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The Cauchy Stress Theorem for Bodies
with Finite Perimeter.

ALFREDO MARZOCCHI (*) - ALESSANDRO MUSESTI (**)

ABSTRACT - The Cauchy Stress Theorem is proved for bodies which has finite
perimeter, without extra topological assumptions, and the notions of Cauchy
flux and Cauchy interaction are extended to this case. Also bodies with an
empty interior can be considered.

1. Introduction.

The concept of subbody of a continuous body is, in the classical ideal-
ization, not very different from the concept of the global body itself. For
instance, it is very common to regard every subbody as a whole body, the
only difference being the interpretation of the forces on its surface. The
development of rational continuum mechanics in this direction has tried
to generalize the concept of subbody: a very wide class of sets which can
be used with this sense has been introduced and studied by several au-
thors in the last two decades [BF, Z, GWZ]. A remarkable result of this
approach was the proof of the Cauchy Stress Theorem under weak con-
ditions, provided that the density tensor field is bounded.
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In the same period, the case of unbounded densities was considered
in [Š1] and generalized in [Š2, DMM], by means of a distributional ap-
proach (see also [MM2] for an application to the thermodynamical con-
text). In the latter papers the body is treated under assumptions which
are different from those required for subbodies: in [Š2] the topological
boundary of the body B is volume-negligible, while in [DMM] only sub-
bodies M which satisfy the condition cl M’ int B are considered. This
situation arises because the distributional interpretation of a balance law
requires that one deals with an open body.

When no topological assumptions on the whole body are made, one
may wonder if it is still possible to obtain the Cauchy Stress Theorem,
i.e. the existence of the stress density and its linear dependence on the
normal.

In this note we answer this question in the positive. Of course, we do
stipulate some measure-theoretical conditions, in particular, that the
body has finite perimeter: B cannot be, for instance, a fractal set in the
broad sense. Our result applies also when the body has an empty interior
(see Section 4 for an example), a case encountered in the theories of mi-
cro-structures and of mixtures. Notice that in these situations the classi-
cal tetrahedron argument cannot even be set up.

Finally, we introduce in this framework the concept of Cauchy inter-
action and prove, in the spirit of [MM1], a representation theorem also
for Cauchy interactions on such bodies.

2. Notation.

For nF1, L n will denote n-dimensional outer Lebesgue measure,
and H k k-dimensional outer Hausdorff measure on Rn. Given a Borel
subset E’Rn , we denote by �(E) the collection of all Borel subsets of E.
Moreover, E!F will denote the set (E0F)N (F0E).

Consider a set M’Rn. The topological boundary, closure and interior
of M will be denoted by bd M , cl M and int M , respectively. Denoting by
Br (x) the open ball with radius r centered at x , we introduce the mea-
sure-theoretic interior of M

M*4 {x�Rn : lim
rK01

L n ( Br (x)0M)

L n ( Br (x) )
40} ,
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the measure-theoretic boundary of M

¯* M4Rn 0(M*N (Rn 0M)*)

and the measure-theoretic closure of M

M *4MN¯* M .

The following proposition is a standard matter of measure theory.

PROPOSITION 2.1. Let M’Rn. Then the following properties
hold:

(a) M*, M *, ¯* M��(Rn );
(b) int M’M*’M *’cl M;
(c) M is L n-measurable if and only if L n (M!M*) 40.

DEFINITION 2.2. We say that M’Rn is normalized, if M*4M.
Let V be the linear space associated to Rn ; we now introduce the

concept of outer normal to the measure-theoretic boundary of a set. Let
M’Rn and x�¯* M. We denote by nM (x) � V a unit vector such that, as
rK01 ,

L n (]j�Br (x)OM :(j2x) QnM (x) D0()Or n K0,

L n (]j�Br (x)0M :(j2x) QnM (x) E0()Or n K0.

No more than one such vector can exist. If the limits do not both obtain,
we set nM (x) 40. The bounded map nM : ¯* MK V is called the unit ou-
ter normal to M. It turns out that nM is a Borel map, that is, (nM )21 (A) �
��(¯* M) for any open subset A’ V.

DEFINITION 2.3. Let M’Rn. We say that M is a set with finite
perimeter, if H n21 (¯* M) E1Q.

Now we turn to more specific definitions.

DEFINITION 2.4. We call body a set B’Rn which is bounded, nor-
malized, with finite perimeter. We denote by M(B) the family of normal-
ized subsets of B with finite perimeter. Moreover, we set

8(B) 4 ]C’Rn : C� M(B) or (Rn 0C)*� M(B)( ,

±(B) 4 ](A , C) � M(B)38(B) : AOC4¯(.

Our choice of sets with finite perimeter is motivated by the fact that



Alfredo Marzocchi - Alessandro Musesti4

the unit outer normal exists H n21-a.e. on the measure-theoretic bound-
ary and the Divergence Theorem holds in a weak sense (see [F, Theorem
4.5.6]).

In order to define a flux as a set function, we need the concept of ma-
terial surface.

DEFINITION 2.5. A material surface in the body B is a pair S4

4 (S×, nS ), where S× is a Borel subset of B and nS : S× K V is a Borel map
such that there exists M� M(B) with S× ’¯* M and nS 4nM NS×. In this
case, we say that S is subordinate to M. We denote by S(B) the collection
of material surfaces in the body B.

We call nS the normal to the surface S. Two material surfaces S and T
are said to be compatible, if they both are subordinate to the same M.

Let now V be a Borel subset of Rn. We denote by 8(V) the collection
of Borel measures m : �(V) K [0 , 1Q] with m(V) E1Q and by L1

1 (V)
the set of Borel functions h : VK [0 , 1Q] with s

V
h d L n E1Q. The

following definition extends the notion of «almost all» already intro-
duced in [Š2] and [DMM].

DEFINITION 2.6. Given h� L1
1 (B) and n�8(B), we set

M(B)hn4 {A� M(B) : �
BO¯* A

h d H n21 E1Q , n(BO¯* A) 40} ,

8(B)hn4 ]C�8(B) : C� M(B)hn or (Rn 0C)*� M(B)hn( ,

±(B)hn4±(B)O (M(B)hn38(B)hn ),

S(B)hn4 ]S� S(B) : S is subordinate to some A� M(B)hn(.

We will say that a property p holds on almost all of M(B), if there are
h� L1

1 (B) and n�8(B) such that p holds on M(B)hn , and in a similar
fashion for 8(B), ±(B) and S(B).

DEFINITION 2.7. Let X be a vector space and P ’ M(B). We say that
a function F : P KX is additive, if for every M , N� P with (MNN)*� P

and MON4¯ one has

F( (MNN)*) 4F(M)1F(N).

Let now P ’±(B). A function F : P KX is biadditive, if the functions
F(Q , C) and F(A , Q) are additive.
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Finally we come to the main definitions. For simplicity, we consider
scalar-valued fluxes and interactions; the extension to the vectorial case
is trivial.

DEFINITION 2.8. Let P be a set containing almost all of S(B) and
consider a function Q : P KR such that:

(a) if S , T are compatible and disjoint and SNT� P, then

Q(SNT) 4Q(S)1Q(T);

(b) there exists h� L1
1 (B) with

NQ(S)NG�
S

h d H n21

for almost every S� S(B);

(c) there exists n�8(B) with

NQ(BO¯* A)NGn(A)

for almost every A� M(B).
Then Q is said to be a balanced Cauchy flux on B.

DEFINITION 2.9. Consider a set P ’±(B) containing almost all of
±(B) and a function I : P KR such that:

(a) I is biadditive;

(b) there exist h� L1
1 (B), h�8(B3B) and h e �8(B) with

NI(A , C)NG

.
/
´

�
BO¯* AO¯* C

h d H n211h(A3C)

�
BO¯* AO¯* C

h d H n211h(A3(COB) )1h e (A)

if C’B ,

otherwise ,

on almost all of ±(B);

(c) there exists n�8(B) with

¯* A’¯* C ¨ NI(A , C)NGn(A)

on almost all of ±(B).
Then I is said to be a balanced Cauchy interaction on B.

In [DMM] and [MM1], a subbody was defined to be a set M� M(B)
such that cl M’ int B. Clearly, in this way the topological boundary of a
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subbody cannot meet ¯* B. In the present work, we set

M 7(B) 4 ]M� M(B) : cl M’ int B( ;

analogous definitions yield 87(B), ±7(B) and S 7(B). In the above papers,
the concept of almost all was restricted to the above classes by introduc-
ing M 7(B)hn , ±7(B)hn , S 7(B)hn ; corresponding notions of Cauchy flux and
Cauchy interaction were given. We refer here to those notions as inner
Cauchy flux and inner Cauchy interaction, respectively. Two important
results about inner Cauchy fluxes and interactions are the integral
representation theorems [DMM, Theorem 7.1] and [MM1, Theorem 7.4].

Another useful notion is the class of almost all n-intervals in the inte-
rior of B , a notion made precise by the following definition.

DEFINITION 2.10. A grid G is an ordered triple

G4 (x0 , (e1 , R , en ), G×),

where x0 �Rn , (e1 , R , en ) is a positively oriented orthonormal basis in
Rn and G× is a Borel subset of R. If G1 , G2 are two grids, we write G1 ’G2 if
G×1 ’ G×2 and they share the point x0 and the list (e1 , R , en ). A grid G is
said to be full, if L 1 (R0G×) 40.

Let G be a grid; a set I’Rn is said to be a G-interval, if

I4 ]x�Rn : a ( j) E (x2x0 ) Qej Eb ( j) (j41, R , n(

for some a (1) , b (1) , R , a (n) , b (n) � G×. We set

J 7(B)G 4 ]I : I is a G-interval with cl I’ int B( .

We also denote by S 7(B)G the family of all the oriented surfaces
S4 (S×, nS ) such that cl S× ’ int B and, for some 1 G jGn ,

S× 4 ]x�Rn : (x2x0 ) Qej 4s , a (i) E (x2x0 ) Qei Eb (i) (ic j(, nS 4ej ,

where s , a (1) , b (1) , R , a ( j21) , b ( j21) , a ( j11) , b ( j11) , R , a (n) , b (n) � G×.
This means that the elements of S 7(B)G are open sides of G-intervals,
equipped with the induced normal.

The next proposition, together with [DMM, Theorem 7.1], says that
there exists an integral representation of an inner Cauchy flux on S 7(B)G

for some full grid G.

PROPOSITION 2.11. Let (e1 , R , en ) be a positively oriented or-
thonormal basis in Rn and x0 �Rn. Then for every h� L1

1 (int B) and
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n�8(int B) there exists a full grid G4 (x0 , (e1 , R , en ), G×) such that
S 7(B)G ’ S 7(B)hn .

PROOF. See [DMM, Proposition 4.5]. r

3. The stress theorem.

Let us first prove a useful «localization» property of the density of an
inner Cauchy flux: if it happens that the flux concentrates around a sub-
body M , i.e. only the parts which meet M can have a non-zero contribu-
tion, then the density vanishes almost everywhere outside M.

LEMMA 3.1. Let Q7 be an inner Cauchy flux on B such that there is
an M� M 7(B) with

Q7(S) 4Q7(SOM)(3.1)

on almost all of S 7(B). Let q�L 1 (B ; V) be the density associated with
Q7 , in accordance with [DMM, Theorem 7.1]. Then q(x) 40 for a.e.
x�B0M.

PROOF. Let G4 (x0 , (e1 R , en ), G×) be a full grid such that the inte-
gral representation of Q7 holds on S 7(B)G . For any

I4 ]x�Rn : a (i) E (x2x0 ) Qei Eb (i) (i41, R , n( � J 7G

and any j41, R , n , by (3.1) and Fubini’s Theorem one has

�
I 0 M

q( j) d L n 4 �
a ( j)

b ( j)

y �
s j , s (I)0M

q(x) Qej d H n21 (x)z d L 1 (s)

4 �
a ( j)

b ( j)

Q7(s j , s (I)0M) d H n21 (x) 40,

where

s j , s (I) 4 ]x�I : (x2x0 ) Qej 4s( .

Take now x�M such that x is a Lebesgue point for the functions q and
x M q , where x M denotes the characteristic function of M. Consider a se-
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quence of cubes (Jk ) ’ J 7G with x�Jk and diam Jk K0 as kK1Q. It fol-
lows that

q(x) 4 lim
kK1Q

s
Jk

q d L n

L n (Jk )
4 lim

kK1Q

s
JkOM

q d L n

L n (Jk )
4x M (x) q(x) 40

and the proof is complete. r

Now we state our main results.

THEOREM 3.2. Let Q be a balanced Cauchy flux on B. Then there
exists an essentially unique function q�L 1 (Rn ; V) with divergence
measure such that q40 a.e. in Rn 0B , the total variation of div q is
bounded on Rn , and

Q(S) 4�
S

q QnS d H n21

on almost all of S(B).

PROOF. Let h and n be such that the domain of Q contains S(B)hn and
Definition 2.8 holds on S(B)hn . Given RD0 such that cl B’BR (0), we set
BR 4BR (0) and consider the families M 7(BR ), 87(BR ), ±7(BR ) and
S 7(BR ). Then consider the function h× � L1

1 (BR ) which extends h to zero
outside B and the measure n× �8(BR ) defined by n×(E) 4n(EOB). It can
be verified that the function Q7 : S 7(BR )h×n× KR defined by

Q7(S) 4Q(SOB)

is an inner Cauchy flux on BR . Then one can apply [DMM, Theorem 7.1],
finding a vector field q× �L 1 (BR ; V) with divergence measure such
that

Q7(S) 4�
S

q× QnS d H n21

on almost all of S 7(BR ). In particular, one has

Q(S) 4�
S

q× QnS d H n21

for almost every S� S(B). Moreover, taking into account Lemma 3.1, one
has that q× 40 for a.e. x�BR 0B. If q is the extension of q× to Rn with value
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0 outside BR , then q�L 1 (Rn ; V), q has divergence measure, the total
variation of div q is bounded on Rn and q40 a.e. in Rn 0B. Finally, such a
q is unique L n-a.e. by [DMM, Corollary 5.7]. r

THEOREM 3.3. Let I be a balanced Cauchy interaction. Then there
exist m�8(B3B), m e �8(B), two Borel functions b : B3BKR ,
be : BKR and a field q�L 1 (Rn ; V) with divergence measure, such that
q40 a.e. in Rn 0B , the total variation of div q is bounded on Rn and the
formula

I(A , C) 4

.
/
´

�
A3C

b dm1 �
¯* AO¯* C

q QnA d H n21

�
A3 (COB)

b dm1�
A

be dm e 1 �
¯* AO¯* C

q QnA d H n21

if C’B ,

otherwise ,

holds almost everywhere in ±(B).

PROOF. Following the ideas in the proof of the previous theorem, we
define a function I7 : ±7(BR )h×n× KR as

I7(A , C) 4
.
/
´

I(AOB , COB)

I(AOB , COB)1I(AOB , (Rn 0B)*)

if C’BR ,

otherwise .

It can be verified that I7 is an inner Cauchy interaction on BR . Then it is
enough to apply [MM1, Theorem 7.4], which gives the integral represen-
tation for I7. r

4. An example.

In this section we construct a set B’Rn which is bounded, normal-
ized, with finite perimeter, and such that int B4R and L n (B)FaD0.

Take x�Rn and rD0 and consider the set C4 ]y�Rn : Nx2yNGr(.
Let ]xk : k�N( ’C an enumeration of all points in C with rational com-
ponents. Put v n 4 L n (B1 (0) ) and consider, for 0 EaEv n r n , the de-
creasing sequence

rk 4 no v n r n 2a

2v n

22k/n
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Figure 1. – The construction of B.

Now set

D4C0 0
k�N

Brk
(xk ), B4D*.

Then:

(a) B is obviously bounded and normalized.

(b) int B4R: the set D does not contain any rational point, hence
int D4R; moreover, D is a closed subset of Rn , thus B’D by virtue of
(b) of Proposition 2.1.

(c) L n (B) Fa , since, by (c) of Proposition 2.1, L n (B) 4 L n (D)
and

L n (D) F L n (C)2 L ng 0
k�N

Brk
(xk )hFv n r n 2v n !

k�N
rk

n 4a .

(d) B has finite perimeter; indeed ¯* B4¯* D and

H n21 (¯* D) G H n21 ( bd C)1 !
k�N

H n21 ( bd Brk
(xk ) )

4gr n211g v n r n2a

2v n
h(n21)/n

!
k�N

22k(n21)/nh H n21 ( bd B1 (0) ).

Acknowledgments. The authors thank M. Degiovanni for very help-
ful discussions and W. O. Williams for having improved the language.



The Cauchy Stress Theorem etc. 11

R E F E R E N C E S

[BF] C. BANFI - M. FABRIZIO, Sul concetto di sottocorpo nella meccanica dei
continui, Rend. Acc. Naz. Lincei, LXVI (1979), pp. 136-142.

[DMM] M. DEGIOVANNI - A. MARZOCCHI - A. MUSESTI, Cauchy fluxes associated
with tensor fields having divergence measure, Arch. Rational Mech.
Anal., 147 (1999), pp. 197-223.

[F] H. FEDERER, Geometric Measure Theory, Springer-Verlag, Berlin,
1969.

[GWZ] M. E. GURTIN - W. O. WILLIAMS - W. P. ZIEMER, Geometric measure
theory and the axioms of continuum thermodynamics, Arch. Rational
Mech. Anal., 92 (1986), pp. 1-22.

[MM1] A. MARZOCCHI - A. MUSESTI, Decomposition and integral representa-
tion of Cauchy interactions associated with measures, Cont. Mech.
Thermodyn., 13 (2001), pp. 149-169.

[MM2] A. MARZOCCHI - A. MUSESTI, On the measure-theoretic foundations of
the Second Law of Thermodynamics, Math. Models Methods Appl. Sci.,
12 (2002), pp. 721-736.
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[Š2] M. ŠILHAVÝ, Cauchy’s stress theorem and tensor fields with diver-
gences in L p , Arch. Rational Mech. Anal., 116 (1991), pp. 223-255.

[Z] W. P. ZIEMER, Cauchy flux and sets of finite perimeter, Arch. Rational
Mech. Anal., 84 (1983), pp. 189-201.

Manoscritto pervenuto in redazione il 25 febbraio 2002.


