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On the Global Stability of Contact
Discontinuity for Compressible
Navier-Stokes Equations.

FEIMIN HUANG (¥*) - HULJIANG ZHAO (¥%)

ABSTRACT - The asymptotic behavior of the solutions toward the contact disconti-
nuity for the one-dimensional compressible Navier-Stokes equations with a
free boundary is investigated. It is shown that the viscous contact discontinu-
ity introduced in [3] is asymptotic stable with arbitrarily large initial pertur-
bation if the adiabatic exponent y is near 1. The case the asymptotic state is
given by a combination of viscous contact discontinuity and the rarefaction
wave is further investigated. Both the strength of rarefaction wave and the in-
itial perturbation can be arbitrarily large.

1. Introduction.

We study in present paper the large time behavior of the solutions
for the one-dimensional compressible Navier-Stokes (NS) equations.
It is known that there have been a lot of works on this subject. Most of
these results are concerned with the rarefaction wave and viscous
shock wave. We refer to [4, 6-9, 11-15, 17-19] and references therein.
It is noted that Nishihara, Yang and Zhao recently established in [17,
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18] the global stability of strong rarefaction wave for the 3 x 3 equa-
tions. However few result is known for the contact discontinuity ex-
cept [3] due to various difficulties. As an elementary hyperbolic wave,
the asymptotic stability of contact discontinuity should be investigat-
ed. Liu and Xin [10, 20] first studied in 1995 the nonlinear stability of
contact discontinuity for an artificial viscosity system. It was shown in
[10, 20] that the contact discontinuity can not be the asymptotic state
and a linear diffusive wave called viscous contact wave (or viscous
contact discontinuity), which approximates the contact discontinuity
on any finite time interval, instead dominates the large time behavior
of the solutions. Motivated by [10, 20], Huang, Matsumura and Shi [3]
investigated the contact discontinuity case for a physical system—com-
pressible NS equations, with a free boundary. Unlike the artificial vis-
cous system, the contact discontinuity for compressible NS equations
is approximated by a nonlinear diffusive wave. The nonlinear stability
of the viscous contact wave was established if the initial perturbation
is small(see [3]). This means the nonlinear stability of [3] is local. It is
worthy to point out that the stability of [10, 20] is also local. Thus, a
natural question is whether the viscous contact wave constructed in
[3] is still stable or not under arbitrarily large perturbation. Our main
purpose of this paper is to give a positive answer to this question
when the adiabatic exponent y is near 1. Furthermore, the case the
asymptotic state is given by a superposition of the viscous contact dis-
continuity and the rarefaction wave is also treated. In this situation,
both the strength of rarefaction wave and the initial perturbation can
be arbitrarily large.

We now formulate our main results. The 1-d compressible NS equa-
tions reads in Lagrangian coordinates:

vt_ux:07
wen=a( )
(11) t px u v r:
2 0,
(e-i—u— +(pu)x:(1(—x+ym%),
2/, v v/,

where u(x, t) is the velocity, v(x, t) > 0 the specific volume, 6(x, t) the
absolute temperature, u > 0 the viscosity constant and x> 0 the coeffi-
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cient of heat conduction. Here we consider the perfect gas so that the
pressure

S

-1
1.2) p=—=Av’VeyR °,
v

and the internal energy e= ilﬂ+const., where s is the entropy, v>1
y—

is the adiabatic exponent and A, R are positive constants. By (1.2),, the
entropy s can also be regarded as a function of v and 6. Our initial and
boundary conditions are

‘9|x:0: 9—’
Uy
1.3) (p(’v, 9)_#7)(0,0:1)0, t>0,

(v, u, 0)(x, 0) = (vg, Uy, Oo)(@) = (v, Uy, 0,) as x—> + o,

where (1.3), means the gas is attached at the boundary x = 0 to the atmo-
sphere with pressure p, (see [19]), v, >0, u,, 6 . > 0 are constants and
60(0) =6 _ holds as a compatibility condition.

It is well known that the contact discontinuity is a unique Riemann
solution

—— (w_,u_,0_) <0,
(1.4) 7, T, O)a, 1) = {
Wi, uy,04), ©>0,

of the following Riemann problem

(v —u, =0,
ut“’px:()y
uZ
1.5) 4 (e+—) + (pu), =0,
2/
(v, u, O)x,0)=w_,u_,0_), x<0,
(’U,%,H)(.%’, 0):(v+,u+,0+), x>0,

RO RO .

ifu_=u,andp_="==p, = . In view of [3], the contact discon-

v_ v,
tinuity (V, U, ©) in the half space > 0 can be approximated by a viscous
contact wave (V, U, ©) satisfying

[(V=V,U-T, ©—=0)|100, +» =01+ )", al p=1.
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Here

B R B K(y—l) O(x, t)x
(1.6) Viw,t) = p—+@(x, t), Ule,t)=u, + R e

X

and O(x,H)=0(8), &=

is the unique self similarity solution of
t

@T Ker(V_]-)
1.7 O,=al—],00,t)=0_, O(+ »,t)=0,, a= ——— >0.
n e, a( > ) 0,1) (+,0)=0, v
From (1.7), ©(&) satisfies
1 e\ d
1.8 - -0 '=a|l—|, O0)=0_, O(+ =0,, '=—.
(1.8) 25 a( @) (0) (+ ) + e

By the same lines as in [2, 3], we have

[Cl(y—l)‘1/2|0+—0,|s |0"(0)| <Co(y—1)" 210, -6 _]|,

1.9 1 1 e
o “(wm, 1|@—e+|)|<cge T, as g,

0.,
Vy-—-1 Y

where C;, 1 =1, 2, 3, 4 are positive constants depending on 6 .. By (1.9),
the lemma 1.1 of [3] reads in the following style.

Lemma 1.1, If |0, —0_| <= M(y —1), then

(1.10) j O4dr<Cly —1)2(1+1) 32, j 02, dr<Cly—1D"2(1+t)"%2,
0 0

o

1.11) j@z de<C(y—1)""21+¢t)~?, jx(@iﬂampdxsc*(y—l),
0

piAiy
0

where the constant C only depends on M.

The main aim of present paper is to show the global stability of the
viscous contact wave and the superposition of a viscous contact wave and
a rarefaction wave. The precise statement of our first result is

THEOREM 1.2. Assume that po=p, and |0, —60_|<M(y—-1)
holds for some constant M. Assume that (V, U, @) s the viscous con-
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tact wave constructed in (1.6) and (1.7) and the nitial data satis-

fies

112) { 0 <My '<wy(x), 0,(x) <M, wuy(x)—Ulx,0)eH (0, ),
. (0o () — V(x, 0), so(x) — Sz, 0)) e Hy (0, )
for some positive constant M,, where S = il(lnIfT@ +(y—1)In V)
-

and so(x) =s(x, 0). Then there exists a positive constant 6> 0 such
that if y <149, the problem (1.1)-(1.3) has a unique global solution
(v, u, 0)x, t) satisfying

118) (w-=-V,u-U, 60— 0)x,t)eC0, +; H(0, + »)),
(1.14) (v=W),(x, t) e L%(0, + oo ; L*(0, + %)),

(1.15) (u—U, 6—0),(x,t) e L*(0, +; H' (0, + x)),
and

(1.16) sup|w—-V,u—-U, 0—-0)x,t)|—0, as t—>+oo.

=0

REMARK 1.3. The difference |6, — 60 _| is naturally bounded by
(y —1) multiplying some constant M from the physical point of
view.

When p, # p., there are two subcases: the superposition of a viscous
contact wave and a 3-rarefaction wave or that of a viscous contact wave
and a 3-viscous shock wave. Here we only consider the previous one. In

this situation, by the basic theory of hyperbolic system of conservation

laws, there exists a unique point (v,,, %,,, 6,,) such that p,=p,, = £,

m

and (v, Uy, 0,,) belongs to the 3-rarefaction wave curve
R(v,,u,, 6 ,) in the phase plane, where

117 Rw.,uy, 0 )={@u,60)|s=s u=u. ~ [An,s)dpv>v, |,

V4

(1.18) AMw, s) = \/Ayv rleTw

The precise statement of our second result is
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THEOREM 1.4. Assume that there exists a wunique point
(Vs Upy 0.,,) such that py=p,, and (v,,, Uy, 0,,) e R, u,., 0 ) and
[0 —0,,|+10,—0_|<M(y—1) holds for some constant M. As-
sume that (V, U, @) is the viscous contact wave constructed in
(1.6) and (1.7), where (v, u,, 0,) is replaced by (v,,, U,,, 0,,) and
V", U", ©7) is the smooth rarefaction wave constructed in (3.4) satis-
fying S"=s(V", ") =s(v,,0,)=s,. Let

(1.19) V=Vt Vv, U=U"+U"~u,, S =5

Assume that the initial data satisfies (1.12). Then there exists a positi-
ve constant 6y >1 such that if y <1+ 0, the problem (1.1)-(1.3) has a
unique global solution (v, u, 6)(x,t) satisfying (1.13)-(1.15). Further-
more,

(120)  sup |(w =V —v "+, u—U“—u"+u,,s— S, t)| =0,

=0

where (v",u", 0"), (s"=s",0")=s,) is the 3-rarefaction wave
uniquely determined by (3.1).

Our plan of this paper is as follows. In sect. 2, the single contact dis-
continuity case is investigated. In sect. 3, the case including the rarefac-
tion wave is treated.

NoraTioNs. Throughout this paper, several positive generic con-
stants are denoted by ¢, C without confusions. For function spaces,
H'(Q) denotes the [-th order Sobolev space with its norm

l ) 1/2
azy = (3 1) when = o

The domain 22 will be often abbreviated without confusions.

2. Global stability of viscous contact wave.

Proor oF THEOREM 1.2. We put the perturbation (¢, v, C, ¢)(x, t)
by

@.1) v, 1) =W, t) + o(x, t), wulx,?)=Ulx,t)+y(x, ),
' { O(x, t) = O(x, 1) + C(x, 1), s(x,t) =S, )+ ¢, 1),

where (V, U, O)(x, t) is the viscous contact wave constructed in (1.6)
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and (1.7). By (1.6) and (1.7), we have

I/t_[]:vzo;
(5] )
2.2) V /s V.
2
—@t+p+Ux—K( «) -I—yﬂ—l—G,
Y — x |4
where
V) (mea( e
23) F=U—-u|l—| =—|(lnO), — no),.| |,
2.3) tﬂ(V)x By (In )t/"R@(n )Lx
2 -1 2
2.4) G-l _ —&(M(ln@)m) .
Vv RO Ry

From lemma 1.1, we have
@25) |Fl<Cly—-DA+H)7, |Gl <Cly —102(1 +1t)32,

Substituting (2.2) into (1.1) and (1.3) yields

'¢t_1/)w20,
(R(@+C) R@) (Ux+1px U,
t+ - = e _Fa
V+o¢ V /. V+¢ V /.
R R(O® +0)
’}/—].Ct+ V+¢ (U@‘H/’@) P+ Ux,
2.6) (@ﬁgx) (@x) U, +y.)° U?
=Kk|————=| —« tU———— —u— —G,
V+o¢ |/, V /. V+¢ 1%
(RO ~ Uﬁsz)
Vig " Vaig )lewo T
0, ¢) =0,
k((]),w,C)(%,0)=(1}0—V,’I/L0—U,9—@)(90,0).

We shall prove theorem 1.2 by the local existence and the a priori esti-
mate. We look for the solution (¢, vy, &) in the solution space X(0, + «),
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where

1
@7 X0,D=1(p, 9,0 :(p,5)eCO,T;Hy), yeCO, T;HY, §M1_1 <

1
sv<s2M,, ZM0’1$0S4M0, ¢.eL*0,T; L%, (y,),eL*0,T;H"

for some 0 < T < + oo, where the constant M; will be determined later.
Since the local existence has already been established in [3], we only con-
sider the a priori estimate here. We have

ProrosITION 2.1. (A Priori Estimate). Assume that the conditions
of theorem 1.2 hold, then there exists a positive constant o, such that if
y<1+d,and (¢, v, ) eX(0, T) s a solution of (2.6) for some positive
T, then the followings hold

1
2.8) M <oz, t) < M, EMo-lsa(oc, t) <2M,,

t
@9) 1@, v, Ol + [{Ig JE+11w o, € JIE} dr <CMYA +[ 0100 2 DB,
0

where the constant C(M,) depends on M, M, and the initial data, but
does not depend on M.

Proposition 2.1 is proved by a series of lemmas.

LEMMA 2.2. It follows that

- t
v 1 2 1/)95 é’b‘ 2
2.10) H((\/‘p(?)”’)’%g)“) +J{H(vl/2’v1/2)(’) ]drs
W ¢
5+5fH(——)
0

(w, %c) ‘o dr”,

2
sC(AMO){HQPO»1/)0a Vog o)l + C(My) dr +

t
+ fa?u +17)7%
0

where 0 =y —1<1.
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Proor. Due to [3], we have

R (7] C)] Oy?
2.11) (1¢2+R@¢(3)+_@¢(_)) | KO o, HOY:
2 Vv o) e/ 2 v0

+

+Hx+Q=—sz—§,

where
212) @(o)=0-1-lno, Wo)=oc'-1+Ino,
213) H=R

)]

v R e) (1 1)
2.14 =p.¥Y|=|U+—Y = |U+uyp U|———= |~
( ) Q=p. (V) ] 5 (@ L T Uy ’U

¢ O, £.900, Ep
- - Ux_ x x
0(p+ P) KH%CC oy Conv

21 1 2
UL 1)
0 v 1% 00
By the formula of &(0), we know that &¢(1)=¢’'(1) =0, ¥Y(1)=

=¥'(1)=0 and ®(0) is a strictly convex function. This yields that
d(0) >0 and

Cy(M,) C,(M;) p* < qﬁ(%) < Cy,(M,) Co (M) 97,
(2.15)

w(%) ‘ < C(My) O(My) 22,

for some constants C;(M,), C;(M;), 1 =1, 2. Since

KO uo
2.16 S —+ —yi+
2.16) Q| 0 5 ¢ 100

+oat) con)| 0419+ 522)+ @0+ 2 %),
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and

oo

@.17) J|F¢|+‘%‘dxs “o[uE, ., & fﬁdaw
0 0 £Mi v 4M3 )

+C(M,) C(My) [6(1 +1) P+ 821 +1)8A

o3

due to (2.5), integrating (2.11) over R, X (0, t) gives
v 1

218) H \/qa(—), ¢
( v)Y Vo

t o
sC(Mo)C(Ml)U J(§2+¢2)(|@m| +O%) drdt+ 0+
0

]

t o t

2 2 2

+f ﬂ+ﬁdxdt—fH<o,t) dt<
v v 0

2

t
+ faZ(l +1)7%P
0

Zdr} + C(M,)

gl o o

On the other hand, the boundary condition (1.2) exactly gives the value
of ¢(0, t). From [3] and the fact that ¢ ,(x) € Hi (0, »), we have

tt

(2.19) #(0, ) =¢o(0)e « =0,
which yields that H(0, t) =0. Note that

(2.20) |6, ) | sa?E.l, o, )| <a¢.ll,

due to [16], applying Lemma 1.1 and the boundary condition (2.19), we
have

t
@21) JJ@“‘PZ)”@M +02) dudt <
0 0

2

dt.

¢.7C CIL‘
VIR I

t
< C(M,) C(M,) & [
0

By (1.2) and (2.1), we have

2.22) IZoll: < COll(po, )i
Thus, combining (2.18)-(2.22) yields lemma 2.2.
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LEMMA 2.3. There exists a small positive constant 6, such that if
0<0y, then

(2.23) H(¢> Y, — )(t)H + . IP+ f{llm,m,é 0[P} dr <

< CM){1+ (o, vo, @0}

Proor. Following [14], we introduce a new variable v = —. Then

L
1%
(2.6); can be rewritten by the new variable as

@.24) (ﬂ(%)_w) p.=F.
v t

Multiplying (2.24) by ﬁ—, we have
v

L i . )
(2.25) (ﬁ(v—f) — wﬂf) +@(@) BT
v

=+
2\ v v v\ P

t

RO [ 1 1 ) 1 1 )
+—(———)@xl=ﬂ+w Ux(———)+F&.
v \O 0 v v v V

The Cauchy inequality yields that

R._ ¥ 1 1 RO
2.26 —Co— |+ |p.U|——= = +
(220 ‘vé 5 ’”’ (v v)’ 4v( )

+C(M0)(— Y5 ooy 9 Uz)
@.27) @(i _ l)@x ; ‘F@ R(’(_) i
v 0 0 0 49
+C(M,) C(M)(E2O%+ |F|P),
and
(228) ¢x _ 2 (~x )2 ¢%
. 62— O(My) CMy) 9202 < =) < 22+
1) v

+C(M,) C(M,) ¢p*O%.
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Similar to (2.19), we also have (zf) 0,1t = (ﬂ) (0, t) =0. Note that the
v v

right hand sides of (2.26)-(2.28) have already been investigated in Lem-
ma 2.2. Integrating (2.25) over R, X (0, t) and using Lemma 2.2, (2.15),
(2.26)-(2.28) and the fact that

]

v, \? >
< —(— | +Cyp=>,
4( ) Y

we get

(2.29) H

DERER

x ’l/)x C{'E
H( 32 1/2’ ﬁ)(r)

U
v

2
}drs

dr +

<t o v VBl +con o+ (5. <) of

e

We now choose a small positive constant 6,<1 so that C(M,)-

t
+ féz(l +1)78P
0

-C(My) o < —. Then for any 6 <9, the Gronwall’s inequality yields

J?) vl
~ aof{ e

/v./l'/‘
<CWMy){1+ (@0, wo, \/5(/)0)”%}-

(2.30) H

+

v

) )
v 3/2 ) 12 ) 1/2

(¢x Vo Cm)
T

We note here that the constant C(M,) does not depend on M;.
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We now use the method of [14] and (2.30) to show (2.8);. To this end,
let

[ Vo)
(2.31) nw) = J do, P(o)=0—-1—-1Ino.
; o
Since
. —o, 2—0+,
(2.32) n(v) —>{ .
+o, V—>+ 0w,
and

233)  |n(ix, 1) | =

! o . v
- H a—yn(v(y,t»dy‘ st(¢(;)+

+

~ 2
&))(x t) dx,

v

the inequality (2.30) yields that there exists a positive constant M, which
only depends on M, M, and the initial data such that

(2.34) M271 < U(QU, t) < Mz.

Let M, = M,, then (2.8), is proved. After we obtain the a priori estimate
(2.34), it is easy to imply (2.23) from (2.15) and (2.30).

Lemma 24. It follows that
2.35) (., CODIF +

t
[l s E)@IR} dr < CMA + (B0, w0, £
0

Proor. We first estimate the term 1 ,. Multiplying (2.6); by — ..,
we have

2
Yex

v

1
(236) (EU)%) - (wth)a:+ﬂ _pxwm‘—"_
t

u, U, 1
v Vv x V /g

J’_
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Since p, is constant, we have
237 P e S f—vwix +C(Mo)(p?* + &%) % + C(My) (93 + E3).

On the other hand,

u, U, 1
v \% @ V /e

< fwz + O(My) 6%(0% + O%, + 6%,) + C(My) (92 + p2) +
v

+OM) | ¢l e | -

We compute by lemma 2.3

(2:39) [10 bl ool do < sup{ [y, }ig ol
0

S e L (M

2

wm

<ul| Lz |+ conpt. v

Since v ,(0,t) =¢;(0,%) =0, integrating (2.36) over R, X (0, %) and
using (2.37)-(2.39) and Lemmas 1.1 and 2.3 imply

3
@40) [ OIF + [lhp e (D|Pdr < COA + [0, w0, EIB-
0

We now estimate ¢,. Multiplying (2.5); by —¢,., we have

R 2| R ?cx uvz _ UE N _
2.41) (%c) (gctéx)xwv +u(7 V)CxerQ—GCm,

where

e, 0,
o + — :

~ 1
(2.42) Q:_(p_p+)UxCW+K§x(;)

X
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By the same method for the estimate on ., we obtain

Ca

61/2

(2.43) ‘ (t)

t
2
+ [ lewIpdr < 0L+ @0, v, R
0

We omit the details here. Combining (2.40) and (2.43) yields lemma 2.4.
By lemmas 2.3 and 2.4, we have

244) &, )|~ < ClEll < CMy) 61+ (P, o, Co)ll1)-

Choosing ¢ suitably small yields
1
(2.45) §M0‘1 < 60(x, t) = O(x, t) + C(x, t) <2M,.

Thus proposition 2.1 is obtained from (2.34), (2.45) and lemmas 2.3 and
2.4. Theorem 1.2 is easy from the local existence and proposition 2.1.

3. Superposition of viscous contact wave and rarefaction wave.

ProOF OF THEOREM 1.4. In this case, there exists a unique point
(Vi Uy 0.,,) RV, u,, 0 ,) such that p,=p,, and the superposition
of the viscous contact wave connecting (v_, u,,, 0 _) with (v,,, %,,, 6,,)
and the 3-rarefaction wave connecting (v,,, U,,, 0,,) with (v,, u,, 6 ,),

where v_ = ﬂ, The 3-rarefaction wave (v", u”, 0’”)(%) connecting

Po
(Vs Upyy 0,,) and (vo, u,, 0,) is the weak solution of the Riemann
problem

(v, —u,=0,

w, + p(v, 0),=0,
3.1 ¥ (e(v, 0) + %) + (p(v, ) u), =0,
t

(,UWZ7 u’l‘ﬂ? 07%)7 x < 07

(7)0’ U, 00)(90) = {

(Wi, Uy, 04), 0>0.

\

Since the rarefaction wave is a weak solution, it is necessary to construct
a smooth approximate rarefaction wave (V",U", ®")x,t) of



298 Feimin Huang - Huijiang Zhao

", u", 0" (%) in R, x (0, 4+ o). To this end, we apply the idea of [4]
to construct the smooth rarefaction wave. The advantage of this kind

smooth wave is that the boundary effect can be exactly eliminated. We
first construct the solution w(x, t) of the following problem

wy + ww, =0, (x,t) e Rx (0, + «),

w_, <0,
&X

w_ +770quzqe’zdz, x=0,
0

3.2)

w|t:0:

where w. =A(v., s.), s, =s(v,, 0,), w=w, —w_, K, is a constant
+ o

such that K, [ 2%¢ "*dz =1 for large constant ¢ = 8 and ¢ is a small posi-
0

tive constant. We have the following properties of w(x, t) due to [4].
LEmMA 3.1 [4]. Let 0 <w_ <w,, then the problem (3.2) has a
unique smooth solution w(x, t) satisfying
) w_<w(,t)<w,, w,=0, for x=0,1t=0.
ii) For any p(1 <p< + x), there exists a constant C, , such that
fort=0,
koo, Dll» < C, ymin (e =17, @!re =1+ 10),

-, s < €, ymin (e~ 1, 5ta g1~ o+ Vag =1+ 1)

iii) When x <w_t, w(x, t) —w_ =w,(x, t) =w,(x, t) =0.

iv) lim sup |w(z, t) —w(x, t)| =0.
t—+ o, xeN

Here w®(x, t) is the Riemann solution of the scalar equation (3.2)
with the witial data wy(x) =w_, if € <0 and wy(x) =w,, if ©>0.

The smooth approximation (T/‘", E”, o) to ", u", 0")(x, t) is given
by
Sﬂ'(x’ t) =S84,
j-("7""(907 t)’ S+) = ?/U(QC, t)v

f/'r(a:,t)
| U@, )=u.~ [ in, s.)dy.

Vi

3.3)
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Setting

(3.4) V7, U, 0", t) =V, T, 0, t +1) |0
where the constant ¢, >1 will be given later. Then we have
(Vi-U:=0,

Uu'+pv', @), =0,

3.5) < (e(V', 0")+ %(UT)2 + V", enun,=0,

t
vn,ur, en |9:=0 = (Vnoy Uy 01),
(V" U",07) o= V5, U, Og)(x) = V", U", ©")(x, 0).

Due to Lemma 3.1, (V", U", ®") has the following properties.

LEMMA 3.2. The smooth rarefaction wave (V", U", O@")(x, t) satis-
fies, if ¢q=p,

i) Ui(xe,t) =0, |Uy| <Ce, for t=0,x=0.

ii) For any p(l1<ps< + ), there exists a constant C, , such
that

V2, U, ©@D)|lpres0) < Cp qmin {&! 712, (8 +¢) 7110,

[(Viey Uiy @) lLre=0) < Cp, qmin {e2 VP (tg + )71 14}, £=0.
i) (V", U", O7) |u<ic, st = Wy Uy 00,

Vi, U, 03, Vi, Uy O3 |e<iw,, 596 =0

iv)  lim sup
t—+ o, xe{r=0}

V", U, 0" )z, t) — (0", u’, 0?)(%) ‘ =0.

Let (V4 U“ @) be the viscous contact wave constructed in (1.6)
and (1.7), where (v,,u,,0_.) is replaced by (v,, U, 6,,). Then
(Ve U« @) satisfies

Vel - Ug =0,

RO g
(35

) + F,

(3.6) yed |

+ G,

R
—— O UL =k

(@;;d) (U
+u—
Y- @

Vcd Vcd
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where

3.7

Let

3.8)

and

3.9)

Feimin Huang - Huijiang Zhao

U?d (Ucd)z
cd _ cd x cd _ x
F _Ut _’u(Vcd)’ G*= - Vcd :
Vv Ve, t)+ V'(x, t) — v,
U (xat): UCd(xyt)+Ur(xa t)_%m )
S Se(x, 1)

(o, v, 0,p)x, ) =(—-V,u—-U,0-0,s—8)x, 1),

r—-

where O(x, t) = %V‘V”e o satisfies @(0, t) = 6 _. Then the system

(1.1) is rewritten as

(3.10)

where

(3.11)

(3.12)

’¢t_’¢x=0’

U
Y+ [p(v, 0) = p(V, @)]x=ﬂ(%) _#(_x) L,
v/, v/,

€t+pw,®+ (p_p(v7 @)) U?e:

y—1
2 2
:(Kﬁw) L M _(K@x) _ nU; La,
v/, v vV /. 1%
RO _ Uﬁf%)
—HU = Do>
V+¢ V+¢ x=0
(0,1 =0,

\ (¢7 Y, é) |t:O: (?}—V, U — U’ 0 — U)(QC, O) ::(¢05 Yo, go)(%),

F=—[pV, 0)-plV", 6")].+

ﬂ(%) _Uth] =t —F +F,

G=~[p(V,®) U, ~py U = p(V", ©") U]+

2 cd
+ K@J(‘ + ‘uUT - K@x =: _G1+G2.
V /. v yved |,
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To prove theorem 1.4, it is sufficient to show the same a priori estimate
as proposition 2.1. We shall follow the same idea of § 2 to achieve our
goal. Similar to (2.11), we have

1 2
(3.13) (_¢2+R@<p(3)+ Ee)(p(ﬂ)) L KO o HOVL
2 1% o e t 7)92

060
H QU+ Q= Fy+
where @, ¥ and H are defined in §2 and
[(Q,=p(V S)( D 1iy-1)- 5(3—3))
1 p ’ p(V,S) V R )
Q= QUM+ Vp(V s>(—£¢(ﬁ)+w(ﬁ))sed+
2 1 Uy pLv, R v P t
G 11 o C. 900
+uy U= — = |- k==, — k=———=
“w ( v V) 0%v % 020V
2
| TR TREA T
0%V o \v V v0

y—1
Note that p(v, s) = Av Ve "% "is convex to v and s. Thus we have Q>0
and @Q; U; =0 due to lemma 3.2. By the definition, we have

Ry Ry

3.15 o = Vel = U,
(8.15) C=SyaVt = sya s
and
(3.16) RO, =p(V,S) ( -0+ ‘V/—Z) Ve —op(V, S) Vi,
We obtain

KO uoe
3.17 s — 2+ iy
G117 Q] 4@022;, 4v9w

+C(Mo) CMD{(@*+ (| 0% | +OF D+ (| UL|*+ 0% | VID(E*+ )}

Here do not need to estimate the terms involving the contact wave in
(3.17) because we have already done in the previous section. By lemma



302 Feimin Huang - Huijiang Zhao

3.2, we have

(3.18) J(|U;|2+|V,;”|2>(§2+<z>2>S
0

g2
< C(M,) CM )t + )~ gl .+ llElllE . < 44LM§ fﬁz
+C(M,) C(M,) t01/4[ ‘ ‘f’chz F(LHE) 2|l + (1 +8) 32 \/qb(g) 2].
Y v

We now estimate the terms of right hand side of (3.13). Since
(3.19) |Fy| < CMo)(|V" =0, | + |O"— 9m|)|@f;;d| +
+C(M0)(|V0d_/um| + |80d_0m|)(|@§c|)7

and O,=V"—-v,=0"-60, =0 for any x <Ai(v,, s, )t due to lemma
3.2, lemma 1.1 gives

(3.20) |17 |1 < C(M,) de 7Ct2/6(1+t),
when ¢ is large. On the other hand,
(321) |Fy| =C(M,)-
U |+ UG |+ U VE | + | Uk |+ |UF ||V ]+ U V],

Similar to (3.20), we have from lemmas 1.1 and 3.2,

)

(22 [|UL|+ U V| + |USV <
0

S C(Mp)((1+t) 111+ 5 *Ct2/6(1+t)),

with some constant ¢ = 8. Thus we have

(3.28) J Pylde<
0

u ’/)id —6/5
——dx + C(M,) C(M){o(1 +1) +
M020 v

+t071/16(1+t)717/16+6e 7Ct2/<§(1+t)+ [t071/8(1+t)79/8+62(1+t)78/5+

+62e —Ct2/6(1 +t)]”w||2}'
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In the same way, we obtain

> 2
(3.24) ”G% ‘dac\ # Z5—05 + (M) CM) L o(1 + )55 +
0

4M3
+t071/16(1+t)717/16+66 —Ct? /6(1+t)+ [t071/8(1+t)79/8+62(1+t)78/5+

—o2 Z |
12 ~CHD]

The details are omitted. Thus integrating (3.13) over R, X (0, t), com-
bining (2.18), (3.14)-(3.24) and using the fact that H(0, t) = 0 yields

Vo). v el + {25 £

127 172
< CMo){[(Bo, W0, VOP)[F + CM) [ + tg 1 +

+(0 +ty 1/4)”‘( 3/2, ”2)H dr +

(e 55

Following the same procedure as in lemma 2.3, we have

Pl
2 cx)2

B iR IE Hdtgc(Mo)[”(ff)o, Yo, Vgl +
0

(3.25) H

}drs

)

+ J'(t071/8+62)(1+t)79/8
0

2
(3.26) H +

_x
v

3/2 7 1/2

el v ell«]}

We now choose some constants 6, <1 and ¢, >1 such that

1
(3.27) C(My) C(M,) x max {0, t, 10} < 5

+C(M1)[é +tg VO (0 +ty ”4)”‘( b )

2
‘d,r+

+ j(to‘“8 +02)(14+1¢)78
0
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Then for any 6 < Jd,, the Gronwall’s inequality yields

AT
2+OJ{ 2] dr <

< CM{1+ (o, o, VOpo)lE}.

Due to (2.31)-(2.33), there exists a positive constant M, which only de-
pends on M, M, and the initial data such that

+

(% Ya Cx)
T

) ’
v 3/2 v 1/2 ) 1/2

£
v

(3.29) My t<w(x, t) <M,.
Let M, = M,, then we obtain (2.8); and

(3.30) H(¢ Y, — )(t)H + . IF+ J{H(m,wmé D)} de <

< CM){1+ (o, ¥o, @0}

The estimates on ¢, are omitted here because it is similar to lemma 2.4.
Thus we obtain the same a priori estimate as proposition 2.1. Theorem
1.4 is easy from the local existence and the a priori estimate.
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