QN
N ]0(. We regard an object V of CDVRZp

as a p-adic formal algebra over
Zp (See 2.2.).

1.3.3. Let I be a category. We denote by Ob (I), (resp. Mor (I), resp.
MorI (m , n)) the class of objects of I (resp. the class of morphisms of I ,
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resp. the set of morphisms from m to n for m , n�Ob (I)). We denote by
I o the dual category of I.

1.3.4. We denote by D the standard simplicial category:

– Ob (D) consists of sets ]0, 1 , R , n(, which we simply denote by
n and identify with the integer n , for any nonnegative integer n;

– Mor (D) consists of maps h : mKn with h(k) 1h(l) for k1 l.

We denote by h n
l : nKn11, (0 1 l1n11) (resp. j n

l : nKn2

21, (0 1 l1n21)) the monomorphism (coface map) (resp. the epimor-
phism (codegeneracy)) of D with l�h n

l (]0, 1 , R , n() (resp. j n
l (l) 4

4j n
l (l11)).

1.3.5. For any nonnegative integer n , we put D[n] to be the full sub-
category of D whose set of objects consists of 0 , 1 , R , n.

1.3.6. For a complex C Q of sheaves of abelian groups, we denote by
Hq (C Q ) the q-th cohomology sheaf of C Q.

Acknowledgment. This work was done during the stay of second au-
thor at the University of Padova. He expresses his thanks for the hospi-
tality of members of Department of Mathematics. The first author also
thanks the University of Hiroshima for its hospitality.

2. Preliminaries.

We introduce the terminology of triples and recall the definition of
tubes associated to triples, strict neighbourhoods, and sheaves of coher-
ent j † O] X[X

-modules which were studied by Berthelot. (See [7].) In the
absence of explicit mention to the contrary, V (resp. K , resp. k) denotes
an object of CDVRZp

(resp. the field of fractions of V, resp. the residue
field of V). We will deal with tubes associated to V-triples locally of finite
type and prove that the functor j † of taking sheaf of overconvergent sec-
tions commutes with localization. Hence, one can study the behavior of
sheaves of coherent j † O] X[X

-modules by using localization of triples and
reduce to the case of V-triples of finite type.

2.1. We introduce the terminology of «pairs».
We call (X , X) a pair of schemes if X and X are schemes over Spec Fp

with an open immersion XK X. A morphism w : (Y , Y) K (X , X) of pairs
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is a commutative diagram

Y K Y
w
iI Iw

X K X

of Fp-schemes.
Let (X , X) be a pair. A pair (Y , Y) with a morphism (Y , Y) K (X , X) of

pairs is called a pair over (X , X) or an (X , X)-pair. A morphism of pairs
over (X , X) is a morphism of pairs which commutes with structure mor-
phisms. A k-pair is a pair over (Spec k , Spec k).

Let (P) be a property of morphisms of schemes such that (i) (P) is
stable under any base change, (ii) under the assumption that f is (P), g is
(P) if and only if fg is (P), and (iii) an open immersion and a closed immer-
sion are (P). We say that a morphism w : (Y , Y) K (X , X) of pairs is (P) if
w is (P).

We define a fiber product of pairs of (Y , Y) and (Z , Z) over (X , X)
by

(Y , Y)3(X , X) (Z , Z) 4 (Y3X Z , Y3X Z) .

2.2. We recall some notions on formal schemes. In this paper, the
term «formal V-algebra» means a V-algebra with the complete and sep-
arated p-adic topology, that is, a V-algebra A is a formal V-algebra if the
canonical homomorphism A K lim

J
n

A /p n A is an isomorphism. Any homo-

morphism between formal V-algebras is continuous in the p-adic topology.
Let A be a formal V-algebra. A formal A-algebra B is topologically of

finite type if there exists a surjective homomorphism A]x1 , R , xd ( KB
of formal A-algebras, where A]x1 , R , xd ( is a p-adic completion of a
polynomial ring over A with d indeterminates. Suppose that A is noethe-
rian. A formal A-algebra B is topologically of finite type if and only if it
is noetherian and B /p B is of finite type over A /p A [11, Chap. 0, Proposi-
tion 7.5.3]. Hence, every ideal of a formal A-algebra topologically of fi-
nite type is closed in the p-adic topology.

An affine formal V-scheme is a formal spectrum Spf A of a formal
V-algebra A. A formal V-scheme is a topological ringed space with a
covering ]Ul(l which consists of affine formal V-schemes. A morphism
w× : Y K X of formal V-schemes is locally of finite type (resp. of finite
type) if, for any open affine formal subscheme U of X, there exists an
affine covering (resp. a finite affine covering) ]Vl(l of w×21 (U) such that
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G(Vl , OVl
) is topologically of finite type over G(U, OU ) for any l. If a for-

mal V-scheme X is affine and locally of finite type, then X is a formal
spectrum of a formal V-algebra topologically of finite type [11, Chap. 1,
Corollaire 10.6.5].

2.3. We introduce the terminology of «triples locally of finite
type».

We call J4 (X , X, X) a triple if (X , X) is a pair, X is a formal scheme
over Spf Zp and X is a closed subscheme of X 3Spf Zp

Spec Fp . Here Fp is
the field of p elements. For a triple J , we usually use the symbol
(X , X, X). We put EV 4 ( Spec k , Spec k , Spf V) for an object V in
CDVRZp

.
We say that w : KKJ is a morphism of triples if it consists of mor-

phisms w : (Y , Y) K (X , X) of pairs, and a morphism w× : Y K X of formal
Zp-schemes such that the diagram

Y K Y K Y

w
iI wI Iw×

X K X K X

is commutative. For a morphism w of triples, we usually use the symbol
w4 (w

i
, w, w×).

Let J be a triple. A triple K with a morphism KKJ of triples is
called a triple over J or an J-triple. A morphism of triples over J is a
morphism of triples which commutes with structure morphisms. A V-
triple is a triple over EV . Note that, if K is a triple over J , then the natu-
ral morphism Y K Y 3X X is a closed immersion.

We now define several notions used throughout the sequel.

2.3.1. Let (P) be a property of morphisms of schemes and formal
schemes satisfying conditions (i) (P) is stable under any base change, (ii)
under the assumption that f is (P), g is (P) if and only if fg is (P), and (iii)
an open immersion and a closed immersion are (P). We say that a mor-
phism w : KKJ of triples is (P) if w× : Y K X is (P). In this case we some-
times say that an J-triple K is (P).

For example, a morphism w : KKJ of triples is locally of finite type
(resp. of finite type) if and only if w× : Y K X is locally of finite type (resp.
of finite type).
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2.3.2. Let w× : Y K X be a morphism of formal schemes and let Z be
a subset of Y. w× is smooth around Z if there exists an open formal sub-
scheme U of Y such that Z% U and w×NU : U K X is smooth.

2.3.3. A morphism w : KKJ of triples is strict as a morphism of
triples (resp. strict as a morphism of pairs) if Y 4 w×21 (X) and Y4

4 w21 (X) (resp. Y4 w21 (X)).
Let J be a triple and let w× : Y K X be a morphism of formal schemes.

If we put Y 4 w×21 (X), Y4 w×21 (X) and K4 (Y , Y, Y), then the natural
map w : KKJ which is induced from w× is a morphism of triples. We call
K (resp. w) a triple over J induced from Y (resp. a morphism induced
from w×). In particular, if J4EV , K is called a V-triple induced from Y.

2.3.4. A morphism f : TKS of (formal) schemes is a Zariski cover-
ing if T is a disjoint union of open (formal) subschemes and f is a natural
surjective morphism. A Zariski covering f : TKS is finite if T is a finite
disjoint union of open subschemes of S , and a Zariski covering f : TKS
is affine if each component of T is affine.

A morphism w : KKJ of triples is a Zariski covering, (resp. a finite
Zariski covering, resp. an affine Zariski covering) if (i) w : Y K X is so,
(ii) w is strict as a morphism of pairs, and (iii) w× is separated, locally of fi-
nite type and smooth around Y. r

Let K and L be a triple over J. We define a fiber product of triples of
K and L over J by

K3J L4 (Y , Y, Y)3(X , X, X) (Z , Z, Z) 4 (Y3X Z , Y3X Z, Y 3X Z) .

Both projections K3J LKK and K3J LKK are morphisms of triples
over J. It is easily seen that

(1) if K and L satisfies a property (P) as in 2.3.1, then K3J L is (P)
over J;

(2) any property (P) as in 2.3.1 is stable under any base change;
(3) any base change of strict morphisms as a morphism of triples

(resp. pairs) is again so.

2.3.5 DEFINITION. (1) We define a category TRIlft as follows.

– An object is a V-triple J locally of finite type for some object V of
CDVRZp

;
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– a morphism w from a V-triple J locally of finite type to a W-
triple K locally of finite type is a commutative diagram

K K J

I I
EW K EV

of triples. Here the bottom arrow is a morphism induced from a mor-
phism V K W of CDVRZp

.
An object of TRIlft is called an lft-triple We usually denote by J (resp.

w : KKJ) an object JKEV (resp. a morphism as above) of TRIlft , for
simplicity.

(2) Let J be an lft-triple. An lft-triple K with a morphism KKJ

of lft-triples is called an lft-triple over J. A morphism of lft-triples over
J is a morphism of TRIlft which commutes with structure mor-
phisms. r

For example, a category of V-triples locally of finite type is naturally
a subcategory of lft-triples.

In section 10 we will introduce a generalized notion «(X , X)-triples»
over a triple F.

2.4. Let P be a formal V-scheme locally of finite type. We denote by
P K

an (resp. sp : P K
an K P) the rigid analytic space over Spm K associated to

P in Raynaud’s sense [20] (resp. the specialization morphism). (See [3,
Sect. 1].)

Suppose that ]Pa( is a Zariski covering of P. W is an admissible open
subset of P K

an (resp. ]Wb(b is an admissible covering of an admissible
open subset W) if and only if WO P a , K

an is an admissible open subset of
Pa , K

an (resp. ]WbOPa , K
an (b is an admissible covering of WOPa , K

an ) for all a.
P K

an is quasi-separated, and it is separated (resp. quasi-compact) if P

is separated (resp. of finite type) over Spf V. (See [7, 0.1.7, 0.2.4].)
For a locally closed k-subscheme Z in P 3Spf V Spec k ,

]Z[P 4sp21 (Z)

with the induced Grothendieck topology from that of P K
an is called a tube

of Z in P K
an. ]Z[P is an admissible open subset in P K

an [7, 1.1].
Let w : KKJ be a morphism of lft-triples such that J (resp. K) is a

V-triple (resp. a W-triple). Since the canonical morphism KKJ3EV
EW
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is locally of finite type, w induces a commutative diagram

]Y[Y K ]X[X

I I
Spm K(W) K Spm K(V)

of rigid analytic spaces. We denote by

wA: ] Y[Y K] X[X

the induced morphism of rigid analytic spaces. wA is continuous. The cor-
respondence from the category of lft-triples to the category of quasi-sep-
arated rigid analytic spaces is a functor.

2.5. Let J4 (X , X, X ) be a V-triple locally of finite type, in such a
setting we will define by ¯X any scheme-theoretic complement of X in X
(and we will refer to it as the «complement» of X in X, or simply the com-
plement). We recall the definition of strict neighbourhoods of ]X[X in
] X[X [7, 1.2.1 Définition]. A subset V in ] X[X is called a strict neighbour-
hood of ]X[X in ] X[X if ]V , ]¯X[X ( is an admissible covering of ] X[X . Triv-
ially, ] X[X is a strict neighbourhood. Note that the notion of strict neigh-
bourhood does not depend on the choice of complements ¯X and it de-
pends only on the triple J.

2.5.1. LEMMA ([7, 1.2.3 REMARQUE]). With the notation as above, let
I2I
a

Xa be a Zariski covering of X and let Ja4 (Xa , Xa , Xa ) be a triple

over J induced by the morphism XaK X for each a. A subset V of ] X[X

is a strict neighbourhood of ]X[X in ] X[X if and only if VO] Xa [Xa
is a

strict neighbourhood of ]Xa [Xa
in ] Xa [Xa

for all a.

PROOF. The assertion follows from the fact ]] Xa [Xa
(a is an admissi-

ble covering of ] X[X . r

For admissible open subsets V%U of ] X[X , we denote by jV
U : VKU

the open immersion. In the case where U4] X[X we simply put
jV 4 jV

] X[X.
If V and W are strict neighbourhoods of ]X[X in ] X[X , then the inter-

section VOW is also so [7, 1.2.10 Proposition (i)]. Hence, the category of
strict neighbourhoods of ]X[X in ] X[X forms a filtered category. Let F be
a sheaf of abelian groups on a strict neighbourhood U of ]X[X in ] X[X . A
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sheaf of overconvergent sections of F on ] X[X along ¯X is defined
by

jU
† F 4 lim

K
V

jV * ( jV
U )21 F ,

where V runs through all strict neighbourhoods of ]X[X in ] X[X which
are included in U [7, 2.1.1]. If F is a sheaf of rings (resp. A-modules for a
sheaf A of rings on U), then jU

† F is a sheaf of rings (resp. jU
† A-modules).

In the case where U4] X[X we denote by j † the functor j] X[X

† as usual.
Note that our definition is slightly different from the definition in [7,
2.1.1]. The jU

† of [7, 2.1.1] corresponds to jU
21 jU

† in our notation.
We will discuss some properties of jU

† in sections 2.6 and 2.7.

2.6. We will calculate the group of sections of sheaves of overcon-
vergent sections on a quasi-compact admissible open subset. We denote
by p a uniformizer of V. The following construction of UJ , ¯X

2n and UJ , ¯X
1n is

due to Berthelot, cf. [7, 1.1.8].
Let J4 (X , X, X ) be a V-triple of finite type such that X is

affine with A 4G(X, OX ) and let us fix a complement ¯X of X in
X. Since X is a closed subscheme of X 3Spf V Spec k , the homomorphism
A 7V kKG(X, OX ) of k-algebras is surjective. We take lifts
g1 , g2 , R , gs � A of generators of the ideal of definition of ¯X in
X. For n�kNKNO]0 , 1[, we define admissible open subsets Ugi

2n , Ugi
1n

(1 1i1s) and UJ , ¯X
2n , UJ , ¯X

1n of ] X[X by

Ugi
2n

Ugi
1n

UJ , ¯X
2n

UJ , ¯X
1n

4

4

4

4

]x�] X[X N Ngi (x)N2 n , Ngi (x)N2Ngj (x)N for 1 1 j 1 s( ,

]x�] X[X N Ngi (x)N1 n( ,

0
i41

s

Ugi
2n ,

1
i41

s

Ugi
1n .

Indeed, the subset of X K
an which defined by the same inequalities

in the definition of Ugi
2n (resp. Ugi

1n) is an affinoid subvariety. Hence,
Ugi

2n and Ugi
1n are admissible open subsets of ] X[X for all i. Since

X K
an is quasi-separated, both UJ , ¯X

2n and UJ , ¯X
1n are also admissible

open subsets of ] X[X . Moreover, ]Ugi
2n , Ugi

1n N1 1 i 1 s( and
]UJ , ¯X

2n , UJ , ¯X
1n ( are admissible coverings of ] X[X . Therefore, UJ , ¯X

2n

is a strict neighbourhood of ]X[X in ] X[X . Note that UJ , ¯X
1n is the
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closed tube [¯X]X n of radius n and UJ , ¯X
2n is ] X[X 0 ]¯X[X n (]¯X[X n

is an open tube of radius n) in [7, 1.1.8].
The following lemma is easy.

2.6.1. LEMMA. With the notation as above, let W be a subset in Ugi
2d

for some gi and some d�kNKNO]0 , 1[. Then, for any nDd , we have
WOUJ , ¯X

2n 4WOUgi
2n . In particular, if W is affinoid (resp. quasi-com-

pact), then WOUJ , ¯X
2n is also affinoid (resp. quasi-compact).

2.6.2. LEMMA. With the notation as above, let g18 , g28 , R , gs 88 � A be
other lifts of generators of the ideal of definition of ¯X in X and let
Ug 8i

2n , Ug 8i
1n (1 1 i 1 s 8 ) and (UJ , ¯X

2n )8 , (UJ , ¯X
1n )8 be admissible open sub-

sets of ] X[X for g18 , g28 , R , g 8s 8 as above. If nDNpN , then we have

(UJ , ¯X
2n )8

(UJ , ¯X
1n )8

4

4

UJ , ¯X
2n ,

UJ , ¯X
1n .

PROOF. Note that

g 8j 4 !
i41

s

aij gi 1pbj

with some aij , bj � A. If x�Ug 8j
2n , then

Ng 8j (x)N4 N !
i41

s

aij (x) gi (x)1pbj (x)N1 max ]Naij (x) gi (x)N N 1 1 i 1 s( .

Since Naij (x)N1 1 (1 1 i 1 s), there exists at least one i such that
Ngi (x)N2 n. Hence, we have x�UJ , ¯X

2n and (UJ , ¯X
2n )8%UJ , ¯X

2n . If x�UJ , ¯X
1n ,

then

Ngj8 (x)N4 N !
i41

s

aij (x) gi (x)1pbj (x) N1

1 max ]Naij (x) gi (x)N N1 1 i 1 s(N ]NpN( 1 n .

Hence, UJ , ¯X
1n % (UJ , ¯X

1n )8. One can prove the opposite inclusions in the
same way. Therefore, (UJ , ¯X

2n )84UJ , ¯X
2n and (UJ , ¯X

1n )84UJ , ¯X
1n . r

If nDNpN , the admissible open subsets UJ , ¯X
2n and UJ , ¯X

1n are indepen-
dent of the choices of lifts g1 , R , gs � A of generators of the ideal of defi-
nition of ¯X in X. They depend only on the choice of complement ¯X of X
in X. If we chose another complement ¯X 8 , then, for any n sufficiently
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close to 1 , there exist l , m with lEnEm such that UJ , ¯X
2m %UJ , ¯X 8

2n %
%UJ , ¯X

2l .

2.6.3. LEMMA. Let w : KKJ be a morphism V-triple of finite type
such that both X and Y are affine and w is strict as a morphism of
pairs, let ¯X be a complement of X in X and put ¯Y4 w21 (¯X) so that ¯Y
is a complement of Y in Y. If nDNpN , then

wA21 (UJ , ¯X
2n )

wA21 (UJ , ¯X
1n )

4

4

UK , ¯Y
2n

UK , ¯Y
1n .

Moreover, if w× : Y K X is an open immersion and w is strict as a mor-
phism of triples, then we have

UJ , ¯X
2n O] Y[Y

UJ , ¯X
1n O] Y[Y

4

4

UK , ¯Y
2n

UK , ¯Y
1n .

PROOF. Let us put A 4G(X, OX ) and B 4G(Y, OY ) with a homomor-
phism u : A K B of formal V-algebras. Let g1 , R , gs � A be lifts of gen-
erators of the ideal of definition of ¯X in X. Since w21 (¯X) 4¯Y , the im-
ages of g1 , R , gs in B are lifts of generators of the ideal of definition of
¯Y in Y. The assertion follows from the fact that u(gi )(y) 4gi (w

A(y) ) for
any y�] Y[Y and any i. r

From now on, let J4 (X , X, X ) be a V-triple locally of finite type and
let ¯X be a complement of X in X. Let ]Xa(a�I be an affine Zariski cover-
ing of X, let Ja be the induced triple over J from XaK X and put ¯Xa4

4¯XOXa . For n�kKO]NpN , 1[, we define subsets of ] X[X as fol-
lows:

UJ , ¯X
2n

UJ , ¯X
1n

4

4

0
a�I

UJa , ¯Xa

2n

0
a�I

UJa , ¯Xa

1n .

2.6.4. LEMMA. With the notation as above, suppose that nDNpN.
Then we have

UJa , ¯Xa

2n

UJa , ¯Xa

1n

4

4

UJ , ¯X
2n O] Xa [Xa

UJ , ¯X
1n O] Xa [Xa

.
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PROOF. Let us put Jab4Ja3J Jb for a and b. We have only to prove
that UJab , ¯Xab

2n 4UJa , ¯Xa

2n O] Xab [Xab
and UJab , ¯Xab

1n 4UJa , ¯Xa

1n O] Xab [Xab
for

any a and b.
Let Y be an open affine formal subscheme of Xab and let K be a triple

over Jab induced from Y K Xab . Then we have UJ , ¯X
2n O] Y[Y 4UK , ¯Y

2n and
UJ , ¯X

1n O] Y[Y 4UK , ¯Y
1n by Lemma 2.6.3. If Y varies all open affine formal

subschemes of Xab , we have the desired formulas. r

Lemmas 2.5.1 and 2.6.4 imply the following proposition.

2.6.5. PROPOSITION. With the notation as above, suppose that nD

DNpN. Then ]UJ , ¯X
2n , UJ , ¯X

1n ( is an admissible covering of ] X[X . In partic-
ular, UJ , ¯X

2n is a strict neighbourhood of ]X[X in ] X[X . r

The following lemma is a locally of finite type version of [7, 1.2.5
Proposition (i)]. However, [7, 1.2.5 Proposition (ii)] does not apply to an
arbitrary covering locally of finite type. Let us consider the situation as
in Lemma 2.5.1. Unfortunately, for an arbitrary collection ]Va(a such
that each Va is a strict neighbourhood of ]Xa [Xa

in ] Xa [Xa
, we can not find

a strict neighbourhood V of ]X[X in ] X[X with VO] Xa [Xa
%Va for all a.

2.6.6. LEMMA. With the notation as above, we have the follow-
ing:

(1) Let W be a quasi-compact subset of ]¯X[X . Then there exists d�
�kNKNO]NpN , 1[ such that W%UJ , ¯X

1d .
(2) Let W be a quasi-compact admissible open subset of ] X[X . For

any strict neighbourhood V of ]X[X in ] X[X , there exists n�kNKNO
O]NpN , 1[ such that

WOUJ , ¯X
2n %WOV .

PROOF. (1) Since W is quasi-compact, there exists a finite subset I0 of
I such that W% 0

a�I0
] Xa [Xa

. Since WO] Xa [Xa
is quasi-compact (see 2.6.1);

for any a�I0 , it follows from the maximum principle (Lemma 2.6.7 be-
low) that there exists d a in kNKNO]NpN , 1[ such that

WO] Xa [Xa
%U

J , ¯X
1d a .

If we put d4max ]d a Na�I0 (, we have W%UJ , ¯X
1d .
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(2) Since W is quasi-compact, there exists a finite subset I0 of I such
that W% 0

a�I0
] Xa [Xa

. Let ]Wab(b be a finite affinoid admissible open cov-

ering of WO] Xa [Xa
such that ]Wab(b is a refinement of the admissible

covering ]WOVO] Xa [Xa
, WO]¯Xa [Xa

( of WO] Xa [Xa
. Since WO

O] Xa [Xa
is quasi-compact by Lemma 2.6.1, such a covering always exists

for any a. Then there exists d a�kNKNO]NpN , 1[ such that

Wab%UJa , ¯Xa

1d a

for all b with Wab%]¯Xa [Xa
and any a�I0 by (1). We put d4max ]d a Na�

�I0 (. If nDd , then WOUJa , ¯Xa

2n %WOVO] Xa [Xa
for any a�I0 . Since

W% 0
a�I0

] Xa [Xa
, we have WOUJ , ¯X

2n %WOV. r

2.6.7. LEMMA. (The maximum principle [8, 9.1.4 Lemma 6]). Let X be
an affinoid variety over Spm K and let g�G(X , OX ). Suppose that Y is
an affinoid subvariety with Y%X(NgNE1) 4 ]x�X N Ng(x)NE1(.
Then there exists a real number n�kNKNO]0 , 1[ such that

Y%X(NgN1n) 4 ]x�X N Ng(x)N1n( .

2.6.8. PROPOSITION. With the notation as above, let W be a quasi-
compact admissible open subset of ] X[X . For a sheaf of abelian groups F

on a strict neighbourhood U of ]X[X in ] X[X , we have

H q (W , jU
† F ) ` lim

nK12
H q (W , jUOUJ , ¯X *

2n ( jUOUJ , ¯X
2n

U )21 F )

for any q , where n runs through n�kNKNO]NpN , 1[. In particular, we
have

G(W , jU
† F ) 4 lim

nK12
G(WOUOUJ , ¯X

2n , F ) .

PROOF. Since W is quasi-compact and quasi-separated, cohomologi-
cal functors and filtered direct limits commute with each other [1, VI,
Corollaire 5.3]. Hence we have

H q (W , jU
† F ) ` lim

K
V

H q (W , jV * ( jV
U )21 F ) ,

where V runs through all strict neighbourhoods of ]X[X in U. Let V be a
strict neighbourhood of ]X[X in U. Then there exists a real number
n�kNKNO]NpN , 1[ such that WOU 2n%WOV by Lemma 2.6.6. Since
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VOU 2n is also a strict neighbourhood of ]X[X in ] X[X which is inside U
[7, Proposition 1.2.10], we have the assertion. r

Since any rigid analytic space has an admissible covering which con-
sists of open affinoid subvarieties, one can check the vanishing of
sheaves on tubes using the proposition just proved.

2.7. We prove some properties of the functor j †. First we introduce
a functor f! of extension by zero outside an open set. Let f : SKT be an
open immersion of rigid analytic spaces. For a sheaf F of abelian groups
on S , we define a sheaf f! F by the sheaf abelian groups on T which is as-
sociated to the presheaf

W O
.
/
´

G(W , F )

0

if W%S

if W + S

for any admissible open subset W of T. f! F is a subsheaf of F by [8, 9.2.2
Lemma 3] and there exists a canonical homomorphism f! F K f* F such
that f 21 f! F K f 21 f* F ` F. If F is a sheaf of rings (resp. A-modules),
then f! F is a sheaf of rings (resp. f! A-modules). The following lemma is
easy.

2.7.1. LEMMA. With the notation as above, we have
(1) f! is exact;
(2) f! is a left adjoint of f 21.

By (2) of the above lemma there exists a canonical homomorphism
f! ( f 21 A) K A of sheaves of rings.

Now let J4 (X , X, X) be a V-triple locally of finite type and let us fix
a complement ¯X of X in X.

2.7.2. PROPOSITION. With the notation as above, let V%U be strict
neighbourhoods of ]X[X in ] X[X and let A be a sheaf of rings on U.

(1) [7, 2.1.1]. Let F (resp. G) be a sheaf of A-modules (resp. ( jV
U)21 A-

modules). Then the natural homomorphism jV
† ( ( jV

U )21 F ) K jU
† F (resp.

jV
† G K jU

† ( jV *
U G)) is an isomorphism. The canonical homomorphisms

jV!
U G K A 7jV!

U ( ( jV
U )21 A) jV!

U G K jV *
U G induce isomorphisms jU

† ( jV!
U G) K

`

K
`

jU
† (A 7jV!

U ( ( jV
U )21 A) jV!

U G) K
`

jU
† ( jV *

U G).
(2) [7, 2.1.1]. If F is a sheaf of A-modules, then we have j]¯X[X

21 ( jU
† F ) 4

40.
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(3) [7, 2.1.3 Proposition (i)]. Let F be a sheaf of A-modules. The natu-
ral A-homomorphism jU! F K jU

† F induced by the natural transform
jU! K jU * is surjective. In particular, if ( j]¯X[X OU

U )21 F 40, then the natu-
ral homomorphism jU! F K jU

† F is an isomorphism.
(4) Let F be a sheaf of A-modules and let G be a sheaf of jU

† A-modu-
les. Then the map

HomA (F, jU
21 G) K

jU
†

HomjU
†

A ( jU
† F, G)

induced by the natural transform jU
† jU

21 K id is bijective. In other
words, jU

† is a left adjoint of the functor jU
21 from the category of sheaves

of j † A-modules to that of sheaves of A-modules.
(5) For sheaves F and G of A-modules, the homomorphism

jU
† (F 7A G) K jU

† F 7jU
†

A jU
† G

which is induced from the composition jU! (F 7A G) K
`

jU! F 7jU! A jU! G K

KjU
† F 7jU

†
A jU

† G of homomorphisms ((3) and Lemma 2.7.1 (2)) is an
isomorphism.

(6) [7, 2.1.3 Proposition (iii)]. The functor jU
† is exact from the catego-

ry of sheaves of A-modules to the category of sheaves of jU
† A-modu-

les.

PROOF. (1) Since a finite intersection of strict neighbourhoods is also
a strict neighbourhood, the assertion is easy by definition.

(2) Let W be a quasi-compact admissible open subset of ] X[X such
that W is included in ]¯X[X . Then there exists a strict neighbourhood V
of ]X[X in ] X[X such that V%U and VOW4¯ by Proposition 2.6.5 and
Lemma 2.6.6. Hence the assertion follows from the definition of jU

† .
(3) Let W be a quasi-compact admissible open subset of ] X[X . A sec-

tion s of jU
† F on W is represented by a section t�G(WOUJ , ¯X

2n , F ) for
some n sufficiently close to 1 with WOUJ , ¯X

2n %WOU by Proposition
2.6.8 and Lemma 2.6.6. Since t�G(WOUJ , ¯X

2n , jU! F ) goes to sNWOUJ , ¯X
2n

and sNWOUJ,¯X
1n 40 by (2), jU! F KjU

† F is surjective by Proposition 2.6.5.
Suppose that ( j]¯X[X OU

U )21 F 40. Both sides are 0 on ]¯X[X . Let W be
a quasi-compact admissible open subset of U. Since G(WOUJ , ¯X

1n , F ) 4

40, the restriction map G(W , F ) KG(WOUJ , ¯X
2n , F ) induces an isomor-

phism by Proposition 2.6.5. Hence the natural homomorphism jU! F K

KjU
† F is an isomorphism by Proposition 2.6.8.
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(4) If G is a sheaf of jU
† A-modules, then any homomorphism jU! F K G

uniquely factors through jU
† F K G via the surjection jU! F K jU

† F by (1),
(2) and (3). The assertion easily follows from Lemma 2.7.1.

(5) We check the universality of the functor jU
† in (4). Let H be a sheaf

of jU
† A-modules. We also regard H as a sheaf of jU! A-modules through

the natural homomorphism jU! A K jU
† A. Since jU

† H 4 H, the set of jU
† A-

bilinear homomorphisms from jU
† F 3jU

† G to H is naturally bijective
to the set of jU! A-bilinear homomorphisms from jU! F 3jU! G to H by
(2) and (3). Hence we have a bijection Homj † A ( jU

† F 7j † A jU
† G, H) K

`

K
`

HomjU! A ( jU! (F 7A G), H) by the universality of tensor products. Then
the assertion follows from (4).

(6) Since the exactness is stable under taking direct limits, we have
only to prove that the surjectivity of F K G of sheaves of A-modules im-
plies the surjectivity of jU

† F K jU
† G. The assertion follows from (3) and

Lemma 2.7.1 (1). r

Let w : KKJ be a morphism of V-triples locally of finite type such
that w is strict as a morphism of triples and w× : Y K X is an open immer-
sion. If V is a strict neighbourhood of ]X[X over ] X[X , then VO] Y[Y is a
strict neighbourhood of ]Y[Y over ] Y[Y (see 2.4). Hence, for any sheaf F

of abelian groups on ] X[X , there exists a natural homomorphism

wA21 ( j † F ) K j † (wA21 F ) .

2.7.3. PROPOSITION. With the notation as above, the morphism
wA21 ( j † F ) K j † (wA21 F ) above is an isomorphism.

PROOF. Let W be a quasi-compact admissible open subset of ] Y[Y .
For a strict neighbourhood V of ]Y[Y in ] Y[Y , there exists a strict neigh-
bourhood U of ]X[X in ] X[X such that UOW%VOW by Proposition 2.6.5
and Lemma 2.6.6 (2). Since UO] Y[Y is a strict neighbourhood of ]Y[Y in
] Y[Y , the assertion follows from Proposition 2.6.8. r

The proposition above means that the functor j † commutes with local-
izations on X. By Proposition 2.7.3 and Lemma 2.5.1 we can reduce many
problems regrading sheaves of overconvergent sections on tubes to
those of the case where J is a V-triple of finite type.

The following proposition was proved in Berthelot’s unpublished note [6].
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2.7.4. PROPOSITION. Let J be a V-triple locally of finite type with a
complement ¯X of X in X. Let F be a sheaf of abelian groups on ] X[X

such that j]¯X[X

21 F 40. Then, for any strict neighbourhood V of ]X[X in
] X[X , we have

Rq jV * ( jV
21 F ) 4

.
/
´

F

0

if q40

if qc0 .

PROOF. Since ]V , ]¯X[X ( is an admissible covering of ] X[X , it is suf-
ficient to calculate the cohomology sheaves both on V and on ]¯X[X . Then
it is clear on V since jV is the identity. Both sides are zero on ]¯X[X by the
hypothesis on F. Hence, we have proved the assertion. r

2.8. Let w : KKJ be a morphism of lft-triples, let ¯X and ¯Y be
complements of X (resp. Y) in X (resp. Y) with w21 (¯X) %¯Y , and let A

(resp. B) be a sheaf of rings on ] X[X (resp. ] Y[Y) with a homomorphism
wA21 (A) K B. For a strict neighbourhood V of ]X[X in ] X[X , the inverse
image wA21 (V) is a strict neighbourhood of ]Y[Y in ] Y[Y since wA is continu-
ous [7, 1.2.7 Proposition]. Hence, we have a natural homomorphism

wA21 ( j † A) K j † B

of sheaves of rings.
Let F be a sheaf of A-modules. The inverse image functor w † as a

sheaf of overconvergent sections along ¯Y with respect to wA21 ( j † A) K

Kj † B is defined by

w † F 4 j † (B 7wA21 (A) w
A21 F )

[7, 2.1.4 Proposition]. Then, there exists a natural homomorphism

j † B 7wA21 ( j † A) w
A21 ( j † F ) Kw † F

of sheaves of j † B-modules.

2.8.1. PROPOSITION [7, 2.1.4 Proposition]. With the notation as above,
suppose that w is strict as a morphism of pairs. If F is a sheaf of A-
modules, then the homomorphism j † B 7wA21 ( j † A) w

A21 ( j † F ) Kw † F is an
isomorphism.

PROOF. First we prove that the natural homomorphism
wA21 ( j † F ) K j † (wA21 F ) is an isomorphism. Suppose that G is a sheaf of
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j † (wA21 A)-modules. Then wA* G is a sheaf of j † A-modules by the canonical
homomorphism j † A K wA* j † (wA21 A) and we have

HomwA21 ( j † A) (w
A21 ( j † F ), G) 4Homj † A ( j † F, wA* G) 4HomA (F, wA* G) 4

4HomwA21 A (wA21 F, G) 4Homj † (wA21 A) ( j † (wA21 F ), G)

by adjoints and Proposition 2.7.2 (4). Hence, wA21 ( j † F ) K j † (wA21 F ) is an
isomorphism.

We put (A, F ) 4 (Z] X[X
, A). Since w is strict as a morphism of pairs,

we have j]¯Y[Y

21 (wA21 ( j † A) ) 40. Hence the universality of j † in Proposition
2.7.2 (4) implies that the natural homomorphism wA21 ( j † A) K j † (wA21 A)
is an isomorphism.

Finally we prove the general cases. Since there exists natural isomor-
phisms wA21 ( j † A) ` j † (wA21 A) and wA21 ( j † F ) ` j † (wA21 F ), we have iso-
morphisms

j † B 7wA21 ( j † A) w
A21 ( j † F ) ` j † B 7j † (wA21 A) j † (wA21 F ) ` j † (B 7wA21 A wA21 F )

by Proposition 2.7.2 (5). This completes the proof. r

2.9. Let J be a V-triple locally of finite type and let A be a sheaf of
rings on ] X[X . We denote by Coh (A) the category of coherent sheaves of
A-modules.

We say that A is a sheaf of coherent rings if A is a sheaf of coherent
A-modules. For example, j † O] X[X

is a sheaf of coherent rings by Proposi-
tion 2.7.3 and [7, 2.1.9 Proposition (i)]. Suppose that A is a sheaf of coher-
ent rings. Then E is a sheaf of coherent A-modules if and only if E is a
sheaf of A-modules of finite presentation, that is, there exists an admis-
sible covering ]Ul(l of ] X[X such that ENUl

is a cokernel of some homo-
morphism Am NUl

K An NUl
.

Let E be a sheaf of j † O] X[X
-modules. E is coherent if and only if, for

any strict morphism of triples w : KKJ and such that Y is an open for-
mal subscheme of X of finite type over Spf V, there exists a strict neigh-
bourhood U of ]Y[Y in ] Y[Y and a sheaf E of coherent OU-modules with
wA21 E` jU

† E. If W : EKF is a homomorphism of sheaves of coherent
j † O] X[X

-modules, then, for any strict morphism w : KKJ as a morphism
of triples such that Y is an open formal subscheme of X which is of finite
type over Spf V, there exist a strict neighbourhood U of ]Y[Y in ] Y[Y and
a homomorphism c : E K F of sheaves of coherent OU-modules with
wA21 (W) 4 jU

† (c) [7, 2.1.10 Proposition].
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2.9.1. LEMMA ([7, 2.1.11 Corollaire]). Let J be a V-triple locally of fi-
nite type. Then the restriction functor

j *(4 j] X[X

21 ) : Coh ( j † O] X[X
) KCoh (O]X[X

)

is exact and faithful.

2.10. Let w : KKJ be a morphism of lft-triples and let A (resp. B)
be a sheaf of rings on ] X[X (resp. ] Y[Y) with a homomorphism wA21 (A) K

K B. For a sheaf F of A-modules, we define the inverse image sheaf wA* F

with respect to wA21 (A) K B by

wA* F 4 B 7wA21 A wA21 F .

Suppose that B is a sheaf of coherent rings. Then, if F is a sheaf of coher-
ent A-modules, wA* F is a sheaf of coherent B-modules.

Now we consider the case where A 4 j † O] X[X
and B 4 j † O] Y[Y

. Let E
be a sheaf of coherent j † O] X[X

-modules and let E be a sheaf of coherent
OU-modules for a strict neighbourhood U of ]X[X in ] X[X such that E`

`jU
† E ` j † ( jU! E) ` j † (O] X[X

7jU! OU
jU! E) (locally on X such U and E always

exist). Applying j † wA* to the natural homomorphism O] X[X
7jU! OU

jU! E KE ,
we obtain a homomorphism

w † (O] X[X
7jU! OU

jU! E) K wA* E

of j † O] Y[Y
-modules by Proposition 2.7.2 (3). Note that wA*(O] X[X

7
7jU! OU

jU! E) 4 O] Y[Y
7wA21 ( jU! OU ) w

A21 ( jU! E) is coherent on the strict neigh-
bourhood wA21 (U) of ]Y[Y in ] Y[Y . If J is a V-triple of finite type for some
object V of CDVRZp

, the left-hand side does not depend on the choice of
U and E.

2.10.1. PROPOSITION. With the notation as above, the homomor-
phism above is an isomorphism.

PROOF. Since both wA† jU! and wA* are right exact by Proposition 2.7.2
(6) and Lemma 2.7.1 (2), both sides are sheaves of coherent j † O] Y[Y

-mod-
ules. The homomorphism is an isomorphism on ]Y[Y . Hence the assertion
follows from Lemma 2.9.1. r

In this paper we use the notation w † E for the inverse image wA* E for
a sheaf of coherent j † O] X[X

-modules because we want to stress that the
inverse image is a sheaf of overconvergent sections.
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2.10.2. PROPOSITION. Let J and K be V-triples locally of finite type
and let w : KKJ be a morphism of finite type such that

(i) w× : Y K X is étale around Y ;

(ii) w : Y K X is proper;

(iii) w
i

: YKX is an isomorphism.

Then we have the following:
(1) The inverse image functor w † gives an equivalence

Coh ( j † O] X[X
) K

`

Coh ( j † O] Y[Y
)

of categories and the direct image functor wA* is a quasi-inverse of w †.
(2) Let G be a sheaf of abelian groups on ] Y[Y such that j]¯Y[Y

21 G 40,
where ¯Y is a complement of Y in Y. Then we have Rq wA* G 40 for any
qD0.

PROOF. Since the problem is local on X, we may assume that both J

and K are V-triples of finite type by Proposition 2.7.3. Then there exist a
strict neighbourhood U of ]X[X in ] X[X and a strict neighbourhood V of
]Y[Y in ] Y[Y such that wA induces an isomorphism from V to U [7, 1.3.5
Théorème].

(1) We prove that wA* is a quasi-inverse of w †. Let E be a sheaf of co-
herent j † O] X[X

-modules such that E` jW
† E for a strict neighbourhood W

of ]X[X in U and a sheaf E of coherent OW-modules. In this situation
w † E` jW

† E, where we identify W with wA21 (W)OV through wA. On the
other hand, if F is a sheaf of coherent j † O] Y[Y

-modules such that F` jW
† F

for a strict neighbourhood W of ]Y[Y in V and a sheaf F of coherent OW-
modules, then we have wA* F` jW

† F. Here we identify W with wA21 (W)OV
through wA. Hence, wA* F is coherent and wA* is a quasi-inverse of w †.

(2) Since the natural homomorphism G KRjV * ( jV
21 G) is an isomor-

phism by Proposition 2.7.4, we have

Rq wA* G `Rq (wA jV )*( jV
21 G)

for any q. It vanishes on U for any qD0 since wA jV is an isomorphism from
V to U and it vanishes on ]¯X[X for any q since j]¯Y[Y

21 G 40. Hence, Rq wA* G

vanishes for any qD0. r
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2.11. We give a resolution of sheaves on a rigid analytic space using
the Čech complex for sheaves. We will construct a Čech complex for gen-
eral simplicial tubes in 3.9. First we fix our notation.

Let I2I
a�I

wa : I2I
a

XaKX be a covering of schemes (resp. rigid analytic

spaces, resp. triples). We denote by

wa 0 R a r
: Xan0 R a r

KX

the open immersion from the intersection of Xa 0
, Xa 1

, R , and Xa r
to X.

Then we have a Čech diagram

X J I2I
a 0

Xa 0
K
J

J I2I
a 0 , a 1

Xa 0 a 1
J
K
J

K
J

R ,

for the morphism I2I
a

wa : I2I
a

XaKX. Let A be a sheaf of rings on X. For

any sheaf F of A-modules on X , we will denote by C Q (]Xa(a , F ) the Čech
complex of sheaves with respect to ]Xa(a :

0 K»
a 0

wa 0*
w 21

a 0
F K »

a 0 , a 1

wa 0 a 1*
w 21

a 0 a 1
F K »

a 0 , a 1 , a 2

wa 0 a 1 a 2*
w 21

a 0 a 1 a 2
F KR .

Here »
a 0

wa 0*
w 21

a 0
F is located at degree 0 and each coboundary map is an

alternating sum which is induced by the Čech diagram above as usual
(see 3.9). Then, there is a natural morphism

F K C Q (]Xa(a , F )

of complexes of sheaves of A-modules, where we regard F a complex
which is concentrated at degree 0.

If the index set I is well-ordered, we denote by C Q
alt (]Xa(a , F ) the al-

ternating Čech complex of sheaves with respect to ]Xa(a :

0K»
a 0

wa 0*
w 21

a 0
FK »

a 0Ea 1

wa 0 a 1*
w 21

a 0 a 1
FK »

a 0Ea 1Ea 2

wa 0 a 1 a 2*
w 21

a 0 a 1 a 2
FKR .

Then, there also exists a natural morphism

F K C Q
alt (]Xa(a , F )

of complexes of sheaves of A-modules.
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2.11.1. LEMMA. With the notation as above, the natural mor-
phism

F K C Q (]Xa(a , F )

is a quasi-isomorphism. The same result holds for alternating Čech
complexes.

PROOF. The q-th cohomology sheaf Hq (C Q (]Xa(a , F ) ) of the Čech
complex is the sheaf associated to the presheaf

U O H q (G(U , C Q (]Xa(a , F ) ) )

for any admissible open subset U of X. So it is sufficient to prove
that

H q (G(U , C Q (]Xa(a , F ) ) ) 4
.
/
´

G(U , F )

0

if q40

if qD0 .

for any b�I and any admissible open subset U of Xb . In the case where
q40 the required identity follows from the axioms defining sheaves. Let
us fix an element b of I and an admissible open subset U of Xb : the proof
is then analogous to [14], III, 4.2. r

2.12. From Proposition 2.7.3 and Lemma 2.11.1 we have

2.12.1. PROPOSITION. Let X be a V-triple locally of finite type, let
]Xa(a be a Zariski covering of X and let I2I

a
wa : I2I

a
JaKJ be a strict

morphism of triples which is induced from ]Xa(a . Let A be a sheaf of
rings on ] X[X and let F be a sheaf of A-modules. Then the se-
quence

0 K j † F K»
a 0

wAa 0*
wa 0

† F K

K »
a 0 , a 1

wAa 0 a 1*
wa 0 a 1

† F K »
a 0 , a 1 , a 2

wAa 0 a 1 a 2*
wa 0 a 1 a 2

† F KR

of j † A-modules which is induced from the Čech diagram for
I2I
a

wa : I2I
a

JaKJ is exact. The same holds for alternating complexes.

Let X be a V-triple locally of finite type and let ]Xa( be a finite
Zariski covering of X. We put Ja4 (Xa , X, X) and denote by wa : JaKJ
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the structure morphism. Let A be a sheaf of rings on ] X[X and let F be a
sheaf of A-modules. Then we have a sequence

0 K j † F K»
a 0

wa 0
† F K »

a 0 , a 1

wa 0 a 1
† F K »

a 0 , a 1 , a 2

wa 0 a 1 a 2
† F KR(̃ )

of sheaves of j † A-modules which is induced from the Čech diagram for
I2I
a

wa : I2I
a

JaKJ.

2.12.2. PROPOSITION ([7, 2.1.8 Proposition, Remarque]). With the no-
tation as above, the sequence (̃ ) is exact. The same holds in the alter-
nating case.

PROOF. Since the problem is local on X by Proposition 2.7.3, we may
assume that X is affine. Since j † ( j † F ) 4 j † F and wa 0 R a r

† ( j † F ) 4

4 wAa 0 R a r
21 j † ( j † F ) 4 wAa 0 R a r

21 j † F 4wa 0 R a r
† F by Propositions 2.7.2 (3) and

2.8.1, we may assume that j † F 4 F.
Let us fix a complement ¯Xa of Xa in X, put ¯X41

a
¯Xa so that it is a

complement of X in X and define a complement ¯Xa 0 R a r
4 0

l40

r

¯Xa l
of

Xa 0 R a r
in X.

We let UJ , ¯X
2n (resp. Ua 0 R a r

2n ) be the strict neighbourhood of ]X[X (re-
sp. ]Xa 0 R a r

[X) in ] X[X with respect to ¯X (resp. ¯Xa 0 R a r
) as in 2.6. We de-

note by j n : UJ , ¯X
2n K] X[X (resp. ja 0 R a r

n : 1
l40

r

Ua l
2nK] X[X) the open immer-

sion of rigid analytic spaces.
Suppose that ga , 1 , R , ga , sa

�G(X, OX ) are lifts of generators of the
ideal of definition of ¯Xa in X, then 1

a
] ga , 1 , R , ga , sa

( is a set of lifts of

generators of the ideal of definition of ¯X in X and
] ga 0 , i0

ga 1 , i1
R ga r , ir

N1 1il 1sl for 0 1 l1r( is a set of lifts of generators
of the ideal of definition of ¯Xa 0 R a r

in X. Hence we have

UJ , ¯X
2n 40

a
Ua

2n

1
l40

r

Ua l
2n%Ua 0 R a r

2n r
% 1

l40

r

Ua l
2n r

for any n sufficiently close to 1 by definition.
Note that j]¯X[X

21 F 40 because j † F 4 F by our assumption. Since UJ , ¯X
2n
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is a strict neighbourhood of ]X[X in ] X[X , we have an exact se-
quence

0 K j*
n ( j n )21 F K»

a 0
ja 0*

n ( ja 0
n )21 F K

K »
a 0 , a 1

ja 0 a 1*
n ( ja 0 a 1

n )21 F K »
a 0 , a 1 , a 2

ja 0 a 1 a 2*
n ( ja 0 a 1 a 2

n )21 F KR

of sheaves of A-modules.
Since UJ , ¯X

2n is a strict neighbourhood of ]X[X in ] X[X (Proposition
2.6.5), we have

j † F ` lim
nK12

j*
n ( j n )21 F

by Proposition 2.6.8 and Lemma 2.6.6 (2). We also have

wa 0 R a r
† F ` lim

nK12
ja 0 R a r *

n ( ja 0 R a r
n )21 F

by the inclusion relations above. Since a filtered inductive limit pre-
serves exactness, we have the desired exactness. r

3. Diagrams of triples.

In this section we will deal with diagrams of triples and associated di-
agrams of tubes following [1, VI, 7], [15, VI] and [2, V, 3.4]. In 3.10 we
discuss a homotopy theory for simplicial triples and simplicial tubes (see
[1, Vbis , 3.0]).

3.1. Let I be a small category and let E be an lft-triple. We say that
a covariant functor

JQ : IKTRIlft

is a diagram of lft-triples over E indexed by I , which we usually denote
by (JQ , I). We denote by Jn 4 (Xn , Xn , Xn ) the corresponding lft-triple

for an object n of I , and by h JQ4 (h
i

JQ , hJQ , h×JQ ) : Jm KJn the correspond-
ing morphisms of lft-triples for a morphism h : mKn of I. We fix a com-
plement ¯Xn of Xn in Xn for each n. Note that «¯XQ» is not a diagram of
schemes in general.

Let JQ and KQ be diagrams of lft-triples over E indexed by small cate-
gories I and J , respectively. We say that ( fQ , t) : (KQ , J) K (JQ , I) is a
morphism of diagrams of triples over E if it consists of a functor t : JKI
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of categories and a morphism fn : Kn KJt(n) of lft-triples over E for any
object n of J such that the diagram

Km K
fm

Jt(m)

h KQI It(h)JQ

Kn K
fn

Jt(n)

is commutative for any morphism h : mKn of J.
Let (P) be a property of morphisms of schemes and formal schemes

such that (i) (P) is stable under any base change, (ii) under the condition
f is (P), g is (P) if and only if fg is (P), and (iii) an open immersion and a
closed immersion are (P). We say that a morphism (fQ , t) : (KQ , J) K

K (JQ , I) of diagrams of triples locally of finite type is (P) if fn : Kn KJt(n) is
(P) for any object n of I.

If there is no confusion, we simply denote diagrams of lft-triples and
their morphisms without the index categories. If the target category is a
category of E-triples locally of finite type, we say that JQ is a diagram of
E-triples locally of finite type.

3.1.1. EXAMPLE. (1) Let 0 be a category whose set of objects consists
of a unique set 0 and whose set of morphisms consists of the identity id0 .
Then the category of diagrams of lft-triples over E indexed by 0 is that
of lft-triples over E.

(2) Let I be a small category and let J be an lft-triple over E. We de-
note by JI

Q the constant diagram of lft-triples over E for J indexed by I:
JI

n 4J for any object n of I and h JQ
I 4 idJ for any morphism h of I. If we

regard J as a diagram of lft-triples over E indexed by 0 as in (1), then
there exists a unique morphism

e Q : JI
QKJ

of diagrams of lft-triples over E such that e n is the identity for each n.
Let (KQ , I) be a diagram of lft-triples over J. If wn : Kn KJ is

a structure morphism, then the set ]wn ( induces a morphism

wQ : KQKJ

of diagrams of lft-triples over E. We define a morphism

wQ
I : KQKJQ

I
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of diagrams of triples indexed by I by wn
I 4wn for an object n.

Then wQ4e Q wQ
I .

(3) Suppose that E is a V-triple locally of finite type. Let (JQ , I) and
(KQ , J) be diagrams of E-triples locally of finite type. We define the fiber
product of (JQ , I) and (KQ , J) over E by

(JQ , I)3E (KQ , J) 4 (JQ3E KQ , I3J) .

One can easily check that each of the two projections

pr1 4 ( pr1 , pr1 ) : (JQ , I)3E (KQ , J) K (JQ , I)

pr2 4 ( pr2 , pr2 ) : (JQ , I)3E (KQ , J) K (KQ , J)

is a morphism of diagrams of E-triples locally of finite type.
Suppose that I4J. We define a diagonal diagram (diag (JQ3E KQ ), I)

inside (JQ3E KQ , I3I) by

– diag (JQ3E KQ )n 4Jn 3E Kn for any object n of I;
– h diag 4h JQ3h KQ for any morphism h of I.

Then the natural morphism diag (JQ3E KQ ) KJQ3E KQ induced by a di-
agonal morphism IKI3I is a morphism of diagrams of E-triples locally
of finite type.

(4) We say that a diagram JQ of lft-triples over E indexed by the dual
category D o of the standard simplicial category D (see 1.3.4) is a simpli-
cial lft-triple over E. We also say that a diagram JQ of lft-triples over E

indexed by (D r )o is an r-simplicial lft-triple over E , where D r is a prod-
uct of r-copies of D. If r40, we put D 0 4 0.

(5) Let w : KKJ be a morphism of E-triples locally of finite type.
We define Kn to be the fiber product of n11 copies of K over J , and put
wn : Kn KJ the structure morphism.

We define a functor KQ from D o to the category of E-triples locally of
finite type as follows: Kn is as above for any nonnegative integer n , and
h KQ : Km KKn by (y0 , y1 , R , ym ) O (yh(0) , yh(1) , R , yh(n) ) for any mor-
phism h : nKm in D. Then KQ is a simplicial E-triple locally of finite
type over J and we call it the Čech diagram for w : KKJ.

(6) Let n be a nonnegative integer. We say that a covariant functor
from the dual category D[n]o of D[n] (see 1.3.5) to the category of lft-
triples is an n-truncated simplicial lft-triple.
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The forgetful functor

( simplicial E-triples locally
of finite type)

JQ

K

O

(n-truncated simplicial E-triples locally
of finite type)

JQ
(n) ,

which is called the n-skeleton functor, has a right adjoint coskn
E which is

called the coskeleton functor [13]. Indeed, the category of simplicial E-
triples locally of finite type is closed under finite and nonempty inverse
limits. Then coskn

E (KQ )l 4Kl for l 1 n , and coskn
E (KQ )l is obtained by fiber

products whose entries are E , K0 , R , Kn for any l. (See an explicit for-
mula in the proof of Lemma 3.10.2.)

If n421, we put JQ
(21) 4E and define cosk21

E (K) to be the constant
simplicial lft-triple EQ

Do
. If n40, then cosk0

E (K) is the Čech diagram for
KKE. r

We give an example of diagrams of triples which will often be used
later.

3.1.2. EXAMPLE. Let

(KQ , I)
I

(I , 0)

J

J

(LQ , I)
I

(J , 0)

be a commutative diagram of diagrams of E-triples locally of finite type
and let us denote by JQKI the Čech diagram for JKI. We define a
diagram GQ of triples over E indexed by D o 3I as follows:

– for an object (m , n) in D o 3I , G(m , n) is a fiber product of m11-
copies of Ln over Kn ;

– (j , h)GQ
: G(m , n) KG(k , l) is the morphism defined by

(z0 , z1 , R , zm ) O (h LQ
(zj(0) ), h LQ (zj(1) ), R , h LQ (zj(k) ) )

for morphisms j : kKm in D and h : nK l in I.

One can easily check that GQ is a diagram of E-triple locally of finite
type indexed by D o 3I over E and G(0 ,Q)

4LQ . If we define a morphism
G(m , n) KJm (resp. G(m , n) KKn) by the m11-copies of the structure mor-
phism Ln KJ (resp. by the natural morphism), then the collection of
morphisms determines a morphism GQKJQ (resp. GQKKQ) of diagrams
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of triples over E. Moreover, the diagram

(KQ , I)
I

(I , 0)

J

J

(GQ , D o 3I)
I

(JQ , D o )

is commutative. We call GQ a Čech diagram of LQ over KQ and denote it by
cosk0

KQ (LQ ). r

3.2. Let E be an lft-triple and let (JQ , I) be a diagram of lft-triples
over E. By the functoriality of the construction of tubes associated to lft-
triples we obtain a diagram ] XQ [XQ of rigid analytic spaces over ] S[S in-
dexed by I: for each object n of I , n O ] Xn[Xn

, and for each morphism
h : m O n of I , we have hAJQ : ] Xm[Xm

K] Xn[Xn
which is the morphism of

rigid analytic spaces induced by the morphism h JQ of triples. We call
] XQ[XQ the diagram of tubes associated to JQ . The correspondence we
have constructed between diagrams of lft-triples and the associated dia-
grams of tubes is functorial.

3.3. Let JQ be a diagram of lft-triples indexed by I and let ] XQ [XQ be a
diagram of tubes associated to JQ .

A sheaf FQ of abelian groups (resp. rings, resp. AQ-modules for a sheaf
AQ of rings) on ] XQ [XQ consists of the following data:

– for each object n of I , Fn is a sheaf of abelian groups (resp. rings,
resp. An-modules) on ] Xn [Xn

;

– for each morphism h : mKn of I , FQ (h) : hAJQ
21 Fn K Fm is a homo-

morphism of sheaves of abelian groups (resp. rings, resp. hAJQ
21 An-mod-

ules) such that the diagram

hj
A

JQ
21 Fn

FQ (hj) 7
K

j
A

JQ
21 (FQ (h) )

Fl

8FQ (j)

j
A

JQ
21 Fm

is commutative for each pair of morphisms j : lKm and h : mKn of I.

A homomorphism W Q : FQK GQ of sheaves of abelian groups (resp. rings,
resp. AQ-modules) on ] XQ [XQ consists of the following data:

(i) for each object n of I , W n : Fn K Gn is a homomorphism of
sheaves of abelian groups (resp. rings, resp. An-modules);
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(ii) for each morphism h : mKn of I , the diagram

hAJQ
21 Fn

FQ (h)I
Fm

K
hAJQ

21 (W n )

K
W m

hAJQ
21 Gn

IGQ (h)

Gm

is commutative.

3.3.1. EXAMPLE. We give some examples of sheaves of rings on
] XQ [XQ . (In fact they are all coherent, see 2.9 and Definition 3.3.3.)

(1) Z] XQ[XQ
: the sheaf of rings associated to the presheaf U O Z for

any object n of I and for any admissible open subset U in ] Xn[Xn
.

(2) The structure sheaf O] XQ[XQ
: for each object n of I , n corresponds

to the structure sheaf O] Xn[Xn
of the rigid analytic space ] Xn[Xn

.
(3) The sheaf j † O] XQ[XQ

of overconvergent functions: for each object n
of I , n corresponds to the sheaf j † O] Xn[Xn

of overconvergent functions on
] Xn [Xn

along a complement ¯Xn of Xn in Xn . (See the definition of sheaves
of overconvergent sections on a diagrams of tubes in 3.5.) r

Let AQ be a sheaf of rings on ] XQ[XQ . The category of sheaves of AQ-
modules is an abelian category which is closed under the direct sum and
the direct product for any family of objects. A sequence F Q

Q of sheaves of
AQ-modules is exact if and only if Fn

Q is exact for each object n of I. Hence,
for any filtered inductive system of exact sequences of sheaves of AQ-
modules, the limit is also exact. The following Proposition is in [15, VI,
5.3]. (See also [2, V, Proposition 3.4.4].) We will give a sketch of the proof
in 3.8.

3.3.2. PROPOSITION. The category of sheaves of AQ-modules has
enough injectives.

We introduce the notion of coherent sheaf on diagrams of tubes.

3.3.3. DEFINITION. Let AQ be a sheaf of rings on ] XQ[XQ .
(1) We say that a sheaf EQ is a sheaf of coherent AQ-modules if it satis-

fies the following conditions:

(i) En is a sheaf of coherent An-modules for any n;
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(ii) EQ (h) induces an isomorphism

Am 7hAJQ
21 (An ) h

A
JQ
21 En K Em

for any morphism h : mKn of I.

We denote by Coh (AQ ) the category of sheaves of coherent AQ-modu-
les.

(2) AQ is a sheaf of coherent rings if An is coherent as an An-module
for any object n. r

If AQ is a sheaf of coherent rings, the category of sheaves of coherent
AQ-modules is a full subcategory of that of sheaves of AQ-modules. It is
abelian and closed under tensor products and internal homs.

3.4. Let ( fQ , t) : (KQ , J) K (JQ , I) be a morphism of diagrams of
lft-triples.

For a sheaf FQ of abelian groups on ] XQ[XQ , we define an inverse image
fAQ

21 FQ as follows. We put

( fAQ
21 FQ )n 4 fAn

21 Ft(n)

for an object n of J and put

( fAQ
21 FQ )(h) 4 fAm

21 (FQ (t(h) ) )

for a morphism h : mKn in J. One can easily see that fAQ
21 FQ satisfies the

condition of sheaves on ] YQ[YQ . If FQ is a sheaf of rings (resp. AQ-modules
for a sheaf AQ of rings on ] X[X), then fA21 AQ is as well.

The following Proposition follows easily from the definition.

3.4.1. PROPOSITION. With the notation as above, we have
(1) fAQ

21 is exact;
(2) if gQ : LQKKQ is a morphism of diagrams of lft-triples, then

( fgA)Q
21 4 gAQ

21 fAQ
21.

Let AQ (resp. BQ) be a sheaf of rings on ] XQ[XQ (resp. ] YQ[YQ) with a ho-
momorphism fAQ

21 AQK BQ of sheaves of rings. We define a functor fAQ*
from the category of sheaves of AQ-modules to that of BQ-modules by

( fAQ* FQ )n 4 Bn 7fAn
21 (At(n) ) fAn

21 Ft(n)
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for an object n of J and by

( fAQ* FQ )(h) 4 BQ (h)7 fAm
21 ( FQ (t(h) ) )

for a morphism h : mKn of J. One can easily check that fAQ* is a functor.
We also call fAQ* an inverse image functor if there is no confusion.

3.4.2. PROPOSITION. With the notation as above, we have the
following.

(1) fAQ* is right exact.
(2) Let gQ : LQKKQ be a morphism of diagrams of lft-triples and let

CQ be a sheaf of rings on ] ZQ[ZQ with a homomorphism gAQ
21 BQK CQ of

sheaves of rings. Then ( fgA)Q*4 gAQ* fAQ*.

The following proposition follows easy from the definition.

3.4.3. PROPOSITION. With the notation as above, assume further-
more that BQ is coherent. Then the inverse image fAQ* EQ of a sheaf EQ of co-
herent AQ-modules is a sheaf of coherent BQ-modules.

3.5. Let (JQ , I) be a diagram of lft-triples and let AQ be a sheaf of
rings on ] X[X . For a sheaf FQ of AQ-modules, we define a sheaf j † FQ of
overconvergent sections along ¯XQ by

j † Fm

( j † FQ )(h)

4

4

lim
K

V

jV * jV
21 Fm

lim
K

V

jV * jV
21 FQ (h)

for an object m and a morphism h : mKn of I , where V runs through all
strict neighbourhoods of ]Xm [Xm

in ] Xm[Xm
. Then, j † FQ is a sheaf of

j † AQ-modules.
Now let (fQ , t) : (KQ , J) K (JQ , I) be a morphism of diagrams of lft-

triples and let BQ be a sheaf of rings on ] YQ[YQ with a morphism fAQ
21 AQK

K BQ of sheaves of rings. For a sheaf FQ of AQ-modules, we define a functor
fQ

† by

fQ
† FQ4 j † (fAQ* FQ ) .

fQ
† FQ is a sheaf of j † BQ-modules. One can easily see that there is a natural

transform fAQ* j † K fQ
† .

Let EQ be a sheaf of coherent j † O] XQ[XQ
-modules and suppose that Em is

a sheaf of coherent OUm
-modules for a strict neighborhood Um of ]Xm[Xm
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in ] Xm[Xm
with an isomorphism Em ` jUm

† Em . In this situation there is a
canonical isomorphism

( fAQ* EQ )n ` fn
† (O] Xt(n)[Xt(n)

7jUt(n) ! OUt(n)
jUt(n) ! Et(n) )

for any object n of J by Proposition 2.10.1.
Thus fAQ* EQ is a sheaf of overconvergent sections: it coincides with

fQ
† EQ .

3.6. Let t : JKI be a covariant functor of categories. For an object
m of I , we define a category J/m as follows:

– an object is a data (n , j) such that j : t(n) Km is a morphism of I;
– a morphism z : (n1 , j 1 ) K (n2 , j 2 ) is a morphism z : n1 Kn2 of J

with j 1 4j 2 t(z) in I.

Let ( fQ , t) : (KQ , J) K (JQ , I) be a morphism of diagrams of lft-triples.
For a sheaf GQ of abelian groups on ] YQ[YQ , we define a direct image fAQ* GQ
as follows. For an object m of I ,

( fAQ* GQ )m 4 lim
J

(n , j) �Ob (J/m)

j
A

JQ* fAn* Gn

For a morphism h : m1 Km2 in I , a homomorphism

( fAQ* GQ )(h) : hAJQ
21 ( fAQ* GQ )m2

K ( fAQ* GQ )m1

is defined by the adjoint

hAJQ
21 (hj

A)JQ* fAn* Gn K j
A

JQ* fAn* Gn

for an object (n , j) of J/m1 . Since the diagram

hAJQ
21 (hj 2

A)

hAJQ
21 (hj 2 t(z)A)

hAJQ
21 (hj 1

A)JQ* fAn1* (GQ (z) )

hAJQ
21 (hj 1

A)

JQ* fAn2* Gn2

I

JQ* fAn1*z
A

KQ
21 Gn2

I

JQ* fAn1* Gn1

K

K

K

j
A

2JQ*

j 2 t(z)
A

JQ*

j
A

1JQ*

fAn2* Gn2

I

fAn1*z
A

KQ
21 Gn2

Ij
A

1JQ* fAn1* (GQ (z) )

fAn1* Gn1

is commutative for a morphism h : m1 Km2 in I and a morphism
z : (n1 , j 1 ) K (n2 , j 2 ) of J/m1 ; one sees that fAQ* GQ satisfies the conditions
for a sheaf on ] XQ [XQ .

We recall some notions on categories. A category C is connected if,
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for any two objects m and n , there exists a sequence mK l1 J l2 K

KRJn (possibly infinite) of morphisms of C. Then a small category is a
disjoint union of connected full subcategories. We call each connected
full subcategory a connected component of C. A category is discrete if
the only morphisms are the identities.

A category is filtered if it satisfies the conditions: (i) it is connected,
(ii) for any two morphisms j i : lKmi (i41, 2 ), there exist an object n
and morphisms h i : mi Kn (i41, 2 ) such that h 1 j 1 4h 2 j 2 , and (iii) for
any two morphisms j i : lKm (i41, 2 ), there exists an object n and a
morphism h : mKn such that hj 1 4hj 2 . A category is cofiltered if and
only if the dual category is filtered. If a category has a final object (resp.
an initial object), then it is filtered (resp. cofiltered).

If J/m4 I2I
l

(J/m)l is the decomposition into connected components,
then

( fAQ* GQ )m 4»
l

lim
J

(n , j) �Ob ( (J/m)l )

j
A

JQ* fAn* Gn .

If each connected component (J/m)l has an initial object (nl , j l ),
then

(fAQ* GQ )m 4»
l

j
A

l JQ* fAnl* Gnl
.

If I4J and t is the identity functor, then, for any object n of I , I/n is con-
nected and (n , idn ) is a final object of the category I/n. Hence, we
have

( fAQ* GQ )n ` fAn* Gn

for any object n of I. In particular, if I4J4 0, the direct image functor
fAQ* is a usual direct image functor of sheaves on rigid analytic
spaces.

3.7. Let ( fQ , t) : (KQ , J) K (JQ , I) be a morphism of diagrams of lft-
triples and let AQ (resp. BQ) be a sheaf of rings on ] XQ [XQ (resp. ] YQ [YQ)
with a homomorphism AQK fAQ* BQ of sheaves of rings on ] XQ [XQ . If GQ is a
sheaf of BQ-modules, then fAQ* GQ is a sheaf of AQ-modules.

For a sheaf FQ of AQ-modules, we define a homomorphism

FQK fAQ* fAQ* FQ
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of sheaves of AQ-modules by the diagonal homomorphism

Fm K lim
J

(n , j) �Ob (J/m)

j
A

JQ* fAn*( fAn* Ft(n) )

whose (n , j)-component is the adjunction of the composition

j
A

JQ* FmK
FQ (j)

Ft(n) K fAn* fAn* Ft(n) . Since the diagram

hAJQ* Fm2

FQ (h)I

Fm1

K
FQ (hj)

K
F

Q
(j)

hAJQ
* (hj)A

JQ* fAn*( fAn* Ft(n) )
I

j
A

JQ* fAn*( fAn* Ft(n) )

is commutative for a morphism h : m1 Km2 of I and an object (n , j) of
J/m1 , the map FQK fAQ* fAQ* FQ is a homomorphism of sheaves of AQ-modu-
les.

For a sheaf GQ of BQ-modules, we define a homomorphism

fAQ* fAQ* GQK GQ

of sheaves of BQ-modules by the composition

fAl*u lim
J

(n , j) �Ob (J/t(l) )

j
A

JQ* fAn* GnvK fAl* fAl* Gl K Gl

for any object l of J. Here the first arrow is the projection of the (l , id)-
component and the second arrow follows from adjonction. One can easily
see that the map fAQ* fAQ* GQK GQ is a homomorphism of sheaves of
BQ-modules.

By the homomorphisms given above we have

3.7.1. PROPOSITION. fAQ* is a right adjoint of fAQ* .

3.7.2. COROLLARY. Let ( fQ , t) : (KQ , J) K (JQ , I) and ( gQ , u) :
(LQ , K) K (KQ , J) be morphisms of diagrams of lft-triples. Then we have
( fgA)Q*4 fAQ*gAQ* .

PROOF. Both ( fgA)Q* and fAQ*gAQ* are right adjoints of ( fgA)Q*4

4 gAQ* fAQ* . r
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3.7.3. COROLLARY. Let

KQ
wQI

JQ

J
gQ

J
fQ

KQ8
IwQ8

JQ8

be a commutative diagram of lft-triples and let AQ (resp. AQ8 , resp. BQ ,
resp. BQ8 ) be a ring of sheaves on ] XQ[XQ (resp. ] XQ8 [XQ8 , resp. ] YQ [YQ , resp.
] YQ8[YQ8 ) with commutative morphisms corresponding to the diagram
above. Then, for a sheaf GQ of BQ-modules, the adjoints induce a functo-
rial morphism

fAQ*wAQ* GQK wAQ8*gAQ* GQ

of sheaves of AQ8-modules.

We call the homomorphism of sheaves given above a base change
homomorphism.

3.7.4. PROPOSITION. Let

(KQ , J)
(wQ , t)I

(JQ , I)

J
(gQ , idJ )

J
( fQ , idI )

(KQ8 , J)
I(wQ8 t)

(JQ8 , I)

be a commutative diagram of lft-triples such that

(i) f×m : Xm8 K Xm is an open immersion and f×m
21 (Xm ) 4 Xm8 for any

object m of I ;
(ii) w×n

21 (Xt(n)8 )4Yn8 and wn
21 (Xt(n)8 )4Yn8 via gn for any object n of J.

Let AQ (resp. BQ ) be a ring of sheaves on ] XQ [XQ (resp. ] YQ[YQ ) with a ho-
momorphism wAQ

21 (AQ ) K BQ of sheaves of rings. Then, for a sheaf GQ of
BQ-modules, the base change homomorphism

fAQ
21 wAQ* GQK wAQ8*gAQ

21 GQ

is an isomorphism.

PROOF. The assertion follows from the fact that the base change ho-
momorphism fAt(n)

21 wAn* Gn K wA8n*gAn
21 Gn is an isomorphism. r
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3.8. Let I be a small category and let J be a subcategory of
I. For an object m of I , we define a category J(m) as follows:

– an object of J(m) is a data (n , j) such that n is an object in J and
j : mKn is a morphism of I;

– a morphism z : (n1 , j 1 ) K (n2 , j 2 ) of J(m) is a morphism
z : n1 Kn2 of J with j 2 4zj 1 in I.

If J is discrete, J(m) is discrete. By definition we have

3.8.1. LEMMA. With the notation as above, if we regard J o as a sub-
category of I o , then J(m) is the dual category of J o /m (see the definition
in 3.6).

3.8.2. EXAMPLE. Let r and s be nonnegative integers with r 1 s. We
define NmN4m1 1R1mr for any object m4 (m1 , R , mr ) in D r. For an
integer q , we define a subcategory D q

r , s of D s as follows:

– objects have the form (m , n) as an object of D s 4D r 3D s2r

where NmN4q;

– MorD q
r , s ( (m , n1 ), (m , n2 ) ) 4 ]( idm , j)Nj�MorD s2r (n1 , n2 )(, and

MorD q
r , s ( (m1 , n1 ), (m2 , n2 ) ) 4¯ if m1 cm2 .

For an object m of D r with NmN4q , we define a full subcategory m3

3D s2r of D q
r , s whose objects consist of (m , n) for some object n of D s2r.

The category m3D s2r is equivalent to D s2r by the functor (m , n) O n.
One can easily see that

D q
r , s 4 I2I

NmN4q
m3D s2r

is a decomposition of connected components of categories.
Let m be an object of D r and let (l , n) be an object of D s 4D r 3

3D s2r.
(1) If we denote by (m3D s2r /(l , n) )( (m , n), (h , idn ) ) the connected com-

ponent of the object ((m , n), (h , idn ) ) in the category m3D s2r /(l , n)
(see the definition in 3.6) for some morphism h : mK l of D r , then
( (m , n), (h , idn ) ) is a final object of (m3D s2r /(l , n) )( (m , n),(h , idn ) ) and

m3D s2r /(l , n) 4 I2I
h�MorDr (m , l)

(m3D s2r /(l , n) )( (m , n),(h , idn ) )

is the decomposition into connected components.
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(2) If we denote by m3D s2r (l , n)( (m , n),(h , idn ) ) the connected compo-
nent of the object ((l , n), (h , idn ) ) in the category m3D s2r (l , n) for a
morphism h : lKm of D r , then ((m , n), (h , idn ) ) is an initial object of
m3D s2r (l , n)( (m , n),(h , idn ) ) and

m3D s2r (l , n) 4 I2I
h�MorDr (l , m)

(m3D s2r /(l , n) )( (m , n),(h , idn ) )

is the decomposition into connected components. r

Let (JQ , I) be a diagram of lft-triples and let J be a subcategory of I.
As a restriction of the functor JQ , we obtain a diagram KQ of lft-triples in-
dexed by J and denote by iQ : (KQ , J) K (JQ , I) the induced transform.
Let AQ be a sheaf of rings on ] XQ [XQ

We define a functor iAQ! from the category of sheaves of iAQ
21 AQ-modules

to that of AQ-modules as follows. Let FQ be a sheaf of iAQ
21 AQ-modules. For

an object m of I , we put

(iAQ! FQ )m 4 lim
K

(n , j) �Ob (J(m) )

j
A

JQ* Fn

and, for a morphism h : m1 Km2 of I , we define a morphism

iAQ! FQ (h) : hA*JQ (iQ! FQ )m2
K (iQ! FQ )m1

by the induced homomorphism from the natural identity

hA*JQj
A*JQ Fn K (jh

A)*JQ Fn

for (n , j) �J(m2 ). Since the diagram

hA*JQj
A*1JQ (z

A*KQ Fn2
)

hA*JQj
A*1JQ (FQ (z) )I

hA*JQj
A*1JQ Fn1

K
`

K
`

(j 1 h
A)*JQ (z

A*KQ Fn2
)

Ij 1 h
A*JQ (FQ (z) )

(j 1 h
A)*JQ Fn1

is commutative for a morphism h : m1 Km2 of I and a morphism
z : (n1 , j 1 ) K (n2 , j 2 ) of J(m2 ), we conclude that iAQ! FQ is a sheaf of AQ-
modules on ] XQ[XQ . One can easily see that iAQ! is functorial in FQ .

If J(m) 4 I2I
l

J(m)l is a decomposition into connected components,
then

(iAQ! FQ )m 45l lim
K

(n , j) �Ob(J(m)l )

j
A*JQ

Fn .
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If each connected component J(m)l has an initial object (nl , j l ),
then

(iAQ! FQ )m 45lj l
A

JQ* Fnl
.

3.8.3. PROPOSITION. Suppose that hA*JQ is exact for every morphism h
of I and that, for each object m of I , each connected component of J(m)
is cofiltered. Then iAQ! is exact.

Let FQ be a sheaf of AQ-modules. We define a homomorphism
iAQ! i

A
Q* FQK FQ by the map

lim
K

(n , j) �Ob(J(m) )

j
A*JQ Fn K Fm

induced by lim
K

(n , j) �Ob(J(m) )

FQ (j) for an object m of I. One can easily see that

it is a homomorphism of sheaves of AQ-modules.
Let GQ be a sheaf of iAQ

21 AQ-modules. We define a homomorphism
GQK iAQ* iAQ! GQ by the map

Gm K lim
K

(n , j) �Ob(J(m) )

j
A

JQ* Gn

which goes to the (m , id)-component by the identity for an object m of J.
One can easily see that it is a homomorphism of sheaves of iAQ

21 A] XQ [XQ
-

modules.
By the homomorphisms given above we have

3.8.4. PROPOSITION. iAQ! is a left adjoint of iAQ*.

3.8.5. COROLLARY. If K is a subcategory of J and if jQ : (LQ , K) K

K (KQ , J) is the induced morphism of diagrams of lft-triples, then
(ijA)Q! 4 iAQ! j

A
Q! .

3.8.6. COROLLARY. Let (fQ , t) : (KQ , J) K (JQ , I) be a diagram of lft-
triples and let AQ (resp. BQ ) be a sheaf of rings on ] XQ[XQ (resp. ] YQ[YQ )
with a homomorphism fAQ

21 AQK BQ of sheaves of rings. Suppose that I 8

(resp. J 8 ) is a subcategory of I (resp. J) such that t(J 8 ) is a subcategory
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of I 8. If

(KQ , J)
fQI

(JQ , I)

J
jQ

J
iQ

(KQ8 , J 8 )
I f 8Q

(JQ8 , I 8 )

is the induced commutative diagram of lft-triples, then, for any sheaf FQ
of (iAQ )

21 AQ-modules, the adjoints induce a functorial homomorphism

jAQ! ( fA8Q )* FQK fAQ* iAQ! FQ

of sheaves of BQ-modules.

Now we give a sketch of a proof of Proposition 3.3.2 following [15, VI,
5.3]. It is sufficient to see that the category of sheaves of AQ-modules has
a family of generators [9, Théorème 1.10.1]. For an object n of I , we de-
note by in : Jn KJQ a morphism of diagrams of lft-triples which corre-
sponds to the discrete subcategory n of I (see Example 3.1.1 (1)). In this
case iAn* is a restriction functor from the category of sheaves of AQ-mod-
ules to that of An-modules. Then, for any sheaf Fn of An-modules, Fn K

K iAn* iAn! Fn is a monomorphism. Hence, the set

{iAn! ( jU! An ) N
n is an object of I ,

U is an admissible open subset of ] Xn [Xn

} .

is a family of generators by Proposition 3.8.4. Here jU : UK] Xn [Xn
is an

open immersion and jU! is a left adjoint of the inverse image functor jU
21

which was introduced in 2.7.
Since iAQ* is a right adjoint of the exact functor iAQ! by Propositions 3.8.3

and 3.8.4, we have the following Corollary. (See [2, V, Proposition
3.4.4].)

3.8.7. COROLLARY. Suppose that hAJQ* is exact for any morphism h of I
and that, for each object m of I , each connected component of J(m) is
cofiltered. Then, for any injective sheaf IQ of AQ-modules, the inverse im-
age iAQ* IQ is an injective sheaf of iAQ

21 AQ-modules.

3.8.8. Example. The first assumption in Corollary 3.8.7 is satisfied
in the case where BQ4 wAQ

21 (AQ ) for a morphism wQ : KQKJ of diagrams
of lft-triples (Proposition 3.4.1). In particular, AQ4Z] XQ[XQ

for any
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diagram XQ of lft-triples. The second assumption is satisfied if the
subcategory J is discrete. r

3.9. Let J be an lft-triple, let JQ
(D r )o

be the constant diagram of
triples indexed by (D r )o and let e Q

r : J(D r )o
KJ be a morphism of triples as

in Example 3.1.1 (2). We define a morphism

h n1 , R , nr
i , l 4

4 idn13R3ni21
3h ni

l 3 idni113R3nr
: (n1 , R , nr ) K (n1 , R , ni 11, R , nr )

of D r for 1 1 i 1 r and 0 1 l 1 ni 11, where h ni
l is as in 1.3.4.

Let A be a sheaf of rings on ] X[X . Starting from a complex (F Q
Q , d Q

Q ) of
sheaves of (eAQ

r )21 A-modules, we define an r11-multi complex

(C(F Q
Q ), ¯0

Q , ¯1
Q , R , ¯r

Q )

of sheaves of A-modules as follows. For (n0 , n1 , R , nr ) �Zr11 , we
put

C(F Q
Q )n0 , n1 , R , nr 4

.
/
´

F n1 , R , nr
n0

0

if n1 , R , nr 2 0

otherwise .

We define a derivation

¯i
n0 , n1 , R , nr : C(F Q

Q )n0 , n1 , R , nr K C(F Q
Q )n0 , n1 , R , ni21 , ni11, ni11 , R , nr

by

¯i
n0 , n1 , R , nr 4

.
/
´

d n1 , R , nr
n0

!
l40

ni11

(21)l F Q
n0 (h n1 , R , nr

i , l )

0

if i40 and n1 , R , nr 2 0

if ic0 and n1 , R , nr 2 0

otherwise .

Indeed, this is an r11-multi complex since F Q
Q is a complex of sheaves on

] XQ
(Do )r

[XQ
(Do)r. The total complex (tot (C(F Q

Q ) ), d Q ) of (C(F Q
Q ), ¯0

Q , ¯1
Q , R , ¯r

Q )
is as follows:

tot (C(F Q
Q ) )n 4 »

n01R1nr4n
C(F Q

Q )n0 , n1 , R , nr

d n 4 !
n01R1nr4n

!
i40

r

(21)n01R1ni21 ¯ i
n0 , R , nr .
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Here the sum is well-defined since it is a finite sum on each component,
and the sign is the plus if i40. The r11-multi complex
(C(F Q

Q ), ¯0
Q , ¯1

Q , R , ¯r
Q ) is functorial in F Q

Q by construction.

3.10. We now introduce a homotopy theory of simplicial triples and
tubes. (See [1, Vbis , 3.0].)

Let J be a V-triple locally of finite type and let LQ and KQ be simplicial
J-triples locally of finite type with two commutative diagrams

LQ
vQ 7

K
wQ

(i)

J

8uQ
KQ

for i40, 1. We say that a collection of morphisms

hn (x) : Ln KKn

over J for any object n of D and any morphism x : nK1 of D is a homo-
topy from wQ

(0) to wQ
(1) if it satisfies the following conditions:

(i) hn (¯n
(i) ) 4wn

(i) for any n and any i40, 1 , where ¯n
(i) : nK1 is a

constant map onto i;
(ii) for any morphism h : mKn of D and any map x : nK1 of D ,

the diagram

Ln
h LQI

Lm

K
hn (x)

K
hm (xh)

Kn

Ih KQ

Km

is commutative.

3.10.1. EXAMPLE. Let w (i) : LKK be a morphism of triples over J

for i40, 1 and let wQ
(i) : LQKKQ be the morphism of the associated Čech

diagrams over J. We define a morphism

hn (x) : Ln KKn

over J by (z0 , z1 , R , zn ) O (wn
(x(0) ) (z0 ), R , wn

(x(n) ) (zn ) ) for an object n
and a map x : nK1. Then ]hn (j)(n , x is a homotopy from wQ

(0) to
wQ

(1). r

We generalize this example (in the case where n40) to general
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simplicial triples. We explicitly give the entire proof of the following
lemma, a hint of which was given in [1, Vbis , Lemme 3.0.2.4].

3.10.2. LEMMA. Let n be a nonnegative integer and let wQ
(i) : LQKKQ

(i40, 1) be a morphism of simplicial triples over J such that
coskn

J (KQ
(n) ) 4KQ and coskn

J (LQ
(n) ) 4LQ (see the definition of coskn

J in
Example 3.1.1 (6)). Suppose that wl

(0) 4wl
(1) for any lEn and

coskn
J ( (wQ

(i) )(n) ) 4wQ
(i) for i40, 1. Then there exists a homotopy from

wQ
(0) to wQ

(1).

PROOF. Let D[n] be as in 1.3.4, let D[n]mon be a subcategory of D[n]
whose set of morphism consists of monomorphisms, and let D[n] /l (resp.
D[n]mon /l) be the category for D[n] %D (resp. D[n]mon %D mon) as defined
in 3.6. We put Kz4Ka and K8z4Kb for a morphism z : aKb of D. We also
put

F4 »
(c , z) �Ob (D[n]mon /l)

Kz

E4 »
l�Mor (D[n]mon /l)

K8l ,

where all the fiber products are over J , and define morphisms f (i) : FK

KE (i41, 2) over J as follows: if we put (yl : (a , j) K (b , h)
(i) ) 4 f (i) ( (x(c , z) ) ),

then

yl : (a , j) K (b , h)
(1)

yl : (a , j) K (b , h)
(2)

4

4

x(a , j)

l KQ (x(b , h) ) .

Then we have an explicit formula

Kl 4coskn
J (KQ

(n) )l 4 lim
J

(a , z) �Ob (D[n] /l)

K(a , z) 4 lim
J

(a , z) �Ob (D[n]mon /l)

K(a , z) 4

4 the fiber product of f (1) : FKE and f (2) : FKE over E

of the coskeleton functor in the category of triples over J. (See [11,
Chap. 0, Remarque 1.4.12] in general situations.)

For a morphism h : lK l 8 of D , the map h KQ : Kl 8KKl is given by
KhzK

idKa
Kz for an object (a , z) of D[n] /l in each component.
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We define a morphism hl (x) : Ll KKl by

hl (x) 4
.
/
´

wl
(0)

wl
(1)

if x4¯l
(0)

if xc¯l
(0)

for any l 1 n and x : lK1 and by

hl (x) 4 lim
J

(a , z) �Ob (D[n] /l)

ha (xz)

for any lDn and x : lK1. This inverse limit exists in the category of
triples over J by the explicit formula. By the assumption, hl (¯l

(i) ) 4

4 lim
J

(a , z)

wa
(i) 4wl

(i) for i40, 1 and the condition h KQ hl (x) 4hl 8 (xh) h LQ
follows

from the commutativity of the diagram

Lhz

idLmI

Lz

K
ha (x(hz) )

K
hm ( (xh) z)

Khz

IidKa

Kz

for an object (a , z) of D[n] /l and a morphism h : lK l 8 of D. Hence,
]hl (x)(l , x forms a homotopy from wQ

(0) to wQ
(1). r

We define a category H(D) as follows:

Ob (H(D) ) 4Ob (D)3 ]0, 1(;

MorH(D)((m, i),(n, j))4
.
/
´

MorD(m, n)
MorD(m, n)3MorD(m, 1)
¯

if i4j
if (i, j)4(0, 1) .
if (i, j)4(1, 0)

The composition law is given by

z(h , x) j4 (zhj , xj)

for j : (k , 0 ) K (l , 0 ), (h , x) : (l , 0 ) K (m , 1 ) and z : (m , 1 ) K (n , 1 ), and
is given as usual on Mor ( (m , i), (n , j) ) for i4 j.

One can easily see that a homotopy induces a diagram of triples in-
dexed by H(D)o as follows.

3.10.3. PROPOSITION. Let ]hn (x)(n , x be a homotopy from wQ
(0) : LQK

KKQ to wQ
(1) : LQKKQ over J. If one defines a contravariant functor

H(LQ ˘ KQ ) : H(D) K ( triples over J)
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by (m , 0 ) O Km , (n , 1 ) O Ln , (j : (k , 0 ) K (l , 0 ) ) O j KQ , ((h , x) : (l , 0 ) K

K (m , 1 ) ) O hl (x) h LQand(z : (m , 1 ) K (n , 1 ) ) O z LQ ,then H(LQ ˘ KQ )is a
diagram of triples over J indexed by H(D)0 and ( ( idn , ¯n

(i) ) : (n , 1 ) K

K (n , 0 ) ) O wn
(i) .

Now we are given a homotopy ]hn (x)(n , x from wQ
(0) to wQ

(1). Let A, BQ
and CQ be sheaves of rings on ] X[X , ] YQ [YQ and ] ZQ [ZQ , respectively, and
let compatible homomorphisms of sheaves of rings for uQ , vQ and wQ

(i) (i4

40, 1) (see the notation at the begining of 3.10) also be given.
Let F Q

Q (resp. GQ
Q) be a complexes of sheaves of BQ-modules (resp. CQ-

modules) and let

W Q
(i)Q : (wAQ

(i) )* F Q
QK GQ

Q

be homomorphisms of complexes of sheaves of CQ-modules for i40, 1.
We say that a collection of homomorphisms

u n (x) : hn (x)A* F n
Q K Gn

Q

of Cn-modules for any object n and any morphism x : nK1 of D is a ho-
motopy from W Q

(1)Q to W Q
(0)Q if it satisfies the following conditions:

(i) u n (¯n
(i) ) 4W n

(i)Q ;
(ii) for any morphisms h : mKn and x : nK1 of D , the dia-

gram

hA*LQhn (xh)
A

* Fm ` hn (x)
A

*hA*KQ Fm

hA*LQ (u m (xh) )I
hA*LQ Gm

K
hn (x)A*(FQ (h) )

K
GQ (h)

hn (x)
A

* Fn

Iu n (x)
Gn

is commutative.

3.10.4. LEMMA. With the notation as above, let EQ be a complex
of sheaves of A-modules. If one gives a homomorphism
u n (x) : hn (x)A*(uAn* EQ ) K vAn* EQ by the induced map from the identity
un hn (x) 4vn , then the collection ]u n (x)(n , x gives a homotopy from
W Q

(1)Q4u Q (¯Q
(1) ) to W Q

(0)Q4u Q (¯Q
(0) ).

3.10.5. PROPOSITION. (1) Let F Q
Q (resp. GQ

Q ) be a complex of sheaves of
abelian groups on ] Y[Y (resp. ] Z[Z ) and let ]u n (x)(n , x be a homotopy
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from W Q
(1)Q : (wAQ

(1) )* F Q
QK GQ

Q to W Q
(0)Q : (wAQ

(0) )* F Q
QK GQ

Q . If we define a homo-
morphism

hALQ
21 hm (x)A21 F m

Q K Gn
Q

by the homomorphisms induced from the composition Gn
Q (h) hALQ* (u m (x) )

for (h : mKn , x : mK1) of H(D), then it determines a sheaf
H(FQ ˘ GQ ) of abelian groups on the tube associated to H(LQ ˘ KQ ). In
particular, if FQ and GQ is a sheaf of uAQ

21 (A)-rings (resp. vAQ
21 (A)-rings),

then H(FQ ˘ GQ ) is a a sheaf of H(vAQ ˘ uAQ )
21 (A)-rings. Here H(vAQ ˘ uAQ )

is the induced structure morphism between tubes.
(2) Let F Q

Q (resp. GQ
Q ) be a complex of sheaves of BQ-modules (resp. CQ-

modules) and let ]u n (h)(n , h be a homotopy from W Q
(1)Q : (wAQ

(1) )* F Q
QK GQ

Q to
W Q

(0)Q : (wAQ
(0) )* F Q

QK GQ
Q . Then H(F Q

Q ˘ GQ
Q ) is a complex of sheaves of

H(BQ ˘ CQ )-modules on the tubes associated to H(LQ ˘ KQ ).
Assume furthermore that BQ and CQ are coherent. If FQ and GQ are co-

herent and u n (x) is an isomorphism for any n and x , then H(FQ ˘ GQ )
is a sheaf of coherent H(BQ ˘ CQ )-modules.

(3) The converses of (1) and (2) hold.

The following Proposition follows from Corollary 3.8.7 and the lemma
below.

3.10.6. PROPOSITION. With the notation as above, let IQ be an injec-
tive sheaf of H(BQ ˘ CQ )-modules on the tube associated to the triple
H(LQ ˘ KQ ). Suppose that hAHQ* is exact for any morphism h of H(D). (For
example, BQ4 uAQ

21 (A) and CQ4 vAQ
21 (A) (Example 3.8.8)).

(1) I(m , 0 ) is injective for any object m.
(2) The restriction I(Q, 1 ) of IQ on ] ZQ [ZQ is injective.

3.10.7. LEMMA. (1) Let (m , 0 ) be an object of H(D). Then the catego-
ry D3 ]1( /(m , 0 ) is empty.

(2) Let (m , 1 ) be an object of H(D). Then the object ( (m , 1 ), id(m , 1 ) ) is
a final object of the category D3 ]1( /(m , 1 ).

Let F Q
Q (resp. GQ

Q) be complexes of sheaves of BQ-modules (resp. CQ-
modules) and let ]u n (h)(n , h be a homotopy from W Q

(1)Q to W Q
(0)Q. We con-

struct a homotopy H n : tot (C(uAQ*
Do

F Q
Q ) )n K tot (C(vAQ*

Do
GQ

Q ) )n21 (n�Z) from
tot (C(vAQ*

Do
(W Q

(1)Q ) ) ) to tot (C(vAQ*
Do

(W Q
(0)Q ) ) (see the notation in 3.9). Let j n

l :
nKn21 (0 1 l 1 n21) be as in 1.3.4 and let x n

l : nK1 (21 1 l 1 n)
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be a morphism of D with x n
l (l) 40 and x n

l (l11) 41. We define an
A-homomorphism

(c n
l )Q : uAn* F n

Q K vAn21* Gn21
Q

by the composition

uAn* F n
Q K vAn*hn (x n

l )
A

* F n
Q K

vAn*(u n (x n
l ) )

vAn* Gn
Q K

j
Al

n* vAn21* Gn21
Q

for 0 1 l 1 n21, where the first map is induced by the adjoint and the
third map is induced by vn21 4vn1

j n
l , and put

H n 4 !
n01n14n

!
l40

n121

(21)l1n0 (c n1
l )n0 .

Note that (c n
l )Q commutes with ¯0

Q as defined in 3.9.

3.10.8. PROPOSITION. With the notation as above, we have

tot (C(vAQ*
Do

(W Q
(1)Q ) ) )n 2 tot (C(vAQ*

Do
(W Q

(0)Q ) ) )n 4d n21 H n 1H n11 d n .

4. Čech complexes.

In this section we introduce a Čech complex and a derived Čech com-
plex and discuss several of their properties.

4.1. Let J4 (X , X, X) be an lft-triple, let KQ4 (YQ , YQ , YQ ) be an r-
simplicial lft-triple over J, and let us denote by

wQ : KQKJ

the structure morphism. We put wQ
(D r )o

: KQKJQ
(D r )o

and e Q
r : JQ

(D r )o
KJ to

be morphisms of lft-triples as in Example 3.1.1 (2). Then wQ4
4e Q

r wQ
(D r )o

.
Let F Q

Q be a complex of sheaves of wAQ
21 ( j † O] X[X X

)-modules and let
C(wAQ*

(D r )o
F Q

Q ) be an (r11)-complex of sheaves of (eAQ
r )21 ( j † O] X[X

)-modules
defined in 3.9. We define a Čech complex of sheaves for F Q

Q with respect
to wQ : KQKJ by the total complex

C † (J , KQ ; F Q
Q ) 4 tot (C(wAQ*

(D r )o
F Q

Q ) ) .
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By the definition we have

C † (J , KQ ; F Q
Q )n 4 »

n01n11R1nr4n
wAn1 , R , nr* Fn1 , R , nr

n0

and the coboundary map d n is defined by

d n 4 !
n01R1nr4n

!
i40

r

(21)n01R1ni ¯ i
n0 , R , nr ,

where ¯ i
n0 , R , nr is as in 3.9. The Čech complex of sheaves is a complex of

sheaves of j † O] X[X
-modules. The functor C † is functorial in F Q

Q .

4.2. We maintain the notation of 4.1. For a complex F Q
Q of sheaves of

wAQ
21 ( j † O] X[X

)-modules bounded below, we will define a complex
R C † (J , KQ ; F Q

Q ), which we call a derived Čech complex of sheaves of
Z] X[X

-modules for F Q
Q with respect to wQ : KQKJ, in the derived category

D 1 (Z] X[X
) of complexes of sheaves of Z] X[X

bounded below.
First we give a general assertion. Using a standard argument, we

have the following propositions by Proposition 3.3.2, Corollary 3.8.7 and
Example 3.8.8.

4.2.1. PROPOSITION. Let (KQ , I) be a diagram of lft-triples. and let A

(resp. BQ ) be a sheaf of rings on ] X[X (resp. ] YQ [YQ ) with a homomor-
phism wAQ

21 (A) K BQ of sheaves of rings.
(1) If F Q

Q is a complex of sheaves of BQ-modules bounded below, then
there exists an injective resolution

F Q
QK IQ

Q

as sheaves of wAQ
21 (A)-modules (we insist that IQ

Q be bounded below).
Moreover, F n

Q K In
Q is an injective resolution as sheaves of wAn

21 (A)-mod-
ules for any object n of I.

(2) Let W Q
Q : F Q

QK GQ
Q be a homomorphism of complexes of sheaves of

BQ-modules bounded below and let F Q
QK IQ

Q (resp. GQ
QK JQ

Q ) be a quasi-
isomorphism (resp. an injective resolution) as complexes of sheaves of
wAQ

21 (A)-modules bounded below. Then there exists a homomorphism

c Q
Q : IQ

QK JQQ
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of complexes of sheaves of wAQ
21 (A)-modules such that the diagram

F Q
Q

W QQI

GQ
Q

K

K

IQ
Q

Ic Q
Q

JQ
Q

is commutative. Moreover, if c Q
Q : (IQ

Q , ¯I
Q ) K (JQ

Q , ¯J
Q ) and (c 8 )Q

Q : (IQ
Q , ¯I

Q ) K

K (JQ
Q , ¯J

Q ) are homomorphisms of complexes of sheaves of wAQ
21 (A)-modules

which satisfy the commutativity given above, then there exists a
homomorphism

HQ
n : IQ

n K JQ
n21

of sheaves of wAQ
21 (A)-modules for n�Z with

c Q
n 2 (c 8 )Q

n 4HQ
n11 ¯ I

n 1¯ J
n21 HQ

n .

(3) Let

0 K F Q
QK GQ

QK H Q
QK0

be an exact sequence of complexes of sheaves of BQ-modules bounded be-
low ( for each degree, the short exact sequence is exact). Then there exist
injective resolutions of F Q

QK IQ
Q , GQ

QK JQ
Q and H Q

QK KQ
Q as complexes of

sheaves of wAQ
21 (A)-modules with a commutative diagram

0

0

K

K

F QQ
I

IQ
Q

K

K

GQ
Q

I

JQ
Q

K

K

H Q
Q

I

KQ
Q

K

K

0

0

of wAQ
21 (A)-modules such that the bottom sequence is exact. Moreover,

one can take IQ
Q , JQ

Q and KQ
Q functorially in given short exact se-

quences.

4.2.2. PROPOSITION. Under the assumption of Proposition 4.2.1 (2),
assume furthermore that I4 (D r )o , that is, KQ is an r-simplicial triple.
Then the homomorphism c Q

Q : IQ
QK JQ

Q induces a homomorphism

C(wAQ*
(D r )o

(c Q
Q ) ) : C(wAQ*

(D r )o
IQ
Q ) K C(wAQ*

(D r )o
JQ
Q )

of r11-multi complexes of sheaves of A-modules. Moreover, if c Q
Q : IQ

QK
K JQ

Q and (c 8 )Q
Q : IQ

QK JQ
Q are homomorphisms of complexes as in Proposi-
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tion 4.2.1 (2), then there exists a homomorphism

H n : tot (C(wAQ*
(D r )o

IQ
Q ) )n K tot (C(wAQ*

(D r )o
JQ
Q ) )n21

of sheaves of A-modules for n�Z which satisfies the relation

tot (C(wAQ*
(D r )o

(c Q
Q ) ) )n 2 tot (C(wAQ*

(D r )o
( (c 8 )Q

Q ) ) )n 4H n11 dI
n 1dJ

n21 H n .

Here dI
Q (resp. dJ

Q ) is a coboundary map of the total complex
tot (C(wAQ*

(D r )o
IQ
Q ) ) (resp. tot (C(wAQ*

(D r )o
IQ
Q ) ) ) in 3.9.

PROOF. The first part is clear. Let HQ
Q : IQ

QK JQQ
21 be a homomorphism

as in Proposition 4.2.1 (2). We put

H n 4 !
n01R1nr4n

wAn1 , R , nr*(Hn1 , R , nr
n0 ) .

Then one can easily see that H n (n�Z) satisfies the desired formula
since Hn1 , R , nr

n0 IQ
n0 (h n1 , R , nr

i , l ) 4 JQ
n021 (h n1 , R , nr

i , l ) Hn1 , R , nr
n0 . r

4.2.3. PROPOSITION. Under the assumption of Proposition 4.2.1 (3),
assume furthermore that I4 (D r )o , that is, KQ is an r-simplicial triple.
Then the short exact sequence 0 K IQ

QK JQ
QK KQ

QK0 induces a commu-
tative diagram

0

0

K

K

C(wAQ*
(D r )o

F Q
Q )

I

C(wAQ*
(D r )o

IQ
Q )

K

K

C(wAQ*
(D r )o

GQ
Q )

I

C(wAQ*
(D r )o

JQ
Q )

K

K

C(wAQ*
(D r )o

H Q
Q )

I

C(wAQ*
(D r )o

KQ
Q ) K 0

of r11-multi complexes of sheaves of A-modules such that the bottom se-
quence is exact. Moreover, if one can take IQ

Q , JQ
Q and KQ

Q functorially in
given short exact sequences, the commutative diagram is also functorial.

PROOF. Since In1 , R , nr
n0 is injective for any n0 , R , nr by Proposition

4.2.1, we have Rq wAn1 , R , nr
n0

* In1 , R , nr
n0 40 for any qD0. Now the assertion is

easy. r

Now we return to the situation at the beginning of 4.2. Let F Q
Q be a

complex of sheaves of wAQ
21 ( j † O] X[X

)-modules bounded below and let
F Q

QK IQ
Q be an injective resolution as sheaves of abelian groups on ] YQ [YQ .

We will define a derived Čech complex R C † (J , KQ ; F Q
Q ) for F Q

Q with re-
spect to wQ : KQKJ by

R C † (J , KQ ; F Q
Q ) 4 tot (C(wAQ*

(D r )o
IQ
Q ) )
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in the derived category D 1 (Z] X[X
). The derived Čech complex

R C † (J , KQ ; F Q
Q ) is independent of the choices of injective resolutions and

functorial in F Q
Q by Proposition 4.2.2.

The homomorphism F Q
QK IQ

Q induces a homomorphism

C † (J , KQ ; F Q
Q ) KR C † (J , KQ ; F Q

Q )

which we call the canonical homomorphism. This homomorphism does
not depend on the choice of injective resolutions and it is functorial in F Q

Q
in the derived category D 1 (Z] X[X

).
Though we use an injective resolution as sheaves of abelian groups in

the definition of derived Čech complexes, we can take an injective reso-
lution as sheaves of wA21 ( j † O] X[X

)-modules by Propositions 4.2.1, 4.2.2
and 4.2.3. Hence we have

4.2.4. PROPOSITION. With the notation as above, the q-th cohomology
sheaf Hq (R C † (J , KQ ; F Q

Q ) ) is a sheaf of j † O] X[X
-modules for any q. It is

functorial in F Q
Q as sheaves of j † O] X[X

-modules. Functorially for the
short exact sequence 0 K F Q

QK GQ
QK H Q

QK0 of sheaves of wA21 ( j † O] X[X
)-

modules, one can associate a long exact sequence

0 K H0 (R C † (J , KQ ; F Q
Q ) ) K H0 (R C † (J , KQ ; GQ

Q ) ) K H0 (R C † (J , KQ ; H Q
Q ) )

K H1 (R C † (J , KQ ; F Q
Q ) ) K Q Q Q

K Hq (R C † (J , KQ ; F Q
Q ) ) K Hq (R C † (J , KQ ; GQ

Q ) )K Hq (R C † (J , KQ ; H Q
Q ) )

K

of sheaves of j † O] X[X
-modules.

4.3. Let r and s be nonnegative integers with r 1 s and let

(KQ , (D
r )o )

vQI

(I , 0)

J
(gQ , t)

J
f

(LQ , (D
s )o )

IwQ

(J , 0)
(̃ )

be a commutative diagram of diagrams of lft-triples such that t is a pro-
jection to the first r components. We denote by fQ : JQ

(D s )o
KIQ

(D r )o
the

morphism of constant simplicial lft-triples induced by f and t.
Let F Q

Q (resp. GQ
Q) be a complex of sheaves of vAQ

21 ( j † O] W[W
)-modules

(resp. wAQ
21 ( j † O] X[X

)-modules) bounded below and let W : gAQ
21 F Q

QK GQ
Q be a

homomorphism of complexes of sheaves of wAQ
21 ( j † O] X[X

)-modules. Since



Bruno Chiarellotto - Nobuo Tsuzuki116

there exists a natural transform

fAQ
21 vAQ*

(D r )o
K wAQ*

(D s )o
gAQ

21

by Corollary 3.7.3, W induces a homomorphism

fAQ
21 vAQ*

(D r )o
(F Q

Q ) K (wAQ*)(D s )o
(gAQ

21 F QQ ) K
wAQ*

(Ds )o (W)
wAQ*

(D s )o
GQ

Q

of complexes. Hence W induces a canonical homomorphism

fA21 C † (I , KQ ; F Q
Q ) K C † (J , LQ ; GQ

Q )

of complexes of fA21 ( j † O] W[W
)-modules. This canonical homomorphism is

functorial in F Q
Q and GQ

Q . In the case r40 and I4J we have a canonical
homomorphism

F Q
QK C † (J , LQ ; GQ

Q ) .

Let F Q
QK IQ

Q (resp. GQ
QK JQ

Q) be an injective resolution as sheaves of
abelian groups on ] YQ [YQ (resp. ] ZQ [ZQ). Since gAQ

21 is exact, there is a
homomorphism

gAQ
21 IQ

QK JQ
Q

of complexes such that the diagram

gAQ
21 F Q

Q
WI

GQ
Q

K

K

gAQ
21 IQ

Q
I

JQ
Q

is commutative. This homomorphism induces a canonical homomor-
phism

fA21 R C † (I , KQ ; F Q
Q ) KR C † (J , LQ ; GQ

Q )

in the derived Čech complex D 1 (Z] X[X
). Indeed, the homomorphism be-

tween derived Čech complexes is independent of the choices of injective
resolutions, and depends only on W. It is functorial in F Q

Q and GQ
Q . The
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canonical diagram

fA21 C † (I , KQ ; F Q
Q )

I

C † (J , LQ ; GQ
Q )

K

K

fA21 R C † (I , KQ ; F Q
Q )

I

R C † (J , LQ ; GQ
Q )

(̃ )̃

is commutative.
If we replace F Q

Q (resp. GQ
Q) with an injective resolution as sheaves of

wA21 ( j † O] W[W
)-modules (resp. as sheaves of wA21 ( j † O] X[X

)-modules), then
the diagram (̃ )̃ remains commutative in the derived category
D 1 ( j † O] X[X

) of complexes of sheaves of j † O] X[X
-modules.

4.3.1. PROPOSITION. Let q , r and s be nonnegative integers with
q 1 r 1 s and let

(FQ , (D
q )o )

uQI

(E , 0)

J
(gQ , t)

J
f

(KQ , (D
r )o )

IvQ

(I , 0)

J
(g 8Q , t 8 )

J
f 8

(LQ , (D
s )o )

IwQ

(J , 0)

be a commutative diagram of diagrams of lft-triples such that t (resp.
t 8 ) is a projection to the first q (resp. r) components. Let F Q

Q (resp. GQ
Q , re-

sp. H Q
Q ) be a complex of sheaves of uAQ

21 ( j † O] S[S
)-modules (resp.

vAQ
21 ( j † O] W[X

)-modules, resp. wAQ
21 ( j † O] X[X

)-modules) bounded below,
with a homomorphism gAQ

21 F Q
QK GQ

Q (resp. (gAQ8 )21 GQ
QK H Q

Q ) of complexes of
sheaves of vAQ

21 ( j † O] W[W
)-modules (resp. wAQ

21 ( j † O] X[X
)-modules). Then

the natural diagrams

( ff 8
A)21 C † (E , FQ ; F Q

Q )
7

K

C † (J , LQ ; H QQ )
8

fA821 C † (I , KQ ; GQ
Q )

( ff 8
A)21 R C † (E , FQ ; F Q

Q )
7

K

R C † (J , LQ ; H Q
Q )

8
fA821 R C † (I , KQ ; GQQ )

are commutative.
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4.3.2. LEMMA. Let

KQ
uQI

J

J
wQ8

K
wQ

KQ8
IuQ8

J8

be a commutative diagram of diagrams of lft-triples such that KQ and KQ8
are r-simplicial triples over J and J8 , respectively. Suppose that
w×n : X8K X (resp. w×n8 : Yn8 K Yn ) is an open immersion and both w

i

n and
wn (resp. both w

i
8n and w8n ) are isomorphisms (resp. for any n). Then, for

any complex F Q
Q of sheaves of uQ

21 ( j † O] X[X
)-modules bounded below, the

identification ] X8 [X84] X[X and ] Yn8 [Yn8 4] Yn [Yn
for any n induce an

isomorphism

C † (J , KQ ; F Q
Q ) K

`

C † (J8 , KQ8 ; F Q
Q )

of complexes of sheaves of j † O] X[X
-modules and an isomorphism

R C † (J , KQ ; F Q
Q ) K

`

R C † (J8 , KQ8 ; F Q
Q )

in D 1 (Z] X[X
).

4.3.3. LEMMA. Let J4 (X , X, X) be an lft-triple, let X 8 be an open k-
subscheme of X and let us put J84 (X 8 , X, X). Let KQ be an r-simplicial
lft-triple over J8 with the structure morphism wQ8 : KQKJ8 and let
wQ : KQKJ be the natural structure morphism. Let F Q

Q be a complex of
sheaves of (wAQ8 )21 ( j † O] X[X

)-modules (here j † O] X[X
is a sheaf of rings of

overconvergent sections along ¯X 8 ). We regard F Q
Q as a complex of

sheaves of wAQ
21 ( j † O] X[X

)-modules (here j † O] X[X
is a sheaf of rings of over-

convergent sections along ¯X) via the natural morphism J8KJ.
(1) The natural homomorphism

C † (J , KQ ; F Q
Q ) K C † (J8 , KQ ; F Q

Q )

is an isomorphism of complexes of sheaves of j † O] X[X
-modules (here

j † O] X[X
is a sheaf of rings of overconvergent sections along ¯X).

(2) The natural morphism

R C † (J , KQ ; F Q
Q ) KR C † (J8 , KQ ; F QQ )

is an isomorphism in D 1 (Z] X[X
).
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PROOF. Note that the tube ] X[X with respect to J and the tube ] X[X

with respect to J8 are isomorphic to each other. The assertion follows
from this fact. r

We give a base change theorem of (derived) Čech complexes for
strict open immersions. We often use it in the case where F Q

Q is a complex
of sheaves of j † O] YQ [YQ

-modules. Note that gAQ*4 gAQ
21 in the following

case.

4.3.4. PROPOSITION. With the notation as in (̃ ) of 4.3, assume fur-
thermore that f×: X K W is an open immersion and f : JKI is strict
as a morphism of triples (see 2.3.3), LQ is a cartesian product of KQ and
J over I , and gQ and wQ are projections (hence r4s). Let F Q

Q be a com-
plex of sheaves of vAQ

21 ( j † O] W[W
)-modules bounded below. Then gAQ

21 in-
duces a canonical isomorphism

fA21 C † (I , KQ ; F QQ ) K
`

C † (J , LQ ; gAQ
21 F Q

Q )

as complexes of sheaves of f 21 ( j † O] W[W
)-modules and a canonical

isomorphism

fA21 R C † (I , KQ ; F Q
Q ) K

`

R C † (J , LQ ; gAQ
21 F Q

Q )

in D 1 (Z] X[X
).

PROOF. Since f is a strict open immersion, gQ is also. Hence the for-
mer homomorphism is an isomorphism by Propositions 2.8.1 and 3.7.4.
Since gAn is an open immersion of rigid analytic spaces and the left adjoint
gAn! of gAn

21 is exact for any object n of (D r )o (see 3.8), the inverse image of
injective sheaves by gAQ

21 is injective. Hence the later homomorphism is an
isomorphism in D 1 (Z] X[X

) by Proposition 3.7.4. r

4.4. We define a decreasing filtration for (derived) Čech complexes.
Let KQ be an s-simplicial lft-triple over an lft-triple J with the structure
morphism wQ : KQKJ.

Let s 8 be a nonnegative integer with s 8 1 s. Let F Q
Q be a complex of

sheaves of wAQ
21 ( j † O] X[X

)-modules bounded below. We define a decreas-
ing filtration of the (s11)-complex C(wAQ*

(D s )o
F Q

Q ) by

( fils 8
q C(wAQ*

(D s )o
F Q

Q ) )n0 , n1 , R , ns4
.
/
´

C(wAQ*
(D s )o

F Q
Q )n0 , n1 , R , ns

0

if n11R1ns 8 2q

if n11R1ns 8Eq
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and define a decreasing filtration of C † (J , KQ ; F Q
Q ) by

fils8
q C † (J , KQ ; F Q

Q ) 4 tot ( fils 8
q C(wAQ*

(D s )o
F Q

Q ) ) .

Now let F Q
QK IQ

Q be an injective resolution as sheaves of abelian groups
on ] YQ [YQ . We define a decreasing filtration of R C † (J , KQ ; F Q

Q ) by

fils 8
q R C † (J , KQ ; F Q

Q ) 4 tot ( fils 8
q C(wAQ*

(D s )o
IQ
Q ) )

in D 1 (Z] X[X
). The filtration of R C † (J , KQ ; F Q

Q ) is independent of the
choice of injective resolutions by Proposition 4.2.2. These filtrations are
functorial in F Q

Q, J and KQ by 4.3 and 4.3. By Example 3.8.2 (1) and Corol-
lary 3.8.7 the induced homomorphism F Q

(m ,Q) K IQ
(m ,Q) is an injective resolu-

tion for all m�Ob ( (D s 8 )o ). Hence we have

4.4.1. LEMMA. With the notation as above, there exist a canonical
isomorphism

grfils 8

q C † (J , KQ ; F Q
Q ) ` »

m�Ob ( (D s 8 )o ),NmN4q
C † (X, K(m ,Q) ; F Q

(m ,Q) [2q]

of complexes of sheaves of j † O] X[X
-modules and a canonical isomor-

phism

grfils 8

q R C † (X, KQ ; F Q
Q ) ` »

m�Ob ( (D s 8 )o ),NmN4q
R C † (J , K(m ,Q) ; F Q

(m ,Q) )[2q]

in D 1 (Z] X[X
) for any integer q. Here NmN4m1 1R1ms 8 . The canoni-

cal homomorphism C † (J , KQ ; F Q
Q ) KR C † (J , KQ ; F Q

Q ) is compatible with
the filtration and the q-th graduation of the canonical homomorphism
is given by the canonical homomorphism C † (J , K(m ,Q) ; F Q

(m ,Q) )[2q] K

KR C † (X, K(m ,Q) ; F Q
(m ,Q) )[2q] for each object m of (D s 8 )o with NmN4q.

Suppose that F Q
n0 40 for n0 1 2r. Then, for any integer q, we have

fils 8
q1r C † (J , KQ ; F Q

Q )q 40 (resp. fils 8
q1r R C † (J , KQ ; F Q

Q )q 40). Since the fil-
tration is of finite length at each degree, we have the following conver-
gence of spectral sequences. Here we use injective resolutions as com-
plexes of sheaves of wAQ

21 ( j † O] X[X
)-modules.
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4.4.2. LEMMA. With the notation as above, there exists a commuta-
tive diagram

E1
qr 4 »

m�Ob ( (D s 8 )o ),NmN4q

E1
qr 4 »

m�Ob ( (D s 8 )o ),NmN4q

Hr (C † (J , K(m ,Q) ; F Q
(m ,Q) ) )

I

Hr (R C † (X, K(m ,Q) ; F Q
(m ,Q) ) )

¨

¨

Hq1r (C † (J , KQ ; F Q
Q ) )

I

Hq1r (R C † (J , KQ ; F Q
Q ) )

of spectral sequences of sheaves of j † O] X[X
-modules. These spectral se-

quences are functorial in F Q
Q , J and KQ .

4.4.3. COROLLARY. With the notation as above, assume furthermore
that the natural homomorphism wAn* F n

Q KRwAn* F n
Q is an isomorphism

for all n. Then the canonical homomorphism

C † (J , KQ ; F Q
Q ) KR C † (J , KQ ; F Q

Q )

is an isomorphism.

PROOF. Since each homomorphism of E1-terms of spectral sequences
in Lemma 4.4.2 (the case s4s 8) is an isomorphism, the canonical homo-
morphism is also an isomorphism. r

Now we return to the situation in 4.3 and we consider the filtration in
4.4. Let F Q

Q (resp. GQ
Q) be a complex of sheaves of vAQ

21 ( j † O] W[W
)-modules

(resp. wAQ
21 ( j † O] X[X

)-modules) with a homomorphism gQ
21 F Q

QK GQ
Q of com-

plexes of sheaves of wAQ
21 ( j † O] X[X

)-modules. Then the commutative dia-
gram (̃ )̃ of 4.3 is compatible with the filtrations filr 8

Q (r 8 1 r) and
fils 8

Q s 8 1 s with r 8 1 s 8. The q-th graduation is given by

(̃ ˜̃ )

»
m�Ob((Dr 8)o),NmN4q

f
A21C †(I, K(m,Q); F Q

(m,Q))[2q]

I

»
n�Ob((Ds 8)o),NnN4q

C†(X, L(n,Q); GQ
(n,Q))[2q]

K

K

»
m�Ob((Dr 8)o),NmN4q

f
A21RC †(I, K(m,Q); F Q

(m,Q))[2q]

I

»
n�Ob((Ds 8)o),NnN4q

RC†(J,L(n,Q); GQ
(n,Q))[2q],

where each homomorphism is the canonical homomorphism. These fil-
trations induce a commutative diagram of spectral sequences in Lemma
4.4.2.
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4.4.4. PROPOSITION. With the notation as above, assume further-
more that I4J and r4r 84s 8. If the canonical homomorphism
F m

Q KR C † (Km , L(m ,Q) ; GQ
(m ,Q) ) is an isomorphism in D 1 (Z] Ym [Ym

) for
every object m of (D r )o , then the canonical homomorphism

R C † (J , KQ ; F Q
Q ) KR C † (J , LQ ; GQ

Q )

is an isomorphism in D 1 (Z] X[X
).

PROOF. Note that R C † (I , K(m ,Q) ; F m
Q ) 4RvAm* F m

Q . The assertion
easily follows from the fact that the right vertical arrow in the diagram
(̃ ˜̃ ) above arises from the canonical isomorphism
R C † (J , L(m ,Q) ; GQ

(m ,Q) ) `RvAm* R C † (Km , L(m ,Q) ; GQ
(m ,Q) ). r

4.4.5. PROPOSITION. Let J be a V-triple locally of finite type and let
wQ : LQKKQ be a morphism of r-simplicial lft-triples over J such that,
for each m ,

(i) w
i

m : I2I
a

Zm , aKYm is a finite Zariski covering;

(ii) Lm 4 I2I
a

(Zm , a , Zm , Zm ), and wm and w×m are the identities on

each component.

Let us denote by GQ (resp. vQ : GQKKQ ) the Čech diagram for wQ which
is an (r11)-simplicial triple defined in Example 3.1.2 (resp. the in-
duced natural morphism of diagrams of triples). Then, for any complex
F Q

Q of sheaves of O] YQ [YQ
-modules, the canonical homomorphism

C † (J , KQ ; j † F Q
Q ) K C † (J , GQ ; vQ

† F Q
Q )

induced by vQ is a quasi-isomorphism and the canonical homomor-
phism

R C † (J , KQ ; j † F Q
Q ) KR C † (J , GQ ; vQ

† F Q
Q )

induced by vQ is an isomorphism in D 1 (Z] X[X
).

PROOF. The assertion easily follows from Proposition and Proposi-
tion 4.4.4. r

4.5. Let J be an lft-triple and let KQ be an s-simplicial lft-triple
over J with a structure morphism wQ . Let F Q

Q be a complex of sheaves
of wAQ

21 ( j † O] X[X
)-modules bounded below with a decreasing filtration
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]Filq F Q
Q(q which satisfies the conditions: (i) Filq F Q

Q4 F Q
Q for qb0 and

(ii) there exists an integer s such that Filq F Q
r 40 for all r2qEs.

4.5.1. LEMMA. With the notation as above, there exists an injective
resolution

F Q
QK IQ

Q

as decreasing filtered complexes of sheaves of abelian groups on ] YQ [YQ
which satisfies the following conditions:

(i) Filq IQ
Q4 IQ

Q for qb0;
(ii) Filq IQ

r 40 for all r2qEs;
(iii) the induced homomorphism

GrFil
q F Q

QKGrFil
q IQ

Q

is an injective resolution for all q.

The injective resolution as above is independent of the choice in the
derived category D 1 (Z] YQ [YQ

). Moreover, the injective resolution as
above is functorial in F Q

Q , J and KQ in D 1 (Z] YQ [YQ
).

PROOF. Let GrFil
q F Q

QK J(q)Q
Q be an injective resolution as sheaves of

abelian groups on ] YQ [YQ such that J(q)Q
r 40 for any r2qEs. If GrFil

q F Q
Q4

40, we put J(q)Q
Q40. We fix a homomorphism F Q

QK J(q)Q
Q of complexes for

all q such that it induces the injective resolution GrFil
q F Q

QK J(q)Q
Q . Such a

homomorphism exists by the condition (i) of F Q
Q and the choice of J(q)Q

Q .
We define a complex IQ

Q of sheaves of abelian groups on ] YQ [YQ
by

IQ
Q4»

q
J(q)Q

Q

and define a decreasing filtration of IQ
Q by

Filq IQ
Q4»

q 8
2 q J(q 8 )Q

Q

for any q. Then GrFil
q IQ

Q4 J(q)Q
Q . Since a direct product of injective sheaves

is also injective, IQ
r is injective for all r. By the universal property of di-

rect products the fixed system of homomorphisms induces a homomor-
phism

F Q
QK IQ

Q

of filtered complexes. Since IQ
Q is a finite direct product at each degree,
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the homomorphism above satisfies the conditions (i)-(iii) by construction.
The natural homomorphism Hr (F Q

Q ) K Hr (F Q
Q /Filq F Q

Q ) (resp. Hr (IQ
Q ) K

K Hr (IQ
Q /Filq IQ

Q )) is an isomorphism for rEq1s21 by the conditions (i)-
(iii) for any q. Hence the homomorphism F Q

QK IQ
Q gives an injective reso-

lution. The independence follows from Proposition 4.2.1 and the functori-
alities follow from 4.2 and 4.3. r

Since the filtration in the injective resolution given by lemma 4.5.1 is,
at each degree, made by finite product we have the following conver-
gence of spectral sequences. Here we use injective resolutions as com-
plexes of sheaves of wAQ

21 ( j † O] X[X
)-modules.

4.5.2. PROPOSITION. With the notation at the beginning of 4.5, there
exists a spectral sequence

E1
qr 4 Hq1r (R C † (J , KQ ; GrFil

q F Q
Q ) ) ¨ Hq1r (R C † (J , KQ ; F Q

Q ) )

of sheaves of j † O] X[X
-modules. This spectral sequence does not depend

on the choice of injective resolutions as above. Moreover, the spectral
sequence is functorial in F Q

Q , J and KQ .

5. A vanishing theorem.

In this section we prove a vanishing theorem for the higher cohomol-
ogy of sheaves of coherent j † O] X[X

-modules.

5.1. First we prove the following proposition.

5.1.1. PROPOSITION. Let J4 (X , X, X) be a V-triple of finite type
such that X is affine. Choose a complement ¯X of X in X and pick lifts
g1 , R , gs �G(X, OX ) of the generators of the ideal of definition of ¯X in X
as in . Suppose that W is an open affinoid subvariety in Ugi

2 d for some i
and for some d�kNKNO]0 , 1[ (see the notation in 2.6). If E is a sheaf of
coherent j † O] X[X

-modules, then we have

H q (W , E) 40

for any qD0.

PROOF. Let E be a sheaf of OU-modules for a strict neighbourhood
U of ]X[X in ] X[X with E` jU

† E. Then there exists a real number
d�kNKNO]0 , 1[ such that WOUJ , ¯X

2 d %WOU by Lemma 2.6.6 (2). By
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Proposition 2.6.8 we have

H q (W , E) ` lim
nK12

H q (W , jUOUX, ¯X
2 n

* E) .

Suppose that n2d. Since WOUJ , ¯X
2 n is affinoid (Lemma 2.6.1) and E is

coherent on WOUJ , ¯X
2 n , Rj W

UOUJ , ¯X
2 n

* E 4 j W
UOUJ , ¯X

2 n
* E by Tate’s acyclicity

theorem [21, Theorem 8.7]. Hence we have

H q (W , jUOUJ , ¯X
2 n

* E) 4H q (WOUJ , ¯X
2 n , E) 40 (qD0)

by Tate’s acyclicity theorem. This completes the proof of the proposi-
tion. r

The following result is contained in Berthelot’s unpublished note [6].
By Proposition 2.7.2 (2) we have

5.1.2. COROLLARY. Let J be a V-triple of finite type such that X is
affine and some complement ¯X of X in X is a hypersurface, that is, s4

41 in Proposition 5.1.1, and let W be an open affinoid subvariety in
] X[X . If E is a sheaf of coherent j † O] X[X

-modules, then we have

H q (W , E) 40

for any qD0.

5.2. We give some relative vanishing theorems.

5.2.1. THEOREM. Let w : KKJ be a morphism of V-triples locally of
finite type such that

(i) all of w
i

: YKX , w : Y K X and w× : Y K X are open immer-
sions;

(ii) w× : Y K X is affine.

If E is a sheaf of coherent j † O] Y[Y
-modules, then we have

Rq wA* E40

for any qD0.

Before proving Theorem 5.2.1, we recall the notion of quasi-stein
spaces in [16, Definition 2.3]. Let X be a rigid analytic space over Spm K.
X is quasi-stein if there is a countable increasing affinoid admissible cov-
ering ]Xn (n of X such that the image of the restriction map
G(Xn11 , OX ) KG(Xn , OX ) is dense for any n. One can easily see that
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(1) an intersection of a finite number of quasi-stein subspaces in a
separated rigid analytic space is quasi-stein;

(2) a rigid analytic space is affinoid if and only if it is quasi-stein and
quasi-compact.

Let P be an affine formal scheme over Spf V and let Z be a k-closed sub-
scheme of P 3Spf V Spec k. We fix a system f1 , R , fr �G(P, OP ) of lifts of
generators of the ideal of definition of Z in P 3Spf V Spec k and an increas-
ing sequence h4 (h n )n 2 0 (h n �kNKNO]0 , 1[) with h n K12 for nKQ.
If we put

[Z]P, h n
4 ]z�]Z[P NNfi (z)N1 h n for any i( ,

then the tube ]Z[P is a quasi-stein space with an admissible covering
][Z]P, h n

(n .

PROOF OF THEOREM 5.2.1. Since the problem is local on X, we may
assume that X is affine. Then Y is affine by the assumption. Let us take a
complement S (resp. T) of Y (resp. Y) in X and fix a system f1 , R , fr �
�G(X, OX ) (resp. g1 , R , gs �G(X, OX )) of generators of the ideal of defini-
tion of S (resp. T) in X. Note that the images of g1 , R , gs �G(Y, OY ) form
a system of lifts of generators of the ideal of definition of the comple-
ment ¯Y4TOY of Y in Y.

Let W be an open affinoid subvariety of ] X[X . Since

wA21 (W) 4WO] Y[Y ,

wA21 (W) is quasi-stein. Moreover, we have

wA21 (W) 4 ]x�WNNfi (x)N41 for some i( .

In other words, wA21 (W) is a finite union of affinoid varieties. Hence it is
quasi-compact. Therefore, wA21 (W) is an open affinoid subvariety of ] Y[Y .

Now we fix d�kNKNO]0 , 1[. Let UK , gi
2 d and UK , ¯Y

1 d be admissible open
subsets in ] Y[Y for K with respect to gi and ¯Y as in 2.6. We define admis-
sible open subsets VJ , gi

2 d and VJ , T
1 d by

VJ, gi
2 d

VJ, T
1 d

4

4

]x�]X[XNNgi(x)N2d,Ngi(x)N2Ngi 8(x)N for all i 8 with 1 1 i 81 s(

]x�]X[XNNgi(x)N 1 d for all i with 1 1 i 1 s( .
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Then ]VJ , gi
2 d (i N ]VJ , T

1 d ( is an admissible covering of ] X[X , and we
have

UK , gi
2 d

UK , ¯Y
1 d

4

4

VJ , gi
2 d O] Y[Y

VJ , T
1 d O] Y[Y .

Since Rq wA* E is a sheaf associated to the presheaf

W O H q (wA21 (W), E)

for any admissible open subset W in ] X[X , it is sufficient to prove
H q (wA21 (W), E) 40 for any qD0 and for any open affinoid subvariety W
in VJ , gi

2 d for some gi . Indeed, if W%VJ , T
1 d , then ENWO] Y[Y

40 by Proposition
2.7.2 (2). If W is an open affinoid subvariety in VJ , gi

2 d , wA21 (W) is an open
affinoid subvariety in UK , gi

2 d . The vanishing follows from 5.1.1. r

5.2.2. THEOREM. Let w : KKJ be a morphism of lft-triples such
that w is strict as a morphism of triples and w× : Y K X is affine. Then,
for any sheaf of coherent j † O] Y[Y

-modules E , we have

Rq wA* E40

for any qD0.

PROOF. Since the problem of vanishing is local on X, we may assume
that X is affine. Then Y is also affine by the assumption. Let us take a
complement ¯X (resp. ¯Y4 w21 (¯X)) of X (resp. Y) in X (resp. Y). We de-
note by UJ , ¯X

1 n and UK , ¯Y
1 n the admissible open subsets for J and K with re-

spect to ¯X and ¯Y as in 2.6, respectively. Then wA21 (UJ , ¯X
2 n ) 4UK , ¯Y

2 n and
wA21 (UJ , ¯X

1 n ) 4UK , ¯Y
1 n by Lemma 2.6.3.

If W is an open affinoid subvariety of ] X[X , then wA21 (W) 4W3XK
an YK

an

is also affinoid since w is strict as a morphism of triples (X and Y are de-
fined by same equations in X and Y, respectively). Now the assertion
easily follows from Proposition 5.1.1. r

6. Universally cohomological descent.

In this section we introduce a notion of universally cohomological de-
scent for a morphism of triples.

6.1. We introduce a notion of «exact» for morphisms of diagrams of
triples.
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6.1.1. DEFINITION. (1) Let wQ : KQKJQ be a morphism of diagrams of
lft-triples. We say that wQ is exact (resp. faithful) if the functor
wQ

† : Coh ( j † O] XQ [XQ ) KCoh ( j † O] YQ [YQ ) (see the definition in 3.3 and 3.5) is
exact (resp. faithful).

(2) We say that a morphism KKJ of lft-triples is universally exact
if, for any morphism LKJ of lft-triples, the base change morphism K3

3J LKL is exact. Here w is regarded as a morphism of diagrams of
triples indexed by the category 0 (Example 3.1.1 (1)). r

In general, wQ
† is a right exact functor by 2.10.1.

6.1.2. LEMMA. Let u : KKJ and w : LKK be morphisms of lft-
triples and put v4uw.

(1) If u and w are exact (resp. universally exact, resp. faithful), then
v is also so.

(2) If w is exact and faithful and v is exact, then u is exact.

PROOF. (1) is easy. (2) Let h : EKF be an injective homomorphism
of sheaves of coherent j † O] X[X

-modules and let G be a kernel of u † (h).
Note that G is a sheaf of coherent j † O] Y[Y

-modules. Since v is exact,
w † u † (h) 4v † (h) is injective. Since w is exact, w † G40. The faithfulness
of w implies G40. r

By definition we have

6.1.3. LEMMA. Let w : KKJ be a morphism of lft-triples. Suppose
that w is universally exact. Then the Čech diagram wQ : KQKJ is
exact.

6.1.4. PROPOSITION. Let V be an object in CDVRZp
with a uniformiz-

er p. Suppose that w : KKJ is a morphism of V-triples such that Y 3

3Spf V Spec V /p e11 K X 3Spf V Spec V /p e11 induced from w× is flat around
Y for every e. Then w is universally exact. In particular, if w× : Y K X is
flat around Y , that is, there exists an open formal subscheme U of Y

which contains Y such that w×NU : U K X is flat, then w is universally
exact.

PROOF. Since the situation is unchanged after any base change of
morphisms of lft-triples, it is sufficient to prove the exactness. Since the
restriction functor j * is exact and faithful by Lemma 2.9.1, we have only
to prove the assertion in the case where X 4X and Y 4Y by Lemma
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6.1.2. The assertion is local both on X and Y, so that we may assume that
both X and Y are affine, say X 4Spf A and Y 4Spf B. Let W4

4Spm A]t1 , R , tn ( /I7V K be a rational subdomain of ] X[X . (See the no-
tation in 2.2.) Then any sheaf of coherent OW-modules (resp. any homo-
morphism of sheaves of coherent OW-modules) arises from a finite
A]t1 , R , tn ( /I-module (resp. a homomorphism of finite A]t1 , R , tn ( /I-
modules) [8, 9.4.3 Theorem 3]. Since the localization wA21 (W) K

K B]t1 , R , tn ( /I7V K is flat [8, 7.3.2 Corollary 6], the flatness of
A /p e11 K B /p e11 for every e implies the exactness of w †. r

6.2. We introduce new notions: «cohomological descent» and «uni-
versally cohomological descent».

6.2.1. DEFINITION. Let J be a V-triple locally of finite type and let KQ
be a simplicial J-triple locally of finite type with the structure morphism
wQ : KQKJ.

(1) We say that wQ is cohomologically descendable if the following
conditions (i) and (ii) are satisfied.

(i) wQ is exact.
(ii) For any sheaf E of coherent j † O] X[X

-modules, the canonical
homomorphism

EKR C † (J , KQ ; wQ
† E)

is an isomorphism in D 1 (Z] X[X
).

(2) We say that wQ is universally cohomologically descendable if, for
any morphism LKJ of lft-triples, the base change morphism KQ3J LK

KL is cohomologically descendable. r

6.2.2. DEFINITION. Let w : KKJ be a morphism of V-triples locally
of finite type and let wQ : KQKJ be the Čech diagram for w as in
Example 3.1.1 (4). We say that w is cohomologically descendable (resp.
universally cohomologically descendable) if wQ is so. r

6.2.3. LEMMA. Let J be a V-triple locally of finite type and let KQ be
a simplicial J-triple locally of finite type with the structure morphism
wQ : KQKJ. Suppose that wQ satisfies the condition (ii) in Definition
6.2.1 (1). Then, w0 : K0 KJ is faithful.

PROOF. Let h : EKF be a homomorphism of coherent j † O] X[X
-modu-

les such that w0
† (h) 40. Then wQ

† (h) 40. Hence, the induced homomor-
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phism R C † (J , KQ ; wQ
† (h) ) : R C † (J , KQ ; wQ

† E) KR C † (X, KQ ; wQ
† F) is a

zero map in the derived category. Since wQ satisfies the condition (ii) in
Definition 6.2.1 (1), we have h40. r

6.2.4. EXAMPLE. The identity morphism idJ : JKJ of an lft-triple J

is universally cohomologically descendable. r

6.2.5. PROPOSITION. Let w : KKJ be a morphism of V-triples local-
ly of finite type such that w× is a Zariski covering and w is strict as a
morphism of triples. (See the definition in 2.3.3 and 2.3.4.) Then w is
universally cohomologically descendable.

PROOF. Since the situation is stable under any base change by a
morphism of lft-triples, we have only to prove w is cohomologically de-
scendable. Let us denote by wQ : KQKJ the Čech diagram for w : KKJ.
Since w× is a Zariski covering, wQ

† is exact by Proposition 6.1.4.
Now we prove the condition (ii) in Definition 6.2.1. We may assume

that X is affine by Propositions 2.7.3 and 4.3.4. Let us take an affine
Zariski covering Z of Y and we denote by L the triple over K induced
from such a Zariski covering Z of Y as in 2.3.3. We denote by LQ and
LQKKQ the Čech diagram for L over J and the induced morphism, re-
spectively. Let us denote by GQ the Čech diagram of LQ over KQ and by
vQ : GQKKQ and uQ : GQKJQ

Q (D 2 )o the natural morphisms as in Example
3.1.2.

For each object (m , n) of (D 2 )o, u(m , n) and v(m , n) satisfy the assump-
tion of Theorem 5.2.1. The derived Čech diagram coincides with the Čech
diagram for u(m ,Q) and v(Q , n) by Corollary 4.4.3. Hence, we have only to
prove that the canonical homomorphisms

E

wn
† E

K

K

C † (J , G(m ,Q) ; u †
(m ,Q) E)

C † (Kn , G(Q , n) ; v †
(Q , n) wn

† E)

are quasi-isomorphisms for any m and n by Proposition 4.4.4. This fol-
lows from Lemma 2.12.1. r

6.2.6. PROPOSITION. Let J4 (X , X, X) be a V-triple locally of finite
type and let I2I

a
XaKX be a finite Zariski covering. Put Ja4 (Xa , X, X),

and denote by w : I2I
a

JaKJ the structure morphism. Then w is univer-

sally cohomologically descendable.
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PROOF. Since the situation is stable under any base change by a
morphism of lft-triples, we have only to prove w is cohomologically de-
scendable. The assertion follows from Proposition 4.4.5. r

6.3. Let J, K and L be V-triples locally of finite type and let

K

u7
J

w

X

8v

L

be a commutative diagram of triples. We put uQ : KQKJ and vQ : LQKJ

to be the Čech diagram for u and v, respectively, and denote by wQ4
4cosk0

J (w) : LQKKQ the induced morphism of diagrams of triples over J

from w.
We state the main theorem of this section. The proof is given at the

end of this subsection. A generalization to the simplicial case will be
given in 6.5.

6.3.1. THEOREM. With the notation as above, suppose that w is uni-
versally cohomologically descendable. Then u is cohomologically de-
scendable (resp. universally cohomologically descendable) if and only
if v is so.

6.3.2. PROPOSITION. With the notation as above, suppose that there
exists a section s : KKL over J , that is, ws4 idK and u4vs. Then, for
any sheaf E of coherent j † O] X[X

-modules, the canonical homomor-
phism

wAQl
--l : R C † (X, KQ ; uQ

† E) KR C † (J , LQ ; vQ
† E)

induced by wQ is an isomorphism in D 1 (Z] X[X
).

PROOF. Let E be a sheaf of coherent j † O] X[X
-modules. Let

sA l--l : R C † (J , LQ ; vQ
† E) KR C † (X, KQ ; uQ

† E)

be the canonical homomorphism induced by s (see 4.3). Then sA l--l is a left
inverse of wA l--l by Proposition 4.3.1. Hence, it is sufficient to prove that
wA l--lsA l--l coincides with the identity on R C † (J , LQ ; vQ

† E).
Let H(LQ ˘ LQ ) be the diagram of triples over J indexed by H(D)

which is induced by the homotopy from sQ wQ to idZQ (Example 3.10.1 and
Proposition 3.10.3) and let fQ : H(LQ ˘ LQ ) KJ be the structure mor-
phism. We denote by FQ the induced sheaf fQ

† E on the induced diagram of
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tubes for H(LQ ˘ LQ ) (Lemmas 3.10.4 and 3.10.5). Let FQK IQ
Q be an injec-

tive resolution (Proposition 4.2.1). Unfortunately, vQ
† E4F(Q , 0 ) K IQ

(Q , 0 )

might not be an injective resolution, although it is a quasi-isomorphism.
However, vn

† E4F(n , 0 ) K I(n , 0 )
Q is an injective resolution for each n by

Proposition 3.8.7. Hence, there exists a canonical isomorphism
R C † (J , LQ ; vQ

† E) ` tot (C(vQ*
Do

IQ
(Q , 0 ) ) ) by Propositions 4.2.1, 4.2.2 and

Lemma 4.4.1. We also know that vQ
† E4F(Q , 1 ) K IQ

(Q , 1 ) is an injective reso-
lution by Proposition 3.8.7 and Lemma 3.10.7. The homotopy which is in-
duced by the injective resolution IQ

Q (Lemma 3.10.5 (3)) gives an identifi-
cation between wA l--lsA l--l and the identity on R C † (J , LQ ; vQ

† E) by Proposi-
tion 3.10.8. This completes the proof. r

Let tQ : (GQ , (D
2 )o ) KJ be the 2-simplicial triple defined in Example

3.1.2 which is induced from the commutative diagram

KQ
uQI

J

J
wQ

4

LQ
IvQ

J .

6.3.3. LEMMA. With the notation as above, let E be a sheaf of coher-
ent j † O] X[X

-modules. Then, the homomorphism

R C † (J , GQ ; tQ
† E) KR C † (J , LQ ; vQ

† E)

which is induced by the isomorphism grfil
0 R C † (J , GQ ; tQ

† E) `

`R C † (X, LQ ; vQ
† E) in Lemma 4.4.1 (the case where (s , s 8 ) 4 (2 , 1) ) is an

isomorphism in D 1 (Z] X[X
). Assume furthermore that, for any object n

of D , the Čech diagram for wn : Ln KKn satisfies the condition (ii) in
Definition 6.2.1 (1). Then the homomorphism

R C † (J , KQ ; uQ
† E) KR C † (J , LQ ; vQ

† E)

induced by wQ is an isomorphism in D 1 (Z] X[X
).

PROOF. Let h n1 , n2
1 , l : (n1 , n2 ) K (n1 11, n2 ) (resp. j n1 , n2

1 , l : (n1 , n2 ) K

K (n1 21, n2 )) be a morphism in D 2 as in (resp. such that j n1 , n2
1 , l 4j n1

l 3 idn2
,

where j n1
l is defined in 1.3.4). By applying Proposition 6.3.2 to the

morphism (h q , 0
1 , l )GQ : G(q11, 0) KG(q , 0 ) with sections (j q11, 0

1 , l21 )GQ and
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(j q11, 0
1 , l )GQ, the canonical homomorphism

(h 1, l
q , Q )GQ

l--l : R C † (J , G(q , Q) ; E) KR C † (J , G(q11, Q) ; E)

which is induced by (h 1, l
(q , Q) )GQ does not depend on l in D 1 (Z] X[X

).
Let us now consider the spectral sequence

E1
qr 4 Hr (R C † (J , G(q , Q) ; t †

(q , Q)
E) ) ¨ Hq1r (R C† (J , GQ ; tQ

† E) )

of sheaves on ] X[X which is induced from the filtration of
R C † (J , GQ ; tQ

† E). Then the edge homomorphism d1
qr : E1

qr K E1
q11, r is

zero if q is even and is an isomorphism if q is odd. Since E2
0r 4 E1

0r and
E2

qr 40 (qc0), the induced homomorphism

R C † (J , GQ ; tQ
† E) KR C † (J , LQ ; vQ

† E)

is an isomorphism. The rest follows from Proposition 4.4.4. r

6.3.4. LEMMA. With the notation as at the beginning of 6.3, suppose
that, for any base change w 8 of w in the category of lft-triples, the Čech
diagram w 8Q for w 8 satisfies the condition (ii) in Definition 6.2.1 (1).
Then, for any object n of D , the Čech diagram (wn )Q : G(n , Q) KKn for
wn : Ln KKn satisfies the same condition.

PROOF. We prove that wl 3 idK
n2 l : Ll 3X Kn2l21 KKn satisfies the

condition (ii) in Definition 6.2.1 (1) for 0 1 l 1 n inductively on l (L21 4

4K21 4J). If l40, then w3 idK
n is a base change of w : LKK by the first

projection Kn KK. Hence, w3 idK
n satisfies the condition (ii).

Suppose that wl21 3 idK
n2l11 satisfies the condition (ii). We want to ap-

ply Lemma 6.3.3 to the commutative diagram

Ll21 3J Kn2l

wl21 3idK
n2l117

J
idL

l 3w3 idK
n2l

Kn .

Ll 3J Kn2l21

8wl 3 idK
n2l

To do this, we have only to show that, for any m, the Čech diagram for
the morphism

cosk0
Kn ( idL

l 3w3idK
n2 l )m : cosk0

Kn (Ll 3J Kn2l21 )m Kcosk0
Kn (Ll213J Kn2l )m
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satisfies the condition (ii). Let us consider the diagram

cosk0
Kn(Ll213JKn2l)m

I

cosk0
J(cosk0

K(L)m)l213JKn2l

J
cosk0

Kn(idL
l 3w3idK

n2l)m

J
idcosk0

K(L)m
l

3w 8m3idK
n2l

cosk0
Kn(Ll3JKn2l21)m

I

cosk0
J(cosk0

K(L)m)l3JKn2l21

of triples. Here wm8 : cosk0
K (L)m KK is the structure morphism, the left

vertical arrow is defined by

»
i40

m

(z0, i , R , zl21, i , yl , i , R , yn , i ) O g»
j40

l21

(zj , 0 , R , zj , m )h3 (yl , 0 , R , yn , 0 )

(note that (yl , i , R , yn , i ) is independent of the choice of i), and the right
vertical arrow is defined in the same way as in the left one. Then one can
easily see that the diagram is commutative and both vertical arrows are
isomorphisms. So it is sufficient to prove that the Čech diagram for the
bottom arrow satisfies condition (ii). Now we consider the commutative
diagram

cosk0
J(cosk0

K(L)m)l213JL3JKn2l21

idcosk0
J(cosk0

K(L)m)l213w3idK
n2l7

J
idl

cosk0
K(L)m

3pr3id
K

n2l

cosk0
J(cosk0

K(L)m)l213JKn2l,

cosk0
J(cosk0

K(L)m)l3JKn2l21

8idl
cosk0

K(L)m3w8m3idK
n2l

where pr : cosk0
K (L)m KL is the first projection. The diagonal morphism

LKcosk0
K (L)m induces a section of the horizontal morphism above.

Since the left slanting arrow is a base change of w : LKK, the Čech dia-
gram for it satisfies condition (ii). Hence, the Čech diagram for the right
slanting arrow satisfies condition (ii) by Proposition 6.3.2. This completes
the proof of Lemma 6.3.4. r

6.3.5. LEMMA. With the notation as at the beginning of 6.3,
(1) if w is universally exact, then so is wn for every object n of D.
(2) if w is universally cohomologically descendable, then wn is coho-

mologically descendable for every object n of D.

PROOF. One can easily prove (1) by induction on n.
(2) The exactness of the Čech diagram (wn )Q for wn follows from (1)

and Lemmas 6.1.3. The condition (ii) in Definition 6.2.1 (1) follows from
Lemma 6.3.4. Hence, wn is cohomologically descendable. r
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PROOF OF THEOREM 6.3.1. Since the situation is unchanged after
any base change of morphisms of lft-triples, it is sufficient to prove the
equivalence of the cohomological descendability. Since wn is exact and
faithful for any n by Lemmas 6.2.3 and 6.3.5, the exactness of uQ is equiv-
alent to that of vQ by Lemma 6.1.2. The Čech diagram (wn )Q for wn satis-
fies condition (ii) in Definition 6.2.1 (1) for any n by Lemma 6.3.4. Hence,
Lemma 6.3.3 implies that uQ satisfies condition (ii) if and only if vQ satis-
fies it. This completes the proof. r

6.4. The notion of cohomological descent is independent of the
choice of boundaries and embedding into formal schemes.

6.4.1. PROPOSITION. Let w : KKJ be a separated morphism of V-
triples locally of finite type such that

(i) w× : Y K X is smooth around X ;

(ii) w : Y K X is proper;

(iii) w
i

: YKX is an isomorphism.
Then w is universally cohomologically descendable.

6.4.2. COROLLARY. Let J4 (X , X, X), K4 (Y , Y, Y) and K84

4 (Y , Y8 , Y8 ) be V-triples locally of finite type, and let w : KKJ and
w 8 : K8KJ be separated morphisms of V-triples such that

(i) both w× and w×8 are smooth around Y ;

(ii) both w and w8 are proper;

(iii) w
i

4 w
i

8.
Then w is cohomologically descendable (resp. universally cohomo-

logically descendable) if and only if w 8 is so.

First we prove the following lemma.

6.4.3. LEMMA. Under the assumption of Proposition 6.4.1, assume
furthermore that w : Y K X is an isomorphism. Then w is universally
cohomologically descendable.

PROOF. The situation is unchanged under any base change by mor-
phisms of lft-triples. Hence, we have only to prove that w is cohomologi-
cally descendable. The structure morphism wQ of Čech diagram is exact
by Proposition 6.1.4. Hence, it is sufficient to prove that w satisfies the
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condition (ii) in Definition 6.2.1 (1). We may assume that X is affine by
Proposition 4.3.4. Since Y 4 X, there exists an open formal subscheme Y8

of Y of finite type over X such that Y is a closed subscheme in Y8. Hence
we may assume that Y is of finite type over X.

First we prove the assertion in the case where w× : Y K X is étale
around Y. Let wQ : KQKJ be a Čech diagram for w : KKJ. Since w

i

n and
wn are also isomorphisms and w×n is also étale, one can use Propositions
2.7.2 (2) and 2.10.2 (2) for higher direct images of wAn for any n. By Corol-
lary 4.4.3, it suffices to show that the canonical homomorphism EK

K C † (J , KQ ; wQ
† E) is a quasi-isomorphism for any sheaf E of coherent

j † O] X[X
-modules. The homomorphism wAn* wn

† EK wAn11* wn11
† E which is

induced from any projection Kn11 KKn coincides with the identity EK

KE by Proposition 2.10.2 (1). Hence, EK C † (J , KQ ; wQ
† E) is a quasi-iso-

morphism and w is cohomologically descendable. Therefore, w is univer-
sally cohomologically descendable if w× is étale.

Now we reduce to the case where Y is affine. If one takes a suitable
finite affine covering I2I

a
Xa of X one can find an affine open formal sub-

scheme Xa of X and an affine open formal subscheme Ya of Y with a com-
mutative diagram

Xa

6

7

Ya

I
Xa

such that both Xa4 XO Xa3Spf V Spec k and XaK Ya3Spf V Spec k is a
closed immersion for any a. Now we put X840

a
Xa and Y840

a
Ya , and

define triples J84 (X , X, X8 ) and K84 (X , X, Y8 ). We also put Xa4XO
OXa and define triples Ja4 (Xa , Xa , Xa ) and Ka4 (Xa , Xa , Ya ). Then we
have only to prove that the natural structure morphism K8KJ8 is coho-
mologically descendable by Lemma 4.3.2. Let us consider the natural
commutative diagram:

K83J8 Ja

I
Ja .

J
8

Ka

Since ]Xa(a is a Zariski covering of X8 and Ya is an open formal sub-
scheme of Y83X8 Xa , it is sufficient to prove that KaKJa is cohomologi-
cally descendable for any a by Proposition 4.3.4 and Lemma 4.3.2. Hence,
we may assume that Y is affine.
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By the strong fibration theorem [7, 1.3.7 Théorème] there is a finite
affine Zariski covering I2I

b
XbKX such that w× is decomposed as follows:

Xb K X
6
K

7

Y

Iw×9b

A×X
db

Iw× 8b

X

w× 4 w×b8 w×9b

for each b, where A×
X
db is the affine space over X of relative dimension db ,

w×b8 is the projection and w×b9 is étale around Xb . Since G(X, XX ) K

KG(X , OX ) is surjective, X K A×
X
db 3Spf V Spec k is a closed immersion. We

denote by J9 (resp. K9) the triple J94 I2I
b

(Xb , X, X) (resp. K94

4 I2I
b

(Xb , X, Y)). Then we obtain a commutative diagram

K

I
J

J

J

K9
I
J9 .

The horizontal maps are universally cohomologically descendable by
Proposition 6.2.6. By Theorem 6.3.1 we are reduced to proving the coho-
mological descendability of the composition K9KJ. Let JQ9KJ (resp.
KQ9KJ) be the Čech diagram for J9KJ (resp. K9KJ). Then each com-
ponent of Yn9 K X9n of the induced homomorphism Kn9 KJn9 is a composi-
tion of an étale morphism around Yn9 and a projection as above for all n.
Hence, if one knows the cohomological descendability of morphisms
Kn9 KJn9 for all n, then K9KJ is cohomologically descendable by Propo-
sition 6.1.4 and Lemma 6.3.3.

Now we suppose that w× : Y K X is decomposed as w× 4 w×8w×9 such that
w×9 is an étale morphism around X and w×8 is a projection from the affine
space A×X

d as above. Since w 9 is universally cohomologically descendable
by what has just been proved above, we may assume that w4w 8 and
Y 4 A×X

d by Theorem 6.3.1. If we choose a suitable system of coordinates
of A×X

d , then the 0-section s× of w× induces a section s of w as a morphism of
triples. Now the assertion follows from Proposition 6.3.2. This completes
the proof. r

6.4.4. PROPOSITION. With the situation of Corollary 6.4.2, if we re-
place the condition (ii) with the condition (ii)8 Y 4 Y8 and w 4 w8. Then
the assertion of Corollary 6.4.2 still holds.
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PROOF. Since the diagonal embedding Y K Y 3X Y8 is a closed im-
mersion, we may assume that there exists a morphism v : K8KK over J

since w 4 w8 is proper. The assertion follows from Theorem 6.3.1 and
Lemma 6.4.3. r

PROOF OF PROPOSITION 6.4.1. We may assume that X is affine by
Propositions 4.3.4. Since Y is of finite type over X, there exists an open for-
mal subscheme Y8 of Y of finite type over X such that Y is a closed sub-
scheme in Y8. Hence we may assume that Y is of finite type over X.

If w× is étale around Y, then some sufficiently small strict neighbour-
hood V of ]X[X in ] X[X is isomorphic to the inverse image wA21 (V) of V by
[7, 1.3.2 Théorème]. Hence we have the assertion.

In the general case we can use Berthelot’s argument in [7, 2.3.5 Théo-
rème]. There exists a projective scheme Y8 with an open immersion YK

K Y8 over Y such that Y8 is also projective over X by the precise Chow’s
lemma [12, Corollaire 5.7.14]. We assume that w is projective by Theo-
rem 6.3.1. Then there exists a triple I2I

a
(Ya , Ya , Ya8 ) of finite type over J

such that I2I
a

Ya is a Zariski covering of Y, YaK Y is a closed immersion

and Ya8 K X is separated of finite type and étale around Ya for each a by
Lemma 6.4.5. Let us consider the commutative diagram below:

(Y , Y, Y)

I2I
a

(Ya , X, X)

J
6.2.6

w7

6.2.66

I2I
a

(Ya , Y, Y)

(X , X, X)

J
former part

J
former part

86.4.4

56.3.1

I2I
a

(Ya , Ya , Y)

I2I
a

(Ya , Ya , Ya8 ) ,

where YaK Y K Y is the natural closed immersion. The universally co-
homological descendability of arrows except w follows from each asser-
tion indicated in the diagram. Observing the diagram from
I2I
a

(Ya , X, X) K (X , X, X) to w : (Y , Y, Y) K (X , X, X) counterclockwise,

we obtain the universally cohomological descendability of w by Theorem
6.3.1. r

PROOF OF COROLLARY 6.4.2. Let Y9 be a Zariski closure of the
diagonal embedding YK Y3X Y8. Considering the triple (Y , Y9 , Y 3

3X Y8 ), we may assume that there exists a morphism v : K8KK over
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J by Theorem 6.3.1. Then the assertions follow from Theorem 6.3.1
and Proposition 6.4.1. r

6.4.5. LEMMA. Let J4 (X , X, X) be a V-triple of finite type and let
(Y , Y) K (X , X) be a morphism of pairs such that Y K X is projective
and YKX is étale. Then, for each point y of Y, there exists a triple G4

4 (U , U, U) separated of finite type over J with a morphism (U , U) K

K (Y , Y) of pairs over (X , X) such that U is an open subscheme of Y with
y�U , U is a closed subscheme of Y and U K X is étale around U.

PROOF. Since the problem is local on X, we may assume that X is
affine. Let P be a formal projective space over X with an X-closed im-
mersion Y K P 4 P 3X X, let s�G(P, OP (1) ) be a section with s(y) c0
and let t1 , R , tn be a regular sequence of Y at y. Then s m t1 , R , s m tn is a
global section of OP (m) for a sufficiently large integer m. Let us take
lifts u1 , R , un of s m t1 , R , s m tn in G(P, OP (m) ). We define a formal sub-
scheme U of P over X by u1 4R4un 40 and define a closed subscheme
U of Y by the pull back of Y under the closed immersion U K P. By our
choice of s and t1 , R , tn there exists an open subscheme U of U with y�
�U such that U is étale over X around U. r

6.5. We consider the cohomological descent for general simplicial
triples.

6.5.1. PROPOSITION. Let J be a V-triple locally of finite type and
let

KQ
uQ 7

J
wQ

J

8vQ

LQ

be a commutative diagram such that KQ and LQ are simplicial J-triples
locally of finite type. Suppose that, for some nonnegative integer n ,

(i) coskn
J (KQ

(n) ) 4KQ and coskn
J (LQ

(n) ) 4LQ (i.e. they have dimen-
sion n);

(ii) wl is an isomorphism for lEn , coskn
J (wQ

(n) ) 4wQ and wl is co-
homologically descendable (resp. universally cohomologically descend-
able) for all l.

Then uQ is cohomologically descendable (resp. universally cohomo-
logically descendable) if and only if vQ is so.
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In Proposition 6.5.1 wn : Ln KKn is cohomologically descendable for
all n by assumption. So we already have the property corresponding to
Lemma 6.3.4. The proposition easily follows from Lemmas 6.1.2, 6.2.3
and the following two Lemmas.

6.5.2. LEMMA. Let J be a V-triple locally of finite type and let
wQ

(i) : LQKKQ (i40, 1 ) be morphisms of simplicial J-triples locally of
finite type. Suppose that, for some nonnegative integer n ,

(i) coskn
J (KQ

(n) ) 4KQ and coskn
J (LQ

(n) ) 4LQ (i.e. they have dimen-
sion n);

(ii) wl
(0) 4wl

(1) for lEn and coskn
J ( (wQ

(i) )(n) ) 4wQ
(i) for i40, 1.

Then, for any sheaf of coherent j † O] X[X
-modules, two homomor-

phisms

(wQ
(0) ) l--l, (wQ

(1) ) l--l: R C† (J , KQ ; uQ
† E) KR C † (J , LQ ; vQ

† E)

which are induced by wQ
(0) and wQ

(1) coincide with each other in
D 1 (Z] X[X

).

PROOF. Let us consider a homotopy from wQ
(0) to wQ

(1) in Lemma
3.10.2 and the associated diagram H(LQ ˘ KQ ) of triples to the homotopy.
We denote by fQ : H(LQ ˘ KQ ) KJ the structure morphism. Let FQ be the
sheaf fQ

† E on the tubes associated to H(LQ ˘ KQ ) (Lemmas 3.10.4 and
3.10.5) and take an injective resolution FQK IQ

Q (Proposition 4.2.1). Then
we have a canonical commutative diagram

tot (C(u Do

Q* IQ
(Q , 0 ) ) )

I

R C † (J , KQ ; uQ
† E)

K
(wQ

(i) ) l--l

K
(wQ

(i) ) l--l

tot (C(v Do

Q* IQ
(Q , 1 ) ) )

I

R C † (J , LQ ; vQ
† E)

for each i by Propositions 4.2.1 and 4.2.2. By the same argument as in the
proof of Lemma 6.3.2 both vertical arrows, which are independent of i,
are isomorphisms. Since there exists a homotopy between two arrows
with respect to the top horizontal arrows by Proposition 3.10.8, the two
morphisms of the bottom horizontal arrows coincide with each
other. r

6.5.3. LEMMA. Under the assumption of Proposition 6.5.1, let GQ be
the 2-simplicial triple over J defined in Example 3.1.2 which is induced
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from the commutative diagram

KQ
I
J

J

4

LQ
I
J

and let tQ : GQKJ be the structural morphism. Then, for any sheaf E of
coherent j † O] X[X

-modules, the homomorphism

R C † (J , GQ ; tQ
† E) KR C † (J , LQ ; vQ

† E)

which is induced by the isomorphism grfil
0 R C † (J , GQ ; tQ

† E) `

`R C † (X, LQ ; vQ
† E) in Lemma 4.4.1 (the case where (s , s 8 ) 4 (2 , 1) ) is an

isomorphism in D 1 (Z] X[X
).

PROOF. We use a spectral sequence arugument similar to that used
in the proof of Lemma 6.3.3. To prove that the edge homomorphism d1

qr

of E1-terms is an isomorphism if q is odd and the 0-map if q is even, we
apply Lemma 6.5.2. Since two of ]h 1, l

q , Q(0 1 l 1 r11 satisfy the assumption
of Lemma 6.5.2, we have a result similar to Lemma 6.3.3. r

6.5.4. COROLLARY. Let J be a V-triple locally of finite type and let KQ
be a simplicial J-triple locally of finite type with the structure mor-
phism wQ . Suppose that, for any nonnegative integers l and n , the
canonical morphism coskn

J (KQ
(n) )l Kcoskn21

J (KQ
(n21) )l is cohomologically

descendable (resp. universally cohomologically descendable). If
coskm

J (wQ
(m) ) : coskm

J (KQ
(m) ) KJ is cohomologically descendable (resp.

universally cohomologically descendable) for some nonnegative integer
m , then wQ : KQKJ is so.

PROOF. Suppose that coskm
J (wQ

(m) ) : coskm
J (KQ

(m) ) KJ is cohomologi-
cally descendable (resp. universally cohomologically descendable). Then
coskn

J (wQ
(n) ) : coskn

J (KQ
(n) ) KJ is cohomologically descendable (resp. uni-

versally cohomologically descendable) for any n by Proposition 6.5.1.
There exists a commutative diagram

E1
qr4Rrcoskn11

X (wQ
(n11))q*coskn11

J (wQ
(n11))q

†E

I

E1
qr

4RrwAq*wq
†E

¨

¨

Hq1r(RC †(X, coskn11
J (KQ

(n11)); coskn11
J (wQ

(n11))†E))

I

Hq1r(RC†(X,KQ;wQ
†E))

of spectral sequences by Lemma 4.4.2 (the case where s4s 841). Since
coskn

J (KQ
(n) )(n) 4KQ

(n), the canonical homomorphism

t 1n R C † (J , coskn11
J (KQ

(n11) ); coskn11
J (wQ

(n11) )† E)Kt 1n R C† (J , KQ ; wQ
† E)
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is an isomorphism. Here t 1 n C Q is a complex defined by (t 1 n C Q )r 4 C r

(r 1 n), (t 1 n C Q )n11 4 im (d n ) and (t 1 n C Q )r40 (r 2 n12). Hence, we
have

Hq (R C † (J , KQ ; wQ
† E) ) 4

4 Hq (t 1 q R C † (J , coskq11
J (KQ

(q11) ); coskq11
J (wQ

(q11) )† E) ) 4
.
/
´

E

0

if q40

if qc0.

The exactness (resp. universal exactness) follows from Lemmas 6.1.2 and
6.2.3. Therefore, wQ : KQKJ is cohomologically descendable (resp. the
universally cohomologically descendable). r

7. Cohomological descent for étale morphisms.

In this section we prove two types of cohomological descent theorems
for étale morphisms. For a module M over V, we denote by M× the p-
adic completion of M.

7.1. Let A and B be formal V-algebras topologically of finite type
and let A K B be a homomorphism of formal V-algebras (1.3.2) such
that

(i) the induced morphism Spec B /p e11 B K Spec A /p e11 A is flat
for any nonnegative integer e;

(ii) the induced morphism Spec B /p B K Spec A /p A is surjec-
tive.

Note that A and B are noetherian (see 2.2). We define P4Spm A 7V K
and Q4Spm B 7V K to be the associated affinoid spaces and denote by
wA : QKP the induced morphism of rigid analytic spaces.

Let us consider the Čech diagram

PJQ K
J

J
Q3P Q J

K
J

K
J

R

of rigid analytic spaces induced by A K B and denote by wAQ : QQKP
the structure morphism of the Čech diagram. As in the case of
triples in 4.1 and 4.2, for a sheaf E of OP-modules, one can define
the Čech complex C(P , QQ ; wAQ* E) in the category of complexes of sheaves
of OP-modules with respect to w (resp. the derived Čech complex
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R C(P , QQ ; wAQ* E) in the derived category D 1 (ZP ) of lower bounded
complexes of sheaves of abelian groups on P).

7.1.1. PROPOSITION. With the notation as above, assume further-
more that E is a sheaf of coherent OP-modules.

(1) The inverse image functor wAQ*: Coh (OP ) KCoh (OQQ
) is exact.

(2) The canonical homomorphism

E K C(P , QQ ; wAQ* E)

is a quasi-isomorphism of complexes of sheaves of OP-modules.
(3) The canonical homomorphism

C(P , QQ ; wAQ* E) KR C(P , QQ ; wAQ* E)

is an isomorphism in D 1 (ZP ).

PROOF. (1) Let Bn (n20) be a tensor product of n11-copies of B

over A as a formal V-algebra. Since A and Bn are separated in the p-adic
topology, Bn is faithfully flat over A by the condition (i) and (ii). The as-
sertion follows from this faithful flatness.

(2) Let V be a rational subdomain of P. Then there exist elements
f1 , R , fr , g� A without common zeros such that

V4

`

]x�PNNfi (x)N1Ng(x)N for any i(

Spm g A[t1 , R , tr ]×

( f1 2gt1 , R , fr 2gtr )
7V Kh .

If we put W4 wA21 (V), then

W4

`

]x�QNNfi (x)N1Ng(x)N for any i(

Spm g B[t1 , R , tr ]×

( f1 2gt1 , R , fr 2gtr )
7V Kh ,

where fi (resp. g) is a image of the element fi (resp. g) in A into B. Since
the natural homomorphism

A[t1 , R , tr ]×/( f12gt1 , R , fr2gtr ) K B[t1 , R , tr ]×/( f12gt1 , R , fr2gtr )

is obtained by the p-adic completion of a base change of A K B, the mor-
phism wANW : WKV of affinoid subvarieties also satisfies the conditions
(i) and (ii). By the construction we have

C(P , QQ ; wAQ* E)NV ` C(V , WQ ; (w
ANW )Q*(E NV ) ) .

Here WQKV is the Čech diagram for WKV. Since rational subdomains
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make a system of fundamental neighbourhoods of affinoid varieties in
the weak Grothendieck topology [8, 7.3.5 Corollary 3], it is sufficient to
prove that the canonical homomorphism

G(P , E) KG(P , C(P , QQ ; wAQ* E) )

is a quasi-isomorphism.
Since E is coherent, there exists a finitely generated A-module M

with G(P , E) `M7V K by [8, 9.4.3 Theorem 3]. After tensoring K over V,
the Čech complex

M7A B KM7A (B 7A B)×KM7A (B 7A B 7A B)×KR

is isomorphic to the complex G(P , C(P , QQ ; wAQ* E) ). Hence, we have only
to prove that the canonical homomorphism MKM7A B (mOm71) in-
duces a quasi-isomorphism between M and the Čech complex above.

Since M is finitely generated over A, we have

M7A (B 7A R7A B)×` lim
J

e

M7A B 7A R7A B /p e11 .

Hence, it is sufficient to prove that the complex

0 KM/p e11 KM7A B /p e11 KM7A B 7A B /p e11 K

KM7A B 7A B 7A B /p e11 KR

is exact for any e since M/p e11 KM/p e is surjective. The exactness fol-
lows from the faithfully flat descent theorem for finitely generated mod-
ules over noetherian rings by the conditions (i) and (ii).

Since wA : Q K P is an affinoid morphism, the assertion (3) follows
from Tate’s acyclicity theorem [21, Theorem 8.7]. r

7.1.2. PROPOSITION. Let J and K be V-triples locally of finite type
and let w : KKJ be a morphism of finite type which satisfies the fol-
lowing conditions:

(i) w : KKJ is strict as a morphism of triples;
(ii) Y 3Spf V Spec V /p e11 K X 3Spf V Spec V /p e11 which is induced

from w× is flat for every e;
(iii) w : Y K X is surjective.

Then w is universally cohomologically descendable.

PROOF. For any base change by a morphism J8KJ of lft-triples, the
conditions (i)-(iii) are preserved. It is sufficient to prove that w is coho-
mologically descendable. We may assume that X is affine by Proposition
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4.3.4. Let us take a finite affine Zariski covering ]Ya(a of Y and let us
denote by Ka the triple induced from the natural open immersion YaK

K Y. Since the horizontal arrow of the commutative diagram

K

wI
J

J

8w 8

I2I
a

Ka

is universally cohomologically descendable by Proposition 6.2.5, w is co-
homologically descendable if and only if w 8 is so by Theorem 6.3.1.
Hence, we may assume that Y is affine.

Suppose that both X and Y are affine. The natural homomorphism
C † (J , KQ ; wQ

† E) KR C† (J , KQ ; w †
Q E) is an isomorphism for any sheaf E

of coherent j † O] X[X
-modules by Theorem 5.2.2 and Corollary 4.4.3.

Hence, we have only to prove that the structure morphism wQ : KQKJ of
the associated Čech diagram is exact and the canonical homomorphism
EK C † (J , KQ ; wQ

† E) is a quasi-isomorphism. The exactness follows from
Proposition 6.1.4.

Let us put A 4G(X, OX ) and Bn 4G(Yn , OYn
) for any object n of D o.

We fix a complement ¯X of X in X. Then ¯Yn 4 wn
21 (¯X) is a complement

of Yn in Yn for any n. Let us fix a system of lifts f1 , R , fr (resp. g1 , R , gs)
in A of generators of the ideal of definition of X (resp. ¯X) in X 3

3Spf V Spec k (resp. X). Then the image of f1 , R , fr (resp. g1 , R , gs) in Bn is
also a system of lifts of generators of the ideal of definition of Yn (resp.
¯Yn) in Yn 3Spf V Spec k (resp. Yn).

We define open affinoid subvarieties

[X]X, NpN1/l11

[Yn ]Yn , NpN1/l11

4

`

4

`

]x�] X[X NNfi (x)N1NpN1/l11 for all i(

Spm g A[u1 , R , ur ]×

( f1
l11 2pu1 , R , fr

l11 2pur )
7V Kh

]x�] Yn [Yn
NNfi (x)N1NpN1/l11 for all i(

Spm g Bn [u1 , R , ur ]×

( f1
l11 2pu1 , R , fr

l11 2pur )
7V Kh

in ] X[X and ] Y[Yn
(n�D o ) for any nonnegative integer l, respectively.

Then ][X]X, NpN1/l11 (l (resp. ][Yn ]Yn , NpN1/l11 (l) is an admissible covering of
] X[X (resp. ] Yn [Yn

) by the principle of maximum (Lemma 2.6.7) and we
have

wAn
21 ( [X]X, NpN1/l11 ) 4 [Yn ]Yn , NpN1/l11 .
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We also define open affinoid subvarieties

Vl, m
( j)

Vl, m
(Q)

4

`

4

`

]x�[X]X,NpN1/l11NNgj (x)N2NpN1/m11 and Ngj (x)N2Ngj 8(x)N for all j 8cj(

Spm g A[u1 ,R, ur, v1 , R, vs]×

( fi
l112pui (11 i1r),gj

m11vj2p, gjvj 82gj 8 ( j 8cj))
7VKh

]x�[X]X,NpN1/l11NNgj 8(x)N1NpN1/m11 for all j 8(

Spm g A[u1 , R, ur , v1, R, vs]×

( fi
l112pui (11 i1r),gj

m112pvj (11 j1s))
7VKh

in [X]X,NpN1/l11 for any nonnegative integers l, m and 1 1 j1s and

Wn, l, m
( j)

Wn, l, m
(Q)

4

`

4

`

]y�[Yn]Yn ,NpN1/l11NNgj (y)N2NpN1/m11 and Ngj (y)N2Ngj 8 (y)N for all j 8cj(

Spm g Bn [u1 , R, ur , v1 , R, vs]×

( fi
l112pui (11 i1r), gj

m11 vj2p, gj vj 82gj 8( j 8cj))
7V Kh

]y�[Yn]Yn,NpN1/l11NNgj 8(y)N1NpN1/m11 for all j 8(

Spm g Bn[u1, R, ur, v1, R, vs]×

( fi
l112pui (11 i1r), gj

m112pvj (11 j1s))
7V Kh

in [Yn ]Yn,NpN1/l11 for any nonnegative integers l, m, any object n in D o, and
1 1 j1s. Then ]Vl , m

( j) , (1 1 j1s), Vl , m
(Q) ( (resp. ]Wn , l , m

( j) , (1 1 j1s),
Wn , l , m

(Q) () is an admissible affinoid covering of [X]X,NpN1/l11 (resp.
[Yn ]Yn,NpN1/l11) and we have

wAn
21 (Vl , m

( j) ) 4Wn , l , m
( j)

for any 1 1 j1s or j4Q. The simplicial rigid analytic space WQ , l , m
( j) over

Vl , m
( j) is the Čech diagram for W0, l , m

( j) KVl , m
( j) .

The inverse image of a system of fundamental strict neighbourhoods
of ]X[X in ] X[X by wAn is a system of fundamental strict neighbourhoods of
]Yn [Yn

in ] Yn [Yn
for all n by condition (i). Hence, for any sheaf E of O] X[X

-
modules such that E is coherent on a strict neighbourhood of ]X[X in ] X[X

and E` j † E, we have isomorphisms

ENVl , m
( j)

C † (J , KQ ; wQ
† E)NVl , m

( j)

`

`

lim
K

m 8 2 m

jm , m 8*(E NVl , m 8
( j) )

lim
K

m 8 2 m

jm , m 8* C(Vl , m 8
( j) , W ( j)

Q , l , m 8
; wAQ* E)

by Proposition 2.6.8 and Lemma 2.6.6 (2). Here jm , m 8 : Vl , m 8
( j) KVl , m

( j) is the
inclusion. Since E and C † (J , KQ ; wQ

† E) vanish on Vl , m
(Q) for any m, we have
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only to prove that the morphism W0, l , m
( j) KVl , m

( j) of rigid analytic spaces
arises from the morphism of formal V-schemes which satisfies the assump-
tion of Proposition 7.1.1 for any 1 1j1s and any m.

Since the homomorphism

(̃ )
A[u1 , R , ur , v1 , R , vs ]×

( fi
l11 2pui (1 1i1r), gj

m11 vj 2p , gj vj 82gj 8 ( j 8c j) )
K

K
B[u1 , R , ur , v1 , R , vs ]×

( fi
l11 2pui (1 1i1r), gj

m11 vj 2p , gj vj 82gj 8 ( j 8c j) )

modulo p e11 is a base change of the morphism A /p e11 K B /p e11 for any
e, it is flat by (ii). The topological spaces of

Spec (A /p)[u , v] /( f i
l11 , gj

m11 vj , gj vj 82gj 8 ( j 8c j) )
and

Spec (A /p)[u , v] /( fi , gj vj , gj vj 82gj 8 ( j 8c j) )

are the same. The same holds for K0 . Note that X 4 Spec A /(p , fi ) and
Y 4 Spec B0 /(p , fi ). The morphism (̃ ) modulo p is surjective by condi-
tion (iii). Hence, the morphism wA0 NW0, l , m

( j) : W0, l , m
( j) KVl , m

( j) satisfies both
conditions (i) and (ii) of Proposition 7.1.1.

This completes the proof of Proposition 7.1.2. r

7.2. We give definitions of two types of hypercovering of triples.

7.2.1. DEFINITION. (1) Let (P) be a property of morphisms of (formal)
schemes such that (i) it is stable under any base change and (ii) under
the assumption f is (P), fg is (P) if and only if g is (P). A simplicial (formal)
scheme YQ over a (formal) scheme X is (P) if Yn is (P) over X for any n.

(2) Let YQ be a simplicial (formal) scheme separated of finite type
over a (formal) scheme X. We say that YQKX is an étale (resp. proper)
hypercovering if the canonical morphism Yn Kcoskn21

X (YQ
(n21) )n is étale

surjective (resp. proper surjective) for any n.
(3) Let (X , X) be a pair of schemes and let (YQ , YQ) be a simplicial pair of

schemes separated of finite type over (X , X). We say that (YQ , YQ) K (X , X)
is an étale-étale hypercovering if YQKX and YQK X are étale hypercover-
ings and (Yn , Yn)K(X , X) is strict as a morphism of pairs for any n.

(4) Let (X , X) be a pair of schemes and let (YQ , YQ ) be a simplicial pair
of schemes separated of finite type over (X , X). We say that (YQ , YQ ) K

K (X , X) is an étale-proper hypercovering if YQKX is an étale hypercover-
ing and YQK X is proper.
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We also define the n-truncated version of étale (proper) simplicial
(formal) schemes, étale (resp. proper) hypercoverings, étale-étale hyper-
coverings, and étale-proper hypercoverings in the same way. r

The definition (1) above for a simplicial (formal) scheme YQ is equiva-
lent to the condition that for each n the canonical morphism Yn K

Kcoskn21 (YQ
(n21) )n is (P). As a corollary we get that for an étale (resp.

proper) hypercovering YQ , all the morphisms Yn KYm , nFm which come
from the simplicial structure are étale (resp. proper).

7.2.2. DEFINITION. Let J4 (X , X, X) be a V-triple locally of finite
type. A simplicial triple KQ4 (YQ , YQ , YQ ) separated locally of finite type
over J is an étale-étale hypercovering (resp. an étale-proper hypercover-
ing) if it satisfies the following conditions:

(i) (YQ , YQ ) K (X , X) is an étale-étale hypercovering (resp. an étale-
proper hypercovering);

(ii) coskn
X (YQ

(n) )l Kcoskn21
X (YQ

(n21) )l is smooth around coskn
X (YQ

(n) )l

for any n and l. r

Condition (ii) above implies that YQK X (resp. coskn
X (YQ

(n) ) K X) is
smooth around YQ (resp. coskn

X (YQ
(n) )).

By definition we have

7.2.3. LEMMA. (1) Let (X , X) be a pair of schemes and let (YQ , YQ ) be
an étale-étale (resp. étale-proper) hypercovering over (X , X). Then
coskn

(X , X) ( (YQ
(n) , YQ

(n) ) ) is also an étale-étale (resp. étale-proper) hypercov-
ering over (X , X) for all n.

(2) Let J be a V-triple locally of finite type and let KQ be an étale-étale
(resp. étale-proper) hypercovering over J. Then coskn

J (KQ
(n) ) is also an

étale-étale (resp. étale-proper) hypercovering over J for all n.

7.3. We give a cohomological descent theorem for étale-étale coverings.

7.3.1. THEOREM. Let J4 (X , X, X) and K4 (Y , Y, Y) be V-triples lo-
cally of finite type and let w : KKJ be a separated morphism which sat-
isfies the following conditions:

(i) w× : Y K X is smooth around Y;
(ii) w : Y K X is étale surjective;
(iii) w21 (X) 4Y.

Then w is universally cohomologically descendable.
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Note that the Čech diagram for w is an étale-étale hypercovering.

PROOF. We may assume that X is affine by Theorem 6.3.1 and Propo-
sition 6.2.5. We put A 4G(X, OX ) and A4G(X, OX ). It is sufficient to find
a finite Zariski covering I2I

a
Ya of Y and a formal scheme Za flat of finite

type over X with an isomorphism Ya` Za3X X for each a such that the
structure morphism u×a : ZaK X is smooth around Ya4YOYa . Indeed, if
Ya is an open formal subscheme of Y such that Ya is a closed subscheme of
Ya3Spf V Spec k, then w is universally cohomologically descendable if and
only if I2I

a
(Ya , Ya , Ya ) KJ is so by Theorem 6.3.1, Propositions 6.2.5 and

4.3.2. Now I2I
a

(Ya , Ya , Za ) KJ is universally cohomologically descend-

able by Proposition 7.1.2 (note that we use the hypothesis (i) to have flat-
ness, (ii) for surjectivity and strictness follows from our construction),
hence the universal cohomological descendability of I2I

a
(Ya , Ya , Ya ) KJ

follows from Proposition 6.4.4. Here we use hypothesis (i).
Let I2I

a
YaK Y be a finite affine Zariski covering such that YaK X is a

standard étale morphism for any a. In other words, if we put Ba4

4G(Ya , OYa
), then there exist a monic polynomial pa�A[t] and an element

ha�A[t] /(pa ) such that the derivation pa8 of pa is a unit of (A[t] /(pa ) )[ha
21 ]

and there exists an isomorphism

Ba` (A[t] /(pa ) )[ha
21 ]

of A-algebras. Since w : Y K X is étale of finite type, such a covering
always exists [18, Theorem 3.14] and we fix it as above. We put Ya4

4YOYa .
Let us fix a lift p×a (resp. h×a) of pa (resp. ha) in A[t] (resp. A[t] /(p×a )) such

that p×a is monic for any a. We define a formal V-algebra Ba by

Ba4 (A[t] /p×a )[h×a
21 ]×

and put Za4Spf Ba . Since p×a is monic, Ba is flat over A. Since pa8 is a unit
on Ya , Spf Ba [ (p×a8 )21 ]× is étale over Spf A and it includes Ya . Moreover,
we have u×a

21 (X) 4 Ya by construction. Hence the hypothesis (i) of Proposi-
tion 7.1.2 holds.

This completes the proof of Theorem 7.3.1. r

7.3.2. REMARK. We can take Ba4 (A[t] /p×a )[ (h×a p×a8 )21 ]× in the proof
above. Then w×a is étale. r
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By Corollary 6.5.4, Theorem 7.3.1 and Lemma 7.2.3 we have

7.3.3. COROLLARY. Let KQ be an étale-étale hypercovering over a V-
triple J locally of finite type. Then KQKJ is universally cohomological-
ly descendable.

7.4. We give a cohomological descent theorem for étale-proper cov-
ering.

7.4.1. THEOREM. Let J4 (X , X, X) and K4 (Y , Y, Y) be V-triples lo-
cally of finite type and let w : KKJ be a separated morphism which sat-
isfies the following conditions:

(i) w× : Y K X is smooth around Y;
(ii) w : Y K X is proper;
(iii) w

i
: YKX is étale surjective.

Then w is universally cohomologically descendable.

Note that the Čech diagram for w is an étale-proper hypercovering.
First we prove the following lemma.

7.4.2. LEMMA. Let J4 (X , X, X) be a V-triple of finite type such that
X is affine with A4G(X, OX ) and A 4G(X, OX ) and let K4 (Y , Y, Y) be
an J-triple of finite type which satisfies the following conditions:

(i) there exists a monic polynomial p(x) �A[x] with Y 4 Spec B
for B4A[x] /(p(x) );

(ii) Y 4Spf B with B 4 A[x] /(p×(x) ) for some lift p×(x) � A[x] of
p(x) as a monic polynomial;

(iii) YKX is étale surjective.

Then the structure morphism w : KKJ is universally cohomologically
descendable.

PROOF. We prove the assertion by the induction on the degree of p(x).
Note that the assumption implies that w× : Y K X is étale around Y. If
the degree of p(x) is 1, then w is identity and there is nothing to prove.
Suppose that the degree of p(x) is greater than 1. We put Z4 w21 (X) and
L4(Z, Y, Y). Then the structure morphism LKJ is universally cohomo-
logically descendable by Proposition 7.1.2. Hence the first projection
K3J LKK is universally cohomologically descendable by definition.
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Therefore, we have only to prove that the second projection v : K3J LK

KL is universally cohomologically descendable by Theorem 6.3.1.
Let p(y) (resp. p×(y)) be a monic polynomial in B[y] (resp. B[y]) such

that the variable x is replaced by y. Then we have

Y3X Y

Y 3X Y

`

`

Spec B[y] /(p(y) )

Spf B[y] /(p×(y) ) .

If we denote by x the image of x in B (resp. B), then we have a decomposi-
tion p(y) 4 (y2x) q(y) (resp. p×(y) 4 (y2x) q×(y)) with a monic polynomi-
al q(y) �B[y] (resp. q×(y) � B[y] which is a lift of q(y)). Note that the ideal
generated by the image of y2x and q(y) in OY3XY is a unit ideal on Y3X Z.
Indeed, p 8 (y) 4q 8 (y)(y2x)1q(y) is a unit on Y3X Z since the second
projection Y3X ZKZ is étale.

We put I4 (W , Spec B[y] /(q(y) ), Spf B[y] /(p×(y) ) ), where W is
the inverse image of Y3X Z by the natural closed immersion
Spec B[y] /(q(y) ) K Spec B[y] /(p(y) ). Then we have a strict morphism

K I2I IKK3J L

as a morphism of triples. (the first K is the diagonal component.) Since the
ideal generated by the image of y2x and q(y) in OY3XY is a unit ideal on
Y3X Z, we have Y I2I W`Y3X Z. Hence, it is sufficient to prove the com-
position morphism v : K I2I IKL is universally cohomologically de-
scendable by Corollary 6.4.2.

Now we decompose the morphism v as

K I2I IKv(K) I2I v(I) KL ,

Then KKv(K) is an isomorphism and IKv(I) 4L satisfies the as-
sumption with the degree deg q(x) 4deg p(x)21. Hence, the first mor-
phism K I2I IKv(K) I2I v(I) is universally cohomologically descend-
able by the hypothesis of induction. The second morphism
v(K) I2I v(I) KL is universally cohomologically descendable by Proposi-
tion 6.2.6. Hence v is so. This completes the proof. r

PROOF OF THEOREM 7.4.1. We may assume that X is affine by Theo-
rem 6.3.1 and Proposition 6.2.5. We put A 4G(X, OX ) and A4

4G(X, OX ).
Let I2I

a
YaKY be a finite affine Zariski covering such that YaK X is a

standard étale morphism for any a. In other words there exist a monic
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polynomial pa�A[x] and an element ha�A[x] /(pa ) such that the deriva-
tion pa8 of pa is a unit of (A[t] /(pa ) )[ha

21 ] and there exists an isomor-
phism

G(Ya , OYa
) ` (A[t] /(pa ) )[ha

21 ]

of A-algebras. Take a lift p×a� A[x] such that p×a is monic. We put Ya4

4 Spec A[x] /(pa (x) ), Ya4Spf A[x] /(p×a (x) ) and denote the triple
(Ya , Ya , Ya ) over J by Ka . By the hypotheses (i) and (ii) we can apply
Corollary and we have only to prove that the morphism I2I

a
KaKJ is uni-

versally cohomologically descendable by Theorem 6.3.1 and Proposition
6.2.6.

If we denote by Xa the image of Ya in X, then Xa is open in X since
w : YKX is étale. The natural morphism KaKJa4 (Xa , X, X) is univer-
sally cohomologically descendable by Lemma 7.4.2 and the natural mor-
phism I2I

a
JaKJ is universally cohomologically descendable by Proposi-

tion 6.2.6. Hence I2I
a

KaKJ is also so by Theorem 6.3.1. This completes the

proof of Theorem 7.4.1. r

By Corollary 6.5.4, Theorem 7.4.1 and Lemma 7.2.3 we have

7.4.3. COROLLARY. Let KQ be an étale-proper hypercovering over a V-
triple J locally of finite type. Then KQKJ is universally cohomological-
ly descendable.

8. De Rham descent.

In this section we introduce a notion of universally de Rham descent
for a morphism of triples.

8.1. The following proposition guarantees the existence of smooth
strict neighborhoods.

8.1.1. PROPOSITION [7, 2.2.1 Lemma]. Let w : KKJ be a morphism of
V-triples of finite type such that w× : Y K X is smooth around Y. Then
there exists a strict neighbourhood V of ]Y[Y in ] Y[Y such that V is
smooth over ] X[X .

If w : KKJ is a morphism of V-triples locally of finite type such that
w× : Y K X is smooth around Y, then one can find a smooth strict neighbor-
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hood V of ]Y[Y in ] Y[Y over ] X[X locally on Y. Hence, the sheaf j † V ] Y[Y / ] X[X

1

of overconvergent 1-forms of ] Y[Y over ] X[X is locally free over j † O] Y[Y
by

Proposition 2.7.3. Moreover, we have

8.1.2. LEMMA. Let J and K be V-triples of finite type and let w :
KKJ be a morphism of V-triples which satisfies the conditions:

(i) both X and Y are affine;
(ii) there exists a finite number of sections t1 , R td �G(Y, OY )

which determines an étale morphism from Y to a formal affine space A×X
d

around Y such that w× is a composition of Y K A×X
d and the projection

A×X
d K X.

Then j † V ] Y[Y / ] X[X

1 is free of rank d over j † O] Y[Y
.

PROOF. Let us denote by I the sheaf of ideals of O] Y[Y 3X Y
which corre-

sponds to the diagonal immersion ] Y[Y K] Y[Y 3X Y . Since Y is étale over
A×X

d around Y, the images dti of 17 ti 2 ti 71 (1 1i1d) in I / I2 form a ba-
sis on ]Y[Y . Since j † V ] Y[Y / ] X[X

1 4 j † (I / I2 ) is a sheaf of coherent j † O] Y[Y
-

modules, j † V ] Y[Y / ] X[X

1 is free over j † O] Y[Y
with a basis dti (1 1i1d) by

Lemma 2.9.1. r

Locally on Y and Y, the hypotheses of the previous lemma hold (see
the proof of Theorem 8.5.1).

8.2. Let (wQ , t) : (KQ , J) K (JQ , I) be a morphism of diagrams of V-
triples locally of finite type such that w×Q : YQK XQ is smooth around YQ ,
that is, w×n : Yn K Xt(n) is smooth around Yn for each object n of J. For a
sheaf FQ of j † O] YQ [YQ

-modules, we say that a wA21 ( j † O] XQ [XQ
)-linear homomor-

phism

˜Q : FQK FQ7j † O] YQ [YQ
j † V ] YQ [YQ / ] XQ [XQ

1

is a connection on ] YQ [YQ over ] XQ [XQ if (i) ˜n is a connection on ] Yn [Yn
over

] Xt(n) [Xt(n)
for each object n of J and (ii) for each morphism h : mKn of J,

the diagram

hAKQ
21 Fn

FQ (h)I
Fm

K
hAYQ

21 (˜n )

K
˜m

hAYQ
21 (Fn 7j † O] Yn [Yn

j † V ] Yn [Yn / ] Xt(n) [Xt(n)

1 )

IFQ (h)7hA l--l
KQ

Fm 7j † O] Ym [Ym
j † V ] Ym [Ym / ] Xt(m) [Xt(m)

1

is commutative. A homomorphism of sheaves of j † O] YQ [YQ
-modules with
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connections is a j † O] YQ [YQ
-homomorphism which commutes with connec-

tions.
Let (FQ , ˜Q ) be a sheaf FQ of j † O] YQ [YQ

-modules with a connection ˜Q on
] YQ [YQ over ] XQ [XQ . Then ˜Q determines a sequence

Q Q Q K FQ7j † O] YQ [YQ
j † V ] YQ [YQ / ] XQ [XQ

r

f7v

K

O

FQ7j † O] YQ [YQ
j † V ] YQ [YQ / ] XQ [XQ

r11

(21)r ˜Q ( f )7v1 f7dQ
r v .

K Q Q Q

of sheaves of wAQ
21 ( j † O] XQ [XQ

)-modules, where dQ
r : j † V ] YQ [YQ

/ ] XQ [XQ

r K

Kj † V ] YQ [YQ / ] XQ [XQ

r11 is a wAQ
21 ( j † O] XQ [XQ

)-homomorphism which is induced by the
trivial connection dQ on j † O] XQ [XQ

. We say that a connection ˜Q is integrable
if the sequence above is a complex. In this case we denote the complex
above by DR† (KQ /JQ , (FQ , ˜Q ) ).

Let LQKKQ be a morphism of diagrams of triples locally of finite type
over JQ such that YQK XQ (resp. ZQK YQ) is smooth around YQ (resp. ZQ).
Let (GQ , ˜Q ) be a sheaf GQ of j † O] ZQ [ZQ

-modules with a connection on ] ZQ [ZQ
over ] XQ [XQ . Then ˜Q induces a relative connection

˜Q : GQK GQ7j † O] ZQ [ZQ
j † V ] ZQ [ZQ / ] YQ [YQ

1

by GQK
˜

GQ7j † O] ZQ [ZQ
j † V ] ZQ [ZQ / ] XQ [XQ

1 K GQ7j † O] ZQ [ZQ
j † V ] ZQ [ZQ / ] YQ [YQ

1 , where the
second morphism is the natural surjection. If ˜ is integrable, then ˜ is
also integrable. We denote by DR† (LQ /KQ , (GQ , ˜Q ) ) the relative complex
DR† (LQ /KQ , (GQ , ˜Q ) ).

Let uQ : LQKKQ be a morphism of diagrams of triples locally of finite
type over JQ such that YQK XQ (resp. ZQK XQ) is smooth around YQ (resp.
ZQ). For a sheaf FQ of j † O] YQ [YQ

-modules with a connection ˜Q on ] YQ [YQ over
] XQ [XQ , we define a connection on ] ZQ [ZQ over ] XQ [XQ

uAQ* ˜Q : uAQ* FQK uAQ* FQ7j † O] ZQ [ZQ
j † V ] ZQ [ZQ / ] XQ [XQ

1

by f7a O ˜( f )7a1 f7da ( f� FQ , a� j † O] ZQ [ZQ
). Then uAQ* ˜Q is integrable

if ˜Q is so. In the case where FQ is a sheaf of coherent j † O] YQ [YQ
-modules, we

denote by u † (FQ , ˜Q ) the inverse image instead of uA*(FQ , ˜Q ) (see 3.5).
Moreover, if vQ : IQKLQ is a morphism of diagrams of triples locally of fi-
nite type over JQ such that WQK ZQ is smooth around WQ , then we have
uvA*(FQ , ˜Q ) 4 vA* uA*(FQ , ˜Q ).

Now let (GQ , ˜Q ) be a sheaf of j † O] ZQ [ZQ
-modules with a connection on

] ZQ [ZQ over ] XQ [XQ and let W : uAQ*(FQ , ˜Q ) K (GQ , ˜Q ) be a homomorphism of
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sheaves of j † O] ZQ [ZQ
-modules with connections. Then W induces a homomor-

phism

uAQ
21 DR† (KQ /JQ , (FQ , ˜Q ) ) KDR† (LQ /JQ , (GQ , ˜Q ) ) .

of complexes of sheaves of uAQ
21 wAQ

21 ( j † O] XQ [XQ
)-modules.

8.3. Let J be a V-triple locally of finite type and let KQ be a simplicial
J-triples locally of finite type with a structure homomorphism wQ : KQKJ

such that YQ is smooth over X around YQ .

8.3.1. DEFINITION. (1) We say that wQ is de Rham descendable if, for
any sheaf E of coherent j † O] X[X

-modules, the canonical homomorphism

EKR C † (J , KQ ; DR† (KQ /J , wQ
† (E , 0 ) ) )

is an isomorphism in D 1 (Z] X[X
). Here 0 means the 0-connection EK0 on

] X[X / ] X[X .
(2) We say that wQ is universally de Rham descendable if, for every

morphism LKJ of lft-triples, the base change morphism KQ3J LKL is
de Rham descendable. r

Note that wQ
† is automatically exact by Proposition 6.1.4.

8.3.2. DEFINITION. Let w : KKJ be a morphism of V-triples locally
of finite type and let wQ : KQKJ be a Čech diagram for w. We say that w is
de Rham descendable (resp. universally de Rham descendable) if wQ
is so. r

8.3.3. EXAMPLE. (1) Let w : KKJ be a morphism of V-triples locally
of finite type such that w× : Y K X is a Zariski covering and w is strict as a
morphism of triples. Then w is universally de Rham descendable by
Proposition 6.2.5 since V ] Y[Y / ] X[X

1 40.
(2) Let J4 (X , X, X) be a V-triple locally of finite type and let

I2I
a

XaKX be a finite Zariski covering. Put Ja4 (Xa , X, X), and denote by

w : I2I
a

JaKJ the structure morphism. Then w is universally de Rham de-

scendable by Proposition 6.2.6. r

The definition of de Rham descendability for absolute de Rham coho-
mology implies the descendability for relative de Rham cohomology.
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8.3.4. PROPOSITION. Let JKE be a morphism of V-triples locally of
finite type such that X is smooth over S around X and let KQ be a simpli-
cial triple locally of finite type over J with a structure morphism wQ such
that w×Q : YQK X is smooth around YQ . Suppose that wQ is universally de
Rham descendable. Then, for a sheaf E of coherent j † O] X[X

-modules with
an integrable connection ˜ on ] X[X over ] S[S , the canonical homomor-
phism

DR† (J/E , (E , ˜) ) KR C † (J , KQ ; DR† (KQ /E , wQ
† (E , ˜) ) )

is an isomorphism in D 1 (Z] X[X
).

PROOF. We may assume that S and X are affine by Proposition 4.3.4.
Let us take a finite Zariski covering ]Ua(a of X such that ja

† V ] X[X / ] S[S

1 is
free over ja

† O] X[X
(Lemma 8.1.2), where ja

† is the functor of taking overcon-
vergent sections for the triple Ga4 (Ua , X, X). We denote by GQKJ the
Čech diagram which is induced from the natural morphism I2I

a
GaKJ.

Consider the commutative diagram

KQ
I
J

J

J

KQ3J GQ
I
GQ

of diagrams of triples. Since wQ : KQKJ is universally de Rham descend-
able, KQ3J Gm KGm is universally de Rham descendable for all m. Apply-
ing Propositions 22.12.2 and 4.4.5, we may assume that j † V ] X[X / ] S[S

1 is free
over j † O] X[X

.
We define a decreasing filtration of the complex

DR† (KQ /E , wQ
† (E , ˜) )

by the image

Filq 4 im( DR† (KQ /E , wQ
† (E , ˜) )[2q]7wA21 ( j † O] X[X

) w
A21 ( j † V ] X[X / ] S[S

q ) K

KDR† (KQ /E , wQ
† (E , ˜) ) ).

By definition Fil0 4DR† (KQ /E , wQ
† (E , ˜) ) ) and Filq 40 for qc0. One can

easily check that Filq is a subcomplex of DR† (KQ /E , wQ
† (E , ˜) ). Since

Yn KE (resp. JKE) is smooth around Yn for each n (resp. X), we
have

GrFil
q 4DR† (KQ /J , wQ

† (E , 0 ) )[2q]7wA21 ( j † O] X[X
) w
A21 ( j † V ] X[X / ] S[S

q ) .
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By Proposition 4.5.2 there exists a spectral sequence

E1
qr 4 Hq1r (R C † (J , KQ ; GrFil

q ) ) ¨

¨ Hq1r (R C † (J , KQ ; DR† (KQ /E , wQ
† (E , ˜) ) ).

Now we consider an injective resolution of DR† (KQ /J , wQ
† (E , 0 ) ) as com-

plexes of sheaves of wAQ
21 ( j † O] X[X

)-modules. Since j † V ] X[X / ] S[S

q is free over
j † O] X[X

, we have

E1
qr

` Hr (R C † (J , KQ ; DR† (KQ /J , wQ
† (E , 0 ) ) ) )7j † O] X[X

j † V ] X[X / ] S[S

q .

Since wQ is de Rham descendable, only E1
q0 4E7j † O] X[X

j † V ] X[X / ] S[S

q (q20)
appears in the E1-terms of the spectral sequence. Moreover, the canonical
homomorphism commutes with the filtrations. Hence, we have the iso-
morphism. r

We give another example of universally de Rham descendable mor-
phisms. The following proposition was proved in Berthelot’s unpublished
note [6] (see also [4, 1.4 Théorème]).

8.3.5. PROPOSITION. Let u : KKJ be a separated morphism of V-
triples locally of finite type such that

(i) u× : Y K X is smooth around Y;
(ii) u : Y K X is proper;
(iii) u

i
: YKX is an isomorphism.

Then the canonical homomorphism

EKRuA* DR† (K/J , u † (E , 0 ) )

which is induced by the adjonction is an isomorphism.

8.3.6. COROLLARY. With the notation as in Proposition 8.3.5, let
uQ : KQ

Do
KJ be a constant simplicial triple induced from u (Example

3.1.1 (2)). Then uQ is universally de Rham descendable.

PROOF. The situation is unchanged after any base change by a mor-
phism of lft-triples. Consider the spectral sequence for uQ in Lemma 4.4.2
(the case where s4s 841). Since KQ

Do
is constant, we have E2

0r 4 E1
0r

and E2
qr 40 for qc0. Hence the canonical homomorphism EK

KR C † (J , KQ
Do

; DR† (KQ
Do

/J , wQ
† (E , 0 ) ) ) is an isomorphism. r
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PROOF OF PROPOSITION 8.3.5. Suppose that u is a morphism of triples
which satisfies the hypotheses of Proposition 8.3.5. We say that u is acyclic
if the canonical homomorphism EKRuA* DR† (K/J , u † (E , 0 ) ) is an iso-
morphism for any sheaf E of coherent j † O] X[X

-modules.
(0) Let u : KKJ and w : LKK be morphisms of triples which satisfy

the hypothesis of Proposition 8.3.5 and let us put v4uw. Suppose that w is
acyclic. Then u is acyclic if and only if v is so. Indeed, let us consider the
spectral sequence

E1
qr 4Rr wA* DR† (L/K ; v † (E , 0 ) )7j † O] Y[Y

j † V ] Y[Y / ] X[X

q ¨

¨ Rq1r wA* DR† (L/J ; v † (E , 0 ) )

which is induced by the decreasing filtration Filq on DR† (LQ /J ; v † (E , 0 ) )
as in the proof of Proposition 8.3.4. Since j † 7] Y[Y

q is a locally free sheaf of
j † O] Y[Y

-modules for any q, we have

E1
qr 4

.
/
´

u † E7j † O] Y[Y
j † V ] Y[Y / ] X[X

q

0

if r40

if rc0

by using the acyclicity of w. Hence,

DR† (K/J ; u † (E , 0 ) ) J
`

RwA* DR† (L/J ; v † (E , 0 ) ) .

Therefore, we have an isomorphism

RuA* DR† (K/J ; u † (E , 0 ) ) J
`

RvA* DR† (L/J ; v † (E , 0 ) ).

Now we prove the assertion in several steps. We may assume that X is
affine of finite type over Spf V and Y is of finite type over X.

(1) If u× is étale around Y, then DR† (K/J ; u † (E , 0 ) ) 4u † E. The asser-
tion follows from Proposition 2.7.2 (2) and 2.10.2.

(2) Now u× is general. We reduce to the case where u is projective.
Indeed, there exists a projective scheme Z over Y with a Y-open im-

mersion Y4ZK Z such that Z is also projective over X by the precise
Chow’s lemma [12, Corollaire 5.7.14]. Let us take a triple L over K such
that Z4Y, Z is projective over X (hence it is so over Y), and Z is smooth of
finite type over Y around Z. We put w : LKK and v4uw to be structure
morphisms. By using our assumption that v and w are acyclic, u is acyclic
by (0). Hence, we may assume that u is projective.

(3) We reduce to the case where u is an isomorphism.
Since u is projective, there exists a triple I2I

a
(Ya , Ya , Ya8 ) of finite type
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over J such that I2I
a

Ya is a finite Zariski covering, YaK Y is a closed im-

mersion and Ya8 K X is étale around Ya for any a by Lemma 6.4.5. Let us
consider the following diagram:

(Y , Y, Y)

uI

(X , X, X)

J

J

I2I
a

(Ya , Y, Y)

I

I2I
a

(Ya , X, X)

J I2I
a

(Ya , Ya , Y)

J

J
I—I
a

pr1a

I2I
a

(Ya , Ya , Y 3X Ya8 )

II2I
a

pr2a

I2I
a

(Ya , Ya , Ya8 ),

where pria is a morphism of triple which is induced by the i-th projection
for i41, 2. The composition (Ya , Ya , Y 3X Ya8 ) K (Ya , Ya , Y) is acyclic by
(1) and the composition (Ya , Ya , Y 3X Ya8 ) K (Ya , Xa , X) is acyclic by (0),
(1) and our assumption. Hence, (Ya , Y, Y) K (Ya , X, X) is acyclic by (0) for
any a. Note that, for any open subscheme Y 8 of some Ya , (Y 8 , Y, Y) K

K (Y 8 , X, X) is acyclic by the choice of Ya and Ya8 .
We put Ja4 (Ya , X, X) and Ka4 (Ya , Y, Y) and define Ja 0 R a r

(resp.
Ka 0 R a r

) to be the fiber product of Ja 0
, R , Ja r

over J (resp. Ka 0
, R , Ka r

over K) with the structure morphism va 0 Ra r
: Ja 0 Ra r

KJ (resp.
wa 0 R a r

: Ka 0 R a r
KK). Then there exists a quasi-isomorphism

DR† (K/J ; u † (E , 0 ) ) K tot( [»
a 0

DR† (Ka 0
/Ja 0

; (uwa 0
)† (E , 0 ) ) K

K »
a 0 , a 1

DR† (Ka 0 a 1
/Ja 0 a 1

; (uwa 0 a 1
)† (E , 0 ) ) KR] )

on ] Y[Y by Proposition 2.12.2, where tot means the total complex of the
double complex. Now we apply RuA* to both sides. Since each Ka 0 Ra r

K

KJa 0 Ra r
is acyclic, the right-hand side is isomorphic to the complex

k»
a 0

va 0
† EK»

a 0
va 0 a 1

† EK »
a 0 a 1 a 2

va 0 a 1 a 2
† EKRl .

on ] X[X . Hence, u is acyclic by Proposition 2.12.2. Therefore, we may as-
sume that u is an isomorphism.

(4) We may assume that the complement ¯X of X in X is defined by an
equation g40 for an element g�G(X, OX ). Indeed, let us take a finite
Zariski covering ]Xa(a of X such that a complement of Xa in X is defined
by an equation for any a. Then we can use an argument similar to the last
part of (3).

(5) We may assume that Y is étale around Y over a formal affine space
A×X

d over X by the strong fibration theorem [7, 1.3.7 Théorème] (a similar
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argument to the proof of Lemma 6.4.3) and (0) using a similar argument to
the last part of (3). Then we may assume that Y is a formal affine space A×X

d

over X by using (0) and (1). In particular, we may assume that Y 4 A×X
1 by

induction on d.
(6) Now our assumption is that X is affine, a complement ¯X of X in X is

defined by g40 for some element g�G(X, OX ), u and u are isomorphisms
and u× : Y 4 A×X

1 K X is the projection. Let us denote ¯Y4 u21 (¯X). We
calculate cohomology sheaves concretely.

Let us denote by t�G(Y, OY ) a coordinate of A×X
1 over X. We put

UJ , ¯X
2 n

UK , ¯Y
2 n

4

4

]x�] X[X NNg(x)N2n(

]y�] Y[Y NNg(y)N2n(

for a real number n�kNKNO]0 , 1[. Then UJ , ¯X
2 n (resp. UK , ¯Y

2 n ) is an admis-
sible open subset of ] X[X (resp. ] Y[Y). For any subset W of ] X[X ,

uA21 (WOUJ , ¯X
2 n ) 4 uA21 (W)OUK , ¯Y

2 n .

For each nonnegative integer n, we define an admissible open subset Vn of
] Y[Y by

Vn 4 ]y�] Y[Y NNt(y)N1NpN1/n11 (.

Then ]Vn (n 2 0 is an admissible covering of ] Y[Y . If W is an affinoid subva-
riety of ] X[X , then uA21 (W)OVn is affinoid for all n.

Let W be an affinoid subvariety of ] X[X . Then WOUJ , ¯X
2 n is affinoid for

all n�kNKNO]0 , 1[. We put

An4G(WOUJ , ¯X
2 n , O] X[X

)

and denote by N NW , n a Banach norm on An which is induced by a fixed Ba-
nach norm on G(W , OW ).

Let E be a sheaf of coherent j † O] X[X
-modules and let E be a sheaf of

O] X[X
-modules with E` j † E such that E is coherent on a strict neighbour-

hood of ]X[X in ] X[X . For an affinoid subvariety W of ] X[X , we may assume
that E NWOUJ , ¯X

2 l is coherent for some l�kNKNO]0 , 1[ by Lemma 2.6.6. We
put

Mn4G(WOUJ , ¯X
2 n , E)

and denote by V Vn a Banach norm on Mn which is which is induced by a
fixed presentation of Ml over Al and the Banach norm N NW , n on An for
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l1nE1 (n�kNKNO]0 , 1[). Then we have

Nn , n4

4

G(uA21 (W)OUK , ¯Y
2 n OVn , uA* E)

m!
l40

Q

al t l Nal �Mn Val Vn NpNl/n11 K0 (lKQ)n .

Since Rq uA* DR† (K/J , u † (E , 0 ) ) is the sheafification of the presheaf
defined by

W O H q (uA21 (W), DR† (K/J , u † (E , 0 ) ) )

for any admissible open subset W, we have only to prove

H q (uA21 (W), DR† (K/J , u † (E , 0 ) ) ) 4
.
/
´

G(W , E)

0

if q40

if qD0
(̃ )

for any affinoid subvariety W of ] X[X .
Let W be an affinoid subvariety of ] X[X . Since

H q (uA21 (W)OVn , u † E)

H q (uA21 (W)OVn , u † E7j † O] Y[Y
j † V ] Y[Y / ] X[X

1 )

4

4

0

0

for qD0 by Corollary 5.1.2, we can calculate cohomology groups
H q (uA21 (W), DR† (K/J , u † (E , 0 ) ) ) by using the total complex of the
double complex

»
n0

G(uA21 (W)OVn0,u
† E7j †O]Y[Y

j † V ]Y[Y/]X[X

1 )

dn0H

»
n0

G(uA21 (W)OVn0,u
† E)

K

K

»
n0En1

G(uA21 (W)OVn0,u
†E7j †O]Y[Y

j † V ]Y[Y/]X[X

1 )

Hdn0

»
n0En1

G(uA21 (W)OVn0
,u †E)

by Lemma 2.11.1, where »
n0

G(uA21 (W)OVn0
, u † E) is of degree (0 , 0 ), the

vertical derivations dn’s are induced by the derivations of de Rham com-
plex and the horizontal derivations are those of the alternating Čech com-
plex. If we know that

ker dn

coker dn

4

4

G(W , E) ` lim
nK12

G(WOUJ , ¯X
2 n , E) 4 lim

nK12
Mn

0
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for any n (here we use Proposition 2.6.8), then we have the formula (̃ ).
Now we have

G(uA21 (W)OVn,u † E)

G(uA21 (W)OVn,u †E7j †O]Y[Y
j †V ]Y[Y/]X[X

1 )

4

4

lim
nK12

G(uA21 (W)OUK, ¯Y
2n OVn,uA*E)4 lim

nK12
Nn,n

lim
nK12

Nn,n7G(Y,OY)G(Y,V Y/X
1 )

by Proposition 2.6.8. For any element

!
l

al t l dt�Nn , n7G(Y, OY ) G(Y, V Y / X
1 ) , !

l
al t l11 /l11

is an element of Nn , kn since N1/l11Nr l K0 (lKQ) for any 0 ErE1.
Hence, dn is surjective. Since l is a unit for any positive integer, we have
ker dn 4G(W , E).

This completes the proof of Proposition 8.3.5. r

8.4. Let

K
u 7

J
w

J

8v
L

be a commutative diagram of V-triples locally of finite type such that u×
(resp. v×, resp. w×) is smooth around Y (resp. Z, resp. Z). We denote the
Čech diagram for u (resp. v) by uQ : KQKJ (resp. vQ : LQKJ) and
wQ4cosk0

J (w) : LQKKQ.

8.4.1. THEOREM. With the notation as above, suppose that w is uni-
versally de Rham descendable. u is de Rham descendable (resp. univer-
sally de Rham descendable) if and only if v is so.

Theorem 8.4.1 easily follows from Proposition 8.4.2, Lemmas 8.4.4
and 8.4.5 below. We will give a generalization to the simplicial case in
8.7.

8.4.2. PROPOSITION. With the notation as above, suppose that there
exists a section s : KKL over J , that is, ws4 idK and u4vs. Then, for
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a sheaf E of coherent j † O] X[X
-modules, the canonical homomor-

phism

wAQl
--l : R C † (J , KQ ; DR† (KQ /J , uQ

† (E , 0 ) ) ) K

KR C † (J , LQ ; DR† (LQ /J , vQ
† (E , 0 ) ) )

induced by w (see 4.3) is an isomorphism in D 1 (Z] X[X
).

The proof of Proposition 8.4.2 is same as the proof of Proposition 6.3.4
except for the use of a homotopy between sAQl

--l wAQl
--l and the identity on

DR† (LQ /J , wQ
† (E , 0 ) ) which is given by Lemma 8.4.3 below. By Lemma

3.10.4 we have

8.4.3. LEMMA. Let J be a V-triple locally of finite type and let KQ
and LQ be simplicial V-triples locally of finite type over X with struc-
ture morphisms uQ : KQKJ and vQ : LQKJ such that u×Q and v×Q are
smooth
around YQ and ZQ , respectively. Suppose that ]hn (h)(n , h is a homotopy
from wQ

(0) : LQKKQ to wQ
(1) : LQKKQ over J. For any sheaf F of j † O] X[X

-
modules with a 0-connection, we define a collection of morphisms
u n (h) : hn (l)A* DR† (KQ /J , uAn*(F, 0 ) ) KDR† (LQ /J , vAn*(F, 0 ) ) by the in-
duced map by the identity un hn (l) 4vn , then the collection ]u n (h)(n , h
gives a homotopy from W Q

(1)Q4u Q (¯
(1) ) to W Q

(0)Q4u Q (¯
(0) ).

Let tQ : (GQ , (D
2 )o ) KJ be the 2-simplicial triple for the commutative

diagram

KQ
uQI
J

J
wQ

4

LQ
IvQ

J

of V-triples locally of finite type as in Example 3.1.2. The same argument
as in Lemmas 6.3.3 and 6.3.4 works for the following lemmas.

8.4.4. LEMMA. With the notation as above, let E be a sheaf of coher-
ent j † O] X[X

-modules. Then, the canonical homomorphism

R C † (J , GQ ; DR† (GQ /J , tQ
† (E , 0 ) ) ) KR C † (J , LQ ; DR† (LQ /J , vQ

† (E , 0 ) ) )

induced by the filtration in 4.4 is an isomorphism in D 1 (Z] X[X
). More-

over, if wn is de Rham descendable for any object n of D o , then the
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canonical homomorphism

R C † (J , KQ ; DR† (KQ /J , uQ
† (E , 0 ) ) ) KR C † (J , LQ ; DR† (KQ /J , vQ

† (E , 0 ) ) )

is an isomorphism in D 1 (Z] X[X
).

8.4.5. LEMMA. With the notation as above, if w is universally de
Rham descendable, then wn is de Rham descendable for any object n of Do.

8.5. In the case of Čech diagrams the notion of de Rham descend-
ability is equivalent to that of cohomological descendability.

8.5.1. THEOREM. Let w : KKJ be a separated morphism of V-
triples locally of finite type such that

(i) w× : Y K X is smooth around Y ;
(ii) w : Y K X is of finite type

and let E be a sheaf of coherent j † O] X[X
-modules. Denote by wQ : KQKJ

the Čech diagram associated to w : KKJ. Then the natural projection
DR† (KQ /J , wQ

† (E , 0 ) ) KwQ
† E induces an isomorphism

R C † (J , KQ ; DR† (KQ /J , wQ
† (E , 0 ) ) ) KR C † (J , KQ ; wQ

† E) .

8.5.2. COROLLARY. With the same notation as in Theorem 8.5.1, w is
cohomologically descendable (resp. universally cohomologically de-
scendable) if and only if w is de Rham descendable (resp. universally
de Rham descendable).

We first prove a special case of Theorem 8.5.1.

8.5.3. LEMMA. Let J4 (X , X, X) and K4 I2I
a

Ka4 I2I
a

(Ya , Ya , Ya ) be

V-triples separated of finite type and let w : KKJ be a morphism of V-
triples which satisfy the conditions:

(i) both X and Y are affine;
(ii) there exists a finite number of sections t1, a , R ta , da

�
�G(Ya , OYa

) which determine an étale morphism from Ya to a formal
affine space A×

X
da around Ya such that w× is a composition of YaK A×

X
da

and the projection A×
X
da K X for each a.

Let us denote by wQ : KQKJ the Čech diagram for w : KKJ. For
any sheaf E of coherent j † O] X[X

-modules, we define a decreasing filtra-
tion ]Filq (q of R C † (J , KQ ; DR† (KQ /J , wQ

† (E , 0 ) ) ) which is induced by
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the Hodge filtration ]DR† (KQ /J , wQ
† (E , 0 ) )Q2 q (q of the de Rham com-

plex DR† (KQ /J , wQ
† (E , 0 ) ) (Lemma 4.5.1). Then we have

Hr ( GrFil
q ) 40

for any qc0 and r. In particular, the natural projection induces an
isomorphism

R C † (J , KQ ; DR† (KQ /J , wQ
† (E , 0 ) ) ) K

`

R C † (J , KQ ; wQ
† E) .

PROOF. Let q be a positive integer. We have only to prove that there
exists a homotopy ]u n (x)(n , x from the identity to the 0-map on GrFil

q 4

4wQ
† E7j † O] YQ [YQ

j † V ] YQ [YQ / ] X[X

q as a sheaf on ] YQ [YQ (the case where wQ
(0) 4

4wQ
(1) 4 idKQ and hn (x) 4 idKn

for x : nK1 in 3.10). Indeed, if such a homo-
topy exists, then Hr ( GrFil

q ) 40 for any qc0 and r by Propositions 3.10.5
and 3.10.8 just as in the proof of Proposition 6.3.2. Since the Hodge filtra-
tion of DR† (KQ /J , wQ

† (E , 0 ) ) satisfies the conditions (i) and (ii) in 4.5 (be-
fore Lemma 4.5.1), the natural projection

R C † (J , KQ ; DR† (KQ /J , wQ
† (E , 0 ) ) ) KR C † (J , KQ ; wQ

† E)

is an isomorphism by Proposition 4.5.2.
Now we construct a homotopy ]u n (x)(n , x for q21. Since YaK A×

X
da is

étale around Ya , ja
† V ] Ya [Ya / ] X[X

1 is free over ja
† O] Ya [Ya

with basis
dta , 1 , R , dta , da by Lemma 8.1.2. For an integer m (0 1m1n), we de-
note by rn , m : Kn KKm the projection onto the first m11-components.
Then the fixed basis ]dta , 1 , R , dta , da

(a determines a left inverse of the
homomorphism

rA l--l
n , m : rn , m

† (wm
† E7j † O] Ym [Ym

j † V ] Ym [Ym / ] X[X

q ) Kwn
† E7j † O] Yn [Yn

j † V ] Yn [Yn / ] X[X

q

of sheaves of j † O] Yn [Yn
-modules induced by rm , n . We denote by Ln , m the

image of rA l--l
n , m and by sn , m : wn

† E7j † O] Yn [Yn
j † V ] Yn [Yn / ] X[X

q KLn , m the
splitting.

Let x : nK1 be a morphism in D with x(m) 40 and x(m11) 41 for
21 1m1n. We define a homomorphism

u n (x) : wn
† E7j † O] Yn [Yn

j † V ] Yn [Yn / ] X[X

q Kwn
† E7j † O] Yn [Yn

j † V ] Yn [Yn / ] X[X

q

of sheaves of j † O] Yn [Yn
-modules by u n (x) 4sn , m for m20 and by u n (x) 4

40 for m421. Then u n (¯ (0) ) 4 id and u n (¯ (1) ) 40. One can easily
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check condition (ii) of the definition of homotopy in 3.10. Hence the
collection ]u n (x)(n , x gives the desired homotopy.

This completes a proof of Proposition 8.5.3. r

PROOF OF THEOREM 8.5.1. Since the problem is local on X, we may
assume that X is affine by Proposition 4.3.4. Since w : Y K X is of finite
type, we may assume that Y is of finite type over Spf V.

Let v : LKK be a separated morphism of V-triples of finite type
such that v× : Z K Y is smooth around Z and let us denote by uQ : LQKJ

the Čech diagram for u4wv. If v is universally cohomologically de-
scendable and universally de Rham descendable, then vn : Ln KKn is
also universally cohomologically descendable and universally de Rham
descendable by Theorems 6.3.1 and 8.4.1. The vertical arrows of the nat-
ural commutative diagram

R C † (J , KQ ; DR† (KQ /J , wQ
† (E , 0 ) ) )

`I

R C † (J , LQ ; DR† (LQ /J , uQ
† (E , 0 ) ) )

K

K

R C † (J , KQ ; wQ
† E)

I`

R C † (J , LQ ; uQ
† E)

are isomorphisms by Lemmas 6.3.3 and 8.4.4. Hence, Theorem 8.5.1
holds for w if and only if it holds for u, under the hypothesis that v is uni-
versally cohomologically descendable.

Since strict Zariski coverings as triples are universally cohomologi-
cally descendable and universally de Rham descendable by Proposition
6.2.5 and Example 8.3.3 (1), we may assume that Y is affine by Theorems
6.3.1 and 8.4.1. Then there exists a finite Zariski covering ]Ya(a of Y such
that such that there exists a finite number of sections ta , 1 , R ta , da

�
�G(Y, OY ) which determines an étale morphism Y K A×da

X around Ya . Such
a covering ]Ya(a of Y always exists since Y is affine and Y K X is
smooth around Y. We put L4 I2I

a
Ka4 I2I

a
(Ya , Y, Y) and denote the struc-

ture morphism by wa : KaKJ. Since v : LKK is universally cohomolog-
ical descendable and universally de Rham descendable by Proposition
6.2.6 and Example 8.3.3 (2), we have only to prove the assertion for u4

4 I2I
a

wa : LKJ. This has already been done in Lemma 8.5.3. This com-

pletes the proof of Theorem 8.5.1. r

8.6. The notion of de Rham descent is independent of the choice of
boundaries and embedding into formal schemes by Corollary 8.5.2 and
Proposition 6.4.1. Thus, we have shown:
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8.6.1. PROPOSITION. Let J and K be V-triples locally of finite type
and let w : KKJ be a separated morphism of triples such that

(i) w× : Y K X is smooth around Y;
(ii) w : Y K X is proper;
(iii) w

i
: YKX is an isomorphism.

Then w is universally de Rham descendable.

8.6.2. COROLLARY. Let J4 (X , X, X), K4 (Y , Y, Y) and K84

4 (Y , Y8 , Y8 ) be V-triples locally of finite type, and let w : KKJ and
w 8 : K8KJ be separated morphisms of triples such that

(i) both w× and w×8 are smooth around Y;
(ii) both w and w8 are proper;
(iii) both w

i
4 w

i
8.

Then w is de Rham descendable (resp. universally de Rham descend-
able) if and only if w 8 is so.

8.6.3. PROPOSITION. With the situation of Corollary 8.6.2, if we re-
move the condition (ii) and we assume that (iii) Y 4 Y8 and w 4 w8.
Then the assertion of Corollary 8.6.2 still holds.

8.7. We consider the de Rham descent theorem for general simpli-
cial triples. The argument of the proof is same as in the proof of Proposi-
tion 6.5.1

8.7.1. PROPOSITION. Let J be a V-triple locally of finite type and
let

KQ
uQ 7

J
wQ

J

8vQ

LQ

be a morphism of simplicial triples locally of finite type over J such
that ul (resp. vl , resp. wl ) is smooth around Yl (resp. Zl , resp. Zl ) for any
l. Suppose that, for any nonnegative integer n ,

(i) coskn
J (KQ

(n) ) 4KQ and coskn
J (LQ

(n) ) 4LQ (i.e. they have dimen-
sion Gn [13]);

(ii) wl is an isomorphism for lEn , coskn
J (wQ

(n) ) 4wQ and wl is de
Rham descendable (resp. universally de Rham descendable) for any l.
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Then uQ is de Rham descendable (resp. universally de Rham de-
scendable) if and only if vQ is so.

8.7.2. COROLLARY. Let J be a V-triple locally of finite type and let KQ
be a simplicial triple locally of finite type over J with the structure
morphism wQ . Suppose that, for any nonnegative integers l and n , the
canonical morphism coskn

J (KQ
(n) )l Kcoskn21

J (KQ
(n21) )l is de Rham de-

scendable (resp. universally de Rham descendable). If coskm
J (KQ

(m) ) KJ

is de Rham descendable (resp. universally de Rham descendable) for
some nonnegative integer m , then wQ : KQKJ is so.

9. De Rham descent for étale morphisms.

9.1. We give our results about de Rham descent for étale hypercov-
erings.

9.1.1. THEOREM. Let KQ be an étale-étale hypercovering or an étale-
proper hypercovering over a V-triple J locally of finite type. Then KQK
KJ is universally de Rham descendable.

PROOF. Applying Corollary 8.7.2, we have only to prove the assertion
in the case where KQKJ is the Čech diagram associated to a morphism
KKJ which satisfies the hypotheses of Theorem 7.3.1 or Theorem 7.4.1.
Since w is universally cohomological descendable, w is universally de
Rham descendable by Corollary 8.5.2. r

Let u : KKJ be a morphism of V-triples locally of finite type such
that u× : Y K X is smooth around Y and let wQ : LQKK be a morphism
such that wQ is an étale-étale hypercovering or an étale-proper hypercov-
ering. By Proposition 8.3.4 we have

9.1.2. COROLLARY. With the notation as above, if E is a sheaf of co-
herent j † O] Y[Y

-modules with a connection ˜ on ] Y[Y over ] X[X , then the
canonical homomorphism

DR† (K/J , (E , ˜) ) KR C † (K , LQ ; DR† (LQ /J , wQ
† (E , ˜) ) )

is an isomorphism in D 1 (Z] Y[Y
).
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10. Rigid cohomology.

In this section we introduce a rigid cohomology which is defined by
using universally de Rham descendable hypercoverings (see the defini-
tion in 10.1) and prove that our rigid cohomology does not depend on the
choices of hypercoverings. We prove that our definition of rigid cohomol-
ogy is equivalent to Berthelot’s original definition.

Throughout this section, let E4 (S , S, S) be the induced V-triple
from a formal V-scheme S locally of finite type and let F4 (T , T, R) be a
triple separated locally of finite type over E such that R is smooth over S

around T.

10.1. In order to construct rigid cohomology for hypercoverings, we
need to generalize the formalism of triples.

10.1.1. DEFINITION. (1) Let (X , X) be a pair separated over (T , T). A
triple K (resp. An lft-triple) over F with a (T , T)-morphism (Y , Y) K

K (X , X) is called an (X , X)-triple (resp. an (X , X)-lft-triple) over F. A
morphism w : LKJ of (X , X)-triples over F is a morphism of lft-triples
such that the natural diagram

(Z , Z)
7

K

(X , X)
8

(Y , Y)

is commutative.
(2) A covariant functor from a small category to the category of

(X , X)-triples (resp. (X , X)-lft-triples) over F is called a diagram of
(X , X)-triples (resp. (X , X)-lft-triples) over F. r

Let (KQ , I) and (LQ , J) be diagrams of (X , X)-triples over F. We de-
fine a fiber product of diagrams of (X , X)-triples over F by

KQ3(X , X, R) LQ4 (YQ3X ZQ , YQ3X ZQ , YQ3R ZQ ) .

Since X K T is separated, Ym 3X Zn K Ym 3R Zn 3Spf V Spec k is a closed
immersion for any m�Ob (I) and n�Ob (J). The fiber product KQ3
3(X , X, R) LQ is a diagram of (X , X)-triples over F indexed by I3J and both
projections are morphisms of diagrams of (X , X)-triples over F. If KQ is
locally of finite type over F, then KQ3(X , X, R) LQ is a triple locally of finite
type over LQ .
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10.1.2. DEFINITION. Let (X , X) be a pair separated and locally of fi-
nite type over (T , T). An (X , X)-triple G4 (U , U, U) separated and lo-
cally of finite type over F is a Zariski covering of (X , X) over F if it satis-
fies the following conditions:

(i) U KR is smooth around U;
(ii) u : U K X is a Zariski covering and U4 u21 (X). r

If G and H are Zariski coverings of (X , X) over F, then the fiber
product G3(X , X, R) H as (X , X)-triples over F is also a Zariski covering of
(X , X) over F.

Now we introduce the notion of universally de Rham descendable
hypercovering.

10.1.3. DEFINITION. Let (X , X) be a pair separated locally of finite
type over (T , T) and let KQ be a simplicial (X , X)-triple locally of finite
type over F such that Yn KR is smooth around Yn for any n. We say that
KQ is a universally de Rham descendable hypercovering of (X , X) over F

if, for any (X , X)-lft-triple L over F, the base change KQ3(X , X, R) LKL

(i.e., as diagrams of (X , X)-triples over F) is de Rham descendable in the
sense of Definition 8.3.1 (1). r

Note that the morphism KQ3(X , X, R) LKL in the definition above is
automatically universally de Rham descendable.

10.1.4. PROPOSITION. Let (X , X) be a pair separated and locally of fi-
nite type over (T , T) and let G be a Zariski covering of (X , X) over F.
Then the Čech diagram

GQ4cosk0
(X , X, R) (G) 4 ( cosk0

X (U), cosk0
X (U), cosk0

R (U) )

of G as (X , X)-triples over F is a universally de Rham descendable hy-
percovering of (X , X) over F.

PROOF. Let L be an (X , X)-lft-triple over F. Since cosk0
R (U)3R Z 4

4cosk0
Z (U 3R Z), the assertion follows from Example 8.3.3 (1) and Corol-

lary 8.6.2. r

10.1.5. COROLLARY. Let (X , X) be a pair separated locally of finite
type over (T , T). Then there exists a universally de Rham descendable
hypercovering of (X , X) over F.
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10.1.6. EXAMPLE. Let (X , X) be a pair separated locally of finite type
over (T , T).

(1) We say that a simplicial (X , X)-triple KQ over F which is separat-
ed and locally of finite type over F is an étale-étale (resp. étale-proper)
hypercovering of (X , X) over F if it satisfies the following condi-
tions:

(i) (YQ , YQ ) K (X , X) is an étale-étale hypercovering (resp. an
étale-proper hypercovering) of pairs;

(ii) coskn
R (YQ

(n) )l Kcoskn21
R (YQ

(n21) )l is smooth around coskn
X (YQ

(n) )l

for any n and l.

Since any base change KQ3(X , X, R) LKL by an (X , X)-lft-triple L over F

as diagrams of (X , X)-triples over F is an étale-étale hypercovering (re-
sp. an étale-proper hypercovering) in the sense of Definition 7.2.2, any
étale-étale (resp. étale-proper) hypercovering KQ of (X , X) over F is a
universally de Rham descendable hypercovering of (X , X) over F by
Theorem 9.1.1.

(2) Let K be an (X , X)-triple separated locally of finite type over F

such that

(i) Y KR is smooth around Y;
(ii) Y K X is proper;
(iii) YKX is an isomorphism.

Then the constant simplicial triple KQ
Do

is a universally de Rham descend-
able hypercovering of (X , X) over F by Corollary 8.3.6. r

10.2. We recall the definition of overconvergent isocrystals which
was introduced by Berthelot [7, 2.2, 2.3].

First we recall the definition of overconvergent connections. Let J4

4 (X , X, X) be a triple separated locally of finite type over E such that
X K S is smooth around X and let ¯X be a complement of X in X. Let us
put J2 4J3(X , X, S) J and J3 4J3(X , X, S) J3(X , X, S) J to be the fiber prod-
ucts as (X , X)-triples over E. We denote by pi : J2 KJ (i41, 2 ) (resp.
qi : J3 KJ (i41, 2 , 3 ), resp. ri j : J3 KJ2 (1 1iE j13), d : JKJ2) to
be the i-th projection (resp. the i-th projection, resp. the (i , j)-th projec-
tion, resp. the diagonal morphism) of triples. We define the ideal I of
O] X[X2 as the ideal of the diagonal immersion d

A : ] X[X K] X[X2 and define
an ideal j † In11 of j † O] X[X2 by the sheaf of overconvergent sections of In11

along ¯X for any nonnegative integer n.
Let E be a sheaf of coherent j † O] X[X

-modules with an integrable con-
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nection ˜ : EKE7j † O] X[X
j † V ] X[X / ] S[S

1 on ] X[X over ] S[S . ˜ is an overcon-
vergent connection along ¯X if there exists an isomorphism

e : p2
† EK

`

p1
† E

of sheaves of j † O] X[X2-modules which satisfies the conditions:

(i) the diagram

q3
† E

r23
† (e) 7

K
r13

† (e)

q2
† E

6r12
† (e)

q1
† E

is commutative;
(ii) d † (e) 4 idE ;
(iii) the connection ˜ is induced by the isomorphism e modulo

j † In11 for all n in the sense of [7, 2.2.2], that is, e modulo j † In11 gives the
n-truncated Taylor’s expansion

e(17e) f !
m11R1md1n

1/(m1 !R md ! )(˜(¯/¯t1 )m1
R

R ˜(¯/¯td )md )(e) j 1
m1

R j d
md ( mod j † In11 )

(j i 417 ti 2 ti 71) in the situation of Lemma 8.1.2.

A morphism of overconvergent connections is a horizontal j † O] X[X
-ho-

momorphism [7, 2.2.5 Définition].
Since 1

n
j † In11 4 (0) by the smoothness of X K S around X and Lem-

ma 2.9.1, the isomorphism e is unique for the overconvergent connection
˜. On the other hand, an isomorphism e which satisfies the conditions (i)
and (ii) above determines an overconvergent connection on ] X[X over
] S[S along ¯X by the meaning of (iii). A homomorphism of overconver-
gent connections commutes with these isomorphisms e.

From now on, let (X , X) be a pair separated locally of finite type over
(S , S). (Note that we do not assume the existence of a global embedding
of X into formal schemes over S smooth around X.)

Let G4 (U , U, U) be a Zariski covering of (X , X) over E. We put
G2 4G3(X , X, S) G and G3 4G3(X , X, S) G3(X , X, S) G. We define by pi : G2 K

KG (i41, 2 ) (resp. qi : G3 KG (i41, 2 , 3 ), resp. ri j : G3 KG2 (1 1iE

Ej13), d : GKG2) to be the i-th projection (resp. the i-th projection, re-
sp. the (i , j)-th projection, resp. the diagonal morphism) of triples.
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A realization (EG , ˜G ) of an overconvergent isocrystal on (X , X) / SK

over G is a sheaf EG of coherent j † O] U[U
-modules with an overconvergent

connection ˜G : EGKEG7j † O] U[U
j † V ] U[U / ] S[S

1 on ] U[U over ] S[S along ¯U
such that there exists a horizontal isomorphism

r : p2
† (EG , ˜G ) K

`

p1
† (EG , ˜G )

of sheaves of j † O] U2 [U2-modules which satisfies the conditions:

(i) the diagram

q3
† (EG , ˜G )

r23
† (r) 7

K
r13

† (r)

q2
† (EG , ˜G )

6r12
† (r)

q1
† (EG , ˜G )

is commutative;
(ii) d † (r) 4 id(EG , ˜G ) .

A homomorphism of realizations of overconvergent isocrystals on
(X , X) / SK over G is a horizontal j † O] U[U

-homomorphism which commutes
with r. We denote by Isoc† ( (X , X), G/ SK ) the category of realizations of
overconvergent isocrystals on (X , X) / SK over G [7, 2.3.2 Définition (i),
(iii)].

Let (EG , ˜G ) and (EG8 , ˜G8 ) be realizations of overconvergent isocrys-
tals. The category of realizations of overconvergent isocrystals is closed
under the tensor product

(EG , ˜G )7 (EG8 , ˜G8 ) 4 (EG7j † O] U[U
EG8 , 17˜G8 1˜G71)

and the internal hom

Hom( (EG , ˜G ), (EG8 , ˜G8 ) ) 4 (Homj † O] U[U
(EG , EG8 ), ˜) ,

where the connection ˜ is defined by

˜(h)(s) 4˜G8 (h(s) )2 (h7 idj † V ] U[U / ] S[S

1 )(˜G (s) )

for h : EGKEG8 and s�EG [7, 2.2.10 Corollaire].

10.2.1. PROPOSITION. Let J be a triple separated locally of finite type
over E such that X K S is smooth around X and let ¯X be a complement
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of X in X. Then the natural forgetful functor

Isoc†((X,X),J/SK)

(EJ,˜J,e,r)

K

O

gsheaves E of coherent j †O]X[X
-modules with an

overconvergent connection ˜ on ]X[X over ]S[S along ¯X
h

(EJ,˜J,e)

is an equivalence of categories.

Under our assumption the two isomorphisms e and r have the same
source p2

† EJ and the same target p1
† EJ . The proposition above follows

from the lemma below.

10.2.2. LEMMA. With the notation as in Proposition 10.2.1, if
(EJ , ˜J , e , r) is a realization of an overconvergent isocrystal on
(X , X) / SK over J , then we have r4e.

PROOF. One may assume the situation of Lemma 8.1.2. If
h : p2

† (EJ , ˜J ) Kp1
† (EJ , ˜J ) is a horizontal j † O] X[X2-homomorphism

such that d † (h) 40, then h40. Indeed, we have 1
n

j † In11 40 by

the smoothness of X over S around X and, for any e�
�j † In11 p1

† EJ 0 j † In12 p1
† EJ , there exists i such that p1

† ˜J (¯/¯ti 71)(e) �
�j † In p1

† EJ 0 j † In11 p1
† EJ . Hence, r is unique for (EJ , ˜J , e). Therefore, if

e : p2
† EJKp1

† EJ commutes with the induced connections, then we have
r4e. One can easily see the commutativity of e and the induced connec-
tions by using Taylor expansions. r

10.2.3. PROPOSITION ([7, 2.1.16, 2.1.17 Proposition, 2.3.2 Définition
(iv)]). Let V8 be an object over V in CDRVZp

, let E8 be a V8-triple which
is induced from a formal V8-scheme S8 locally of finite type with a com-
mutative diagram

S

I
Spf V

J

J

S8
I

Spf V8 .

Let

(X , X)
fI

(S , S)

J
v

J
u

(X 8 , X8 )
If 8

(S 8 , S8 ).
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be a commutative diagram of pairs such that (X , X) (resp. (X 8 , X8 ) ) is a
pair separated and locally of finite type over (S , S) (resp. (S 8 , S8 ) ), and
let

G

fI

E

K
w

J
u

G8

If 8

E8

(U , U)
gI

(X , X)

J
w

J
v

(U 8 , U8 )
Ig 8

(X 8 , X8 )

be a commutative diagram of triples and pairs, respectively, such that
G (resp. G8 ) is a Zariski covering of (X , X) (resp. (X 8 , X8 ) ) over E (resp.
E8 ).

(1) If (EG , ˜G ) is a realization of an overconvergent isocrystal on
(X , X) / SK over G. Then the inverse image w † (EG , ˜G ) is a realization of
an overconvergent isocrystal on (X 8 , X8 ) / SK8 over G8.

(2) Suppose that w 8 : G8KG is another morphism of triples such
that two diagrams above are also commutative after replacing w by w 8.
Then, for any realization (EG , ˜G ) of an overconvergent isocrystal on
(X , X) / SK over G, the map (w 8 , w) : U8K U2 induces an isomor-
phism

(w 8 , w)† (r) : w † (EG , ˜G ) K
`

(w 8 )† (EG , ˜G )

of realizations of overconvergent isocrystals on (X 8 , X8 ) / SK8 over G8.
Here r is the isomorphism coming from the definition of realization.
Moreover, this isomorphism satisfies the cocycle conditions:

(i) (w 9 , w 8 )† (r)(w 8 , w)† (r) 4 (w 9 , w)† (r);
(ii) d † (w , w)† (r) 4 id(EG , ˜G ) .

PROOF. Let us put (w , w) : G83(U 8 , U8 , S8 ) G8KG3(U , U, S) G and let e
be the isomorphism as in the definition of overconvergent connections.
Then one can see that the isomorphism (w , w)† (e) determines the con-
nection w † ˜. The rest is easy by definition. r

On the other hand, we note that the inverse image functor commutes
with tensor products and internal homs.

10.2.4. PROPOSITION. Let G and H be Zariski coverings of (X , X)
over E and let w : HKG be a morphism of (X , X)-triples over E such
that w× : V K U is smooth around V and w : V K U is a Zariski cover-
ing. Then the inverse image functor w † : Isoc† ( (X , X), G/ SK ) K

KIsoc† ( (X , X), H/ SK ) is an equivalence.
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We give some lemmas which will be used in the proof of Proposition
10.2.4.

10.2.5. LEMMA. With the notation as in Proposition 10.2.4, assume
furthermore that w× : V K U is a Zariski covering and w : HKG is
strict as a morphism of triples. Then the inverse image functor w † is an
equivalence.

PROOF. w † is faithful by Proposition 6.1.4. We shall prove the essen-
tial surjectivity of w †. Suppose that (EH , ˜H ) is a realization over H, e
and r are isomorphisms as in the definition. The inverse image
( idH , idH )† (r) is a gluing data for a coherent sheaf and we get a sheaf EG

of coherent j † O] U[U
-modules, where (idH , idH ) denotes the map H3

3G HKH3(X , X, S) H. Let pri : H3(X , X, S) HKH be the i-th projection
and

( pri , pri ): (H3(X , X, S) H)3(V3X V , V3XX, S) (H3(X , X, S) H) KH3(V , V, S) H

be the induced morphism for i41, 2. Since r is horizontal, we have an
identity (pr2 , pr2 )† (e) 4 ( pr1 , pr1 )† (e). Consider the natural morphism

q : (H3(V , V, S) H)3(G3(U , U, S) G) (H3(V , V, S) H) K

K (H3(X , X, S) H)3(V3X V , V3XX, S) (H3(X , X, S) H)

of triples. Then the inverse image of the identity (pr2 , pr2 )† (e) 4

4 ( pr1 , pr1 )† (e) by q † provides the gluing data for e. Hence it determines
an overconvergent connection ˜G on EG . (EG , ˜G ) is a realization over G

with w † (EG , ˜G ) ` (EH , ˜H ) by the cocycle conditions of r and e. Hence,
w † is essentially surjective. The fullness of w † also follows from the same
argument. r

By the strong fibration theorem [7, 1.3.7 Théorème] we have

10.2.6. LEMMA. Let J and K be triples separated of finite type over
E such that X is smooth S around X and let w : KKJ be a morphism of
finite type over E which satisfies the conditions:

(i) w× : Y K X is étale around Y;
(ii) w : Y K X is proper;
(iii) w

i
: YKX is an isomorphism.
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Then the inverse image functor

w † : Isoc† ( (X , X), J/ SK ) KIsoc† ( (Y , Y), K/ SK )

is an equivalence of categories.

10.2.7. LEMMA ([7, 2.2.11 Proposition]). Let J4 (X , X, X) be a triple
separated locally of finite type over E such that X K S is smooth
around X , let ]Ua(a be a finite Zariski covering of X , let us put G4

4 I2I
a

(Ua , X, X) and denote by w : GKJ the structure morphism. Let Gn

be the fiber product of n copies of G over J , let us denote by pi : G2 KG

(i41, 2) (resp. ri j : G3 KG2 (1 1iE j13), d : GKG2 ) the i-th projec-
tion (resp. the (i , j)-th projection, resp. the diagonal morphism) of
triples.

(1) Suppose that (F , ˜F ) is a realization of an overconvergent
isocrystal on I2I

a
(Ua , X) / SK over G with an isomorphism r :

p2
† (F , ˜F ) K

`

p1
† (F , ˜F ) of realizations of overconvergent isocrystals

which satisfies the conditions:

(i) r13
† (r) 4r12

† (r) r23
† (r);

(ii) d † (r) 4 id(F , ˜F ) .

Then there exists a unique realization (E , ˜E ) of an overconvergent
isocrystal on (X , X) / SK over J such that w † (E , ˜E ) 4 (F , ˜F ).

(2) Suppose that c : (F1 , ˜F1
) K (F2 , ˜F2

) is a homomorphism of re-
alizations of overconvergent isocrystals on I2I

a
(Ua , X) / SK over G such

that p2
† (c) 4p1

† (c). Then there exists a unique homomorphism
W : (E1 , ˜E1

) K (E2 , ˜E2
) of realizations of overconvergent isocrystals on

(Xa , X) / SK over J such that w † (W) 4c.

PROOF. We may assume that X is affine by Lemma 10.2.5. Passing to
a finite refinement of the covering ]Ua(a of X, we may assume that a
complement of Ua in X is defined by a single equation ga40 for a global
section ga�G(X, OX ) for all a. Let us denote by I the sheaf of ideals of OX

which is generated by the ga . If I is the unit ideal, then there exists a
Zariski covering ]Ua(a of X such that Ua4XOUa . Hence, the assertion
follows from Lemma 10.2.5.

Suppose that I is not the unit ideal. Let us take a lift g×a�G(X, OX ) of
ga and denote by I× the sheaf of ideals of OX which is generated by the
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g×a’s. We denote by v : X8K X (resp. v× : X8K X) the blowing-up with re-
spect to the sheaf of the ideal I (resp. I×). Let us put J84 (X , X8 , X8 ) and
let

G
wI

J

J
v 8

J
v

G8
Iw 8

J8

be a natural cartesian square of triples. Then v † and (v 8 )† are equiva-
lence of categories of realizations of overconvergent isocrystals by Lem-
ma 10.2.6. Hence, we have only to prove that (w 8 )† gives an equivalence
of categories of realizations of overconvergent isocrystals. Since v : X8K

K X is obtained by a blowing-up with respect to I, there exists a Zariski
covering ]Ua8 (a of X8 such that Ua4XOUa8. Indeed, X8 is a closed sub-
scheme of the projective scheme defined by the set ] ga tb4ga ta(a , b of
homogeneous equations in a projective space. Then Ua8 is defined by tac

c0. Hence, the assertion follows from Lemma 10.2.5. This completes the
proof. r

PROOF OF PROPOSITION 10.2.4. Taking Zariski coverings of G and H

as triples and applying Lemma 10.2.5 to them, we may assume that
(V , V) 4 (U , U). We may assume that w× : V K U factors through a for-
mal affine space A×U

d over U such that V K A×U
d is étale around V by Lem-

mas 10.2.6 10.2.7. Using an argument similar to the proof of Proposition
2.10.2 (1) ([7, 1.3.5 Théorème]) we may assume that V 4 A×U

d . Then there
exists a section s : GKH of w as a morphism of (X , X)-triples over E.
Obviously, s † w † 4 id. Since sw : HKH satisfies the hypotheses of
Proposition 10.2.3 (2), the functor w † s † : Isoc† ( (X , X), H/ SK ) K

KIsoc† ( (X , X), H/ SK ) coincides with the identity functor. Hence, w † is an
equivalence. r

Let G and H be Zariski coverings of (X , X) over E. We put L4G3

3(X , X, S) H and have the two projections pr1 : LKG and pr2 : LKH. The
composite

u HG4 ( pr2
† )21 pr1

† : Isoc† ( (X , X), G/ SK ) KIsoc† ( (X , X), H/ SK )

of functors gives an equivalence by Proposition 10.2.4. Moreover, Propo-
sition 10.2.3 implies the following:
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(1) if there exists a third Zariski covering I, then the induced equiv-
alences satisfy the cocycle condition

u IG4u IH u HG ;

(2) if G4H, then u GG4 ( pr2
† )21 pr1

† is the identity functor.
Therefore, the category Isoc† ( (X , X), G/ SK ) is independent of the choice
of Zariski coverings G of (X , X) over E up to the canonical equiva-
lence.

The category of overconvergent isocrystals on (X , X) / SK is defined
by the category of realizations of overconvergent isocrystals on
(X , X) / SK over a Zariski covering of (X , X) over E. It does not depend on
the choice of Zariski coverings up to the canonical equivalence. We de-
note it by Isoc† ( (X , X) / SK ). The category of overconvergent isocrystals
has tensor products and internal homs.

Now we recall the definition given in [7, 2.3.2 Definition (iv)] of the
inverse image functor for overconvergent isocrystals. We suppose the
situation to be as in the assumption of Proposition 10.2.3. Note that G8 al-
ways exists by Lemma 10.2.8 below. Let E be an overconvergent isocrys-
tal on (X , X) / SK and let (EG , ˜G ) be a realization of E over G. We define
an inverse image functor

v *: Isoc† ( (X , X) / SK ) KIsoc† ( (X 8 , X8 ) / SK8 )

which is induced by the inverse image functor w † : Isoc† ( (X , X), G/ SK ) K

KIsoc† ( (X 8 , X8 ), G8 / SK8 ). The definition of inverse image functor does not
depend on the choices of Zariski coverings G and G8 up to canonical iso-
morphisms by Proposition 10.2.3 (2). Moreover, for a third (X 9 , X9 ) over
E9 with a morphism v 8 : (X 9 , X9 ) K (X 8 , X8 ) and commutative diagrams
as in Proposition 10.2.3, we have (vv 8 )*4 (v 8 )* v * where v 8 : (X 9 , X9 ) K

K (X 8 , X8 ) denotes the structure morphism. The inverse image functors
commute with tensor products and internal homs.

10.2.8. LEMMA. Let E , E8 , (X , X) and (X 8 , X8 ) be as in Proposition
10.2.3 and let G be a Zariski covering of (X , X) over S. Then there exists
a Zariski covering G8 of (X 8 , X8 ) over E8 with commutative dia-
grams

G

I
E

J

J

G8
I
E8

(U , U)
I

(X , X)

J

J

(U 8 , U8 )
I

(X 8 , X8 )
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of triples and pairs, respectively. Moreover, if S8 is smooth of finite type
over S, then one can take a Zariski covering G8 such that w× : U8K U is
of finite type and smooth around U 8.

Overconvergent isocrystals satisfy gluing properties. From Proposi-
tion 10.2.4 we have

10.2.9. PROPOSITION ([7, 2.3.2 Definition (iii)]). Let (X , X) be a pair
separated locally of finite type over (S , S) and let v : (Y , Y) K (X , X) be
a Zariski covering. Let us denote by (Y n , Yn ) the fiber product of n
copies of (Y , Y) over (X , X) and by pi : (Y 2 , Y2 ) K (Y , Y) (resp.
qi : (Y 3 , Y3 ) K (Y , Y), resp. rij : (Y 3 , Y3 ) K (Y 2 , Y2 ), resp. d : (Y , Y) K

K (Y 2 , Y2 ) ) the i-th projection (resp. the i-th projection, resp. the (i , j)-th
projection, resp. the diagonal morphism).

(1) Suppose that F is an overconvergent isocrystal on (Y , Y) / SK

with an isomorphism w : p2* FKp1* F as overconvergent isocrystals on
(Y 2 , Y2 ) / SK which satisfies the conditions:

(i) the diagram

q3* F
r *23 (w) 7

K
r13* (w)

q2* F
6r *12 (w)

q1* F

is commutative as a diagram of overconvergent isocrystals on
(Y 3 , Y3 ) / SK ;

(ii) d*(w) 4 idF .
Then there exists a unique overconvergent isocrystal E on (X , X) / SK

such that F4v * E and w is an induced morphism by the identity
vp1 4vp2 .

(2) Let c : F1 KF2 be a homomorphism of overconvergent isocrys-
tals on (Y , Y) / SK such that p2*(c) 4p1*(c) via the isomorphism w.
Then, there exists a unique homomorphism W : E1 KE2 of overconver-
gent isocrystals on (X , X) / SK such that v *(W) 4c.

The proposition below follows from Lemma 10.2.7.

10.2.10. PROPOSITION ([7, 2.2.11 Proposition]). Let (X , X) be a pair
separated locally of finite type over (S , S), let ]Ua(a be a finite Zariski
covering of X , and let us denote by v : (U , U) 4 I2I

a
(Ua , X) K (X , X) the

structure morphism. Let us denote by (U n , Un ) the fiber product of n
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copies of (U , U) over (X , X) and by pi : (U 2 , U2 ) K (U , U) (resp.
qi : (U 3 , U3 ) K (U , U), resp. rij : (U 3 , U 3 ) K (U 2 , U 2 ), resp. d : (U , U ) K

K (U 2 , U 2 ) )
the i-th projection (resp. the i-th projection, resp. the (i , j)-th projec-
tion, resp. the diagonal morphism).

(1) Suppose that F is an overconvergent isocrystal on (U , U) / SK

with an isomorphism w : p2* FKp1* F as overconvergent isocrystals on
(U 2 , U2 ) / SK which satisfies the conditions:

(i) the diagram

q3* F
r *23 (w) 7

K
r13* (w)

q2* F
6r *12 (w)

q1* F

is commutative as a diagram of overconvergent isocrystals on
(U 3 , U3 ) / SK ;

(ii) d*(w) 4 idF .

Then there exists a unique overconvergent isocrystal E on (X , X) / SK

such that F4v * E and w is an induced morphism by the identity
vp1 4vp2 .

(2) Let c : F1 KF2 be a homomorphism of overconvergent isocrys-
tals on (U , U) / SK such that p2*(c) 4p1*(c) via the isomorphism w.
Then, there exists a unique homomorphism W : E1 KE2 of overconver-
gent isocrystals on (X , X) / SK such that v *(W) 4c.

The category of overconvergent isocrystals does not depends on the
choice of completions.

10.2.11. PROPOSITION ([7, 2.3.5 Théorème]). Let v : (Y , Y) K (X , X) be
a morphism of pairs separated locally of finite type over (S , S). Suppose
that v

i
: YKX is an isomorphism and v : Y K X is proper. Then the in-

verse image functor

v *: Isoc† ( (X , X) / SK ) KIsoc† ( (Y , Y) / SK )

is an equivalence.

PROOF. We use a similar argument to that of Proposition 6.4.1. First
we may assume that v is projective by the precise Chow’s lemma [12,
Corollaire 5.7.14]. Then we may assume that v is an isomorphism by the
strong fibration theorem [7, 1.3.7 Théorème], Lemma 6.4.5 and Lemma
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10.2.7. The assertion then follows from Proposition 10.2.1 and Lemma
10.2.6. r

10.3. We introduce the notion of overconvergent isocrystals on dia-
grams of pairs.

10.3.1. DEFINITION. Let (XQ , XQ ) be a diagram of pairs separated lo-
cally of finite type over (S , S) indexed by a small category I. We say that
EQ is an overconvergent isocrystal on (XQ , XQ ) / SK if it consists of data
](En )n�Ob(I) , (EQ (h) )h�Mor(I) ( which satisfies the following conditions:

(i) En is an overconvergent isocrystal on (Xn , Xn ) / SK for each ob-
ject n of I;

(ii) EQ (h) : h*(XQ , XQ ) En KEm is an isomorphism of overconvergent
isocrystals on (Xm , Xm ) / SK for any morphism h : mKn such that
EQ (j) j*(XQ , XQ )

(EQ (h) ) 4EQ (hj) for any j : lKm and h : mKn.

We denote by Isoc† ( (XQ , XQ ) / SK ) the category of overconvergent isocrys-
tals on (XQ , XQ ) / SK . r

10.3.2. LEMMA. Let (XQ , XQ ) be a diagram of pairs separated locally
of finite type over (S , S) indexed by a small category I. Let GQ be a dia-
gram of triples over E indexed by I such that Gn is a Zariski covering of
(Xn , Xn ) over E and the diagram

(Um , Um )
I

(Xm , Xm )

K
h (UQ , UQ )

K
h (XQ , XQ )

(Un , Un )
I

(Xn , Xn )

is commutative for any morphism h : mKn of I. Then associating to
each overconvergent isocrystal its realization on GQ will induce an
equivalence

Isoc† ( (XQ , XQ ) / SK ) KIsoc† ( (XQ , XQ ), GQ / SK )

of categories. Here Isoc† ( (XQ , XQ ), GQ / SK ) denotes the category of real-
izations of overconvergent isocrystals on (XQ , XQ ) / SK over GQ .

We say that the diagram GQ in the lemma above is a Zariski covering
of (XQ , XQ ) over (S , S). In general such a diagram does not exist for arbit-
rary (XQ , XQ ). (See 11.4 and 11.5 in the case of étale-étale and étale-prop-
er hypercoverings.)
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In this paper we will not deal with descent theory for overconvergent
isocrystals. We plan to discuss it in the future.

Let E and E8 be as in Proposition 10.2.3 and let

( (XQ , XQ ), I)
I

(S , S)

J
(vQ , t)

J

( (X 8Q , XQ8 ), I 8 )
I

(S 8 , S8 )

be a commutative diagram of pairs such that (XQ , XQ ) K (S , S) (resp.
(XQ8 , XQ8 ) K (S 8 , S8 )) is separated and locally of finite type. For an over-
convergent isocrystal EQ on (XQ , XQ ) / SK , we define the inverse image
functor

vQ*: Isoc† ( (XQ , XQ ) / SK ) KIsoc† ( (XQ8 , XQ8 ) / SK8 )

by (vQ* EQ )m 4vm* Et(m) for any object m in I 8 and (vQ* EQ )(h) 4vm*(EQ (h) )
for any morphism h : mKn in I 8. One can easily see that it is well-de-
fined. The inverse image functor coincides with the inverse image func-
tor of categories of realizations via the canonical equivalence. Moreover,
if, again in the hypotheses of Proposition 10.2.3 we have E9 and
( (XQ9 , X9Q ), I 9 ) and a morphism vQ8 : (X 9 , X9 ) K (X 8 , X8 ), which form a
commutative diagrams with v, then we have (vQ vQ8 )*4 (vQ8 )* vQ*.

10.4. We now give a generalization of Berthelot’s definition of rigid
cohomology using the notion of universally de Rham descendable hyper-
coverings. Let f : (X , X) K (T , T) be a morphism of pairs separated lo-
cally of finite type over (S , S) and let E be an overconvergent isocrystal
on (X , X) / SK .

10.4.1. LEMMA. With the notation as above, let KQ and LQ be univer-
sally de Rham descendable hypercoverings of (X , X) over F and consid-
er the natural commutative diagram

KQ
pr1Q 8

7

HQ

I

F ,

7pr2Q

8
LQ

where HQ is the 2-simplicial triples KQ3(X , X, R) LQ over F and priQ is the i-
th projection. If we denote by (EKQ , ˜KQ ) (resp. (ELQ , ˜LQ ), resp.
(EHQ , ˜HQ ) ) the realization of the inverse image of E over KQ (resp. LQ , re-
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sp. HQ ), then canonical homomorphism

prAl--l
1Q : RC † (F, KQ ; DR†(KQ/F, (EKQ , ˜KQ)))KRC † (F, HQ ; DR†(HQ/F, (EHQ , ˜HQ

)))

induced by prA
1Q is an isomorphism in D 1 (Z] T[R ). Here both DR†’s are

relative complexes as defined in 8.2. The same holds for prA
2Q .

PROOF. Since pr1, (m , Q) : H(m , Q) KKm is universally de Rham de-
scendable for each m, the canonical homomorphism

DR†(Km/F, (EKm
, ˜Km

))KRC † (Km , H(m, Q) ; DR†(H(m, Q)/F, (EH(m, Q)
, ˜H(m, Q))))

is an isomorphism by Proposition 8.3.4. Then the assertion follows from
Proposition 4.4.4. r

With the notation as in the lemma above, we define an isomor-
phism

r LK : RC † (F, KQ ; DR†(KQ/F, (EKQ , ˜KQ
)))KRC † (F, LQ ; DR†(LQ/F, (ELQ

, ˜LQ)))

in D 1 (Z] T[R ) by r LK4 (prA l--l
2Q )

21 prA l--l
1Q .

10.4.2. LEMMA. With the notation as above, we have
(1) r IK4r IL r LK for universally de Rham descendable hypercov-

erings KQ , LQ and IQ of (X , X) over F ;
(2) r KK4 id for any universally de Rham descendable hypercover-

ing KQ of (X , X) over F.

PROOF. (1) Consider projections from KQ3(X , X, R) LQ3(X , X, R) IQ to
KQ3(X , X, R) LQ , LQ3(X , X, R) IQ and KQ3(X , X, R) IQ , and from KQ3(X , X, R) LQ
to KQ and LQ , R. Then each projection induces an isomorphism of derived
Čech diagrams as in Lemma 10.4.1. The assertion follows from the com-
mutativity of the diagram which consists of the projections.

(2) Since r KK is an isomorphism, the assertion follows from the for-
mula in (1). r

By Lemmas 10.4.1 and 10.4.2 we have

10.4.3. PROPOSITION. With the notation as above, R C † (F , KQ ;
DR† (KQ /F , (EKQ , ˜KQ ) ) ) is independent of the choices of universally de
Rham descendable hypercoverings up to canonical isomorphisms in
D 1 (Z] T[R ).
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Let f : (X , X) K (T , T) be a morphism of pairs separated locally of fi-
nite type over (S , S) and let KQ be a universally de Rham descendable hy-
percovering of (X , X) over F. A universally de Rham descendable hyper-
covering always exists by Corollary 10.1.5. We define the rigid cohomolo-
gy complex for an overconvergent isocrystal E on (X , X) / SK evaluated on
] T[R by

Rfrig F* E4R C † (F , KQ ; DR† (KQ /F , (EKQ
, ˜KQ ) ) )

and the q-th rigid cohomology sheaf for an overconvergent isocrystal E
on (X , X) / SK evaluated on ] T[R by

Rq frig F* E4 Hq (R C† (F , KQ ; DR† (KQ /F , (EKQ , ˜KQ ) ) ) ) ,

where (EKQ , ˜KQ ) is a realization of the inverse image of E over KQ . The q-
th rigid cohomology sheaf is independent of the choice of universally de
Rham descendable hypercoverings KQ up to canonical isomorphisms by
Proposition 10.4.3. It is a sheaf of j † O] T[R-modules by Proposition
4.2.4.

In the case F4E4 (Spec k , Spec k , Spf V) we put

Hrig
q ( (X , X) /K , E) 4Rq frig E* E

and call it the q-th rigid cohomology group. In particular, if X is proper
over Spec k, we will see that the rigid cohomology does not depend on
the choice of completion X of X in Proposition 10.5.3 below. In this case
we denote by Hrig

q (X/K , E) the q-th rigid cohomology group.

10.5. We give some properties of rigid cohomology.

10.5.1. PROPOSITION. Let f : (X , X) K (T , T) be a morphism of pairs
separated and locally of finite type over (S , S).

(1) Let W : EKF be a homomorphism of overconvergent isocrystals
on (X , X) / SK and let W YQ : EKQKFKQ

be the induced homomorphism of
inverse images of W on a universally de Rham descendable hypercover-
ing KQ . Then W YQ induces a j † O] T[R-homomorphism

Rq frig F*(W) : Rq frig F* EKRq frig F* F

on q-th rigid cohomology sheaves and it is independent of the choices of
universally de Rham descendable hypercoverings up to canonical iso-
morphisms. Rigid cohomology is functorial in its isocrystal argu-
ment.
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(2) Let 0 KEKFKGK0 be an exact sequence of overconvergent
isocrystals on (X , X) / SK . Then there exists an exact sequence

0 K

K

K

K

R0 frig F* E

R1 frig F* E

Rq frig F* E

R

K

K

K

R0 frig F* F

R

Rq frig F* F

K

K

R0 frig F* G

Rq frig F* G

of sheaves of j † O] T[R-modules. This long exact sequence is functorial in
short exact sequences.

PROOF. (1) The existence of the j † O] T[R-homomorphisms on coho-
mology sheaves for a fixed hypercovering follows from Proposition 4.2.4.
One can prove the independence of the choices of hypercoverings by an
argument similar to the proof of Proposition 10.4.3. Assertion (2) follows
from Proposition 4.2.4. r

10.5.2. PROPOSITION. Let

F

I
E

J
u

J

F8
I
E8

be a commutative diagram of triples such that E8 and F8 are V8-triples
locally of finite type as same as E and F at the beginning of this sec-
tion, respectively, and let

(X , X)
fI

(T , T)

J
v

K
u

(X 8 , X8 )
If 8

(T 8 , T8 )

be a commutative diagram of pairs such that (X , X) (resp. (X 8 , X8 ) ) is a
pair separated and locally of finite type over (T , T) (resp. (T 8 , T8 ) ).
Then, for any overconvergent isocrystal E on (X , X) / SK , there exists a
canonical homomorphism

LuA* RfrigF* EKRf 8rig F8* v * E

in the derived category of complexes of sheaves of j † O] T8 [R8
-modules. The

triangle arising from a short exact sequence of overconvergent isocrys-
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tals in Proposition 10.5.1 commutes with the canonical homomor-
phism.

Assume furthermore that R8KR is flat around T 8. Then the canoni-
cal homomorphism above induces, for all q , a j † O] T8 [R8

-homomor-
phism

uA* Rq frig F* EKRq f 8rig F8* v * E

which is functorial in pairs and in E.

PROOF. Let

GQ
gI

F

J
wQ

J
u

G8Q
Ig 8

F8

(UQ , UQ )
I

(X , X)

J
wQ

J
vQ

(UQ8 , UQ8 )
I

(X 8 , X8 )

be commutative diagrams of triples and pairs such that GQ (resp. GQ8) is a
universally de Rham descendable hypercovering of (X , X) (resp.
(X 8 , X8 )) over F (resp. F8 ). If G is a Zariski covering of (X , X) over F,
then there exists a Zariski covering of (X 8 , X8 ) over G3FF8 . Hence, such
GQ and GQ8 always exist by Proposition 10.1.4 and Lemma 10.2.8. The exis-
tence of homomorphisms in the derived category for the fixed hypercov-
erings follows from 4.3. One can prove the independence of the choices
of hypercoverings by an argument similar to the proof of Proposition
10.4.3. r

10.5.3. PROPOSITION. Let

(X , X)
f 7

J
h

(T , T)
8g

(Y , Y)

be a commutative diagram of pairs separated and locally of finite type
over (S , S) and let E be an overconvergent isocrystal on (X , X) / SK . Sup-

pose that h
i

: YKX is an isomorphism and h : Y K X is proper. Then the
canonical homomorphism

Rq frig F* EKRq grig F* h * E

is an isomorphism for any q.
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PROOF. We may assume that h is projective by the precise Chow’s
lemma ([12, Corollaire 5.7.14]) with the same argument as used for
Proposition 6.4.1. We fix a closed immersion Y KPX

r over X. Let G be a
Zariski covering of (X , X) over F. We define a closed immersion

U3X Y K P×U
r

by U3X Y K U3X PX
r 4PU

r K P×U
r , where P×U

r is a formal projective space
over U of dimension r. Then H4 (U , U3X Y, P×U

r ) is a Zariski covering
of (Y , Y) over F and the natural diagram

(U , U)
I

(X , X)

J

J

(V , V)
I

(Y , Y)

of pairs is commutative. Let us denote by uQ : GQKF (resp. vQ : HQKF)
the Čech diagram of (X , X)-triples over F (resp. (Y , Y)-triples over F)
and by (EGQ , ˜GQ ) (resp. (EHQ , ˜HQ )) the realization of E (resp. h * E) over
GQ . (resp. GQ). Then the commutativity of the above diagram induces a
commutative diagram

E1
qr4RruAq *DR†(Gq/F; (EGq

, ˜Gq
))

I

E1
qr4RrvAq *DR†(Hq/F; (EHq

, ˜Hq
))

¨

¨

Hq1r (RC†(F, GQ; DR†(GQ/F, (EGQ, ˜GQ))))

I

Hq1r (RC †(F, HQ; DR†(HQ/F, (EHQ, ˜HQ
))))

of spectral sequences for hypercoverings as in Lemma 4.4.2 (the case
where s4s 841). Since Ur 4Vr and Vr K Ur is proper, E1-terms of both
spectral sequences coincide with each other by Proposition 8.3.5. Hence,
the targets of the two spectral sequences are isomorphic. This completes
the proof. r

10.5.4. COROLLARY. Let f : (X , X) K (T , T) be a morphism of pairs
separated locally of finite type over (S , S). If X is proper over T, then the
rigid cohomology Rq frig F* E is independent of the choices of X up to
canonical isomorphism.

10.5.5. PROPOSITION. Let f : JKF be a separated morphism of V-
triples locally of finite type such that X KR is smooth around X. Then
the spectral sequence in Lemma 4.4.2 (the case where s4s 841) in-
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duces a canonical isomorphism

Rq frig F* EK
`

Rq fA* DR† (J/F ; (EJ , ˜J ) ) .

PROOF. The assertion easily follows from the fact that the constant
simplicial triple JQ

Do
is a universally de Rham descendable hypercovering

of (X , X) over F (Example 10.1.6 (2)). r

10.6. Let f : (X , X) K (T , T) be a morphism of pairs separated local-
ly of finite type over (S , S). Since a universally de Rham descendable hy-
percovering of (X , X) over F always exists (Proposition 10.1.4), we can
define a rigid cohomology Rq frig F* E for an overconvergent F-isocrystal
on (X , X) / SK . If X can be embedded into a formal R-scheme X as a closed
subscheme such that X KR is smooth around X, then our rigid cohomol-
ogy is canonically isomorphic to the rigid cohomology as introduced by
Berthelot (the right-hand side in Proposition 10.5.5). Hence, our rigid co-
homology coincides with Berthelot’s original definition of rigid cohomol-
ogy in [3, Section 2]. Note that Berthelot also extended the definition to
the non-embeddable case using Zariski coverings in [4, 1.5, Remarque].

10.6.1. THEOREM. The rigid cohomology, defined above, canonically
coincides with Berthelot’s original rigid cohomology.

11. Spectral sequences.

In this section we will prove the existence of spectral sequence for
the rigid cohomology of étale-étale (resp. étale-proper) hypercoverings
of a given scheme. In general there is no embedding of simplicial k-pairs
into smooth formal V-schemes. Even in the local situation, it is impossi-
ble to embed simplicial k-pairs into smooth formal V-schemes. But, if one
considers truncated simplicial pairs, then, locally, one can embed simpli-
cial k-pairs into smooth formal V-schemes. In 11.4 (the case of étale-
étale hypercoverings) and 11.5 (the case of étale-étale hypercoverings)
we will prove the existence of such truncated embeddings. We will use it
to show the existence of spectral sequence for the rigid cohomology of
étale-étale (resp. étale-proper) hypercoverings.

Throughout this section except in 11.2 and 11.3, let E4 (S , S, S)
be a V-triple which is induced from a formal V-scheme S of finite
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type and let F4 (T , T, R) be a triple separated and of finite type
over E such that R is smooth over S around T .

11.1. First we state our main theorem in this section. In the case of
Zariski-Zariski and Zariski-proper coverings Berthelot proved the exis-
tence of spectral sequences (Čech spectral sequences) in his unpublished
note [6].

11.1.1. THEOREM. Let f : (X , X) K (T , T) be a separated morphism
of finite type, let gQ : (YQ , YQ ) K (X , X) be an étale-étale (resp. étale-prop-
er) hypercovering and let us put hQ4 fgQ . For any overconvergent
isocrystal E on (X , X) / SK , there exists a spectral sequence

E1
qr 4Rr hq , rig F*(gq* E) ¨ Rq1r frig F* E .

This spectral sequence is functorial in E , in (X , X), in (YQ , YQ ) and in E

and F .

We reduce the theorem above to the case of truncated simplicial hy-
percoverings. We show that the next proposition implies Theorem 11.1.1
and we prove it in 11.6.

11.1.2. PROPOSITION. Theorem 11.1.1 is valid if we suppose that

coskn
(X , X) ( (YQ

(n) , YQ
(n) ) ) 4 (YQ , YQ )

for some nonnegative integer n. The spectral sequence is functorial in
E , in (X , X), in n-truncated simplicial pair (YQ

(n) , YQ
(n) ), and in E and F.

PROPOSITION 11.1.2 ¨ THEOREM 11.1.1. Let gQ
n : (coskn

X (YQ
(n) ),

coskn
X (YQ

(n) ) ) K (X , X) be the induced morphism of pairs and put hQ
n 4 fgQ

n

for a nonnegative integer n . Let

n E1
qr 4Rr hq , rig F*

n (gq
n
* E) ¨ Rq1r frig F* E

be the spectral sequence for an overconvergent isocrystal E on (X , X) / SK

with respect to gQ
n . By the functoriality we have a canonical commutative

diagram

nE1
qr

I
n11E1

qr

¨

¨

Rq1r frig F* E
I

Rq1r frig F* E
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of spectral sequences for any n . Note nE1
qr 4Rr hq , rig F*(gq* E) for q1n

by construction. If q1rE (n21) /2 , then mEs
qr 4nEs

qr for m2n and
s21. Since

nEn
qr 4nEn11

qr 4R4nEQ
qr ,

there exists a spectral sequence

E1
qr 4Rr hq , rig F*(gq* E) ¨ Rq1r frig F* E

with respect to the hypercovering gQ : (YQ , YQ ) K (X , X).
Since the n-truncated version of the spectral sequences is functorial

in E , the same holds for general cases. Since (coskn
X (YQ )m , coskn

X (YQ )m ) 4

4 (Ym , Ym ) for m1n , one can obtain the functoriality in (YQ , YQ ), in (X , X)
and in E and F . r

11.2. In this subsection «scheme» means «formal scheme» and we
construct simplicial schemes which play an important role for construct-
ing refinements of hypercovering and embedding simplicial schemes
into smooth formal schemes in latter subsections. We deal with simplicial
schemes, simplicial pairs and simplicial triples as contravariant functors
from D to certain categories and denote by D epi and D[n]epi the subcate-
gory of D and D[n] whose set of morphisms consists of all epimor-
phisms.

Let X be a scheme and let n be a nonnegative integer. Let YQ be a
simplicial scheme over X and let ZQ

1 , ZQ
2 , R , ZQ

r be simplicial schemes
over YQ . We define a simplicial scheme

UQ4ZQ
1 3YQ R3YQ

ZQ
r

over X as follows:

– Um 4Zm
1 3Ym

R3Ym
Zm

r for any object m of D;
– h GQ4h ZQ

1 3R3h ZQ
r for any morphism h of D .

One can check that UQ is a simplicial scheme over X and the natural mor-
phism UQKYQ (resp. the projection UQKZQ

i) is a morphism of simplicial
schemes over X (resp. KQ). We call UQ a fiber product of ZQ

1 , R , ZQ
m over

YQ . One can also define a fiber product in the category of simplicial pairs,
simplicial triples and (X , X)-simplicial triples over F .
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11.2.1. LEMMA. With the notation as above, we have

coskn
X ( (ZQ

1 3YQ R3YQ ZQ
r )(n) ) `

`coskn
X ( (ZQ

1 )(n) )3coskn
X (YQ

(n) ) R3coskn
X (YQ

(n) ) coskn
X ( (ZQ

r )(n) )

as simplicial schemes over X.

PROOF. This follows from the universality of the coskeleton functor
which can be constructed as an inverse limit and from the fact that in-
verse limits commute with products. r

We give a construction of simplicial schemes following [1, Vbis , 5.1].
We omit the proof of the next lemma

11.2.2. LEMMA. (1) Let h be a morphism of D . Then, there exist a
monomorphism hmon and an epimorphism h epi of D such that h4

4hmon h epi . Such a decomposition for h is unique.
(2) For morphisms j and h of D , we have (hj)mon 4h mon (h epi j)mon

and (hj)epi 4 (hj mon )epi j epi .

Let S be a scheme. An n-truncated simplicial S-scheme XQ is split (s-
split in [1, Vbis , Définition 5.1.1]) if there exists a sequence
U0 , U1 , R , Un of S-schemes such that, if we denote by Wb4Ub for an
epimorphism b : mKb of D , then

(i) for each object m of D[n]

Xm 4 I2I
b : mKb�Mor (D[n]epi )

Wb ,

where b runs through all epimorphisms b : mKb of D[n] in the above
disjoint sum;

(ii) for any epimorphism b : mKb of D[n], the diagram

Ub

6

7

Widb

Wb

K

K

Xb

Ib XQ

Xm

is commutative.

A split simplicial scheme is defined similarly.
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Let XQ be a split n-truncated simplicial scheme over S and let
U0 , U1 , R , Un and Wb (b�Mor (D[n]epi ) ) as above. Let Un11 be an S-
scheme with an S-morphism Un11 Kcoskn

S (XQ )n11 and let us put Wb4Ub

for an epimorphism morphism b : n11 Kb . We define an (n11)-trun-
cated simplicial scheme YQ4V n11

S (XQ , U0 , R , Un , Un11 ) over S as
follows:

– for each object m of D[n11],

Ym 4
.
/
´

Xm

I2I
b : n11 Kb�Mor (D[n11]epi )

Wb

if m1n

if m4n11,

where b runs through all epimorphisms b : n11 Kb of D[n11] in the
disjoint sum above;

– for each morphism h : lKm with l , m1n ,

h YQ4h XQ : Ym KYl

– for each morphism h : n11 Km with m1n , h YQ is a composi-
tion

Ym K
(hmon )YQYl 4 I2I

a : lKa�Mor (D[n11]epi )

Wa4 I2I
a : lKa�Mor (D[n11]epi )

Wahepi KYn11 ,

where h mon : lKm and h epi : n11 K l;
– for any morphism h : mKn11 of with m1n , h YQ is defined by

compositions

Wb4Ub 4Uidb
KYbK

(bh)YQ Ym

Widn11
4Un11 Kcoskn

S (XQ )n11 K
h coskn

S (XQ )

Xm 4Ym ;

for any morphism h : n11 Kn11,

h YQ4
.
/
´

(h epi )YQ (h
mon )YQ

idYn11

if hc idn11

if h4 idn11 .

Here h mon and h epi are defined in Lemma 11.2.2.

Then YQ is well-defined. Indeed, one can see that it is sufficient to
prove (hj)YQ4j YQ h YQ for a monomorphism j : lKn11 and an epimor-



Bruno Chiarellotto - Nobuo Tsuzuki194

phism h : n11 Km with l , m1n by Lemma 11.2.2. The well-defined-
ness follows from the commutativity of the diagram

Ub

6
K

7

Widb

V

Wbh

V

Wb

K

K

Yb

b YQI

Ym

7(bhj)ZQ

6(hj)ZQ

Yl

for any b : mKb . Hence we have the following lemma ([1, Vbis , Proposi-
tion 5.1.3]).

11.2.3. LEMMA. With the notation as above,
(1) YQ4V n11

S (XQ , U0 , R , Un , Un11 ) is a split (n11)-truncated
simplicial scheme over S .

(2) Let (P) be a property of morphisms of schemes as in Definition
7.2.1 (1). If XQ is (P) over S and Un11 Kcoskn

S (XQ )n11 is (P), then YQ is (P)
over S .

(3) If XQ is an étale hypercovering (resp. a proper hypercovering) of
S and Un11 Kcoskn

S (XQ )n11 is étale surjective (resp. proper surjective),
then YQ is an étale hypercovering (resp. a proper hypercovering) of S .

Let XQ be a split n-truncated simplicial scheme over S , let
U0 , U1 , R , Un and Wb (b�Mor (D[n]epi ) ) as in the definition, and let us
put YQ4V n11

S (XQ , U0 , R , Un11 ). Let ZQ be an (n11)-truncated simpli-
cial scheme over S . We suppose that there exists a morphism fQ : XQK
KZQ

(n) of n-truncated simplicial schemes over S and a morphism
h : Un11 KZn11 over S such that the diagram

Un11

I
coskn

S (XQ )n11

K

K

Zn11

I
coskn

S (ZQ )n11

is commutative. We define a morphism

gQ : YQKZQ
of (n11)-truncated simplicial schemes as follows: gm 4 fm for m1n and
gn11 is a disjoint sum of compositions of morphisms

Wb4Ub 4Widb
KXb K

fb
Zb K

b ZQ Zn11 ,
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for the Wb-component with the epimorphism b : n11 Kb (bc idn11 )
and h : Widn11

4Un11 K
h

Zn11 for the Widn11
-component. Then gQ is well-

defined. Indeed, let us consider the following commutative diagram

Ub

6
K

7

Widb

V

Wbh

V

Wb

K

K

Yn11

K

Yb

Ib YQ

Ym

K
gb

K
gm

Zb

Ib ZQ

Zm

7(bh)ZQ

6h ZQ

Zn11

for epimorphisms h : n11 Km (mcn11) and b : mKb . Since YQ is a
disjoint sum of Wg’s and the bottom arrows is the definition of gn11 , we
have gn11 h YQ4h ZQ gm . One can also check the commutativity between gQ
and a monomorphism h : mKn11 similarly. Hence, gQ is a morphism of
(n11)-truncated simplicial schemes over S .

Now we construct another simplicial scheme. Let n and q be objects
of D . We denote by MorD

1 q (n , m) the set of all morphisms g : nKm
such that the cardinal of the image g(n) is equal to or less than q . Then
MorD

1 q (n , m) 4MorD (n , m) if q2n .
Let W be a scheme over a scheme S . We define a simplicial scheme

G n
S (W)1 q 4ZQ over S as follows:

– for an object m ,

Zm 4 »
g : nKm�MorD

1 q (n , m)

Wg ,

where the product is a fiber product over S , g runs through all mor-
phisms g : nKm in MorD

1 q (n , m) and we put Wg4W for g : nKm;
– for a morphism h : lKm of D , we define

h ZQ : Zm KZl

by (wg )g : nKm O (vb )b : nK l with vb4whb .

Since the cardinal of the image hb(n) is equal to or less than q for any
morphism b�MorD

1 q (n , m), ZQ4G n
S (W)1 q is well-defined. G n

S (W)1 q is
functorial in W . If q2n , then MorD

1 q (n , m) 4MorD (n , m) for any m .
Hence, we have

G n
S (W)1 q 4G n

S (W)1 n .
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11.2.4. LEMMA. Let XQ be an n-truncated scheme over S , let f : Xn K

KW be a morphism of S-schemes and let ZQ4G n
S (W)1 n. If we define an

S-morphism

gm : Xm KZm

by gm 4 »
g : nKm

fg XQ for each m , then gQ : XQKZQ
(n) is a morphism of n-

truncated simplicial S-scheme. Moreover, if W is separated over S and f
is a closed immersion, then gn is a closed immersion. This construction
is functorial.

PROOF. Since the diagram

Xm

h XQI

Xl

K
gm

K
gl

Zm 4 »
g : nKm

Wg

Zl 4 »
b : nK l

Wb

K

K

Wha

IidW

Wa ,

where the right horizontal arrows are projections onto the ha-compo-
nent and onto the a-component, is commutative for any morphism
h : lKm and a : nK l in D[n], gQ is well-defined.

Let us regard Zn as a scheme over W by the projection Zn KW onto
the Widn

-component and let us observe the commutative diagram

Xn
gnI

Zn

K
idXn3gn

K
idZn3 idZn

Xn 3W Zn

Ign3 idZn

Zn 3W Zn .

K
f3 idZn

W3W Zn 4 Zn

Since W is separated over S and the square in the diagram above is
cartesian, the morphism idXn

3gn is a closed immersion. Since the compo-
sition of top horizontal morphisms is gn and f is a closed immersion, gn is
a closed immersion. r

11.2.5. PROPOSITION. Let n , q be objects of D and let W be a scheme
over S. Then

coskq
S ( (G n

S (W)1 n )(q) ) 4G n
S (W)1 q .

In particular, if q2n , then we have

coskq
S ( (G n

S (W)1 n )(q) ) 4G n
S (W)1 n .
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PROOF. We have only to check the universality of the coskeleton
functor. By our construction we have

(G n
S (W)1 n )(q) 4 (G n

S (W)1 q )(q) .

Let XQ be a simplicial scheme over S and let fQ : XQKG n
S (W)1 q be a mor-

phism of simplicial schemes over S . Let mDq and let a : nKm be an el-
ement in MorD

1 q (n , m). Then there exists a unique pair (j , h) of mor-
phisms in D with a4hj such that j : nK l (l1q) is an epimorphism and
h : lKm is a monomorphism by Lemma 11.2.2 (1). Then the dia-
gram

Xm

h XQI

Xl

K
fm

K
fl

G n
S (W)1 q

m 4 »
g : nKm�MorD

1 q (n , m)

Wg

h ZQI

G n
S (W)1 q

l 4 »
b : nK l�MorD

1 q (n , l)
Wb

K

K

Wa

IidW

Wj

is commutative, where the right horizontal arrows are projections to the
a(4hj)-component and to the j-component, respectively. Hence, the
morphism fQ is determined by the q-th truncated morphism fQ

(q) . The
q-th skeleton functor induces a bijection MorS (XQ , G n

S (W)1 q ) 4

4MorS (XQ
(q) , (G n

S (W)1 n )(q) ) for any simplicial scheme XQ over S . Therefore,
we have an isomorphism coskq

S ( (G n
S (W)1 n )(q) ) 4G n

S (W)1 q . r

11.2.6. COROLLARY. With the notation as above, suppose that W is
smooth over S. Then the induced morphism

coskq
S ( (G n

S (W)1 n )(q) )m Kcoskq21
S ( (G n

S (W)1 n )(q21) )m

is smooth for any q and m.

PROOF. Since the morphism G n
S (W)1 q

m KG n
S (W)1 q21

m is given by the
projection

»
b : nKm�MorD

1 q (n, m)2MorD
1 q21 (n, m)

Wb3S »
g : nKm�MorD

1 q21 (n, m)

WgK »
g : nKm�MorD

1 q21 (n, m)

Wg ,

the induced morphism is smooth. r

Let XQ be a simplicial scheme over S such that coskn
S (XQ

(n) ) 4XQ , let
Wm be a scheme over S with a morphism fm : Xm KWm over S for
0 1m1n and let ZQ4 »

0 1 m 1 n
G m

S (Wm )1 m be a product of simplicial
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schemes over S . We define a morphism

gl : Xl KZl

of schemes over S by

gl 4 »
0 1 m 1 n

»
g : mK l

fm g XQ .

By Lemma 11.2.4 we have

11.2.7. PROPOSITION. With the notation as above, the collection gQ is
a morphism of simplicial schemes over S. If Wm is separated over S and
fm is a closed immersion for all m , then gl is a closed immersion for any
object l of D.

11.3. We give a definition of refinement of étale-étale hypercover-
ings (resp. étale-proper hypercoverings) of pairs and construct an affine
(resp. projective) refinement for given hypercoverings.

11.3.1. DEFINITION. (1) Let YQ be an étale hypercovering of a
scheme X (Definition 7.2.1 (2)). We say that ZQ is a refinement of YQ if ZQ
is an étale hypercovering of X with an X-morphism ZQKYQ such that the
natural morphism

Zn Kcoskn21
X (ZQ

(n21) )n 3coskn21
X (YQ

(n21) )n
Yn

is étale surjective for each n . If Zn is affine for any n , ZQ is called an
affine refinement of YQ . (Note that Zn is of finite type over X for each n
by definition of étale hypercoverings.)

(2) Let (YQ , YQ ) be an étale-étale hypercovering of a pair (X , X) of
schemes. We say that (ZQ , ZQ ) is a refinement of (YQ , YQ ) if (ZQ , ZQ ) is an
étale-étale hypercovering of (X , X) with a morphism (ZQ , ZQ ) K (YQ , YQ )
over (X , X) such that ZQ is a refinement of the étale hypercovering YQ .
(Since (ZQ , ZQ ) K (YQ , YQ ) is strict as a morphism of pairs, ZQ is a refine-
ment of the étale hypercovering YQ of X .)

(3) Let (YQ , YQ ) be an étale-proper hypercovering of a pair (X , X) of
schemes. We say that (ZQ , ZQ ) is a refinement of (YQ , YQ ) if (ZQ , ZQ ) is an
étale-proper hypercovering of (X , X) with a morphism (ZQ , ZQ ) K

K (YQ , YQ ) over (X , X) such that ZQ is a refinement of the étale hypercover-
ing YQ . If Zn is projective over X for any n , (ZQ , ZQ ) is called a projective
refinement of (YQ , YQ ).
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One can also consider an n-truncated version of refinements in
each case. r

First we deal with refinements of étale-étale hypercoverings.

11.3.2. PROPOSITION. Let X be a noetherian scheme.
(1) Let YQ be an étale hypercovering of X . Then there exists an affine

refinement ZQ of YQ .
(2) Let YQ be an étale hypercovering over X and let ZQ and ZQ8 be re-

finements of YQ . Then the fiber product

UQ4ZQ3YQ ZQ8

of ZQ and ZQ8 over YQ is a refinement of YQ .

PROOF. (1) We will construct a sequence ]ZQ
n (n inductively on n such

that ZQ
n is a split n-truncated simplicial scheme over X with (ZQ

n )(n21) 4

4ZQ
n21 and ZQ

n is an affine refinement of the n-th truncated étale hyper-
covering YQ

(n) of X .
Suppose that n40. Then we have only to take a finite affine Zariski

covering U0 of Y0 (this is possible since Y0 is of finite type over X) and put
ZQ

0 4U0 .
Suppose that we have proven the assertion for (n21)-truncated sim-

plicial schemes. Let ZQ
m (resp. Um) be as above (resp. a finite affine Zaris-

ki covering of coskm21
X (ZQ

m21 )m 3coskm21
X (YQ

(m21) )m
Ym) for 0 1m1n21 such

that ZQ
m 4V m

X (ZQ
m21 , U0 , R , Um ). Now we take a finite affine Zariski

covering

Un Kcoskn21
X (ZQ

n21 )n 3coskn21
X (YQ

(n21) )n
Yn

and define a split (n21)-truncated simplicial scheme ZQ
n over X by

ZQ
n 4V n

X (ZQ
n21 , U0 , R , Un ) .

Since every morphism which appears in the simplicial schemes YQ , ZQ
n21

and the morphism ZQ
n21 KYQ

(n21) is étale, ZQ
n is a desired refinement of

YQ
(n) by Lemma 11.2.3.

If we continue this construction, we get an affine refinement of
YQ .

(2) We have only to check étale surjectivities in the definition of étale
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hypercoverings and refinements. Consider the commutative diagram

Un

I

coskn21
X (U

Q
(n21))n3coskn21

X (Y
Q
(n21))nYn

I

coskn21
X (U

Q
(n21))n

4

`

`

Zn3YnZn8

I

(coskn21
X (Z

Q
(n21))n3coskn21

X (Y
Q
(n21))nYn)3Yn(coskn21

X ((Z
Q
8)(n21))n3coskn21

X (YQ(n21))nYn)

I

coskn21
X (Z

Q
(n21))n3coskn21

X (Y
Q
(n21))n(coskn21

X ((Z
Q
8)(n21))n.

Lemma 11.2.1 gives two isomorphisms above. The first right vertical ar-
row is étale surjective since ZQ and ZQ8 are refinements of YQ and the sec-
ond right vertical arrow is étale surjective since YQ is an étale hypercov-
ering of X . Hence, UQ is a refinement of YQ . r

11.3.3. PROPOSITION. Let X (resp. X 8 ) be a noetherian scheme and
let

YQ
I
X

J

J

Y 8Q
I
X 8

be a commutative diagram of diagrams of schemes such that YQ (resp.
YQ8 ) is an étale hypercovering over X (resp. X 8 ). Then there exists a
diagram

ZQ
I
YQ

J

J

ZQ8
I
YQ8

of diagrams of schemes such that ZQ (resp. ZQ8 ) is an affine refinement of
YQ (resp. YQ8 ).

PROOF. First we construct a finite affine refinement ZQ of YQ by
Proposition 11.3.2 (1). Then we consider a diagonal diagram diag (ZQ3
3X YQ8 ) (Example 3.1.1 (3)) and apply Proposition 11.3.2 (1) to diag (ZQ3
3X YQ8 ) over X 8 . Note that

coskn21
X 8 (diag (ZQ3XYQ8)

(n21))n4

4

coskn21
X 8 (ZQ

(n21)3XX 8)n3X 8coskn21
X 8 ((YQ8)

(n21))n

coskn21
X (ZQ

(n21))n3Xcoskn21
X 8 ((YQ8)

(n21))n

by Lemma 11.2.1. The condition of étale surjectivity follows from the fol-
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lowing commutative diagram

coskn21
X 8 ((ZQ8)

(n21))n

I
coskn21

X 8 (diag (ZQ3XYQ8)
(n21))n

I
coskn21

X 8 ((Y 8Q )(n21))n

J

J

J

A
I

coskn21
X (ZQ

(n21))n3XYn8
I
Yn8 ,

J

J

B
I

Zn3XYn8

J Zn8

where A and B make all squares cartesian: in fact all horizontal arrows
are étale surjective by our construction. r

We deal now with refinements of étale-proper hypercoverings.

11.3.4. PROPOSITION. Let (X , X) be a pair of noetherian schemes.
(1) Let (YQ , YQ ) be an étale-proper hypercovering of (X , X). Then

there exists a projective refinement (ZQ , ZQ ) of (YQ , YQ ).
(2) Let (YQ , YQ ) be an étale-proper hypercovering over (X , X) and let

(ZQ , ZQ ) and (ZQ8 , ZQ8 ) be refinements of (YQ , YQ ). Then the fiber product

(UQ , UQ ) 4 (ZQ , ZQ )3(YQ , YQ ) (ZQ8 , ZQ8 )

of (ZQ , ZQ ) and (ZQ8 , ZQ8 ) over (YQ , YQ ) is a refinement of (YQ , YQ ).

PROOF. (1) The assertion can be proved by a method similar to that
used in Proposition 11.3.2 (1). The only difference is that we need to take
a pair (Un , Un ) over (X , X) instead of Un such that (i) Un is a finite affine
Zariski covering of coskn21

X (ZQ
n21)n 3coskn21

X (YQ
(n21) )n

Yn , and (ii) Un is a com-
pletion of Un over coskn21

X (ZQ
n21 )n 3coskn21

X (YQ
(n21) )n

Yn and it is projective
over X.

Since Un is affine of finite type over X , there exists a projective
scheme Un9 over X such that (Un , Un9 ) is a pair over (X , X). Now we define
a scheme Un8 over X by the Zariski closure of Un in coskn21

X (ZQ
n21 )n 3

3coskn21
X (YQ

n21 )n
Yn 3X Un9 . Then (Un , Un8 ) is a pair over (X , X) and the natural

composition Un8 K Un9 is proper. Applying the precise version of Chow’s
lemma [12, Corollaire 5.7.14], there exists a pair (Un , Un ) over (Un , Un8 )
such that Un is projective both over Un8 and over X.

The assertion (2) is easy. r

As in Proposition 11.3.3 we have
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11.3.5. PROPOSITION. Let (X , X) (resp. (X 8 , X8 ) ) be a pair of noethe-
rian schemes and let

(YQ , YQ )
I

(X , X)

J

J

(YQ8 , YQ8 )
I

(X 8 , X8 )

be a commutative diagram of diagrams of schemes such that (YQ , YQ )
(resp. (YQ8 , YQ8 ) ) is an étale-proper hypercovering over (X , X) (resp.
(X 8 , X8 ) ). Then there exists a diagram

(ZQ , ZQ )
I

(YQ , YQ )

J

J

(ZQ8 , ZQ8 )
I

(YQ8 , YQ8 )

of simplicial pairs such that (ZQ , ZQ ) (resp. (ZQ8 , ZQ8 ) ) is a refinement of
(YQ , YQ ) (resp. (YQ8 , YQ8 )).

1.4. Let (X , X) be a pair separated of finite type over (T , T). We
construct an étale-étale hypercovering of (X , X) over F which is a refine-
ment of a given truncated étale-étale hypercovering of (X , X). (See
Example 10.1.6 (1) and Definition 11.3.1.)

11.4.1. PROPOSITION. (1) Let (YQ , YQ ) be an étale-étale hypercovering
of (X , X) such that

coskn
(X , X) ( (YQ

(n) , YQ
(n) ) ) 4 (YQ , YQ )

for some nonnegative integer n . Then there exists an étale-étale hyper-
covering LQ of (X , X) over F such that (ZQ , ZQ ) is a refinement of
(YQ , YQ ).

(2) Let (YQ , YQ ) be an étale-étale hypercovering of (X , X). If LQ and LQ8
are étale-étale hypercoverings of (X , X) over F such that both (ZQ , ZQ )
and (ZQ8 , ZQ8 ) are refinements of (YQ , YQ ). Then the fiber product

IQ4LQ3(YQ , YQ , R) LQ84 (ZQ3YQ ZQ8 , ZQ3YQZQ8 , diag (ZQ3R ZQ8 ) )

(see 11.2) is also an étale-étale hypercovering of (X , X) over F such that
(WQ , WQ ) is a refinement of (YQ , YQ ).

PROOF. (1) Let (UQ , UQ ) be an n-truncation of a refinement of
(YQ , YQ ) such that Um is affine for any m (Proposition 11.3.2 (1)). We take
a separated smooth formal R-scheme Wm with a R-closed immersion
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Um K Wm 3Spf V Spec k for any m . Such Wm’s always exist since Um is of
finite type over Spec k . We define an (X , X)-triple LQ over F by

LQ4 (ZQ , ZQ , ZQ ) 4 ( coskn
X (X3X UQ ), coskn

X (UQ ), »
0 1 m 1 n

G m
R (Wm )1 m ),

where coskn
X (UQ )l K »

0 1 m 1 n
G m

R (Wm )l
1 m is a closed immersion for all l by

Proposition 11.2.7. In fact, LQ is an (X , X)-triple over F by Lemmas 11.2.1
and 11.2.4. (ZQ , ZQ ) is a refinement by construction. coskm11

R (ZQ )l K

Kcoskm
R (ZQ )l is smooth for any l and m by Lemma 11.2.1 and Corollary

11.2.6 and by our construction. Hence, LQ is the desired étale-étale
hypercovering.

(2) Follows from Proposition 11.3.2 (2) and Lemma 11.2.1. r

11.4.2. PROPOSITION. Let E , F , (X , X), E8 , F8 , and (X 8 , X8 ) be as in
Proposition 10.5.2 such that all schemes and formal schemes are of fi-
nite type over Spf V or Spf V8 , respectively, and let

(YQ , YQ )
I

(X , X)

J

J

(YQ8 , YQ8 )
I

(X 8 , X8 )

be a commutative diagram of diagrams of pairs such that (YQ , YQ ) (resp.
(YQ8 , YQ8 ) ) is an étale-étale hypercovering of (X , X) (resp. (X 8 , X8 ) ) and
coskn

(X , X) ( (YQ
(n) , YQ

(n) ) ) 4 (YQ , YQ ) (resp. coskn
(X 8 , X8 ) ( ( (YQ8 )(n) , (YQ8 )(n) ) ) 4 (YQ8 ,

Y8Q ) ) for some nonnegative integer n. Then there exists an étale-étale hy-
percovering LQ (resp. LQ8 ) of (X , X) (resp. (X 8 , X8 ) ) over F with commu-
tative diagrams

LQ
I

FQ

J

J

LQ8
I

FQ8

(ZQ , ZQ )
I

(YQ , YQ )

J

J

(ZQ8 , Z8Q )
I

(YQ8 , YQ8 )

such that Z8K Z is smooth around Z 8 and (ZQ , ZQ ) (resp. (ZQ8 , ZQ8 ) ) is a
refinement of (YQ , YQ ) (resp. (YQ8 , YQ8 ) ).

PROOF. An argument similar to the proof of Propositions 11.3.3 and
11.4.1 (1) can be used by means of Lemmas 11.2.1, 11.2.4 and Corollary
11.2.6. r

11.4.3. Let (YQ , YQ ) be an étale-étale hypercovering over (X , X) and
suppose that LQ4 (ZQ , ZQ , ZQ ) is an étale-étale hypercovering of (X , X)
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over F such that (ZQ , ZQ ) is a refinement of (YQ , YQ ). We define a 2-simpli-
cial (X , X)-triple IQ over F as follows:

– for any object (m , n) of D 2 ,

I(m , n) 4cosk0
(YQ , YQ , RQ

Do
) (LQ )(m , n) 4 ( cosk0

Yn (Zn )m , cosk0
Yn (Zn )m , cosk0

R (Zn )m )

– for any morphism (j , h) : (k , l) K (m , n) of D 2 ,
(j , h)IQ : I(m , n) KI(k , l) is defined by

(j , h)IQ (u0 , u1 , R , um ) 4 (h LQ (uj(0) ), h LQ
(uj(1) ), R , h LQ (uj(k) ) ).

Then, by construction, the natural diagram

(YQ , YQ )
I

(X , X)

J

J

(WQ , WQ )
I

(XQ
Do

, XQ
Do

)

is commutative.

11.4.4. PROPOSITION. With the notation as above, we have
(1) I(m , Q) is an étale-étale hypercovering of (X , X) over F for any m;
(2) I(Q, n) is an étale-étale hypercovering of (Yn , Yn) over F for any n.

PROOF. (1) Since (ZQ , ZQ ) is an étale-étale hypercovering of (X , X),
( cosk0

YQ (ZQ )m , cosk0
YQ (ZQ )m ) is an étale-étale hypercovering of (X , X) by

Proposition 11.3.2 (2) and Lemma 11.2.1. The smoothness of the mor-
phism coskq

R ( cosk0
R (ZQ )m

(q) )l Kcoskq21
R ( cosk0

R (ZQ )m
(q21) )l of formal schemes

follows from Lemma 11.2.1.
The assertion (2) is trivial. r

11.5. Let (X , X) be a pair separated of finite type over (T , T). We
construct a refinement of a given truncated étale-proper hypercovering
of (X , X) over F. (See Example 10.1.6 (1) and Definition 11.3.1.)

11.5.1. PROPOSITION. With the notation as above, let (YQ , YQ ) be an
étale-proper hypercovering of (X , X) such that

coskn
(X , X) ( (YQ

(n) , YQ
(n) ) ) 4 (YQ , YQ ) .

(1) Suppose that X is affine. Then there exists an étale-proper hy-
percovering LQ of (X , X) over F such that (ZQ , ZQ ) is a refinement of
(YQ , YQ ).
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(2) If LQ and LQ8 are étale-proper hypercoverings of (X , X) over F

such that both (ZQ , ZQ ) and (ZQ8 , ZQ8 ) are refinements of (YQ , YQ ). Then the
fiber product

IQ4LQ3(YQ , YQ , R) LQ84 (ZQ3YQ
ZQ8 , ZQ3YQ

ZQ8 , diag (ZQ3R ZQ8 ) )

is also an étale-proper hypercovering of (X , X) over F such that
(WQ , WQ ) is a refinement of (YQ , YQ ).

PROOF. (1) Let (UQ , UQ ) be an n-truncation of refinement of (YQ , YQ )
such that Um is projective over X for each m (Proposition 11.3.4 (1)). We
take a separated smooth formal R-scheme Wm with a R-closed immer-
sion Um K Wm 3Spf V Spec k for each m. Such Wm’s always exist since X
is affine and Um is projective over X. The rest is now as in the proof of
Proposition 11.4.1 (1).

The assertion (2) follows from Proposition 11.3.4 (2) and Lemma
11.2.1. r

11.5.2. PROPOSITION. Let E , F , (X , X), E8 , F8 , and (X 8 , X8 ) be as in
Proposition 10.5.2 such that all schemes and formal schemes are of fi-
nite type over Spf V or Spf V8 , respectively, and let (YQ , YQ ) (resp.
(YQ8 , YQ8 ) ) be an étale-proper hypercovering of (X , X) (resp. (X 8 , X8 ) )
such that the diagram

(YQ , YQ )
I

(X , X)

J

J

(YQ8 , YQ8 )
I

(X 8 , X8 )

of pairs is commutative and the coskeleton of n-th truncation of (YQ , YQ )
(resp. (YQ8 , YQ8 ) ) over (X , X) (resp. (X 8 , X8 ) ) is itself. Suppose that both X
and X8 are affine. Then there exists an étale-proper hypercovering LQ
(resp. LQ8 ) of (X , X) (resp. (X 8 , X8 ) ) over F (resp. F8 ) with a commuta-
tive diagram

LQ
I

F

J

J

LQ8
I

F8

(ZQ , ZQ )
I

(YQ , YQ )

J

J

(ZQ8 , ZQ8 )
I

(YQ8 , YQ8 )

such that ZQ8K ZQ is smooth around ZQ8 and (ZQ , ZQ ) (resp. (ZQ8 , ZQ8 ) ) is a
refinement of (YQ , YQ ) (resp. (YQ8 , YQ8 ) ).
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PROOF. A proof similar to that of Propositions 11.3.5 and 11.5.1 (1)
works by using Lemmas 11.2.1, 11.2.4 and Corollary 11.2.6. r

11.5.3. Let (YQ , YQ ) be an étale-proper hypercovering over (X , X),
let G4 (U , U, U) be a Zariski covering of (X , X) of finite type over F

such that U is affine, and let us put (VQ , VQ ) 4 (YQ , YQ )3(X , X) (U , U). We
denote by GQ the Čech diagram for G as (X , X)-triples over F.

Suppose that LQ is an étale-proper hypercovering of (U , U) over F

such that (ZQ , ZQ ) is a refinement of (VQ , VQ ). We define a 2-simplicial
triple IQ over F as follows:

– for any object (m , n) of D 2 ,

I(m , n) 4 ( cosk0
Yn (Zn )m , cosk0

Yn (Zn )m , cosk0
R (Zn 3R Un )m )

– for any morphism (j , h) : (k , l) K (m , n) of D 2 ,
(j , h)IQ : I(m , n) KI(k , l) is defined by

(j , h)IQ (u0 , u1 , R , um ) 4 (h LQ (uj(0) ), h LQ
(uj(1) ), R , h LQ (uj(k) ) ) .

Since Vn K U is proper, cosk0
Yn (Zn )m Kcosk0

R (Zn 3R Un )m is a closed im-
mersion. So I(m , n) is a triple for any m , n. By construction, there exist a
natural commutative diagram

(YQ , YQ )
I

(X , X)

J

J

(WQ , WQ )
I

(UQ , UQ )

of diagrams of pairs and a natural morphism

IQKGQ

of (X , X)-triples over F.

11.5.4. PROPOSITION. With the notation as above, we have
(1) I(m , Q) is an étale-proper hypercovering of Gm for any m;
(2) I(Q , n) is a universally de Rham descendable hypercovering of

(Yn , Yn ) over F for any n.
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PROOF. (1) Consider the commutative diagram

cosk0
Yn (Zn )m

I

coskn21
Um ( cosk0

YQ (ZQ )m
(n21) )n

`I

cosk0
coskn21

X (YQ
(n21) )n ( coskn21

U (ZQ
(n21) )n )m

I

Um

K

K

K

K

cosk0
Yn (Zn )m

I

coskn21
Um ( cosk0

YQ (ZQ )m
(n21) )n

I`

cosk0
coskn21

X (YQ
(n21) )n ( coskn21

U (ZQ
(n21) )n )m

I

Um

with cartesian squares. Both middle vertical morphisms are isomor-
phisms since there is an isomorphism

coskn21
Um ( cosk0

YQ (ZQ )m
(n21) ) Kcosk0

coskn21
X (YQ

(n21) ) ( coskn21
U (ZQ

(n21) ) )m

of simplicial schemes as in Lemma 11.2.1. By the hypothesis Zn K

Kcoskn21
U (ZQ

(n21) )n (resp. Zn Kcoskn21
U (ZQ

(n21) )n) is étale surjective (resp.
proper), so that W(m , Q) KUm (resp. W(m , Q) K Um) is an étale hypercover-
ing (resp. proper).

The morphism coskn
R (I(m , Q)

(n) )l Kcoskn21
R (I(m , Q)

(n21) )l is smooth around
coskn

R (W(m , Q)
(n) )l for any n and l since cosk0

R (Zn 3R Un
)m `cosk0

R (Zn )m 3

3R cosk0
R (Un )m . Therefore, I(m , Q) is an étale-proper hypercovering of Gm

for any m.
(2) Let D4 (R , R, R) be a (Yn , Yn )-triple over F and consider

a sequence of morphisms of diagrams

(Zn , Zn )
I

(Vn , Vn )
I

(Yn , Yn )

(Zn 3Yn
Rn , Zn 3Yn

R, Zn 3R Un 3R R)
Is

(Vn 3Yn
Rn , Vn 3Yn

R, Un 3R R)
It

(R , R, R).

s and t are universally cohomologically descendable by Theorem 9.1.1
since s (resp. t) is an étale-proper covering (resp. a Zariski covering),
respectively. Hence, the composition ts is also universally cohomo-
logically descendable by Theorem 8.4.1, so that the Čech diagram

I(Q , n) 4 ( cosk0
Yn (Zn ), cosk0

Yn (Zn ), cosk0
R (Zn 3R Un )3R R) K (R , R, R)

with respect to ts is universally cohomologically descendable. Therefore,
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I(Q , n) is a universally de Rham descendable hypercovering of (Yn , Yn )
over F. r

11.6. Now we prove Proposition 11.1.2. First we prove it in the case
of étale-étale hypercoverings, and then we prove it in the case of étale-
proper hypercoverings.

PROOF IN THE CASE OF ÉTALE-ÉTALE HYPERCOVERINGS. Let us take
an étale-étale hypercovering LQ of (X , X) over F such that (ZQ , ZQ ) is a
refinement of (YQ , YQ ). Such LQ always exists by Proposition 11.4.1 (1).
Let IQ be a 2-simplicial (X , X)-triple over F which is defined in 11.4.3
and let us denote by wQ : IQKF the structure morphism. Let E be an
overconvergent isocrystal on (X , X) / SK with a realization (EIQ , ˜IQ ) of E
over IQ .

First we consider a spectral sequence

E1
qr 4 Hr (R C † (F , I(q , Q) ; DR† (I(q , Q) /F , (EI(q , Q) , ˜I(q , Q) ) ) ) )

¨ Hq1r (R C † (F , IQ ; DR† (IQ /F , (EIQ
, ˜IQ ) ) ) )

as in Lemma 4.4.2 (the case where s42 and s 841). E1
qr gives the r-th

rigid cohomology sheaf for E on (X , X) / SK evaluated on ] T[R for any
r20 by Proposition 11.4.4 (1). Since our definition of rigid cohomology
does not depend on the choice of universally cohomologically descend-
able hypercovering, the edge morphism d1

rq is the 0-map if q is odd and
the identity if q is even. Hence we have an isomorphism

Rfrig F* E`R C † (F , IQ ; DR† (IQ /F , (EIQ
, ˜IQ ) ) ).

On the other hand, we consider a spectral sequence

Eop1
qr 4 Hr (R C † (F , I(Q , q) ; DR† (I(Q , q) /F , (EI(Q , q)

, ˜I(Q , q)
) ) ) )

¨ Hq1r (R C † (F , IQ ; DR† (IQ /F , (EIQ
, ˜IQ ) ) ) )

for the filtration on the opposite side. By Proposition 11.4.4 (2) we
have

Eop1
qr

`Rr hq , rigF*(gq* E).

Hence, we obtain the spectral sequence for the étale-étale hypercover-
ing.

Now we prove that the spectral sequence is independent of the choice
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of étale-étale hypercoverings LQ . Since the fiber product of two étale-
étale hypercoverings is also so by Proposition 11.4.1 (2), we may assume
that there exists a morphism between them. Since two spectral se-
quences in the proof above commute with the induced homomorphism in
Lemma 10.4.2, the spectral sequence for étale-étale hypercoverings is in-
dependent of the choice of hypercoverings LQ .

The functoriality of the spectral sequence in overconvergent isocrys-
tals E follows from Proposition 4.2.3, and the functorialities in X , in F

and in étale-étale hypercoverings (YQ , YQ ) follow from 4.3 and Proposi-
tion 11.4.2.

This completes the proof of Proposition 11.1.2 in the case of étale-
étale hypercoverings. r

PROOF IN THE CASE OF ÉTALE-PROPER HYPERCOVERINGS. Let us take
a finite affine Zariski covering G of (X , X) over F and an étale-proper
hypercovering LQ of (U , U) such that (ZQ , ZQ ) is a refinement of (YQ3
3X U , YQ3X U). Such LQ always exists by Proposition 11.5.1 (1). Let IQ be a
2-simplicial triple as in 11.5.3, and let E be an overconvergent isocrystal
on (X , X) / SK with a realization (EGQ , ˜GQ ) (resp. (EIQ , ˜IQ )) of E over GQ
(resp. IQ). Since G is a Zariski covering of (X , X) over F , we have a
canonical isomorphism

RfrigF* E`R C † (F , GQ ; DR† (GQ /F , (EGQ
, ˜GQ ) ) ).

The canonical morphism induces an isomorphism

RC † (F, GQ ; DR†(GQ/F, (EGQ
, ˜GQ)))K

`

RC † (F, IQ ; DR†(IQ/F, (EIQ , ˜IQ)))

by Propositions 4.4.4 and 11.5.4 (1). The rest is similar to the case of
étale-étale hypercoverings. r

11.7. We prove the existence of the spectral sequence of rigid coho-
mology for étale hypercoverings in the case where E4F4

4 ( Spec k , Spec k , Spf V) and X is a proper over Spec k.

11.7.1. THEOREM. Let X be a scheme separated of finite type over
Spec k , let YQ be an étale hypercovering of X such that YQ is split (see the
definition in 11.2), and denote by g

i

Q : YQKX the structure morphism.
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For any overconvergent isocrystal E on X/K , there exists a spectral
sequence

E1
qr 4Hrig

r (Yq /K , gq* E) ¨ Hrig
q1r (X/K , E).

This spectral sequence is functorial in E , in X , in YQ and in K.

11.7.2. REMARK. In the first version of the paper the hypothesis of
splitness on YQ in Theorem 11.7.1 was omitted. However, in order to con-
struct a «completion» for YQ as simplicial schemes, we need the assump-
tion of splitness on YQ (see the proposition below).

We should mention that the spectral sequence for the étale hypercov-
ering exists without the hypothesis of splitness. One can find a proof of
that in [22, 7.5].

Theorem 11.7.1 follows from Theorem 11.1.1 and the next proposition.
To prove it, we use M. Nagata’s existence theorem for relative comple-
tion [19].

11.7.3. PROPOSITION. Let (X , X) be a pair of schemes separated of fi-
nite type over a spectrum S of noetherian ring and let YQ be an étale hy-
percovering of X such that YQ is split. Then there exists a proper simpli-
cial scheme YQ over X (Definition 7.2.1 (1)) with an X-morphism YQK YQ
such that Ym K Ym is an open immersion for all m. In other words,
(YQ , YQ ) is an étale-proper hypercovering of (X , X).

PROOF. Suppose that we have (n21)-truncated proper scheme ZQ
over X with a morphism YQ

(n21) K ZQ such that Ym K Zm is an open immer-
sion for all mEn. We apply Nagata’s theorem to the construction of a
completion of the n-th data of splitting of YQ over coskn21

S (ZQ )n . Then we
obtain an n-truncated proper simplicial scheme over X which satisfies
the desired property by Lemma 11.2.3. r

11.8. We now prove a theorem «finite flat base change» type.

11.8.1. THEOREM. In the situation of Proposition 10.5.2, suppose
that u : F8KF is strict as a morphism of triples, u× : R8KR is finite
and flat, and the commutative diagram

(X , X)
fI

(T , T)

J
v

J
u

(X 8 , X8 )
If 8

(T 8 , T8 )
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is cartesian. Then the canonical j † O] T8 [R8
-homomorphism

uA* Rq frig F* EKRq f 8rig F8* v * E

is an isomorphism for any overconvergent isocrystal E on (X , X) / SK

and any q.

PROOF. We may assume that R is affine. Considering a Čech spectral
sequence for an affine Zariski covering of X, we may assume that X is
affine. Let us take a finite Zariski covering ]Xa(a of X such that a com-
plement of Xa in X is a hypersurface in X and consider the spectral se-
quence for the étale-proper hypercovering induced from I2I

a
(Xa , X) K

K (X , X). Then we may assume that some complement of X in X is a hyper-
surface in X. Let J4 (X , X, X) be a triple over F such that X is a smooth
affine formal scheme of finite type over R. Such X exists since R and X
are affine. We denote by f : JKF the structure morphism and define
f 8 : J8KF8 by the base change of f with respect to v : F8KF.

Now let us fix lifts g1 , R , gs �G(X, OX ) of generators of the ideal of
definition of X in X 3Spf V Spec k and let Ul1 Rls

be an affinoid admissible
open subset of ] X[X defined by

Ul1 Rls
4 ]x�] X[X NNpN1/li 1Ngi (x)N1NpN1/li11 for 1 1i1s(

for any nonnegative integers l1 , R , ls , where p is a uniformizer of K and
NpN1/0 40. We denote by i l1 R ls

: Ul1 R ls
K] X[X the open immersion.

]Ul1 R ls
(l1 R ls

is an admissible covering of ] X[X by the maximum principle
(Lemma 2.6.7). Since a complement of X in X is a hypersurface in X, we
have Rq i l1 R ls* i21

l1 R ls
F40 and Rq ( fA i l1 R ls

)* i21
l1 R ls

F40 for any sheaf F of
coherent j † O] X[X

-modules and any qD0 by Corollary 5.1.2. Hence the al-
ternating Čech complex Calt

Q (]Ul1 R ls
(, F Q ) of sheaves of j † O] X[X

-modules
with respect to ]Ul1 R ls

( gives an fA*-acyclic resolution of complexes F Q of
sheaves of fA21 ( j † O] T[R )-modules such that each F n is a sheaf of coherent
j † O] X[X

-modules by Proposition 2.12.1. Since each Ul1 R ls
intersects with a

finite number of other Ul1 R ls
’s, the complex Calt

Q (]Ul1 R ls
(, F Q ) is a bound-

ed complex if F Q is bounded.
Let L QK j † O] T8 [R8

be a resolution as sheaves of uA21 ( j † O] T[R )-modules
such that each L n (n10) is free of finite rank over uA21 ( j † O] T[R ). Such
resolution exists since R is noetherian, R8 is finite over R , u is strict as a
morphism of triples and j † is an exact functor (Proposition 2.7.2 (6)). The
exactness of j † also implies that j † O] T8 [R8

is flat over uA21 ( j † O] T[R ). Since
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R8 is finite over R and f 8 is obtained by a base change of f with respect to
u , the canonical homomorphism gives an isomorphism

vA* F ` ( fA8 )21 ( j † O] T8 [R8
)7(uA f

A
8 )21 ( j † O] T[R

) vA21 F

for any sheaf F of j † O] X[X
-modules. Moreover, we have

LvA* F 4 ( fA8 )21 (L Q )7(uA fA8 )21 ( j † O] T[R
) vA21 F ` vA* F

in the derived category by the flatness.
Now let E be an overconvergent isocrystal on (X , X) / SK and let

(E , ˜) be a realization of E over J. Then we have quasi-isomor-
phisms

DR† (J8 /F8 , v † (E , ˜) ) K
`

K
`

J
`

K
`

( fA8 )21 ( j † O] T8 [R8
)7(uA f

A
8 )21 ( j † O] T[R

) vA21 DR† (J/F , (E , ˜) )

tot ( ( fA8 )21 (L Q )7(uA f
A
8 )21 ( j † O] T[R

) vA21 DR† (J/F , (E , ˜) ) )

tot ( (fA8 )21 (L Q )7(uA f
A
8 )21 ( j † O] T[R

) vA21 Calt
Q (]Ul1 Rls

(, DR† (J/F , (E , ˜) ) ) )

of complexes of sheaves of ( fA8 )21 ( j † O] TR )-modules bounded above,
where the tensor products above are tensor products as complexes. Let
us put U 8l1 Rls

4 vA21 (Ul1 Rls
). Then ]U 8l1 Rls

( is an affinoid covering of
] X8 [X8 . Since the last complex of the above formula is isomorphic to

tot(Calt
Q (]U 8l1 Rls

(, ( fA8 )21 (L Q )7(uA f
A
8 )21 ( j † O] T[R

) vA21 DR† (J/F , (E , ˜) ) ) )

and a complement of X 8 in X8 is a hypersurface in X8 , it consists of fA8*-
acyclic sheaves. Since L QK j † O] T8 [R8

is a free resolution, the canonical ho-
momorphism gives an isomorphism

uA* Rq frig F* EK
`

Rq f 8rig F8*vA* E

for any q by Proposition 10.5.5. r

11.8.2. COROLLARY [4, 1.8 Proposition]. Let V K V8 be a finite homo-
morphism in CDVRZp

, let (X , X) be a k-pair separated and locally of fi-
nite type and let (X 8 , X8 ) be a k 8-pair obtained by a base change of
(X , X) for the extension kKk 8. Suppose that E is an overconvergent
isocrystal on (X , X) /K and denote by E 8 the inverse image of E on
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(X 8 , X8 ) /K 8. Then the canonical K 8-homomorphism

K 87K Hrig
q ( (X , X) /K , E) KHrig

q ( (X 8 , X8 ) /K 8 , E 8 )

is an isomorphism.

12. Frobenius.

In this section we will study the action of the Frobenius on rigid
cohomology.

12.1. Let V be an object of CDVRZp
with a lift s : VKV of Frobe-

nius of k4k(V). Let S be a formal V-scheme locally of finite type with a
lift s S of Frobenius endomorphism on S 3Spf V Spec k such that the
diagram

S

I
Spf V

K
s S

K
s

S

I
Spf V

is commutative and let us denote by E the induced V-triple from S (see
2.3.3). We denote by Fr the absolute Frobenius on schemes (resp. pairs)
of characteristic p.

We recall the definition of Frobenius on overconvergent isocrystals
[7, 2.3.7]. Let (X , X) be a pairs separated locally of finite type over (S , S).
A Frobenius homomorphism of overconvergent isocrystal E on (X , X) / SK

is a homomorphism

F : Fr* EKE

as overconvergent isocrystals on (X , X) / SK . We define an overconver-
gent F-isocrystal on (X , X) / SK as an overconvergent isocrystal on
(X , X) / SK endowed with a Frobenius homomorphism which is an
isomorphism.

12.2. Let F be a V-triple locally of finite type over E such that R is
smooth over S around T. Suppose that there exists a s S-endomorphism
s R on R which is a lift of Frobenius on R3Spf V Spec k. Such s R exists lo-
cally if R is smooth over S [10, Théorème 3.1]. s R induces a s-linear ho-
momorphism s RK

: j † O] T[R K j † O] T[R .
Let f : (X , X) K (T , T) be a morphism of pairs separated locally of fi-
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nite type over (S , S) and let us fix notation as follows:

(X , X) K
FX/T

f7

(X (p) , X(p) )
f (p)I

(T , T)

K
gX/T

K
Fr

(X , X)

If

(T , T),

where gX/T FX/T 4Fr and the square is cartesian.
For any overconvergent isocrystal E on (X , X) / SK with a Frobenius

F : Fr* EKE , we have a homomorphism

W : Ls*RK
Rfrig F* EKRf (p)

rig F*( g *X/T E) KRfrig F*( Fr* E) KRfrig F* E

in the derived category of complexes of sheaves of j † O] T[R-modules,
where the first arrow is induced from gX/T , the middle arrow is induced
from FX/T (Proposition 10.5.2) and the last arrow is Rq frig F*(F) (Proposi-
tion 10.5.1 (1)). The homomorphism W depends only on s R . We say that W
is a Frobenius on the complex Rfrig F* E of rigid cohomology.

If the Frobenius endomorphism s R : RKR is flat, then we have a
j † O] T[R-homomorphism on rigid cohomology sheaves:

W q : s*RK
Rq frig F* EKRq frig F* E .

Note that W q is not an isomorphism in general.
The Frobenius commutes with the triangle arising from short exact

sequences of overconvergent F-isocrystals in Proposition 10.5.1 (2) by
Proposition 10.5.2 and commutes with spectral sequences in Theorem
11.1.1 by Propositions 11.4.2 and 11.5.2. If one takes Frobenius endomor-
phisms on S8 and R8 compatible with those on S and R as in Proposition
10.5.2, then v * E is also an overconvergent F-isocrystal on (X 8 , X8 ) / SK8

and the canonical homomorphism

LuA* Rfrig F* EKRf 8rig F8* v * E

commutes with Frobenius.
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