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Endomorphisms of Logarithmic Schemes.

MARK KISIN (*)

ABSTRACT - Let (X , M) be a log. smooth log. scheme over a discrete valuation ring
V , and (Xs , Ms ) its special fibre. Generalising a result of Illusie, we show that
(Xs , Ms ) depends only on a certain explicit nilpotent neighbourhood of Xs%X .
As a consequence, the sheaf of vanishing cycles RCQl depends only on this
nilpotent neighbourhood, thereby refining a result of Berkovich in a special
case. We prove a Lefschetz Trace Formula for endomorphisms of (Xs , Ms ) in
the case that (X , M) is a proper log. curve. We prove two versions of this for-
mula using log. étale and log. crystalline cohomology. This suggests that there
should exist an intersection theory of log. schemes.

Introduction.

Introduction Let k be a separably closed field of characteristic p ,
equipped with the log. structure NKk , 1 O 0. The aim of this paper is to
study endomorphisms of log. smooth log. schemes over (k , N). Examples
of such log. schemes include the special fibres of semi-stable schemes, or
more generally log. smooth log. schemes over a discrete valuation ring V
with residue field k .

This work grew out of the following rather naive question: Suppose
that X is a semi-stable scheme over V , and denote by Xs its special fibre.
If one is given an automorphism s of Xs , when does s act on the complex
of nearby cycles RCQl ? That such a question might be reasonable is sug-
gested by the fact that s evidently acts on the cohomology sheaves
R i CQl of RCQl [Il, 3.2]. One motivation for this question is that even
when the cohomology of the generic fibre of X is very complicated, the
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special fibre may nevertheless be highly degenerate, making it possible
to construct many automorphisms of the special fibre «by hand». For
example, when X is a relative curve, the reader should think of the case
where the components of the special fibre all have genus zero. This rais-
es the possibility of constructing interesting representations in the coho-
mology of the generic fibre. Given this motivation, what we would like
from the theory is a simple criterion to recognise when an automorphism
of the special fibre acts on cohomology, and a Lefschetz type trace for-
mula to be able to compute the representation on cohomology. These are
the two questions we try to address in this paper.

It turns out that our problem can be most naturally analysed in the
setting of log. schemes. Namely, Xs is equipped with a log. structure Ms ,
and s acts on RCQl provided it lifts to (Xs , Ms ). We show that the exis-
tence of a lifting of s to (Xs , Ms ) is in fact a purely local question. This is
somewhat surprising as RCQl is a rather global object.

In fact we work in somewhat more generality. We consider log.
smooth V-schemes (X , M), and their special fibres (Xs , Ms ). A result of
C. Nakayama shows that the complex of nearby cycles RCQl is deter-
mined by (Xs , Ms ). If the smooth locus of Xs is dense then we show, in
particular, that an automorphism s of Xs lifts to (Xs , Ms ) if and only if lo-
cally on X it lifts to X modulo p m11 , where p�V is a uniformiser, and m
is an integer which may in practice be easily computed using the log.
structure Ms . The key point is that although the local liftings of s to X
modulo p m11 are not unique they all give rise to the same endomorphism
on the log. scheme (Xs , Ms ).

As another application of our theory we show that (still assuming the
smooth locus is dense in Xs) the log. scheme (Xs , Ms ) depends only on
the reduction of X modulo p m11 (Corollary (2.5)). This generalises a re-
sult of Illusie for semi-stable schemes, in which case m41. The condi-
tion on the smooth locus of Xs is not a strong one, since it is always satis-
fied after a finite base extension of V .

We also obtain, in a special case, a refined version of a conjecture of
Deligne, which was proved by Berkovich in [Ber]. Namely that for any
flat V-scheme X , the nearby cycle sheaves RCL depend only on the com-
pletion of X along its special fibre. When X is log. smooth over V , our re-
sults show that these sheaves in fact depend only on the reduction of X
modulo an explicitly computable power of p (see (2.6)).

The final, and perhaps most interesting, application of the ideas we
develop is a Lefschetz type trace formula for log. curves. We explain a
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special case, and refer the reader to Theorem (3.3) for the precise state-
ment. Suppose that (X , M) is a log. smooth proper curve over V , and let
(Xs , Ms ) denote its special fibre. Consider an endomorphism s of
(Xs , Ms ) such that s acting on the underlying scheme Xs has only isolat-
ed fixed points. As we explained above, s acts on the nearby cycles RCQl

of X , and we may compute the alternating sum of traces of s on
H*(Xs , RCQl ) (which is of course the cohomology of the geometric
generic fibre of X). On the other hand if x�Xs is a fixed point of s , then
we show that s lifts to an endomorphism s× of the formal neighbourhood
of x in X . The «generic fibre» of this formal neighbourhood is a rigid
analytic space, and we may count the number of fixed points with multi-
plicities of s× acting on this generic fibre. Adding up over all such x�Xs ,
we show that this sum is equal to the alternating sum of traces on coho-
mology computed earlier. In fact, we can only prove this result when X is
semi-stable or the endomorphism s is finite on the underlying scheme
Xs . This finiteness assumption is needed to reduce to the semi-stable
case, but the result should be true without it. We also prove an analogous
result using crystalline cohomology.

We conjecture that this formula should be true in higher dimensions
also. One of the striking consequences of the trace formula is that if
x�Xs is a fixed point of s, then the number of rigid analytic fixed points
of s× specialising to x is independent of the choice of s×, because s× can be
chosen independently in the formal neighbourhood of each such fixed
point x . This suggests that there should be an intersection theory for
log. schemes giving, in particular, an a priori definition of this number.
Moreover, such a theory should yield the trace formula in higher dimen-
sions, since Poincaré Duality, and the Künneth Formula are already
available in log. étale cohomology by work of Nakayama [Na].

The paper is organised as follows. In § 1, we review the results of
Nakayama [Na], which give a description of nearby cycles in terms of
log. structures, and derive some simple consequences.

In § 2 we study the question of when a map between schemes over k ,
extends to a map of log. schemes. Using our results we obtain the gener-
alisation of Illusie’s result mentioned above, and also the refinement, in
this special case, of the result of Berkovich.

In § 3, we prove our trace formula using log. étale cohomology. The
proof is quite long and technical. The general strategy is as follows. First
we prove the result in the case of a semi-stable curve. This is done by,
more or less explicitly, computing both sides of the formula. For general
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log. smooth curves, we show that after making a base change one can re-
duce to the semi-stable case. One of the key ingredients here is a result
of de Jong [de J2, 4.18] which says after a base change a normal flat
curve over V can be modified into a semi-stable one (T. Saito has in-
formed us that he also obtained this result some time ago). We were un-
able to prove what we needed using the semi-stable reduction theorem,
since there one in general has also to blow down (not just blow up) in or-
der to reach a semi-stable situation. Using this result, and some extra ar-
guments, we show that if (X , M) is any log. smooth curve over V , and s
an endomorphism of (Xs , Ms ) then after a finite base change, we can
modify X into a semi-stable curve by a sequence of blow ups which are, in
a suitable sense, equivariant with respect to s . By this method we are
able to reduce the trace formula for a proper log. smooth curve to the se-
mi-stable case.

Finally, in § 4, we briefly explain how our results can be extended to
log. crystalline cohomology.

Acknowledgement. It is a pleasure to thank Gavin Brown for a useful
discussion concerning the proof of Theorem (3.3), and the referee for a
careful reading of the manuscript, and especially for correcting a mis-
take in Lemma (2.1).

1. Nearby Cycles and the Logarithmic étale Site.

(1.1) Throughout the paper F will denote a discretely valued field,
with uniformiser p , valuation ring OF , and residue field k . We assume
that k is separably closed. (This will not restrict the generality of
our results because one can always make a base change to this
situation). Spec (OF ) carries a canonical log. structure given by

NK OF ; 1 O p .

We are going to consider log. schemes (X , M) over OF , which
are log. smooth with vertical log. structure. This means that étale
locally on X there is a finitely generated, integral, saturated monoid
P , and an x�P , such that the torsion part of P gp /axb has prime
to p order, and an étale map XKSpec (OF [P] /(x2p) ), such that
the log structure on X is induced by P . Moreover we require that
for any a�P there exists b�P with ab4x m for some integer m ,
depending on a and b . This condition guarantees that the log. structure
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is vertical, which means that it becomes trivial away from the special
fibre.

Unless otherwise stated, we assume throughout the paper that the
log. structures on log. schemes over OF are vertical.

We say that a log. scheme (X , M) is fine saturated, or fs if étale local-
ly it admits a chart given by a finitely generated, integral saturated
monoid. We also say that the log. structure M is fs.

DEFINITION (1.2). A map of fs log. schemes (X , M) K (Y , N) is
called Kummer if it is log. étale, and if the underlying map of schemes
is quasi-finite.

Define the Kummer site (X , M)Kum of (X , M) by declaring the neigh-
bourhoods to be log. schemes, which are Kummer over (X , M), and by
declaring coverings to be collections of neighbourhoods, which together
surject onto the underlying scheme X .

There is another equivalent definition of Kummer maps of log.
schemes. Namely a map of log. schemes (X , M) K (Y , N) is Kummer if it
is log. étale, and (étale locally) has a chart Z[Q] KZ[P] with P , Q finite-
ly generated, integral, saturated monoids, and Q n %P%Q , for some
prime to p integer n . Here Q n 4 ]q n : q�Q(.

The two definitions are equivalent by [Ki, 1.2]. We prefer to use the
one here, since in practice is it a little easier to check. For example sup-
pose that (Y0 , N0 ) is the reduction of (Y , N) modulo a nilpotent ideal.
Then any log. étale covering of (Y0 , N0 ) lifts to a log. étale covering of
(Y , N). Using our definition it is clear that Kummer coverings lift to
Kummer coverings, while this is not quite obvious using the alternative
definition.

(1.3) We are going to review the results of [Na] describing the near-
by cycles functor RC for a scheme X equipped with a log smooth log.
structure over OF .

Denote by j : Xh
%KX , and i : Xs %KX , the inclusion of the generic fi-

bre and closed fibre of X , respectively, and set RU F 4 i * Rj* where Rj*
is the total derived functor of j*. For a finite extension F 8 of F , we de-
note by RU F 8 the composite of the nearby cycles functor for the normali-
sation of X7OF

OF 8 , followed by the direct image of the morphism of
sites

(X7OF
OF 8 )s , ét KXs , ét .
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Thus RU F 8 L is a complex of sheaves on Xs , ét . The complex of nearby cy-
cles RCL is defined by

RCL4 lim
K

RU F 8 L ,

where F 8 runs over all finite extensions of F .
We equip Xs with the log. structure Ms 4 i *(M), and we suppose that

the log. structure M is trivial over the generic point of Spec (OF ).
Consider the log. structure on Spec k given by NKk , 1 O 0. For

each positive integer n , denote by (Spec k , N)n the log. scheme
( Spec k , N) viewed as a log. scheme over (Spec k , N) via the multiplica-
tion by n map NK

n
N . Write

(X n
s , M n

s ) 4 (Xs , Ms )3( Spec k , N) ( Spec k , N)n ,

where the fibre product is taken in the category of fs log. schemes.
Write

pn : (X n
s , M n

s )Kum KXs , ét

for the canonical projection. Using [Na, 3.2(v)] we have

PROPOSITION (1.4). For L a finite abelian group of prime to p or-
der, there is a canonical isomorphism

lim
K

Rpn * LKA RCL ,(1.6.1)

where n runs through integers which are prime to p.

(1.5) Consider a log. smooth scheme (Xs , Ms ) over (k , N). Although
the notation Xs is suggestive, we do not assume that Xs is the special fi-
bre of a log. smooth OF-scheme. Recall [Ka, 3.14] that locally on Xs there
is an exact, closed immersion Xs KX into an X which is log. smooth over
OF , with special fibre Xs . Locally, X is unique up to isomorphism, since
the set of embeddings is a torsor under H 1 of a quasi-coherent
sheaf.

The obstruction to the existence of global embedding of the above
type lies in H 2 of a certain quasi-coherent sheaf on Xs , hence it vanishes
if Xs is a curve.

Even if there is no such global embedding, we can make the defini-
tions of (1.3), and define RCL for each finite group L with order invert-
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ible in k , by the formula

RCL4 lim
K

Rpn * L .

We then define RCZl , RCQl in the obvious way. By (1.4) this is consist-
ent with the usual definition in the case that a global embedding Xs KX
does exist.

We say that the log. structure Ms is vertical if each x�X has a neigh-
bourhood Us , which admits an exact closed immersion Us KU into a log.
smooth OF-scheme U , with vertical log. structure, and special fibre Us .
Unless explicitly stated otherwise smooth log. schemes over k will be as-
sumed to have vertical log. structure.

PROPOSITION (1.6). Let (Xs , Ms ) and (Ys , Ns ) be log. smooth and
proper over k . Assume we are given a map of log. schemes

f log : (Xs , Ms ) K (Ys , Ns ) .

Then f log induces a canonical map

H*( f log ) : H*(Ys , RCL) KH*(Xs , RCL) .

In particular, if Xs KX and Ys KY are exact closed immersions into
log. smooth OF-schemes, then f induces a map

H *h ( f log ) : H *(Yh , L) KH *(Xh , L) ,

where h denotes the geometric generic fibre.
These constructions are compatible with composition of mor-

phisms.

PROOF. By (1.4) the cohomology H*(Xs , RCL) is the cohomology of
the sheaf L on the topos which is the inverse limit of Kummer sites
lim
J

(X n
s , M n

s )Kum , where n runs over prime to p integers (cf. [Na § 3]).
Thus, the result follows from the functoriality, with respect to Xs , of the
cohomology of such a topos. r

LEMMA (1.7). Let (X1s , M1s ) and (X2s , M2s ) be proper, and log.
smooth over k , and f : (X1s , M1s ) K (X2s , M2s ) a map of log schemes over
k . Suppose we are given endomorphisms s 1 , s 2 of (X1s , M1s ) and
(X2s , M2s ) respectively, such that s 2 i f4 f i s 1 . Then we have a commu-



Mark Kisin254

tative diagram

H*(X1s , RCL) K
H*( f )

H*(X1s , RCL)

H*(s 1 )I H*(s 2 )I
H*(X1s , RCL) K

H*( f )
H*(X1s , RCL)

PROOF. This is immediate by applying the compatibility of the con-
struction of (1.6) with compositions to the map s 2 i f4 f i s 1 . r

LEMMA (1.8). Let (Xs , Ns ) be log. smooth over k . Let F 8 be a finite
extension of F , and write (X 8s , N 8s ) 4 (Xs , Ns )3OF

OF 8 , where the prod-
uct is taken in the category of fs log. schemes. Denote by q the natural
morphism

q : X 8s , ét KXs , ét .

If L is a finite abelian group of prime to p order, then there is a canoni-
cal isomorphism

RC Xs
LKA q* RC X 8s L .

PROOF. From the definitions, one sees easily that there is a natural
map RC Xs

LKq* RC X 8s L . To show that it is an isomorphism is a local
problem, so we may assume that (Xs , Ns ) is the special fibres of smooth
OF-log. scheme (X , N). Set (X 8 , N 8 ) 4 (X , N)3OF

OF 8 . In this case, (1.4)
shows that RC Xs

L and RC X 8s L are isomorphic to the nearby cycle
sheaves of X and X 8 respectively. That our morphism is an isomorphism
now follows from the fact that X and X 8 have isomorphic geometric
generic fibres: X 8h KA Xh . r

COROLLARY (1.9). With the notation of (1.8), suppose that s is an
endomorphism of (Xs , Ns ). Denote by s 8 the endomorphism of X 8s in-
duced by s . Then we have

H*(X 8s , RCL) KA H*(Xs , RCL)

and the endomorphisms H*(s) and H*(s 8 ) are compatible with this
isomorphism.
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PROOF. The first claim follows from (1.8), and the second from
the construction in (1.6) and (1.7). r

2. Maps between schemes and log. schemes.

The purpose of this section is to study morphisms between log.
schemes which are log. smooth over (k , N) and the maps they induce on
log. étale cohomology. In particular, we show that under certain circum-
stances, a map between log. smooth log. schemes is completely deter-
mined by the map on the underlying schemes, and that an endomor-
phism of schemes induces an endomorphism of log. schemes provided a
local condition is satisfied. In particular this means that «reasonable»
maps between the special fibres of semi-stable schemes, induce maps on
the cohomology of the generic fibres. The criterion makes it quite feasi-
ble to construct maps of log. schemes «by hand,» since one has only to
give a map between the underlying schemes, and then check a local con-
dition - see example (2.7).

The following lemma will be used to show that under quite general
conditions a map of schemes Xs KYs extends to map of log. schemes in at
most one way.

LEMMA (2.1). Let (X , M) and (Y , N) be fs log. schemes over
( Spec k , N), with (X , M) log. smooth over ( Spec k , N). Let f : XKY
a map of k-schemes and U%Y an open subset such that f 21 (U) is dense
in X .

Suppose that fNU extends to a map of log. schemes

g : ( f 21 (U), MNf 21 (U) ) K (U , NNU ) .

Then there is at most one map of log. schemes (X , M) K (Y , N) over
( Spec k , N), compatible with f and g .

In particular, if (U , NNU ) K ( Spec k , N) is strict, then there is at
most one map f log : (X , M) K (Y , N) of log. schemes over ( Spec k , N) in-
ducing the map f on the underlying schemes.

PROOF OF (2.1). The first claim implies the second, since if
(U , NNU ) is strict over (Spec k , N), then there is at most one possibility
for g .

We prove the first claim. If x is a point of Xét , with image y in Yét , we
have to show there is at most one map f *(Ny ) KMx , which makes the
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following diagram commute

f *(Ny ) K Mx

I I
f *(OY , y ) K OX , x

Let xA be a point of Xét whose image in Spec OX , x lies in f 21 (U), and
denote by yA the image of xA in Yét . The conditions guarantee that yA lies
over a point of U , and g determines a map f *(NyA ) KMxA , making the
diagram

f *(NyA ) K MxA

I I
f *(OY , yA ) K OX , xA

commute.
Now for each xA as above, we have the co-specialisation map Mx KMxA ,

and I claim that the direct sum of these maps Mx K5xA MxA taken over all
choices of xA is injective. Accepting this claim for a moment, we see that a
map making the first diagram commute exists if and only if the
composite

f *(Ny ) K f *(NyA ) K5xA MxA

has image contained in Mx %5xA MxA , and in this case it is uniquely
determined.

To see the claim, suppose that a1 , a2 �Mx have the same image in
5xA MxA . Observe that X is Cohen-Macaulay [Ka 2, 4.1], so any dense sub-
scheme is scheme-theoretically dense [Mat, 17.6]. In particular, this
holds for f 21 (U), so the natural map OX , x K5xA OX , xA is injective. Thus, if
a : MK OX denote the map defining the log. structure, then we must
have a(a1 ) 4a(a2 ). By (2.2) below, this implies that either both a1 and a2

are divisible by x (the image of 1 in the monoid N defining the log. struc-
ture on Spec k), or a1 4a2 1w for some w� OX , x

3 . In the second case,
since all our monoids are integral, we have that the image of w in OX , xA is
1 for all xA, so that w41, and a1 4a2 . In the first case, we may replace a1

and a2 by a1 2x and a2 2x , and repeat the argument. Since our log.
structures are coherent, a1 and a2 cannot be infinitely divisible by x , and
this procedure must terminate after finitely many steps. r
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LEMMA (2.2). Let ( Spec A , M) be a log. smooth log. scheme over
( Spec k , N), and denote by a : MKA the map defining the log. struc-
ture. If a1 , a2 �M and a(a1 ) 4a(a2 ), then either a1 and a2 are divisible
by x , so that a(a1)4a(a2)40, or a14a21w for some w�M 3KA A 3 .

PROOF. The problem is étale local, so, using [Ka, 3.14], we may assume
that A is a local ring, and that h : (Spec A , M) K ( Spec k , N) admits a
chart NKP such that the map Spec AKSpec k[P] /(x) is strict and
smooth.

We may invert any elements of P that become invertible in A , so we as-
sume that any element of P which is not a unit maps to the maximal ideal of
A . Let Q4P/P 3 . Since Q gp is a free abelian group, we may choose a sec-
tion to the projection P gpKQ gp . Such a section induces a decomposition
PKA P 35Q . Then k[Q] KA is also a chart for (Spec A , M).

We have Q 34 ]1(, and the image of Q in A consists of non-units. This
implies that MKA Q5A 3 , and that k[Q](Q)KA is a local map, where
k[Q](Q) is the localisation at the maximal ideal generated by Q . Moreover, if
x 8�Q denotes an element which differs from (the image of) x�P by a unit
of P then, since k[Q] Kk[Q5P 3 ] is smooth, A is smooth over
k[Q] /(x 8).

For i41, 2 write ai4qi ui where qi�Q and ui�A 3 . Since a(a1 ) 4

4a(a2 ), the image of q2 in A/(q1 ) is 0. Since the local, smooth map
k[Q](Q) /(x 8 , q1 ) KA/(q1 ) is faithfully flat, and hence injective, the image of
q2 in k[Q](Q) /(x 8 , q1 ) is trivial. However, it is easy to see that if q�Q0(x 81

1QNq11Q) then q has non-zero image in k[Q](Q) /(x 8 , q1 ). Thus either q2�
�x 81Q or q2�q11Q . In the first case we are done. In the second, note
that, repeating the above argument with q1 and q2 interchanged we may as-
sume that q1�q21Q , so that q22q1�Q 34 ]1(. Thus, q14q2 , which im-
plies that a1 and a2 differ by a unit. r

(2.3) Let (Y , N) be a log. smooth, log. scheme over OF , with verti-
cal log. structure. We assume that the underlying scheme Y is Noetherian,
and define an integer m4m(Y) as follows: étale locally (Y , N) K

K ( Spec (OF), N) has a chart given by a map of finitely generated, integral,
saturated monoids NKP . Denote by x the image in P of 1 �N . Consider a
presentation for P

P : Ns ˘
f , c

NrK
g

P ,

such that one of the canonical generators xA of Nr maps to x�P .
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Such a presentation always exists. Indeed, as P is finitely generated, we
may choose a surjection NrKP mapping one of the canonical generators
of Nr to x�P . Denote by K the kernel of the induced map ZrKP gp .
Define

A4 ](k , z) �K5Zr : k1z , z�Nr( .

Now we have

K5Zr %K
(k , z)O(k1z , z)

Zr5Zr ,

and under this embedding A is simply the intersection of K5Zr with the
rational cone (Nr5Nr)7N Q1N ]0( % (Zr5Zr)7Z Q . Thus by Gor-
don’s Lemma [Ful, p12] A is a finitely generated monoid. Hence there is a
surjection x : NsKA for some s . If f8 , c8 : AKNr , denote the maps
given respectively by projection onto the second factor, and addition in A%
%K5Zr , then one checks easily, using the fact that P is integral, that we
may take f4f8 i x , c4c8 i x .

Denote by e1 , R , es the canonical generators of Ns . We set m(P) equal
to the smallest positive integer m such that x m�P is divisible by g i f(ei)
and g i c(ei) for i41, 2R s . Such an m exists, as the log. structure on Y is
vertical. We set m(P) 4 min

P
m(P), where P runs over all presentations

satisfying the conditions above. Finally we set m(Y) equal to the smallest
positive integer m such that each point of Y has an étale neighbourhood
which admits a chart given by a monoid P , as above, with m(P) Gm .

For concrete Y the integer m(Y) is easily computed. For example if Y is
semi-stable, or more generally regular (in the classical sense), then m41.

We remark that if u is a canonical generator of Nr , then there exists
v�P with g(u) v4x m(P) . If u4 xA this is obvious. If uc xA it suffices to
show that there exists i such that either f(ei) or c(ei) is divisible by u .
However, as P induces a vertical log. structure, there exist u 8�Nr , and
such that g(uu 8) 4g(xAt) for some positive integer t . Thus there exists w�
�Ns such that c(w)uu 84f(w) xAt (or with f and c interchanged). Since
uc xA, u divides f(w), whence it divides f(ei) for some i .

If (Ys , Ns) is any log. smooth scheme over k , we define m(Ys) as the
smallest integer m0 such that for each y�Ys there exists a neighbourhood
Us , and an exact closed immersion into a log. smooth OF-scheme with spe-
cial fibre Us , and m(U) Gm0 .

PROPOSITION (2.4). Let (Xs , Ms) and (Ys , Ns) be log. smooth log.
schemes over k . Set m4m(Ys). Let f : XsKYs be a map of the underlying
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schemes. We consider exact closed immersions XsKX and YsKY into
log. smooth OF-schemes, which are defined locally on Xs and Ys respect-
ively. Consider the following conditions

(1) Étale locally on Xs and Ys f lifts to a map X (m11)KY (m11) ,
where for n�N , X (n) and Y (n) denote the reduction modulo pn of X and Y
respectively.

(2) For each n�N , étale locally on Xs and Ys , f lifts to a map
X (n)KY (n) .

(3) Étale locally on X and Y , f is induced by a map (Xs , Ms) K

K (Ys , Ns) of log schemes over ( Spec (OF), N).

(4) f is induced by a unique map f log : (Xs , Ms) K (Ys , Ns) of log.
schemes over ( Spec (OF), N).

We have (4) ¨ (3) ` (2) `(1). If the condition

(*) For U%Ys the open subset where Ys is smooth, f 21 (U) is dense
in Xs

holds, then (1)-(4) are equivalent, and these are all equivalent to (1)-(3)
with «étale locally» replaced by «locally» in (1)-(3).

PROOF. (4) ¨ (3) and (2) ¨ (1) are obvious. If the condition (*) is satis-
fied, then we have (3) ¨ (4) by Lemma (2.1). Moreover if (4) is true, then of
course (3) is true with «locally» in place of «étale locally,» and the argu-
ments below show that this implies (2) with «locally» in place of «étale
locally».

(3) ¨ (2). Denote by M (n) and N (n) the induced log. structures on X (n)

and Y (n) respectively. Since (Xs , Ns) %K(X (n) , M (n) ) is an exact closed im-
mersion of fs log. schemes, and (Y (n) , M (n) ) is log. smooth over
( Spec (OF /(pm11 ) ), N), the composite

(Xs , Ms) K (Ys , Ns) %K(Y (n) , M (n) )

lifts to map of log. schemes (X (n) , M (n) ) K (Y (n) , M (n) ), and we may take
the the underlying map of schemes for the map of (2).

(1) ¨ (3). We may assume that X and Y are the spectra of strictly
henselian local rings, A and B respectively. Suppose that b : PKB is a
chart for Y , and for each positive integer n denote by b n : PKB/pn the in-
duced map. We abuse notation slightly, and write a : MKA for the log.
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structure on X , and a n : MKA/pn for the induced map. Denote by h the
map B/pm11KA/pm11 induced by the given lift X (m11)KY (m11) .

Consider a presentation

P : Ns ˘
f , c

NrK
g

P ,

with m(P) Gm , and such that one of the generators xA of Nr maps to
x�P .

Since MKA (A[1/p] )3OA ([Ka 2, 11.6]), and the log. structure on Y is
vertical, we have that h(b m11 (P) ) %a m11 (M). Indeed, it is enough to
show that h(b m11 (g(u) ) ) �a m11 (M) for any generator u of Nr . We saw
in (2.3) that there exists v�P such that g(u) v4x m . Let uA, vA be lifts to A
of h(b m11 (g(u) ) ) and h(b m11 (v) ) respectively. Then we must have uAvA 4

4pm1pm11 w4pm(11pw) for some w�A , and in particular uA �M , as
required.

It follows that there exists a map of monoids hAlog : NrKM which sends
xA to p�MK

A
(A[1/p] )3OA , and which makes the following diagram

commute.

Nr K
g

P K B/pm11

hAlogI hI
M K

a
A K A/pm11

Denote, by Ms the reduction of M modulo p . I claim that the
composite

NrK
h
Alog

MKMs

factors through P , and hence induces a map of log. schemes
flog. : (Xs , Ms) K (Ys , Ns), as required.

To see the claim let e be one of the canonical generators of Ns . We have
to show that y4 hAlog (f(e) ) and z4 hAlog (c(e) ) differ by a unit of A congru-
ent to 1 modulo p . Since a m11 (y) 4a m11 (z), we have a(y) 4a(z)1

1pm11 w for some w�A . By the choice of m and P, pm�A/pm11 is a multi-
ple of a m11 (z), whence we obtain easily that there exists u�A with
a(z)u4pm . This gives

a(y) 4a(z)1a(z) upw4a(z)(11upw),

which proves the result, as a is an injection. r
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The above result implies a generalisation of a result of Illusie:

COROLLARY (2.5). Let (Y1 , N1 ) and (Y2 , N2 ) be log. smooth over
OF /pm11 , where m4 max (m(Y1 ), m(Y2 ) ). Suppose that the underlying
schemes Y1 and Y2 are Noetherian, and smooth over OF /pm11 outside a
nowhere dense, Zariski closed subset.

If there is an isomorphism

Y17OF
OF /pm11KA Y27OF

OF /pm11 ,

then the reductions of (Y1 , N1 ) and (Y2 , N2 ) modulo p are canonically
isomorphic.

In particular, if Y1 and Y2 are semi-stable, and the reductions of Y1

and Y2 modulo p2 are isomorphic then the reductions of the log. schemes
(Y1 , N1 ) and (Y2 , N2 ) modulo p are isomorphic.

PROOF. The case where Y1 and Y2 are semi-stable is due to L. Illusie
[Na, A.4]. It follows from the more general claim, since in this case
m(Y1 ) 4m(Y2 ) 41.

In general, the given isomorphism and its inverse induce maps

(Y1 , N1 )7OF
OF /pK (Y2 , N2 )7OF

OF /p

and

(Y2 , N2 )7OF
OF /pK (Y1 , N1 )7OF

OF /p

respectively, by (2.4). Their composites must be the identity by the unique-
ness in (2.4)(4). r

REMARKS (2.6). (1) Let X , Y be log. smooth and proper over OF , and
consider a map f : XsKYs between the special fibres of the underlying
schemes. Suppose that f satisfies 2.4(4).

Then, by (1.6) f induces a natural map on cohomology.

Hh( f ) : H *(Yh , L) KH *(Xh , L) .

These maps on cohomology are compatible with composition. Indeed, by
the uniqueness in (2.4)(4), associating the map of log. schemes f log to f re-
spects composition. However, the association to f log of the map Hh(f log )
constructed in (1.6) respects composition of maps of log. schemes, so our
construction respects compositions.

(2) Suppose that Xs , Ys are proper, log. smooth (k , N)-schemes, and
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that f : XsKYs is a map of the underlying k-schemes. (We do not assume
that Xs , Ys are special fibres of log. smooth OF-schemes.) Assume that f
satisfies 2.4(1), a purely local condition. Assume that each irreducible com-
ponent of Xs dominates an irreducible component of Ys . For example, if
Xs4Ys and f is an automorphism, then this is automatic. Then there exists
a positive, integer n , such that if we pull back the situation in (2.6) by the
base change (k , N) K (k , N) given by NK

n
N , then f satisfies 2.4(4).

Indeed, by [Ka 2, 2.1(ii)], there is a dense open subset U%Y , such that
NNU is étale locally generated by a single element t , with t n4ux , for some
u�N 3 , the generator x�N, and n a positive integer. Set (U 8 , N 8) 4

4 (U , NNU)3(k , N) (k , N) the base change mentioned above. After this base
change the above equation becomes t n4uy n , with y�N the generator;
y n4x . Now u is a section of N 8 and N 8 is saturated, so we also have t 84

4ty 21 is a section of N 8 , and in fact of N 83 since u is a unit. On the other
hand, one checks easily that N 8 is locally generated by t 8 , y and O*U 8 . As t 8

is a unit this means that (U 8 , N 8) K (k , N) is strict.
Our assumptions now insure that 2.4(*) is satisfied, whence we also

have 2.4(4). Now (1.6) shows that we get a map

H( f log ) : H*(Ys , RCL) KH*(Xs , RCL) .

By (1.8) this map is independent of the choice of n .
In particular, if Xs , Ys are the special fibres of log. smooth OF-schemes

X , Y respectively, then the purely local condition (2.4(1)), guarantees that
f induces a map between the cohomology of Xh and Yh .

(3) Suppose that (X , M) is log. smooth over OF . By [Ka 2, 11.6] the log.
structure M is determined by the underlying OF-scheme X . If the special fi-
bre Xs of X is smooth outside a nowhere dense Zariski closed subset, then
by (2.5) the special fibre (Xs , Ms) of (X , M) is determined by the reduction
X (m11) of X modulo pm11 (notation as in (2.4)). By (1.4) the sheaf of nearby
cycles RCL on Xs depends only on (Xs , Ms), so that RCL depends only on
X (m11) .

In general, after a finite base change, the smooth locus of Xs becomes
dense, as in (2.6)(2), above, so we may apply the arguments of the previous
paragraph to this base change. On the other hand, note that such a base
change will in general not leave the integer m unchanged.

The above is a refinement for log. smooth schemes of a conjecture of
Deligne, proved by Berkovich [Ber], which says that for any flat OF-scheme
X , the vanishing cycles depend only on the completion of X along its special
fibre.
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EXAMPLE (2.7). The condition (2.4)(1) is not hard to check in concrete
situations, and can sometimes be made more explicit. Suppose for example
that X4Y is a semi-stable curve, and that f is an automorphism, so that the
condition (*) of (2.4) is satisfied.

Over smooth points of Xs the condition (2.4)(1) is automatic. If x�Xét is
an étale point over a double point of X, then OXét , x is the strict henselisation
of A4W[X , Y] /(XY2p) in the ideal (X , Y). If f(y) 4x , choose Z , W in
B4 OXét , y such that Z and W span the tangent space of B/p , and ZW4p .
Then after interchanging Z and W if necessary, f induces A/pKB/p ,
X O aW , Y O bZ , with a , b� (B/p)33 f lifts (étale locally) to the first
nilpotent neighbourhood of Xs in X if and only if a , b may be lifted to aA, bA �
� (B/p2 )3 respectively, with aA bA WZ4p . That is if and only if ab41.

3. Lefschetz trace formula.

Let X be a proper log. smooth OF-curve. In the previous section we
studied endomorphisms of the closed fibre Xs of X , equipped with its log.
structure. The main result of this section is to show that one sometimes has
a Lefschetz type trace formula for such endomorphisms.

(3.1) Before stating the main theorem, we recall the construction of
analytic spaces associated to certain types of formal schemes [deJ, § 7].
Write An for the p-adic completion of a polynomial ring in n variables over
OF . Write Bm , n for a power series ring in m variables over An . Then one
attaches to Spf (Bm , n) a p-adic analytic unit ball of dimension m1n ,
which is the product of an m-dimensional open unit ball, and an n dimen-
sional closed unit ball. Similarly, if R is a quotient of Bm , n then one can at-
tach to Spf (R) a suitable subspace of the unit ball above. This construction
is functorial. If a formal scheme has a finite covering by such Spf (R)’s
then one can glue the associated analytic spaces. We refer the reader to
[deJ] for further details.

(3.2) Let K be a formal scheme which has a finite covering by formal
schemes of the form Spf (R), with R as above. Denote by Kh the associated
rigid analytic space. If s h is an endomorphism of Kh consider the subspace
Kh

s h of Kh which is fixed by s h . This is obtained, in the usual way, by inter-
secting the graph of s h with the diagonal in Kh3Kh . Suppose that Kh

s h is
zero dimensional. Since K is Noetherian, this implies that Kh

s h is attached to
a finite dimensional F-algebra R. We define the number of fixed points of
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s h counted with multiplicity to be dimF R, and denote this number by
JFix (s h).

THEOREM (3.3). Let (Xs , Ms) be a proper log. smooth curve over
(k , N). We denote by s : (Xs , Ms) K (Xs , Ms) an endomorphism such
that

(1) s is not the identity on any connected component of Xs .
(2) Let Xs

s%Xs denote the fixed subscheme of Xs . We assume that
there is a flat, log. smooth OF-scheme Y , whose special fibre Ys is an open
neighbourhood of Xs , which contains Xs

s . Write K for the completion of Y
along Xs

s . We assume that s lifts to an endomorphisms s× : KKK .

(3) Either (Xs , Ms) is the special fibre of a semi-stable OF-curve or s
is finite on the underlying scheme Xs .

Then Kh
s×h is zero dimensional, and for any prime lcp we have

JFix (s×h) 4 !
i40

2

(21)i tr (Hi(s)NHi(Xs , RCQl) ) .(3.3.1)

Here the left hand side is given by the preceding discussion, and the right
hand side by (1.6), Hi(s) denoting the map on cohomology constructed in
(1.6) from s .

In particular, if X is a log. smooth curve over OF , with special fibre Xs ,
then s induces a map H *(s h) on the cohomology of the geometric generic
fibre Xh , and

JFix (s×h) 4 !
i40

2

(21)i tr (H i(s h)NH i(Xh , Ql) ) .

If s has only isolated (but not necessary simple) fixed points then the
condition (2) above is automatic.

PROOF. Step 1: If s has isolated fixed points the condition (2) is auto-
matic. Indeed, choose any log. smooth OF-scheme Y such that Ys is isomor-
phic to an open subset of Xs containing the fixed points of s . If x is an étale
point of Ys , then (2.4)(2) implies that s lifts to an endomorphism OYét , xK

K OYét , x , whence to an endomorphism on the completions O×Yét , xK O×Yét , x . If x
lies over a a fixed point of s , then the completion of Y at this fixed point is
equal to Spf (O×Yét , x), as k is separably closed, so the result follows.

Now assume that Xs is the special fibre of a semi-stable curve. We first
show the theorem in this special case. Note that by (1.5) this is a purely lo-
cal condition, and by [Ka, 3.14] it implies that Y is semi-stable.
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Step 2: Kh
s×h is zero dimensional. To see this consider T% (Xs)s a con-

nected component of (Xs)s , and denote by KT the corresponding connected
component of K .

I claim that (KT)h is connected. If T is an isolated fixed point then (KT)h

is either a disc or an annulus depending on whether T is a smooth or a
double point. Otherwise T is a union of irreducible components of Xs . In
this case, suppose we knew that for every point y�KT the quotient OKT , y /p
were reduced. Then it follows easily that any idempotent on (KT)h extends
to KT , and hence is equal to 1, so that (KT)h is connected as required. To
see that the OKT , y /p are all reduced, note that if T contains all the compo-
nents of Xs passing through y , then OKT , y /pKA OT , y , and the result is clear.
Otherwise the completion O×KT , y of OKT , y is isomorphic to OF eU , Vf/(UV2

2p), so that

OKT , y /p %KO×KT , y /pKA OF eU , Vf/(UV) ,

whence the result.
Since (KT)h is connected (and smooth), if Kh

s×hO (KT)h is not zero dimen-
sional, we must have (KT)h%Kh

s×h . This implies that KT is fixed by s×, which
implies that if y�T , then s fixes OXs , y , whence s fixes an open set H%Xs

containing T . Replacing H by a connected component, we may assume that
H4T , whence T is both open and closed in Xs , hence equal to a connected
component of Xs , a contradiction, as sc1 on such components. So Kh

s×h is
zero dimensional, as required.

Step 3: Let y�Xs be a double point (i.e a point where
rkZ(Ms /O*Xs , y)gp42) which is fixed by s . The hypotheses insure that s lifts
to an endomorphism of O×Y , y , the completion of OY , y . Abusing notation, we
will denote this endomorphism by s×. As Y is semi-stable,
O×Y , yKA OF eU , Vf/(UV2p) is a regular ring, hence a unique factorisation
domain. Thus we see that either s×(U) 4uU and s×(V) 4u 21 V or s×(U) 4

4uV and s×(V) 4u 21 U , for a suitable unit u� O×Y , y . In particular any lift of
s necessarily induces an automorphism of O×Y , y .

Step 4: We compute the right hand side of the formula (3.3.1), in the
theorem. This, and the calculation to be done in Step 5 is inspired by an ar-
gument of Faltings [Fa, § 4], where it is carried out in a special case (see
also [Sa]).

Let XAs be the normalisation of Xs . The action of s on Xs lifts to XAs . For
each point y�Xs which is a double point and is fixed by s , set e y = 1 if s
stabilises the two components of Xs (or more precisely the two components



Mark Kisin266

of the completion of Xs at y) passing through y , and e y421 if it inter-
changes them. This corresponds to the two cases considered in Step 3. I
claim that the right hand side of (3.3.1) is given by

!
T

!
i40

2

(21)i tr (sNH i(T , Ql) )22 !
y

e y ,(3.3.2)

where T runs over the components of XAs stabilised by s , and y runs over
the double points of Xs fixed by s .

Our formula differs from the one given in [Fa, p. 475]. There it is
claimed that the contribution from a double point y with e y421 is 0
rather than 21. However Faltings assumes that none of the fixed points of
s×h specialise to a double point of X . On the other hand, we will see below
that if e y421, then there are precisely 2 fixed points of s×h specialising to
y , so Faltings’ assumption implies that there are no points with e y421,
and the discrepancy does not show up!

Let us prove the formula (3.3.2). If K l is a complex of finite dimensional
Ql-vector spaces, and f is an endomorphism of K l then the alternating
sum of traces of f on the terms of K l is equal to the alternating sum of
traces of f on the cohomology of K l . Thus, using the spectral se-
quence

H i(Xs , R j CQl) ¨ H i1j(Xs , RCQl) ,

we see that the cohomological sum we need to compute is equal to

!
i40

2

(21)i tr (sNH i(Xs , Ql) )2tr (sNH 0 (Xs , R 1 CQl) ) .(3.3.3)

Now R 1 CQl is supported at the double points of Xs . If y is such a
double point, then (R 1 CQl)y is a one dimensional Ql-vector space, and if s
fixes y , then s acts on (R 1 CQl)y by multiplication by e y (see [Il, 2.1.5]). Ap-
plying a standard excision argument, we see that

(3.3.4) !
i40

2

(21)i tr (sNH i(Xs , Ql))4!
T
!

i40

2

(21)i tr (sNH i(T, Ql))2!
y

e y ,

where T and y run over the same range as in (3.3.2). Combining this with
the calculation of R 1 CQl above gives (3.3.2).

Step 5: We want to compute the left hand side of (3.3.1). This will in-
volve considering fixed points of s×h which specialise to the various types of
fixed points of s . For a point y�Xs which is fixed by s consider the part of
the analytic space Kh

s×h which specialises to y . This analytic space is associ-
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ated to a finite dimensional F-algebra R . We set ay4dimF R . We begin by
computing ay for y a double point of Xs which is fixed by s .

First of all we remark that if T is an irreducible component of Xs , then
we can consider the multiplicity nT with which T appears in Ks× . Namely, Ks×

is a union of (possibly non-reduced) points, and of a divisor on K , and the
multiplicity of T in Ks× is simply the multiplicity of T in this divisor.

Now consider a double point y of Xs , which is fixed by s . As in Step 3,
the completion O×K , y of OK at y is isomorphic to A4 OF eU , Vf/(UV2p).
Suppose that s×(U) 4uV and s×(V) 4u 21 U , with u�A 3 . Then the part of
Kh

s×h specialising to y , is given by the analytic space associated to
Spf (A/(U2uV) ). Since p does not divide U2uV in A , A/(U2uV) is flat
over OF . Thus

ay4dimF A/(U2uV)[1/p] 4dimk A/(U2uV , p) 4

4dimk keU , Vf/(U 2 , V 2 , U2uV , UV) 42 ,

where the third equality uses, U 24U(U2uV)1up�A . Thus there two
fixed points of s×h specialising to y .

If y is not of the type above, then by Step 3, we must have s×(U) 4uU
and s×(V) 4u 21 V , with u�A 3 . Denote by T , S the two (possibly equal)
components of Xs passing through y . Suppose that U and V are local pa-
rameters at y for T and S respectively. Then we must have u21 4

4U nS V nT W with W not divisible by U or V . Write W4u01U bT u11

1V bS u21pW 8 , with u0 , u1 , u2�A 3N ]0(, W 8�A , and bT4b(y , T) and
bS4b(y , S) non-negative integers. We may assume that u140 (resp. u24

40) if and only if bT40 (resp. bS40). If u040 we must have u1 , u2�A 3 .
Since W is coprime to p , A/W is p-torsion free. Thus, if u040, we
have

(3.3.5) ay4dimF A/W[1/p] 4dimk A/(W , p) 4

4dimk keU , Vf/(U bT11 , V bS11 , U bT u11V bS u2 ) 4bT1bS ,

where the second equality uses U bT11 u14WU�A/p . If u0c0, then W�
�A is a unit, and the first equality above shows ay40.

Step 6: Let T be a component of Xs which is stabilised by s . Denote by
T 0 the open part of T which consists of points at which Xs is smooth. For
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y�T2T 0 , we adopt the notation of Step 5, and write

h(y , T) 4
.
/
´

b(y , T)

0

u040 ,

u0c0.

Then I claim we have

(3.3.6) !
i40

2

(21)i tr (sNH i(T , Ql) )4 !
y�T 0

ay1!
y

(nS2nT1h(y , T)11) ,

where in the second sum y runs over the points of T2T 0 which are fixed
by s , and S denotes the other component of Xs passing through the point y .
Of course the first sum on the right has only finitely many non-zero sum-
mands, by Step 2, hence is finite.

To prove the formula, first suppose that T is not fixed by s . Then nT4

40, and the left hand side of (3.3.6) is just the number of fixed points, count-
ed with multiplicity, of s acting on T . If y�T 0 is a fixed point of s , then the
completion of Y at y is isomorphic to Spf (OF eUf), and s× induces a map
OF eUfK OF eUf . As s does not fix T , y is an isolated fixed point on T , so
that U2s×(U) c0 modulo p . By Weierstrass preparation, we may write
s×(U)2U4 fw , where f is a monic polynomial in U , and w is a unit.

Therefore

ay4dimF OF eUf/(U2s×(U) )[1/p] 4dimk keUf/(U2s(U) ) 4deg f ,

and deg f is equal to the multiplicity of y as a fixed point of sNT . So the first
sum in the right hand side of (3.3.6) accounts for the fixed points of sNT

which lie in T 0 .
Now suppose that y�T is a point which corresponds to a double point

of Xs . Using the notation of Step 5, since the parameter V vanishes on T ,
the multiplicity of y�T is equal to

dimk keUf/(uU2U) 4

4dimk keUf/(u0 U nS111u1 U nS1b(y , T)11 ) 4nS1h(y , T)11.

This gives the second term in the right hand side of (3.3.6).
Next suppose that T is fixed by s . Then the left hand side of (3.3.6) is

simply 222g , where g4g(T) is the genus of T . We construct a meromor-
phic derivation d on OT as follows. If s is a local section of OT ,
define

d(s) 4p2nT (s×(sA)2sA) modulo p ,
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where sA is a local section of OK which lifts s . One checks easily that d(s) is
independent of the choice of lift, and that d is indeed a derivation. We may
regard d as a meromorphic section of the tangent bundle of T .

At smooth points of K , which correspond to points of T , p is a genera-
tor for the ideal which cuts out T , so d is holomorphic on T 0 . In general it
will have poles at points of T2T 0 .

Suppose that y�T 0 . The completion of Y at y is isomorphic to Spf (A),
with AKA OF eUf , and s× induces an endomorphism of A , given by s×(U) 4

4U1pnT f with f�A , not divisible by p . Now d vanishes at y with order
vy(f ), where f denotes the reduction of f modulo p , and vy denotes the val-
uation on the completion of OT , y . On the other hand, A/f is p-torsion free,
so that

ay4dimF A/f[1/p] 4dimk keUf/ f 4vy( f ) .

So d vanishes with order ay at y .
Now suppose that y�T2T 0 . Using the notation of Step 5, we see

that

p2nT (s×(U)2U) 4p2nT (u21) U4p2nT U nS11 V nT W4U nS2nT11 W .

As W4u 01u1 U b(y , T) modulo V we obtain

d(U) 4u0 U nS2nT111u1 U nS2nT111b(y , T) .

So d has a «zero» of order nS2nT1h(y , T)11 at y (i.e a pole if this num-
ber is negative), since b(y , T) 40 implies u140, u0c0. As the tangent
bundle on T has degree 222g , summing up the order of the zeroes of d for
all points of T gives the result.

Step 7: Denote by X7s the smooth part of Xs , and by Q the set of points
y�Xs which are double points of Xs which are fixed by s , and such that
e y41.

To finish the calculation we sum (3.3.6) over all the components T of Xs

which are stable under s . We obtain

(3.3.7) !
T

!
i40

2

(21)i tr (sNH i(T , Ql) ) 4

4 !
y�X7s

ay1 !
y�Q

(h(y , T)1h(y , S)12) 4 !
y�X7sNQ

ay12 !
y�Q

e y ,

where the second equality follows from (3.3.5), and as usual the two compo-
nents of Xs through a point y�Q are denoted by S and T . The formula
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(3.3.1) follows immediately from (3.3.7) and Step 4, keeping in mind that if
y�Q is a double point of Xs , which is fixed by s , then ay42 422e y by
Step 5.

This completes the proof when Xs is the special fibre of a semi-stable
curve.

(3.4) To finish the proof of (3.3), we proceed by reducing to the semi-
stable case. The idea is as follows: If (Xs , Ms) is the special fibre of a log.
smooth OF-curve X , then after a suitable base change we show that, by re-
peatedly blowing up the singular points of X , we obtain a semi-stable curve,
and we manage to reduce (3.3) for the original curve to this semi-stable
one. It is in order to be able to perform this reduction that we need to as-
sume that s is finite on the underlying scheme Xs . Although this is a natu-
ral condition, the result should be true without it.

For the argument we need some preparation.

LEMMA (3.5). With the notation of (3.3) (assuming s is finite) we
have

(1) If x , y�Xs and x, y are étale points over x and y respectively,
with x4s(y), then the map (Ms /O*Xs

)gp
x K (Ms /O*Xs

)gp
y is injective.

(2) rkZ(Ms /O*Xs
)gp
y FrkZ(Ms /O*Xs

)gp
x .

PROOF. First note that (2) follows immediately from (1).
We prove (1). As was remarked in (1.5), we may assume that Xs is the

special fibre of a log. smooth OF-curve X . By (2.1) s lifts to a map s× of for-
mal neighbourhoods of x and y in X . Such a lift induces a map s×J : O×X , xK

K O×X , y . Now O×X , y and O×X , x are normal local rings [Ka 2, 4.1], hence domains,
and O×X , x [1/p] is a one dimensional domain whose maximal primes corre-
spond to the points of the generic fibre of X specialising into x . Thus, if s×J

is not injective, then the induced map O×X , x [1/p] K O×X , y [1/p] factors
through the residue field at one of these points. However one easily sees
that this means s is constant at y , whence it cannot be finite on the under-
lying scheme Xs , a contradiction. It follows that s×J is injective.

To show (1) it suffices to show that (Ms /O*Xs
)xK (Ms /O*Xs

)y is injective.
If M×x and M×y denote the log. structures on O×X , x and O×X , y then we have
(Ms /O*Xs

)x4 M×x /O×*X , x , and similarly with y in place of x . Thus, we have to
show that

M×x /O×*X , xK M×y /O×*X , y
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is injective. By [Ka 2, 11.6] we have M×x4 O×X , x [1/p]*OO×X , x , and similarly
for y . If t , s� M×x and a� O×*X , y with t4as then we have a4ts 21�
� O×X , x [1/p]*OO*X , y , so that a� O×X , x as O×X , x is normal, and the map s×J is fi-
nite. Since the same argument applies to a21 , we see that a� O×*X , x . This
shows the required injectivity. r

LEMMA (3.6). Keeping the notation of the previous lemma, suppose
that (Xs , Ms) is the special fibre of a log. smooth OF curve (X , M). Let S%
%Xs be a set of points stable by the action of s , and such that
rkZ(M gp

x /O*X , x) F2, for x�S , and x an étale point over x . Consider the
scheme X 8 obtained from X by blowing up along S , and normalis-
ing.

(1) S is a finite set, and X 8 has a natural structure of a log. smooth
OF-scheme (X 8 , M 8).

(2) If s is an endomorphism of the special fibre (Xs , Ms) of (X , M),
then s lifts uniquely to an endomorphism s8 of (X 8s , M 8s ).

PROOF. (1) That S is a finite set follows from that fact that X is log. reg-
ular [Ka 2, 2.1]. To see that X 8 has a natural log. structure M 8 , we claim
that X 8 is a log. blow up. In the terminology of [Ka 2, § 9] this means that
for each point x�S and x an étale point over x , there is a chart PxK OX , x

for Mx , and X 83X Spec (OX , x) is obtained by taking a subdivision of
Spec (Z[Px] ). To see this denote by Ix the ideal spanned by the image of
Px 0Px

3 . Then OX , x /Ix is a regular ring. If it has dimension 1, then
M gp

x /OX , x* must have rank 1 [Ka 2, 2.1(ii)], and OX , x must be regular. Thus
OX , x /Ix is zero dimensional, and Ix is the maximal ideal of OX , x . Since the
maximal ideal of OX , x , is generated by elements of Px , one sees from the
definition of blowing up, that X 83X Spec (OX , x) is obtained by taking a sub-
division of Px (See (2) below for a more detailed description).

Finally the morphism X 8KX is log. smooth by [Ka 2, 9.5(ii)], so X 8 is
log. smooth over OF .

(2) Let x�S and y�Xs with x4s(y). Choose étale points x, y over x
and y with x4s(y). We have to show that there is a unique way to choose
a map of log. schemes in the top row of the diagram

X 8s 3Xs
Spec (OXs , y)

I
Spec (OXs , y)

K

K

X 8s 3Xs
Spec (OXs , x)

I
Spec (OXs , x)
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making it commute. By uniqueness, it is enough to prove this after the base
change Spec (OXs , x) KSpec (OXs , x). Since s is finite on underlying
schemes we have, by definition of x and y a canonical isomorphism

OXs , y7OXs , x
OXs , xK

A
OXs , y .

Thus, it is enough to construct a map as in the diagram above, but with x, y
in place of x , y .

With the notation of the proof of (1) we may choose a chart PxKPy for
the map of k-log. schemes Spec (OXs , y) KSpec (OXs , x).

Now if e1 , R , ek�Px are a set of generators and 1 GjGk , denote by
Qj%P gp

x the monoid generated by ei ej
21 for i41, R , k . Let X 9 denote the

blow up of S on X . Then X 9s 3Xs
Spec (OXs , x) is covered by the union of the

Spec (OXs , x)3Spec (Z[Px] ) Spec (Z[Qj ] ) for j41, R , k . It follows that X 8s 3

3Xs
Spec (OXs , x) is covered by the union of the Spec (OXs , x)3

3Spec (Z[Px] ) Spec (Z[Qj
sat ] ) j41, R , k , where Qj

sat denotes the saturation of
Qj . Now if we extend e1 Rek to a set of generators for Py , (which contains
Px by (3.5)), we get an analogous covering of X 8s 3Xs

Spec (OXs , y), and one
sees immediately from these two coverings (and the fact that the chosen
set of generators for Py extends the one for Px) that s lifts to a unique map
of log. schemes X 8s 3Xs

Spec (OXs , y) KX 8s 3Xs
Spec (OXs , x). Repeating this

argument for each x�S shows that s lifts to a map of log. schemes
X 8s KX 8s . r

LEMMA (3.7). Keep the notation of the previous lemma, but suppose
that the underlying scheme X is regular and that Xs is connected. Let
x , y�Xs , and x, y étale points over x , y with x4s(y). Then s is surjec-
tive on the underlying scheme Xs , and if rkZ(M gp /O*X )x42, there exists a
lift of s to the formal neighbourhoods of x , y�X . Such a lift induces an
isomorphism of complete local OF-algebras O×X , xKA O×X , y .

PROOF. Since s is not constant, its image contains at least one compo-
nent C%Xs . Choose x�C , and y�Xs with x4s(y). First we claim that the
image of s contains all the other components passing through x . Note that
this claim implies the first claim of the lemma, as then repeating the argu-
ment with the other components, and using the fact that Xs is connected
shows that s is surjective.

Denote by s× a lift of s to the formal neighbourhoods of x , y�X . This
exists by (2.1). Write s×J : O×X , xK O×X , y for the induced map of local, com-
plete OF-algebras. It is injective by (3.5).
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If C is the only component passing through x , there is nothing to prove.
Otherwise we must have rkZ(M gp /O*X )x42, whence also rkZ(M gp /O*X )y4

42 by (3.5). As s is finite, the map s×J : O×X , xK O×X , y is finite also. Such a map
between local regular rings is flat [Mat, 23.1], whence so is its reduction
modulo p . In particular the reduction of s×J modulo p is injective, which
shows that s(Xs) contains the other components passing through x .

Note that as s is surjective, it permutes the finite set S of points z�Xs

such that rkZ(M gp /O*X )z42, by (3.5). As usual, z is an étale point over z .
Choose a lift s×J , as above, for each pair of points x , y�S with x4s(y).
We saw in (3.5) that these lifts are all injective, and we have to show that
they are surjective. If n�N1 , it is enough to prove this with sn in place of
s . Thus we may assume that s fixes S pointwise, and that x4y . Now there
is an isomorphism O×X , xKA OF eu , vf/(u r v s2p), and it is easy to see that
any endomorphism of this OF-algebra is an automorphism, the key point
being that this ring is a unique factorisation domain. r

(3.8) End of proof of (3.3). First note that, by the remarks of (1.5), we
may assume that Xs is the special fibre of a proper log. smooth OF-curve X .

Step 8: For any finite extension F 8 /F , we may replace X by X 84X3

3OF
OF 8 , the product in the category of fs log. schemes. Indeed the special

fibre X 8s of X 8 is equal to Xs 3OF
OF 8 (product as fs log. schemes), so s lifts

to an endomorphism s 8 of X 8s by functoriality of fibre products. On the
other hand Y 84Y3OF

OF 8 contains (X 8s )s 8 , and its underlying scheme is
equal to the normalisation of the scheme theoretic product Y3OF

OF 8 . As
all our rings are excellent, the normalisation K9 of K3OF

OF 8 (product as
formal schemes) is equal to the completion of Y 8 along the preimage of
Xs

s in X 8s , so s 8 lifts to K9 . It follows that s 8 also lifts to the completion K8

of Y 8 along (X 8s )s 8 , as this is simply the completion of K9 along (X 8s )s 8 ,
and our hypotheses are preserved. Moreover by (1.9), and since on rigid
analytic fibres K8h %KK9h is an open immersion, neither side of the formula
(3.3.1) changes (compare Step 9 below).

In particular after a making a base extension, as above, we may as-
sume that the generic fibre of X has geometrically connected connected
components. This implies that if T is a connected component of X , then
T3OF

OF 8 remains connected (product as fs log. schemes). If T1 , RTk are
the connected components of Xs , then only components which are
mapped to themselves by s contribute to either side of (3.3.1). Thus we
may assume that Xs is connected, and that this remains true after replac-
ing X by X 8 as in the previous paragraph.



Mark Kisin274

Step 9: Denote by S%Xs a set of points satisfying the conditions of
(3.6), and consider the scheme X 8 obtained from X by blowing up S and
normalising. We want to replace X by X 8 . By (3.6) X 8 is equipped with
the structure of a smooth log. scheme over OF , and s lifts to an endomor-
phism s 8 of its special fibre X 8s . Denote by Y 8 the normalisation of the
blow up of Y in YOS , and by K9 the completion of Y 8 along Y 8O
Op 21 (Xs

s ). Then K9 is the normalisation of the formal blow up of K along
SOXs

s , so that the s× lifts to an endomorphism s×9 of K9 . One checks easi-
ly that s×9 lifts s 9 . (Note that we have used here the fact that all our rings
are excellent, so that normalisation commutes with completion).

Hence s× lifts to the completion K8 of Y 8 along Y 8O (X 8s )s 8 as this is
the completion of K9 along (X 8s )s 8 . Finally note that on rigid analytic fi-
bres we have an open immersion K8h %KK9h , an isomorphism K9hKA Kh , and
that the fixed locus of s×h is equal to that of s×9h , and is therefore contained
in K8h .

Thus, using (1.7), we may replace X by X 8 and K by K8 . Note that in
particular, since s is finite, (3.5)(2) implies that s permutes the set of
points x�Xs with rkZ (M gp / O*X )x F2, so we may take S equal to this
set.

Now by [Ka 2, 10.4], if we repeatedly blow up X in the set of points x
where rkZ (M gp / O*X )x F2, and then normalise, we eventually get X regu-
lar (note that blowing up points which are already regular does not hurt
regularity). Hence using the previous paragraph, we may assume that X
is regular. (The procedure of blowing up and normalising is also Lip-
man’s algorithm for resolving singularities on an excellent surface, but
the proof becomes simpler in the log. smooth situation). Thus by (3.7) we
have

(3.8.1) s is surjective . If y�Xs x4s (y), and rkZ (Mx
gp / O*X , x ) D1

then there exists an isomorphism of OF -algebras O×X , x K
A

O×X , y .

Step 10: If x�Xs is a point where rkZ M gp
Xs , x / O*Xs , x 41, then we have

O×X , x KA OF eu , vf/(u n 2p), for some integer n , and the (unique) compo-
nent of Xs passing through x appears with multiplicity n in Xs %X . Now
the discussion in (2.6)(2) shows that there is a finite extension F 8 /F such
that the components of Xs 3OF

OF 8%X3OF
OF 8 passing through the points

which lie over x have multiplicity 1 . Hence, we may assume that the com-
ponents of Xs appear with multiplicity 1 in Xs %X . In particular, this im-
plies that the smooth points of Xs are dense. Note that although this base
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change destroys the regularity of X the condition (3.8.1) is still satisfied,
as one sees easily using the arguments with formal neighbourhoods
which appeared in Step 8.

Step 11: By [deJ2, 4.18], after making a further extension of scalars,
we may assume that there is a semi-stable curve X 8 and a dominant map
X 8KX , which is an isomorphism on generic fibres. First we claim that
X 8 can be obtained from X by repeatedly blowing up points, and normal-
ising. (Such an operation is called a «log. blow up of a point» or a «formal
log. blow up of a point» for the corresponding operation on a formal
scheme). To see this, note that if C%X 8 is a component of the special fi-
bre which maps to a point x�Xs , then X 8KX factors through the log.
blow up of X in x , using the universal property of blow ups, that C%X 8 is
a Cartier divisor, and the fact that X 8 is a normal scheme. Repeating the
argument, we see that there is a scheme X 9 obtained from X by repeat-
edly log. blowing up points and a finite dominant map X 8KX 9 which is
an isomorphism on generic fibres. However, as both sides are normal,
and the map is generically an isomorphism, it must be an isomor-
phism.

Now suppose that X 8KX 9KX , with X 9 obtained from X by log.
blowing up points. X 9 is log. smooth by (3.6). If z�X 9 is a point of the
special fibre X 9s with rkZ (MX 9

gp / O*X )z 41, then the calculation in Step 10,
and the fact that X 8 is semi-stable implies that X 9 is already smooth at z .
Thus we may assume X 8 is obtained from X by only log. blowing up
points z where rkZ (MX 9

gp / O*X )z F2.
Finally we explain how to modify the algorithm which produces X 8

from X in such a way that it produces a semi-stable scheme XA8 such that
s lifts to XA8s equipped with its canonical log. structure. For this suppose
that we have X 8KX 9KX as above. I claim that there exists a scheme
XA9KX , obtained from X by repeatedly blowing up points and such
that

(1) If M 9 denotes the log. structure on XA9 , then s lifts to the an en-
domorphism s 9 of the special fibre (XA9s , M 9s ) of (XA9 , M 9 ).

(2) For each z� XA9s there exists a point z 1�X 9 and an isomor-
phism of OF-algebras O×X 9 , z 1 KA O×XA9 , z .

(3) s 9 satisfies the condition (3.8.1).

To see this note that if X 94X , there is nothing to prove. We proceed
by induction on the number of log. blow ups necessary to obtain X 9 from
X . Suppose that the result is known for a given X 9 as above. For each z�
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� XA9 fix a z 1�X 9 satisfying (2) above. Let y�X 9 , and suppose that in the
algorithm for obtaining X 8 from X by log. blow ups we are required to
log. blow up y . If there is no z� XA9 with z 14y , then we may replace X 9

by its log. blow up in y , and leave XA9 unchanged. Suppose that we have a
z� XA9 with z 14y . Let S% XA9s be the finite set of points w with
rkZ (M 9gp / O*X 9 )w D1. As s 9 satisfies (3.8.1) it permutes the points of S by
(3.5). Let T%S be the set of points w�S such that the orbit of w under s 9

contains a point z with z 14y . We claim that if we replace X 9 by its log.
blow up W in y , and XA9 by its log. blow up WA in T , then the conditions (1),
(2), (3) above are still satisfied.

Indeed, (1) follows from (3.6) and the fact that T is stable under s 9 .
To see (2) note that condition (3.8.1), and the fact that each s 9 orbit of T
contains a point z with z 14y implies that if x�T there is an isomor-
phism O×XA9 , x KK O×X 9 , y , so that the formal blow ups of Spf (O×XA9 , x ) and
Spf (O×X 9 , y ), in x and y respectively are isomorphic. Thus if wA � WA lies
over x , then there exists a point w�W lying over y with O×WA, wA KA O×W , w , as
required.

Finally to check (3) let s W
A

be the lift of s 9 to the special fibre WAs of WA

equipped with its log. structure, and denote by r : WA K XA9 the canonical
projection. Take u , v� WAs with u4s W

A
(v). If r(u), r(v) �T% XA9 , then

(3.8.1) follows from the corresponding property for XA9 . If r(u), r(v) �T ,
then (3.8.1) for XA9 implies that there is an isomorphism between the for-
mal neighbourhoods of r 21 (r(u) ) % WA and r 21 (r(v) ) % WA, which lifts s W

A

(cf. Step 9). In particular such an isomorphism induces an isomorphism
O×WA, u KA O×WA, v , whence (3) also holds.

If we apply the above result with X 94X 8 , then we see we may as-
sume that XA9 is semi-stable. Replacing X 8 with such a XA9 we see that we
may assume that s lifts to the special fibre X 8s of X 8 , equipped with its
canonical log. structure. Now the theorem follows from Step 9, and the
semi-stable case, which has already been proved. r

(3.9) We will see in the next section that Theorem 3.3 has an ana-
logue using log. crystalline cohomology. For higher dimensions, the fol-
lowing conjecture seems reasonable.

CONJECTURE (3.10). Let (Xs , Ms ) be proper and log smooth over k ,
of dimension d . Suppose we are given an endomorphism s of (Xs , Ms ).
Let Xs

s%Xs denote the fixed subscheme of s . Let Y be a log. smooth OF-
scheme, such that Ys is an open neighbourhood of Xs containing X s

s . De-
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note by K the completion of Y along Xs
s . Suppose that s lifts to an endo-

morphism s× of K , and that the induced endomorphism s×h of the rigid fi-
bre Kh of K has a fixed point subspace which consists of isolated
points.

Then

JFix (s×h ) 4 !
i40

2d

(21)i tr (Hi (s)NHi (Xs , RCQl ) ) ,

where l is any prime different from p , and H i (s) denotes the map on co-
homology constructed in (1.6) from s .

(3.11) As noted in the introduction, Theorem 3.3 implies, in particu-
lar that the number of rigid fixed points of s×h specialising to a given iso-
lated fixed point of s is independent of the choice of K , and s×. Thus, this
number should have an a priori definition, which suggests the existence
of an intersection theory for log. schemes. Such a theory would quite
likely lead to a proof of Conjecture 3.10.

4. The crystalline realization of the theory.

(4.1) The theory of § 1-3, uses étale cohomology. However, the con-
structions, and results have other «realizations.» In this section we want
to sketch how to obtain similar results using log. crystalline cohomology.

We work first of all with the usual situation of a log. smooth (of Carti-
er type) scheme over OF , where OF is a mixed characteristic valuation
ring. We compare log. crystalline cohomology of the special fibre, and de
Rham cohomology of the general fibre, and prove a Lefschetz Trace For-
mula in the style of § 3.

(4.2) Suppose we are given a log. scheme (S , N), with OS killed by
some positive integer, and S equipped with a coherent ideal I which is
equipped with a divided power structure g . We consider a log. scheme
(X , M) over (S , N), such that g extends to X . We refer to [HK, 2.15] for
the definition of the logarithmic crystalline site ((X , M) /(S , L , g) )crys .
We often abbreviate this to (X/S)crys .

Since we do not use the definition of (X/S)crys explicitly in the follow-
ing, we do not explain it here, but instead list some of the properties of
this site, which will be used in the following.

(1) (X/S)crys is equipped with a sheaf of rings OX/S .
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(2) There is a canonical morphism of topoi (but not of ringed
topoi!) [HK, 2.20].

u log
X/S : (X/S)crys KXét .

(3) Consider a discrete valuation ring OF , as above, with perfect
residue field k of characteristic p , and quotient field F . We set Sn 4

4Spec (W(k) /p n ), equipped with the log. structure induced from W(k).
Let (Xs , Ms ) be a proper smooth log. scheme over (k , N1 ) which is of
Cartier type [Ka, 4.8]. The Hyodo-Kato cohomology H m

HK (Xs /W(k) ) of
(Xs , Ms ) is defined by

H m
HK (Xs /W(k) ) 4 lim

J
H m ( (Xs /Sn )crys , OXs /Sn

) .

If (Xs , Ms ) is the special fibre of a proper log. smooth OF-scheme
(X , M), then there is a canonical isomorphism

F7W(k) H m (Xs , W(k) ) K
A

H m
dR (Xh /F) ,

the latter being the de Rham cohomology of the generic fibre Xh of X
[HK, 5.1].

(4.3) Now suppose that we have the situation of Proposition 1.9.
Arguments analogous to those of §1 show that f induces a map on

cohomology

HHK
i ( f ) : H i

HK (Ys /W(k) ) KH i
HK (Xs /W(k) ) .

In particular, any map f : Xs KYs satisfying the condition (1) and (*) of
(2.4) induces a map on Hyodo-Kato cohomology. If Xs and Ys are the spe-
cial fibres of log. smooth, proper OF-schemes X and Y respectively, then
(4.2)(3) shows that f induces a map between the de Rham cohomology of
X and Y .

If f : Xs KYs is as above, but only satisfies the condition (2.4)(1), then
as in the remark (2.6)(2), if each irreducible component of Xs dominates
an irreducible component of Ys , then after a finite extension F 8 /F , we
may assume that f satisfies the condition (*) of (2.4). Thus, in any case, if
F denotes the algebraic closure of F , then f induces a map

H i
HK (Ys /W(k) )7W(k) F KH i

HK (Xs /W(k) )7W(k) F .

We also have an analogue of (3.3):
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THEOREM 4.4. Suppose that we are in the situation of theorem 3.3.
Then

JFix (s×h ) 4 !
i40

2

(21)i tr (HHK
i (s)NH i

HK (Xs /W(k) ) .(4.4.1)

PROOF. Formally the proof is the same as that of (3.3), so we just
sketch it, with emphasis on the points which are slightly different. As in
the proof (3.3), we can reduce to the case where Xs is the special fibre of a
semi-stable curve. The key point is that both sides of (4.4.1) are invariant
under log. blowing up: for the left hand side this is a purely geometric
fact, and was already discussed in the proof of (3.3), and for the right
hand side this follows for example from the comparison with de Rham
cohomology in (4.2)(3). In the semi-stable case, the calculation of the left
hand side of (4.4.1) is the same as in (3.3), being purely geometric. To cal-
culate the right hand side we need an analogue of (3.3.2).

We claim that the right hand side of (4.4.1) is equal to the following
expression:

!
T

!
i40

2

(21)i tr (sNH i
cris (T/W(k) ) )22 !

y
e y ,(4.4.2)

Here H i
cris denotes usual crystalline cohomology, and the rest of the no-

tation is as for (3.3.2). Assuming the claim, we may finish the proof as in
(3.3), by applying the Lefschetz Trace Formula for crystalline cohomolo-
gy to each smooth component T above (see [GM] - which covers the case
of intersections with multiplicity).

It remains to show the claim. Denote by XAs the normalisation of Xs ,
and by X7s %Xs the smooth part of Xs . We may also view X7s as an open
subset of XAs , and we denote by j : X7s KXs , and jA : X7s K XAs the two open
immersions. We need the fact that there is a complex of sheaves W l

Xs /W on
Xs , ét (which we may take to be the so called logarithmic de Rham-Witt
complex [HK]), such that there is a canonical isomorphism

H m
HK (Xs /W(k) ) KA H m (Xs , ét , W l

Xs /W ) .(4.4.3)

We have a similar statement with XAs in place of Xs , and then the left
hand side is simply the usual crystalline cohomology of XAs . Set

K1 4Cone ( j! j * W l
Xs /W KW l

Xs /W ) ,

K2 4Cone ( jA! j
A* W l

XAs /W KW l

X
A

s /W ) .
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Using j * W l
Xs /W KA jA* W l

XAs /W , we obtain exact triangles

RG c (X7s , ét , j * W l
Xs /W ) KRG(Xs , ét , W l

Xs /W ) KRG(Xs , ét , K1 ) ,

RG c (X7s , ét , j * W l
Xs /W ) KRG(XAs , ét , W l

XAs /W ) KRG(X
A

s , ét , K2 ) .

These exact triangles will allow us to compare the right hand side of
(4.4.1) with (4.4.2), using (4.4.3) once we have computed the trace of s on
H m (Xs , ét , K1 ) and H m (XAs , ét , K2 ). As the Ki are supported on isolated
points, these cohomology groups are non-zero if and only if m40. In
this case consider a double point y�Xs 2X7s , and denote by yA1 , yA2 � XAs

the two points over x . Using the formulas of [HK, 4.6] one computes that
the cohomology of K2 is concentrated in degree 0 and that of K1 in de-
grees 0 and 1 . One also sees that if s fixes y then we have

tr (sNH 0 (K2, yA1
)5H 0 (K2, yA2

) ) 411e y ,

tr (sNH i (K1, y ) ) 4
.
/
´

1

e y

i40 ,

i41 .

Taking an alternating sum of traces on suitable cohomology groups gives
(4.4.2) r

Of course we expect that Conjecture 3.10 also holds with crystalline
cohomology.
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