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Small Almost free Modules
with Prescribed Topological Endomorphism Rings (*).

A. L. S. CORNER (**) - RÜDIGER GÖBEL (***)

ABSTRACT - We will realize certain topological rings as endomorphism rings of ]1-
free abelian groups of cardinality ]1 where the isomorphism is also a homeo-
morphism relating the topology on the given ring to the finite topology on the
endomorphism ring. This way we also find ]1-free abelian groups of cardinali-
ty ]1 such that any non-trivial summand is a proper direct sum of an infinite
number of summands. This answers a problem raised by the authors in [7, p.
447, (I)], (saying that ]1�vat (R) in the cotorsion-free case). The fact that the
size of the continuum could and in particular universes of set theory will be
much larger then ]1 causes difficulties in constructing pathological abelian
groups G of size ]1 in «ordinary» set theory using just ZFC: There are less
possibilities to prevent potential, unwanted endomorphisms of G not to be-
come members of End G. Thus additional combinatorial arguments are need-
ed. They come from [15], were improved for this paper, and are now ready for
applications for other algebraic aspects. The results are formulated for mod-
ules over a large class of commutative rings.

1. Introduction.

First we would like to discuss the algebraic setting of this paper. Let
R be a commutative ring (with 1) of cardinal Gl , and let S be a countable
multiplicatively closed set of non-zero-divisors in R such that R is S-re-
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duced in the sense that 1
s�S

sR40. List the elements of S in a sequence sn

(n�v), and write

q0 41, and qn11 4sn qn
2 (nEv).(1.1)

For a free R-module F , the submodules qn F (nEv) constitute a basis of
neighborhoods of 0 in the (Hausdorff) S-topology on F; the correspond-
ing S-completion F× contains F as an S-pure submodule, in the sense that
sF×OF4sF for all s�S .

The endomorphism algebra EndR M of an R-module M carries the
natural finite topology fin, which is generated by the annihilators
AnnEnd M E of all finite subsets E of M . (The finite subsets may be re-
stricted to singletons, in which case the annihilators constitute a preba-
sis for fin at 0 .) It follows that (EndR M , fin) is a Hausdorff, complete
topological R-algebra, see [13, p. 221, Theorem 107.1] This suggest im-
mediately to consider R-algebras A with 1 and endowed with a similar
topology.

Let A be complete and Hausdorff in a topology admitting a basis of
neighborhoods of 0 consisting of a set 9 of right ideals N such that the
quotients A/N are free as R-modules. We impose the cardinality restric-
tions that

N9NGl and sup
N�9

NA/NNEl ,(1.2)

and define

k4 gsup
N�9

NA/NNh1

,(1.3)

where the plus sign denotes the cardinal successor. Then k is a regular
cardinal, and

]1 GkGlG2]0 .(1.4)

The cardinal l can be arbitrary, if set theory permits! Our favored
example however is l4]1 . The other cardinal restrictions come from
our aim to produce R-modules of size close to ]1 with the prescribed
topological endomorphism ring. For larger cardinals, in particular for
any cardinal l of the form l4l]0 this was established in [7, p. 465, Corol-
lary 6.4]. Thus we can view our restriction to ]1 as a particular way to
avoid the cardinal restriction l4l]0 , here for l4]1 .



Small almost free modules etc. 219

An obvious first attempt to find the cardinal ]1 �vat (A), the spec-
trum of cardinals l , for which a (suitable) algebra can be expressed as
A4EndR M with NMN4l (see [7, p. 447]), is replacing the arguments
using the Black Box by a different combinatorial method, because the
latter requires that l4l]0 . The Black Box prediction principle was used
in [7] and relatives are discussed in Göbel [14].

However, it is important to note that there are basic difficulties for
lEl]0 to become a member of vat (A), as shown recently in Göbel, She-
lah [16, pp. 240-243, Section 3, The non existence of realization theo-
rems]: For particular classes of modules, like for abelian p-groups, or
separable torsion-free abelian groups, we have ]1 �vat (R) for any ring
R . This motivated our aim to consider the class of ]1-free modules of car-
dinality ]1 , which is still very close to separable, torsion-free abelian
groups. Recall that modules are ]1-free, if all countably generated sub-
modules are free.

In [15] we derived a new combinatorial method, which allows to pre-
dict endomorphisms of a module (under construction) of cardinality ]1

by a list of candidates which has only ]1 members. We may assume
(w.l.o.g) that for each unwanted member of this list a new element is
added to the module under construction which prevents that member to
become an endomorphism of the final module. Thus the length of this list
of prediction should not pass beyond ]1 .

Also note that by an easy counting argument our prediction of endo-
morphisms must be restricted to their action on only finite subsets or
singletons; otherwise the list would have length at least 2]0 which often
is larger then ]1 . Therefore it is not clear at the beginning if the given
predictions, which provides only very little information about the actual
endomorphism, are good enough to lead to our task, prescribing A as en-
domorphism ring and to find out that ]1 �vat (A).

In [15] it was shown that any countable R-algebra with free
R-module structure is the endomorphism algebra of a suitable R-module
of size ]1 which is ]1-free. Thus the existence of various pathological
modules of this kind, in particular the existence of indecomposable
modules of cardinality ]1 which are ]1-free follows. Here we want
to strengthen this result and realize any suitable topological ring
as such an endomorphism ring algebraically and topologically. On
the endomorphism ring End M of an R-module M we take the finite
topology fin introduced above. Moreover we want to simplify arguments



A. L. S. Corner - Rüdiger Göbel220

from [15], which will also shorten the proof in the discrete case.
Thus our main result reads as follows.

THEOREM 1.1. Let A be a topological R-algebra over a ring R as de-
scribed above, then there exists an ]1-free R-module M of cardinality l
with End M`A where the isomorphism is an algebraic and topological
isomorphism.

If the topology on A is discrete we obtain the main result in Göbel,
Shelah [15] as a special case. Also other earlier results like the existence
of an ]1–free group M of cardinality ]1 with Hom (M , Z) 40 follow, see
Eda [11] and Shelah [19], [10, 12].

The main difficulty here is to work exclusively in ZFC. The first
example of an ]1-free module which is not free is the Baer-Specker mod-
ule R v , which is the cartesian product of countably many copies of the
ring R , known for sixty years; cf. Baer [1] or [13, p. 94]. Assuming CH,
this module is an example of an R-module of cardinality ]1 42]0 . How-
ever, it is surely (assuming that R is slender) a finite but not an infinite
direct sum of summands c0. Under the same set-theoretic assumption
of the continuum hypothesis it can be shown that A above can be realized
as the endomorphism ring of an ]1-free R-module M of cardinality ]1 ,
see Shelah [20] for the discrete case with End M4Z and Dugas, Göbel
[8] for the discrete case and A4End M with extensions to larger
cardinals. Using Shelah’s Black Box, the existence of ]1-free modules M
with NMN4l]0 and End M`A also topologically follows from Corner,
Göbel [7].

Endomorphism ring results as discussed have well-known applica-
tions using the appropriate also well-known R-algebras A .

If G is any abelian semigroup, then we use the R-algebra AG , implicit-
ly discussed in Corner, Göbel [7], and constructed for particular G 8 s in
[5] with special idempotents, with free R-module structure and NAGN4

4 max ]NGN , ]0 (. If NGNGl , we may apply the discrete case of the main
theorem and find a family of ]1-free R-modules Ma (a�G) of cardinality
]1 such that for a , b�G ,

Ma5Mb`Ma1b and Ma`Mb if and only if a4b .

Observe that this induces all kinds of counterexamples to Kaplan-
sky’s test problems for suitable G 8 s . If we consider the algebra A in Cor-
ner [3] (see also [13, Vol. II, p. 145, Theorem 91.5]), then it is easy to see
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that AR is free and NAN4]0 . The particular idempotents in A and our
main theorem provide the existence of an ]1-free super-decomposable R-
module of cardinality ]1 . Recall that a group is super-decomposable if
any non-trivial summand decomposes into a proper direct sum. Super-
decomposable abelian groups of cardinality 2]0 were also constructed
(without considering endomorphism rings) in Birtz [2] and the existence
of non-free but ]n-free groups of cardinality ]n (n�v) (without any
more specific algebraic properties) follows from Griffith [17].

Our main theorem allows us to strengthen these results and to estab-
lish the existence of k-super-decomposable groups. We say that M is k-
super-decomposable if for any cardinal rEk any non-trivial summand of
M is a direct sum of r non-trivial summands. The existence of ]1-free k-
super-decomposable modules G of cardinality k (e.g. for k4]1) follows
by realizing the algebra given in Corner [6] as a topological endomor-
phism algebra. In case k4]1 we therefore find R-modules of size ]1 such
that every non-trivial summand is a direct sum of an infinite number of
non-trivial summands, which is a property stronger then super-decom-
posable and thus sometimes called very decomposable.

It is fairly straight to replace the module M in the theorem by a fami-
ly of modules MX with X’l such that for all X , Y’l

HomR (MX , MY ) `

.
/
´

A

0

if X’Y’l

otherwise .
(1.5)

2. The construction of modules.

Once and for all fix an uncountable cardinal lG2]0 and adopt the al-
gebraic assumptions explained in the introduction.

Write T4vD 2 for the binary tree. We will say that a subtree T 8 of
vF 2 is perfect if for any n�v there is at most one finite branch f�T 8 of
length n of the form f4vOw for branches v , w�T 8 .

Define the map

s :v2 Kv 2 (vKv s )

where

(2.1) v s (m)4
.
/
´

v(n)

0

if 2n11GmE2n12 and m42n111!
i40

n

2n2i v(i)

otherwise .
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Clearly v s (0) 4v s (1) 40. Consider v , w�v2 and suppose that
v s (m)4w s (m)41. Thus mF2 and v(n)4w(n)41, where 2n11GmE2n12,

and also m42n11 1 !
i40

n

2n2i v(i)42n111!
i40

n

2n2i w(i). From !
i40

n

2n2i v(i)4

4 !
i40

n

2n2 i w(i) and v(i), w(i) � ]0, 1( follows that vN3 n4wN3 n and vN3 n1

114wN3 n11 from the above. It follows that the map s is injective. If

T s4 ]v s N3 m : v�v2, m�v(,

then we want to show the following

PROPOSITION 2.1. If s is the map given by (2.1) then

(a) s :v2 Kv2 defines an injective tree embedding.

(b) T s is a perfect subtree of T with Br (T s ) 4Im s .

PROOF. Clearly T s is a subtree of T with Br (T s ) 4Im s , so it re-
mains to show that it is perfect. Suppose

m4br (v s , w s ) 4br (v 8s , w 8s )

for pairs v , w and v 8 , w 8 from v2 to branch at the same level m . We may
assume that v s (m) 4v 8s (m) 41 [thus w s (m) 4w 8s (m) 40]. From the
preceding argument follows vN3 n11 4v 8 N3 n11 where 2n11 GmE

E2n12 . So also v s N3 2n11 4v 8s N3 2n11 and the two branches v s and v 8s must
coincide up to the branch point m , i.e.

v s N3 m11 4v 8s N3 m11.

Similarly w s N3 m11 4w 8s N3 m11 thus v sOw s4v 8sOw 8s and T s must
be perfect. r

If X’vF2 then we call [X] 4 ]br (v , w) : vcw�X( ’v the support of
X. Using a sequence of almost disjoint subsets of v and Proposition 2.1
we can fix for the remaining paper a sequence Ta (aEl) of perfect trees
with Br (Ta ) pair-wise disjoint and [Ta ] pair-wise almost disjoint for all
aEl . Moreover let Va’Br (Ta ) be a subset of infinite branches of cardi-
nality l for each aEl .

Identify the set

G4T393l ,(2.2)
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as a subset of a direct sum

BQ4 5
(t , N , a) �G

(t , N , a) A(2.3)

of cyclic A-modules with annihilators given by

AnnA (t , N , a) 4N .(2.4)

Continuity of multiplication in A implies that every element of BQ is an-
nihilated by some element of 9 . It is clear that as an R-module BQ is
free of rank l . Each element of the S-completion BQ

× is expressible as a
countable sum g4 !

(t , N , a)
g(t , N , a) for suitable g(t , N , a) � ( (t , N , a) A)×; we

define the support of g by

[ g] 4 ](t , N , a) �GNg(t , N , a) c0(.(2.5)

The norm of g is the ordinal

VgV4 sup ]aN(t , N , a) � [ g] for some t�T , N�9(;(2.6)

and the norm of a subset of BQ
× is taken to be the supremum of the norms

of its elements.
We shall call an element b of BQ basal if it has the two properties that

bA is a direct summand of the A-module BQ and AnnA (b) �9 . Fix a se-
quence ba (aEl) running l times through the set of all basal elements in
BQ , and set

Na4AnnA (ba ) (aEl).(2.7)

Next we construct a continuous increasing sequence Ga (aGl) of sub-A-
modules of the S-completion BQ

×. For a start, we take G0 40. Assume in-
ductively that for some aEl , Ga has been so constructed that

VGa V4a .(2.8)

Set

ga4
.
/
´

ba

0

if ba�Ga

otherwise
(2.9)

and, for v�Va , nEv , write

yv , n 4 !
iFn

qi

qn

(vN3 i , Na , a)1ga !
iFn

qi

qn

v(i).(2.10)



A. L. S. Corner - Rüdiger Göbel224

We now define

Ga11 4Ga1Fa ,(2.11)

where

Fa4 aT3 ]Na(3 ]a(bA 1 a]yv , n Nv�Va , nEvbA .(2.12)

Our choice of yv , n and ga ensures that Ga11 is an S-pure submodule of BQ
×

and that VGa11 V4a11. Continuity takes care of the definition of Ga at
a limit ordinal a . We define G to be equal to Gl , so that

G4Gl4 0
aEl

Ga4 !
aEl

Fa .(2.13)

We note

PROPOSITION 2.2. NGN4l and G/Ga is an ]1-free R-module for each
aEl .

PROOF. We consider any non-empty finite set E’G/Gb . Choose aEl
minimal with E’Ga /Gb . First note that aDb must be a successor be-
cause E is a proper finite set, hence g4a21 Fb exists. Also note that
Ga /Gb is a quotient of A-modules, hence an A-module. By induction it is
enough to show that

(2.14) E’ (U1Gb ) /Gb5Gg /Gb’* Gg11 /Gb

for a free A-module (U1Gb ) /Gb .

First we want to find inductively an A-submodule U’Ga . Let T m be the
set of elements in T of length Gm for any m�v . From (2.11) we find a
finite set E 8’Gg11 of representatives of the elements in E , a finite set
F’Vg , and a number mEv such that

E 8’U1Gg where U4 aT m N ]yvmgg
: v�F(bA .

Moreover we may assume that [vm ]O [wm ] 4¯ for all vcw�F . A sup-
port argument shows that the defining generators of U are A-indepen-
dent modulo Gg , hence U1Gb /Gb must be A-free and Gg /GbO (U1

1Gb ) /Gb40.
Now it is easy to show that U is R-pure in G which also implies the

purity in (2.14). If h�G0Gg11 , then an easy support argument shows
that Gg11 is pure in G that is to say that dh�Gg11 for any 0 cd�R and
in particular dh�U . We may suppose that h�Gg11 , and by the last con-
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siderations we find a finitely generated A-submodule

U 84 aT m 8
g N ]yvm 8 gg

: v�F 8(bA

for some number m 8Fm and finite set F’F 8’Vg with h�U 8 . We may
assume that m 8 is chosen such that also

[vm 8 ]O [wm 8 ] 4¯ for all vcw�F 8 .

One more support argument now shows that U is a summand of U 8 , we
leave it as an exercise to write down a complement of U in U 8 . If dh�U
for some 0 cd�R , then h�U follows from h�U 8 , which shows that U
is pure in G . r

Finally, we define

Ba4 aT3 ]Na(3 ]a(bA for any aEl and B4 5
aEl

Ba .(2.15)

It is immediate from the construction that

B’G’ B×,(2.16)

and that G is S-pure in B×. It is also clear that the annihilator of every ele-
ment of G is open in A . It follows that the natural map AKEndR (G) is a
topological embedding. To prove that it is a topological isomorphism we
therefore only have to prove that it is surjective.

In fact it will be enough to prove that each endomorphism W�EndR G
has the property that bW�bA for each basal b�B . For suppose that W
has this property.

bW4bab (b�B),(2.17)

where each ab �A . For any x�B we may choose b4 (t , Na , a) �
�G0( [x]N [xW] ) with the property that AnnA (x) *N4AnnA (b). Easy
checks show that AnnA (b1x) 4N and that the direct summand bA
on the right-hand side of (2.3) may be replaced by (b1x) A . Therefore
b1x is basal, and we have (b1x) ab1x 4 (b1x) W4bW1xW4bab 1xW ,
whence

b(ab1x 2ab ) 4xW2xab1x .(2.18)

Our choice of b implies that the supports of the two sides here are dis-
joint, so both sides vanish. Thus ab1x 2ab �AnnA (b) ’AnnA (x), and
xW4xab1x 4xab 4xax . It follows that if for the moment we convert B
into a directed set (B , G) by writing yGz to mean AnnA (y) *AnnA (z) for
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y , z�B , then the net (ax )x�B contains a cofinal Cauchy subnet, namely
the subnet indexed by the basal elements. By the completeness of A , the
whole net converges to an element a�A , and we have proved that xW4

4xa (x�B). Thus W agrees with scalar multiplication by a on B and, by
continuity, also on G .

PIGEON-HOLE LEMMA 2.3. Let aEl and bGl , and assume that we
have a family of elements tv �Gb (v�W) indexed by a subset W’Va of
cardinal NWN4k and a finitely generated sub-A-module H of Gb with
the property that

v , w�W and br (v , w) 4m ¨ tv 2 tw �H1qm Gb .(2.19)

Then there exist a subset W 8’W with NW 8N4k and a finite sequence of
ordinals b 1 EREb s Eb such that

tv � !
i41

s

Fb i
for all v�W 8 .(2.20)

PROOF. We induct on b . The result is vacuous for b40, so we sup-
pose bD0 and assume the analogous result for smaller ordinals.

Take first the case of a limit ordinal b . If, for some gEb , Gg contains
a subfamily tv (v�W 8) of cardinal k , then since we may suppose that g is
large enough for Gg to contain also the finitely generated H , a simple ap-
plication of the modular law implies that W 8 satisfies the analogue of
(2.19) with g in place of b , and the result follows at once by our inductive
hypothesis. Assume then, for a contradiction, that no such gEb exists.
Then one easily produces a continuous increasing sequence of ordinals
b jGb (jGk) and branches vj�W (jEk) such that

tvj
�Gb j11

0Gb j
(jEk),

and it is clear that we must in fact have b k4b; and there will be no loss
if we assume also that H’Gb 0

. For each jEk , the coset tvj
1Gb j

is a
non-zero element of Gb j11

/Gb j
. But by Proposition 2.2 this quotient is ]1-

free and therefore S-reduced. So for some mjEv we have tvj
1Gb j

�qmj
Gb j11

/Gb j
or, in other words,

tvj
�Gb j

1qmj
Gb j11

.(2.21)

A pigeon-hole argument shows that there is a subset C’k of cardinal
NCN4k on which mj is constant; say mj4m (j�C). Now, if a set of
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branches v�v2 admits a bound n0 on the levels of its branching points,
since v O vN3 n0 is visibly an injection into a finite set, it is clear that the
set in question must be finite. Since the set ]vn Nn�C( is infinite, we may
certainly choose indices j and h such that br (vj , vh )4nDm and jEh .
Then

tvh
2 tvj

�H1qn Gb h11 ,

and, since tvj
and H both lie in Gb h

, it follows that

tvh
�Gb h

1qm Gb h11 4Gb h
1qmh

Gb h11 ,

contrary to (2.21).
We now assume b4g11 and that the lemma holds for all ordinals

Gg . Using support arguments, (1.1) and (2.9)-(2.12) we will show first
that

GgOFg4gg A .(2.22)

Choose any v�Vg and apply (2.10) for some n�v with v(n) 41. Thus
sn qn 4qn11 /qn and

yv , n 2sn qn yv , n11 4yv , n 2 (qn11 /qn ) yv , n11 4

4 (vN3 n , Ng , g)1 !
iFn11

(qi /qn )(vN3 i , Ng , g)1gg1 !
iFn11

(qi /qn ) v(i)

2 !
iFn11

(qi /qn )(vN3 i , Ng , g)2 !
iFn11

(qi /qn ) v(i) 4 (vN3 n , Ng , g)1gg�Fg .

However (vN3 n , Ng , g) �Fg and gg�Gg , thus

gg A’FgOGg .

On the other hand h�Fg can be expressed as a sum

h4 !
v�E

av yv , m 1ag gg1 t , (av , ag�A)

for large enough m�v , a finite subset E’Vg and t�Bg . We may assume
for vcw�E that

[ gg ]O [yv , m ] 4 [yv , m ]O [yw , m ] 4¯ .

If also h�Gg , consider any t� [yv , m ] to see that av 40 and similarly
t40. Hence h4ag gg and GgOFg’gg A , so (2.22) follows.

Now the proof of the lemma when b4g11 will be easy.
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Let H’Gg11 , tv �Gg11 (v�W) satisfying the hypothesis of the lem-
ma. Using (2.22), we can write

tv 4 t 0
v 1 t 1

v (tv
0 �Gg , tv

1 �Fg ) for all v�W ,

so that

tv 2 tw �H1qm Gg11 whenever br (v , w) 4m .

We can also find finitely generated sub-A-modules H 0 , H 1 of Gg and Fg

respectively such that H’H 0 1H 1 . Thus

(t 0
v 2 t 0

w )1 (t 1
v 2 t 1

w )1h 0 1h 1 1qm g1qm f40

for suitable elements h i �H i and g�Gg , f�Fg . From (2.22) follows

(t 0
v 2 t 0

w )1h 0 1qm g4 (t 1
w 2 t 1

v )2h 1 2qm f�gg A .

Hence (t 0
v 2 t 0

w ) � aH 0 , gg Ab1qm Gg , and by induction tv
0 � !

i41

s

Fg i
for all

v�W 8 , a suitable W 8’W with NW 8N4NWN and g 1 EREg s Eg11. If
we add g s11 4g , then

tv
0 � !

i41

s11

Fg i
for all v�W 8

completes the induction. r

3. Comparing branch point.

PROPOSITION 3.1. Let m0 �v , b 1 EREb s be a sequence of ordi-

nals and b s , aEl. Assume that we have a family tv�!
i41

s

Fb i
for all v�W

of elements indexed by a subset W’Va of cardinal NWN4k , then we can
find natural numbers m , j *Fm0 , a subsequence of ordinals, renamed
b 1 EREb s and another family

tv � !
i41

s

Fb i
indexed by W , which is of the form tv 4 !

i41

n

ai yvi m

in which the ais, n and m do not depend on v . The new family is ob-
tained by passing to an equipotent subset of W which we rename W and

adding to members of the old family a fixed element in !
i41

s

Fb i
. The new



Small almost free modules etc. 229

family has additional properties for i , jGs , v�W

(a) 0
jGs

[ gb j
]O [yvi m ] 4¯

(b) [vim ]O [vjm ] 4¯ for all ic j and the branches vi (v�W) are
pair-wise distinct.

(c) vi �Vb j
for some j4 j(i) Gs which is independent of v .

(d) Ann yvi
4Ni �9 for all v�W .

(e) The vi N3 j * are pair-wise distinct and independent of v .

(f ) ai 1Ni �A/Ni 0qj *21 (A/Ni )

(g) [Tb i
]O [Tb j

] ’ j * for all ic j and [Tb i
]O [Ta ] ’ j * for all

b i ca .

PROOF. We will apply several pigeon-hole arguments and after pass-
ing to a subset of W , we will silently name it W . As a first application we
may assume that W in the hypothesis of the proposition satisfies

br (v , w) Dm0 for all distinct pairs v , w�W .(3.1)

By (2.10) any sum !
n

an yv , n can be expressed as a summand am yv , m

for a large enough m , and any tv (v�W) by (2.12) can be written as a sum
of elements in Fb i

, which are therefore of the form

!
l41

t

ali yvli mi
1bi 1ai gb i

(3.2)

with bi �Bb i
, ai , ali �A , t , mi �v depending on v . However NTb i

N ,
NAN , NvNEk4NWN and another pigeon-hole argument shows that
these elements no longer depend on v . Similarly, using (2.10), we may as-
sume that mi 4m in (3.2) does not depend on iGs and that the supports
satisfy (a) and the first part of (b) of the proposition. We may assume
that ali yvli

c0 for all pairs li . Since Ann vli 4Nb i
�9 as in (2.10) we have

ali �Nb i
and can choose m1 Dm0 such that

ali 1Nb i
�A/Nb i

0qm1
(A/Nb i

) for all pairs li .

Thus ( f ) will follow if we choose j *Dm1 .
We have

tv 4 !
i41

s g!
l41

t

ali yvli m 1bi 1ai gb i
h (v�W).(3.3)
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For any fixed v we can choose jv Dm1 such that all the vli N3 jv are dis-
tinct and by a pigeon-hole argument jv 4 j * does not depend on v and
surely j *Dm1 , hence (f ) holds. Also (e) of the proposition is shown. En-
larging j * further if needed, condition (g) is obvious. Now we identify all
pairs li with natural numbers Gn4st . Subtracting the constant ele-

ment !
i41

s

(bi1ai gb i
) we get a family of new elements tv4!

j41

n

aj yvj m . Apply

the D-Lemma (see Jech [18, p. 225]) to the finite sets ]vj : jGn( (v�W).
We can pass to a subset W again such that ]vj : jGn(O ]wj : jGn( 4D
for all distinct v , w�W . Again subtract the constant element d4

4 !
x�D

ax yvx m from each tv . Hence all new vis are distinct and (b) of the

proposition follows, which provides finally the new family in the
proposition. r

PROPOSITION 3.2. Let tv 4 !
i41

n

ai yvi m � !
i41

s

Fb i
(v�W’Va ) be the

family of elements given by Proposition 3.1 and let z�G0sz G for sz �
�S , szNqm0

having the property

tv 2 tw 6qb z�qb11 G for all v , w�W with b4br (v , w).(3.4)

Then there is a map p :]1, R , n( K ]1, R , s( such that for all
iGn

(a) vi , wi �Vp(i)

(b) br (vi , wi ) Fbr (v , w) F j *, in particular all br (vi , wi ) are
distinct.

(c) There is some jGs with br (vj , wj ) 4br (v , w) and p( j) 4a ,
gac0.

PROOF. By Proposition 3.1 (c) for each iGn there is a unique p(i) G

Gs such that vi , wi �Vb p(i)
come from the free Tb p(i)

, hence p and (a) are
obvious.

First we claim that the ki 4br (vi , wi ) (iGn) are pair-wise distinct,
which is part of (b). If there are ic j with ki 4kj then p(i) 4p( j) follows
from ki 4kj F j * and Proposition 3.1 (e) and (g). Hence vi , wi , vj , wj

come from the same tree Tb p(i)
. However vi Owi cvj Owj are distinct by

Proposition 3.1 (e) and of the same length ki 4kj which is impossible for
the perfect tree Tb p(i)

. Hence it remains to show for (b) that

bGki for all iGn ,
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which we postpone until (c) is shown. For this we need the hypothesis
(3.4) in the form

tv 2 tw 6qb z�qb11 G’
qb11

qm

G .

From (2.10) follows

yvi m 2ywi m 6
qki

qm

gb p(i)
4

qki11

qm

(yvi m11 2ywi m11 )(3.5)

and if b4br (v , w) Ek4 min ]ki , iGn( then b11 Gk for all iGn . We

derive yvi m 2ywi m �
qb11

qm

G , hence

tv 2 tw 4 !
iGn

ai (yvi m 2ywi m ) �
qb11

qm

G

and qb z�
qb11

qm

G follows. So z�
qb11

qb qm

G4
sb qb

sm

G’sz G from szNqm0
and m0 E

EmEb , which contradicts the choice of z .
Hence kGb and suppose kEb . We note that there is a unique jGn

with k4kj and kj Eki for all ic j by our first claim in the proof. From

k11 Gb and (3.4) follows tv 2 tw �qk11 G’
qk11

qm

G , moreover

!
jc iGn

ai (yvi m 2ywi m ) �
qk11

qm

G ,

hence

aj (yvj m 2ywj m ) �
qk11

qm

G

and aj
qk

qm

gb p(i)
�

qk11

qm

G from (3.5). We get aj gb p( j)
�

qk11

qk

G4sk qk G . Recall

kF j *21 and Ann gb p( j)
4Np( j) , hence aj 1Np( j) �qj *21 (A/Np( j) ) contra-

dicting Proposition 3.1 (f). Thus the first part of (c) follows, which imme-
diately implies p( j) 4a by Proposition 3.1 (g) (the second part) and (b),
(c) are shown. r
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4. Proof of the Theorem.

The main theorem will follow from a corollary of the results in section 3.

COROLLARY 4.1. Let tv 4 !
i41

n

ai yvi m � !
i41

s

Fb i
(v�WGFa ) be the fam-

ily of elements given by Proposition 3.1 and let z�G0sz G be as in
Proposition 3.2 with the property (3.4) [such that Ann z*Ann ga ], then
z�Aga .

PROOF. If tv 2 tw 4 !
i41

n

ai (yvi m 2ywi m ) and b4br (v , w), then by

Proposition 3.1 and Proposition 3.2 we have

tv 2 tw 2aj (ynj m 2ywj m ) �qb11 G

with p( j) 4a as in Proposition 3.2 (c), where br (vjm , wjm ) 4br (v , w) 4

4b . From (3.4) follows

qb z2aj (yvj m 2ywj m ) �qb11 G’
qb11

qm

G

and similarly, using (3.5) we have

qb z2aj
qb

qm

ga�
qb11

qm

G

thus qm z2aj qa�
qb11

qb

G’sb qb G .

Choose a sequence (v , w) of pairs v , w�W with br (v , w) 4b�w
converging to infinity. Thus qm z2aj ga� 1

b�w
sb qb G40 and qm z4aj ga .

Note that ga in BQ is basal with AnnA ba4Na , hence aj 4a 8 qm and
z�Aga . r

We finally prove the main theorem.

PROOF. By (2.17) it remains to show that bW�bA for all basal 0 cb�
�B . We fix a basal element b�B and suppose that z4bW�bA . Choose
any aEl such that b4ga�Ga and Ann ga4Na�9 . In particular zc0
and there is m0 �w with z�sz G for some sz �S and szNqm0

. Consider Fa

as in (2.12) and take its family

tv 4yv W (v�Va ) .
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From (2.10) follows yv 2yw 6qb ga�qb11 G for b4br (v , w), hence

tv 2 tw 6qb z�qb11 G for any v , w , �Va with b4br (v , w).

The tv8 s constitute a family satisfying the hypothesis of Proposition
3.1 and Proposition 3.2. Passing to the subfamily in Proposition 3.1 we
can apply Proposition 3.2 and get z�ga A from Corollary 4.1, which is a
contradiction. It follows bW�bA as desired. r
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