An asymptotic higher order very ampleness theorem for blowings-up of projective spaces at general points.

Marc Coppens(*)

ABSTRACT - In this paper we consider k-very ampleness for linear systems on blowings-up of projective spaces at general points. Using a recent theorem by J. Alexander and A. Hirschowitz we prove a theorem that is sharp from an asymptotic point of view.

Introduction and statement of the theorem.

Let $X^n \,{\subset}\, P^N$ be a smooth n-dimensional non-degenerated irreducible projective variety over an algebraically closed field K. This embedding can be described by means of a line bundle L on X and a K-subvectorspace $V \,{\subset}\, H^0(X,L)$. Here L is the restriction of $O_{P^N}(1)$ to X and V corresponds to $H^0(P^N,O_{P^N}(1))$. We say the embedding is k-very ample if and only if for each $Z \,{\subset}\, X$, 0-dimensional subscheme of length k+1, the natural map $e_Z\colon V \,{\to}\, H^0(Z,O_Z \,{\otimes}\, L)$ is surjective. In case $V = H^0(X,L)$ we say L is k-vary ample.

Let $\operatorname{Sec}_k(X) \subset P^N$ be the closure of the union of the linear spans $\langle P_0, \ldots, P_k \rangle$ with P_0, \ldots, P_k different points on X. Since $\dim (\operatorname{Sec}_k(X)) \leq \leq (k+1) \ n+k$, one can expect k-very ampleness if $N \geq (k+1)(n+1)-1$.

From this consideration it is natural to expect the following to be true.

(*) Indirizzo dell'A.: Katholieke Hogeschool Kempen, Departement Industrieel Ingenieur en Biotechniek HIKempen Geel, Kleinhoefstraat 4, B 2440 Geel, Belgium; marc.coppens@khk.be

Conjecture. Let $\pi: X \to P^n$ be the blowing-up of P^n at r general points P_1, \ldots, P_r . Let $E_i = \pi^{-1}(P_i)$ and let k be a positive integer. There exists a function d(k) such that for $d \ge d(k)$ and

$$\binom{d+n}{n} - r \binom{k+n-1}{n} \ge (k+1)(n+1)$$

the line bundle $L = \pi^*(O_{P^n}(d)) \otimes O_X\left(-k\sum_{i=1}^r E_i\right)$ is k-very ample.

This conjecture is true for k=1 and d(k)=3 (see [6]). For n=2 it is proved that L is k-very ample for $d \ge 4k+1$ in case $r \le \frac{(d+3)^2}{(k+1)^2} - 4$ (see [7]). This corresponds to an upper bound on r which is a polynomial in d with highest degree term equal to $\frac{d^2}{(k+1)^2}$. In case n=2, the conjecture should give an upper bound on r which is a polynomial in d with highest degree term $\frac{d^2}{k(k+1)}$. For arbitrary n the conjecture should give an upper bound on r which is a polynomial in d with highest degree term $\frac{d^n}{k(k+1)}$.

In this short note we show that a recent theorem of J. Alexander and A. Hirschowitz implies the following.

THEOREM. There exists a function d(k) such that in case $d \ge d(k)$ and $r \le \binom{d-k+n}{n} \left| \binom{k+n-1}{n} \right|$ then $L = \pi^*(O_{P^n}(d)) \otimes O_X \left(-k \sum_{i=1}^r E_i \right)$ is k-very ample on the blowing-up X of P^n at r general points.

Note that the theorem gives an upper bound on r which is a polynomial in d with highest degree term as in the conjecture.

Although this theorem improves the upper bound on r in case n = 2 given in [7] for large values of k, it should be noted that the lower bound on d in [7] is very good.

Proof of the theorem.

An application of Theorem 1.1 of J. Alexander and A. Hirschowitz (see [1]) gives the following. There exists a function $d_0(k)$ such that, for $d' \ge d_0(k)$ and for P_1, \ldots, P_r general points on P^n the natural

 $\label{eq:map_def} \text{map } H^0(P^n,\,O_{P^n}(d^{\,\prime})) \to H^0(Z,\,O_Z(d^{\,\prime})) \text{ has maximal rank where } Z$ is the zero-dimensional subscheme of P^n with ideal $\prod\limits_{i=1}^r M_{P^n,\,P_i}^k$.

The length of Z as above is equal to $r{k+n-1 \choose n}$. Since $h^0(P^n,O_{P^n}(d'))={d'+n \choose n}$, we conclude that the rational map is surjective in case $r{k+n-1 \choose n} \le {d'+n \choose n}$, hence its cokernel is 0 and, since $h^1(P^n,O_{P^n}(d'))=0$ this implies $h^1(P^n,I_Z(d'))=0$. From Proposition 2.2 in [2] this implies $L=\pi^*(O_{P^n}(d'+k))\otimes O_X\Big(-k\sum_{i=1}^r E_i\Big)$ is k-very ample. In other words, $L=\pi^*(O_{P^n}(d))\otimes O_X\Big(-k\sum_{i=1}^r E_i\Big)$ is k-very ample in case $d \ge d_0(k)+k:=d(k)$ and

$$r\binom{k+n-1}{n} \le \binom{d-k+n}{n}$$
, i.e. $r \le \binom{d-k+n}{n} / \binom{k+n-1}{n}$.

REMARKS. The theorem of J. Alexander and A. Hirschowitz not only concerns projective spaces. Using the Riemann-Roch Theorem and Theorem 2.1 in [2], together with Serre's vanishing theorem, one can state and prove an asymptotic k-very ampleness theorem for blowings-up at general points in a more general context.

In case n = 2 and k < 12 one can find k-very ampleness results with reasonable bounds on d using results from [4] and [5].

For arbitrary n and k=2 one finds 2-very ampleness results with reasonable bounds on d using the results of J. Alexander and A. Hischowitz on the associated fat points. See also [3] and the references in that paper.

REFERENCES

- [1] J. ALEXANDER A. HIRSCHOWITZ, An asymptotic vanishing theorem for generic unions of multiple points, Inv. Math., 140 (2000), pp. 303-325.
- [2] E. Ballico M. Coppens, Very ample line bundles on blown-up projective varieties, Bull. Belg. Math. Soc., 4 (1997), pp. 437-447.
- [3] K. A. CHANDLER, A brief proof of a maximal rank theorem for generic double points in projective space, TAMS, 353 (2001), pp. 1907-1920.
- [4] C. CILIBERTO R. MIRANDA, Degenerations of planar linear systems, J. reine angew. Math., 501 (1998), pp. 191-200.

- [5] C. CILIBERTO R. MIRANDA, Linear systems of plane curves with base points of equal multiplicity, TAMS, 352 (2000), pp. 4037-4050.
- [6] M. Coppens, Very ample linear systems on blowings-up at general points of projective spaces, 45 (2002), pp. 349-354.
- [7] T. SZEMBERG H. TUTAJ-GASINSKA, General blow-ups on the projective plane, PAMS, 130 (2002), pp. 2515-2524.

Manoscritto pervenuto in redazione il 4 aprile 2002 e in forma finale il 26 giugno 2002.