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Polarized Surfaces (X, L)
with g(L) = ¢(X) + m and h°(L) =m + 2.

YOSHIAKI FUKUMA (¥%)

ABSTRACT - Let (X, L) be a polarized surface. In this paper, we study (X, L) with
g(L) = ¢(X) + m and h°(L) = m + 2. In particular, we get that x(X) = — o if

R°(L) > 0. Furthermore we obtain that if X is minimal with x(X) = — « and
q(X) =0, then h°(L) > m + 2 for any ample line bundle L of X. We also study
some special cases with k(X) = — o and ¢(X) = 1.

0. Introduction.

Let X be a smooth projective variety over the complex number field C
of dim X = n, and let L be an ample (resp. a nef and big) line bundle on X.
Then we call the pair (X, L) a polarized (resp. quasi-polarized) mani-
fold. In order to study polarized manifolds (X, L) deeply, we often use
some invariants of (X, L) (for example, the degree L", the delta genus
A(L), ete.). The sectional genus g(L) is one of famous invariants of
(X, L) and it is defined as follows:

gL)=1+ %(Kx—i— (m—=1)L)L" 1!,

where Ky is the canonical line bundle of X. If L is very ample, then the
sectional genus is exactly the genus of a curve which is obtained by inter-
secting general n — 1 elements of the complete linear system |L]|.
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A classification of (X, L) with small value of sectional genus was ob-
tained by several authors. On the other hand, Fujita proved the follow-
ing theorem (see Theorem (I1.13.1) in [F}j3]).

THEOREM. Let (X, L) be a polarized manifold. Then for fixed g(L)
and n=dim X, there are only finitely many deformation types of
(X, L) unless (X, L) is a scroll over a smooth curve.

(For a definition of the deformation type of (X, L), see § 13 of Chap-
ter II in [Fj3].) By this theorem, Fujita proposed the following
conjecture:

CONJECTURE (FuJiTA). Let (X, L) be a polarized manifold. Then
g(L) = ¢(X), where q(X) =h'(Ox): the irreqularity of X.

(See (13.7) in [F'j3]. See also Question 7.2.11 in [BeSo].) Here we state
the known facts about this conjecture.

First we consider the case where dim X = 2. Then the conjecture is
true if (X, L) is one of the following cases (see [Fk1]):

(a-1) k(X) <1,
(a-2) L is an ample line bundle on X with ~°(L) := dim H°(L)>0.

By these facts, the remaining case for dim X =2 is the follow-
ing:

(a-?7) X is of general type and L is an ample line bundle with
(L) =0.

We can also prove that the conjecture is true for some special cases of
(a-?) (see [Fk2]), but in general it is unknown whether the conjecture is
true or not for the case (a-?).

Next we consider the case where dim X = n = 3. Then the conjecture
is true if (X, L) is one of the following:

(b-1) 0=k(X)<1 and L" =2 (see [Fk3]),

(b-2) dim Bs|L| <0, where Bs|L| denotes the base locus of |L|
(see [Fk5]),

(b-3) dim X =3 and #°(L) =2 (see [FKT]).

In particular, we note that if L is very ample, then g(L) = ¢(X) holds
by virtue of Lefschetz’ theorems on hyperplane sections. Here we also
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note that even if dim X =3 and 2°(L) >0, it is unknown whether the
conjecture is true or not. The above are representative cases, and we can
also prove that the conjecture is true for many special polarized vari-
eties. But in general it is also unknown whether the conjecture is true or
not.

Here we consider the case where dim X =3 and 2°(L) = 2. Then we
get that g(L) = ¢(X) by (b-3) above. So it is natural to try to classify po-
larized manifolds (X, L) with dim X =3 and h°(L) =2 by the value of
g(L) — q(X). By this motivation, the author studied polarized 3-folds
(X, L) with 2°(L) = 2, and we obtained the classification of polarized 3-
folds (X, L) with the following types:

(b-3-1) g(L) = ¢(X) and h°(L) =3 (see [FkT7]),
(b-3-2) g(L) = q(X) +1 and hO(L) =4 (see [Fk4]),
(b-3-3) g(L) = q(X) + 2 and h°(L) =5 (see [Fk8)).

By considering this result of 3-dimensional case, it is natural to con-
sider the following problem:

ProOBLEM. Let (X, L) be a polarized manifold with dim X =n and
g(L) =q(X) +m, where m 1s a monnegative integer. Assume that
hO(L) =n+m. Then classify (X, L) with these properties.

In [Fk9], we get a classification of polarized manifolds (X, L) with
n:=dim X =3, g(L) = ¢(X) +m, dim Bs|L| <0, and LOL) =m + n.

In this paper, we consider the case in which n =2, g(L) = ¢(X) + m
and 1°(L) =m + 2. The contents of this paper are the following:

(I) We will prove that if 2°(L) > 0, then x(X) = — « (see Theorem
2.1 and Theorem 2.2 below).
(IT) We consider the case in which x(X) = — o.

(I1-1) If X is minimal with ¢(X) = 0, then for any ample line bundle
L, we get that h°(L) > m + 2 (see Theorem 2.5 below). We also study the
case where X is not minimal with ¢(X) =0 (see Remark 2.6).

(IT-2) We consider some special cases with ¢(X) =1 (see Proposi-
tion 2.7 and Theorem 2.9 below).

By considering Theorem 2.5 and Remark 2.6, the author thinks that
there are many examples of polarized surfaces (X, L) with g(L) =
=q(X) +m and h°(L) =m + 2. So it is difficult to classify all (X, L) with
g(L) =q¢(X)+m and R°(L) =m + 2.
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Last of all, we note that if » = 3, then we can use the adjunction the-
ory for Ky + (n — 2)L. But if n = 2, then we cannot use the theory. So we
need to study (X, L) by the value of the Kodaira dimension.

We use the customary notation in algebraic geometry.

1. Preliminaries.

THEOREM 1.1. Let (X, L) be a polarized manifold with n =
= dim X = 2. Assume that |L| has a ladder and g(L) = A(L), where A(L)
is the delta genus of (X, L).

Q) If L"=2A(L) + 1, then g(L) = A(L) and ¢(X) =0.
() If L"=2A(L), then Bs|L| = 0.
) If L"=2A(L) — 1, then |L| has a regular ladder.

Proor. See (I1.3.5) in [Fj3]. m

THEOREM 1.2. Let (X, L) be a polarized manifold with n =
=dimX=2 If dimBs|L| <0 and L"=2A4(L) -1, then |L| has a
ladder.

Proor. See (1.4.15) in [Fj3]. =

DEFINITION 1.3. (See Definition 1.1 in [Fj1].) Let (X, L) be a polar-
ized surface. Then (X, L) is called a hyperelliptic polarized surface if
Bs|L| = ¢, the morphism defined by |L| is of degree two onto its image
W, and if A(W, H) =0 for the hyperplane section H on W.

THEOREM 1.4. Let (X,L) be a polarized wmanifold such that
Bs|L| =0, L"=2A(L), and g(L) > A(L). Then (X, L) is hyperelliptic
unless L is simplely generated and (X, L) is a Fano-K3 variety.

Proor. See Theorem 1.4 in [Fj1]. =

THEOREM 1.5. Let (X, L) be a hyperelliptic polarized surface.
Then (X, L) is one of the following types:
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Type L* g(L) q(X)
I, 2 a 0
(V) 8 20 +1 0
(*11,) 4 2a 0
(201, 02)a0) 21| aldo| +b—1 0
(01, 02))) 21| b—1 b—1
Cu, w)q) 4u au—1 a—1
Cu+2y, W) Au+y) au +2ay —y—1 0

Furthermore the Kodaira dimension of X is the following:

Value of k(X) 2 1

1,) a>2 —

(av,) a>2 —

(*11,) a>1 —

(201, 02)d ) case () case (4)

(201, 82)) — —

S, 107) — —

o +2y, wg) a>2 a=2 and y>2
Value of k(X) 0 —

) a=2 a<2

av,) a=2 —

(*11,) — a=1

(04, 02)ap) case (3) and (6a) case (1) and (2)
(2(61, 05)9) — any b

Cu, W) — any a

o +2y, w)g) a=y=2 a=2 and y>1

For the definition of the above types, see [Fjll. In particular for the
cases of the type (04, 02)a. 1), see (5.20) in [Fjl].

Proor. See [Fjl]. (Here we remark that the case (6b) of type
(04, 02)a ) is impossible because dim X =2.) =

DEFINITION 1.6 (See Definition 1.9 in [Fk1].)

(1) Let (X, L) be a quasi-polarized surface. Then (X, L) is called L-
minimal if LE >0 for any (—1)-curve £ on X.

(2) Let (X, L) and (Y, A) be quasi-polarized surfaces. Then (Y, A) is
called an L-minimalization of (X, L) if there exists a birational mor-
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phism u : X—Y such that L = u*(A) and (Y, A) is A-minimal. (We re-
mark that an L-minimalization of (X, L) always exists.)

3) Let (X, L) and (X', L") be polarized surfaces. Then (X, L) is
called a simple blowing up of (X', L") if X is a blowingup of X' at x e X'’
and (E, Lg) = (P!, Op1(1)) for the exceptional divisor E.

(4) Let (X, L) be a polarized surface. Then (X, L) is called the re-
duction model if (X, L) is not obtained by finite times of a simple blow-
ing up of another polarized surface.

REMARK 1.6.1. (1) Let X be a smooth projective surface and let L
be an ample line bundle on X. Then (X, L) is L-minimal.

(2) Let (X, L) be a polarized surface. Then there exist a polarized
surface (Y, A) and a birational morphism s : X — Y such that (X, L) is fi-
nite times of a simple blowing up of (Y, A), and (Y, A) is the reduction
model. In this case we obtain that g(L) =g(A), q¢(X)=q(Y), and
RO(L) <h°(A).

THEOREM 1.7. Let (X,L) be a quasi-polarized surface with
hO(L) =2 and k(X) = 2. Assume that g(L) = ¢(X) + m. Then L*<2m.
Movreover if L?=2m and (X, L) is L-minimal, then X = C; x Cy and
L=C,+2C,, where C; and Cy are smooth curves with g(Cy) =2 and
9(Cy) =2

Proor. See Theorem 3.1 in [Fk6]. =

REMARK 1.7.1. Let (X, L) be as in Theorem 1.7. Then L2 <2m is
equivalent to Ky L =2q(X) — 2.

THEOREM 1.8. Let (X, L) be a quasi-polarized surface with x(X)=0
or 1. Assume that g(L) = g(X) +m. Then L*<2m + 2.

If this equality holds and (X, L) is L-minimal, then (X, L) is one of
the following;

1) k(X) =0 case.

X is an Abelian surface and L is any nef and big divisor.

2) k(X) =1 case.

X=FXxCand L=C+ (m+1)F, where F and C are smooth curves
with g(C) =2 and g(F) = 1. If h°(L) >0, then L =C + 2, m,F,, where

xel
F, is a fiber of the second projection over x e C, I is a set of a finite point
of C, and m, is a positive integer with > m,=m+1.
xel
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Proor. See Theorem 2.1 in [Fk6]. =

REMARK 1.8.1. Let (X, L) be as in Theorem 1.8. Then L2<2m + 2
is equivalent to KyL =2q(X) — 4.

THEOREM 1.9. Let (X, L) be a quast-polarized surface. Assume
that A(L) =0. Then xk(X) = — .

Proor. See Corollary 1.7 in [Fj2] and Theorem 3.1 in
[Fk1]. m

2. Main Theorem.

THEOREM 2.1. Let X be a smooth projective surface defined over
the complex number field C, and let L be an ample line bundle on X. As-
sume that dim Bs|L| <0 and RO(L) =m +2, where m = g(L) — ¢(X).
Then k(X)) = — .

Proor. We assume that x(X) = 0. By taking the reduction model, if

necessary, we may assume that (X, L) is the reduction model by Remark
1.6.1 (2).

(1) The case in which x(X) =2.

Then by Theorem 1.7, we get that L%<2m. We put t=2m — L=
Then we get that

AL) =2+ L%*—h(L)
=2+2m—t—h"(L)
<2+2m—-t—(m+2)
=m-—1
=m—-(2m—L?

=L -m

<r-Lpe
2

L2,

DO |
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Since (L) =1+ (1/2)(Kx + L) L > (1/2) L*= A(L) and dim Bs|L| <0,
we get that |L| has a ladder and by Theorem 1.1 we get that
Bs|L| = 0.

If L2=2A4(L) + 1, then we get that L is very ample, g(L) = A(L), and
q(X) =0, that is, g(L.) = m. By the definition of sectional genus, we get
that

1
1+ E(KX+L)L=m,

that is,
2m—2=(Ky+ L)L =L>.
On the other hand, we get that
AL) =2+ L*-h°(L)
<2+2m—-2—-—(m+2)
=m—2 < g(L).

But this is impossible. Therefore we may assume that L2 =2A(L).

Then h°(L)=m+2 and L?=2m. Here we remark that g(L) >
> (1/2) L? = A(L). By Theorem 1.4, we get that (X, L) is a hyperelliptic
polarized surface. So we can use the list of the classification of hyperel-
liptic polarized surfaces. (See Theorem 1.5.) Since x(X) =2, we obtain
that ¢(X) =0 and ¢g(L) = m. Therefore

m=g(L)=1+ (12)Kx+ L)L
=1+ (1/2)KxL+m

>m.

But this is impossible.

(2) The case in which x(X) =0 or 1.
Then by Theorem 1.8, we get that L% <2m + 2.

(2.4) The case where L%=2m + 2.

Then Ky L =2q(X) — 4. If k(X) =1, then dim Bs|L| =1 by Theorem
1.8 (2), and this is impossible. If k(X) =0, then by Theorem 1.8 (1) X is
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an abelian surface and 2°(L) = L?/2 <m + 1 and this is a contradiction
by hypothesis. So we assume that L2<2m + 1.

(2.B) The case where L%2=2m + 1.
Then

AL)=2+L*—h°(L)<2m+3— (m+2)

=m+1

1
=—(02m)+1
2( )

1
- —(L*-1)+1
2

1 1
=—L%+ —.
2 2
Hence L2=2A4(L) -1 and |L| has a regular ladder by Theorem 1.1
3).
(2.B.1) The case in which x(X) =0.

Then g(L) = ¢(X) + m < 2 + m by the classification of surfaces. So we
get that

1
2+m>g(L)=1+§(KXL+2m+1)

1 3
—KxL+m+ —.
2 2

Hence KyL <1. Since L?=2m +1 is odd, we get that KyL =1 and
q(X) = 2. Therefore X is a one point blowing up of an abelian surface S,
m:X—S and L =x*(A) — E for an ample line bundle A on S. Since
A%2=2m +2, we get that h°(A) =A%/2=m + 1. But since m +2 <
<h'(L)=h°(a*A—-E)<h®(a*A)=h°(A) =m + 1, we get a contra-
diction.

(2.B.2) The case where k(X) =1.

Then there exists an elliptic fibration f:X—C, where C is a
smooth projective curve. Let u : X— S be the relatively minimal model
of f:X—C and let h:S—C be a relatively minimal elliptic fibration
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such that f=hou. We put A=u,(L). Then A is ample. Here we
remark that q(X) < g(C) + 1.

(2.B.2.1) The case in which ¢g(C) < 1.
Then ¢(X) <2 and g(L) <m + 2. So we get that

1
2+m>g(L)=l+E(KXL+2m+1)

3
KxL+m+ E.

Do | =

Therefore KxL =1 because k(X) =1 and L is ample. If X is not relative-
ly minimal, then KxL > KgA and this is impossible because KyL = 1.
So X is relatively minimal. By the canonical bundle formula, we get
that

Ky = (29(C) =2+ 3(Ox)) F + X (m; = 1)

where F' is a general fiber of f and m, F; is the multiple fiber of f.
If g(C) =0, then ¢(X) <1, and g(L) <1 + m. Then

1
1+m>g(L)=1+E(KXL+2m+1)

DO |

and this is a contradiction.
If g(C)=1 and ¢(X) =2, then y(Ox) =0 and Ky= > (m;—1) F;.

Since k(X) =1, there exists at least two multiple fibers (see Proposition
1.3 in [Se2]). So we get that KyL =2 and this is a contradiciton.

If g(C) =1 and q¢(X) =1, then g(.) = m + 1 and this is impossible by
the same argument as above.
(2.B.2.2) The case in which ¢g(C) = 2.

Then KyL = KgA = (29(C) — 2 + y(Ox))AF. Since LZ=2m + 1, we
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get that

glL)=1+ %(KX—FL)L

1 1
=1+ 5(29(0) —2+x(0x)) AF +m + 5
If ¢(X) = g(C), then this is impossible.
If ¢(X) = g(C) + 1, then y(Ox) = 0 (see Lemma 1.6 in [Sel]) and so we

have

g(L)21+(g(C)—1)AF+m+é

3
=m+ 3 + (g(C)—1) AF.
If AF =2, then

g(L)2m+§+Zg(C)—2
=m®+m+mm—%

=g(C)+1+m+g(C)—§

> q(X) +m.

So we get that AF = 1. Since ¢(X) = g(C) + 1, by Lemma 1.13 in [Fk1],
we get that S = C X F and A = C + oF for an integer a. Since LF = AF =
=1, we get that X is minimal. Here we remark that f has no multiple fiber
because LF = 1. Hence by the canonical bundle formula we get that

g(L)=1+ %(KX+L)L
1
=1+ (g(C)—1)+ ELZ

1
=g~ 1+ L%

But this is a contradiction because L?=2m + 1 by assumption.
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(2.C) The case in which L2 < 2m.

Here we do the above argument. We put ¢ := 2m — L2 Then t = 0 and
we get that

A(L) =2+ L*—h°(L)
=2+2m—t—-h"(L)
S2+2m—-t—(m+2)
=m—1
=m— (2m —L*)

=L%-m

<L?’- lL2
2

L2,

DO |

Therefore we get L?=2A(L). Here we remark that

gL)=1+ %(KX+L)L

1
=1+ —L*
2

> A(L).

Since dim Bs|L| <0, we get that |L| has a ladder by Theorem 1.2. If
L%2=2A(L) + 1, then g(L)=A4(L) and ¢(X)=0 by Theorem 1.1 (1).
Hence m = g(L) = A(L) < (L*—1)/2, that is, L?=2m + 1 and this is
impossible. Therefore we may assume that L? = 2A(L). In this case L? =
=2m, A(L) =m, and h°(L) = m + 2 by the above inequalities. By Theo-
rem 1.1 (2), we get that Bs|L| = 0. So by Theorem 1.4, we get that (X, L)
is either a hyperelliptic polarized surface or a polarized K3-surface.
If X is a K3-surface, then ¢(X) =0 and g(L) =m. So we get that

1 1
m=g(L)=l+E(KX+L)L=1+§L2.
Hence L?=2m—2 and A(L)=m—1. But then A°(L)=2+L2%-

—(m—1)=m +1 and this is impossible.
If (X, L) is a hyperelliptic polarized surface, then since x(X) =0 or 1
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by the list of hyperelliptic polarized surface (see Theorem 1.5) we get
that (X, L) is one of the following types:

Type L2 g(L) q(X)
(I,) 2 2 0
(291, 02).s) 210| ald| +b—1 0
Clu+2y, w3 ) 4u+y) 2u+3y—1 0

Here we remark that if (X, L) is the type (E(u + 2y, u)g ), then
y =2.

If (X, L) is the type (Iy) (resp. (IVy), (X(u + 2y, u)s ), then 1°(L) =
=A(L)+2 = % +2=3 (resp. 6, 2+ y +1)).

If (X, L) is the type (Iy) or (IVy), then h'(L)=g(L)+1=m+1<m+2.

If (X, L) is the type (E(,u + 2y, u)3 ), then h°(L)=g(L) —y=m —
— vy <m+ 2. In each case we get a contradiction.

If (X, L) is the type (0, 02)ap), then (X, L) is the case (3), the
case (4) or the case (6a) in (5.20) in [Fj1]. Here we use the notation in
(5.20) in [Fj1].

Assume that (X, L) is the case (3) in (5.20) in [Fj1]. Then ¢(X) =0,
h°(Ky) =1, and Ky=0. Hence m =g(L) =1+ (L?/2), that is, L?=
= 2m — 2. By the Riemann-Roch theorem and the Kodaira vanishing theo-
rem, we get that

1
h°(L) = x(L) = 3(Ox) + E(LZ — KxL)

=2+m-—1
=m+1

and this is a contradiction.
Assume that (X, L) is the case (4) in (5.20) in [Fj1]. In this case
a=dimX=2 and g(L) =2|6| + b—1. Here we calculate ho(L).

RO(L) =2+ L*— A(L)
=2+24(L)— A(L)
=A(L) +2
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Here we remark that L= 2m and A(L) = m. So in particular h°(L) =
=m + 2. Hence |0| =m. On the other hand since ¢(X) = 0, we get that
m=g(L)=2|6| +b—-1=2m+b—1. Therefore |[0] +b—-1=0. But
since b’ = |6| +b—2>0 by (5.20) in [Fj1]. This is a contradiction.

Assume that (X, L) is the case (6a) in (5.20) in [Fjl1]. Then 6=
=0y+1 and |0| =0;+05=20,+1. Furthermore a = dim X +1 =3 and
b= —(dim X +1)d,= —30d,. Therefore

g(L) =3(20,+1)—306,—-1
=30,+2,
and
L%=2(20,+1)
=40,+2.
On the other hand

L2
hO(L)=A(L)+2=? +2=20,+3.
Since 2°(L) =Zm + 2 and g(L) = ¢(X) + m =m, we get that
20,+3=h%(L)=zm+2=g(L)+2=30,+4,

that is, 6, < —1. But then g(L.) =35, + 2 < —1 and this is impossible.
These complete the proof of Theorem 2.1. =

THEOREM 2.2. Let (X, L) be a polarized surface with dimBs|L|=1
and h°(L) =m + 2 for m = g(L) — ¢(X). Then k(X)= — .

Proor. Assume that x(X) =0. By the Kodaira vanishing theorem
and the Riemann-Roch theorem we get that

hO(Kx+ L) — h°(Kyx) = g(L) — ¢(X).
If h°(Ky) >0, then since h°(L) =m + 2 we get that
m+1<h’L)-1<h’Ky+L)—h"Ky) =g(L) —qX)=m

and this is impossible. Hence h°(Ky) = 0. By the classification theory
of surfaces we get that q(X) <1. Let (Y, A) be the reduction model
of (X, L). Then Ky + A is nef, g(A) = ¢(Y) +m, q(Y) <1, and h°(4) =
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=m + 2. Let M, be the movable part of |A| and let Z, be the fixed
part of |A|.

(I) The case where M, is nef and big.
Then we get that
1+m=q(Y)+m=g(A)

1

=1+ _(Ky+4)A
1

=1+ (Ky+ A) My

1
=1+ (Ky+ My) My

Hence (Ky + M) M, < 2m. Here we also remark that g(M,) < q(Y) +m
by the above inequalities.
If M3<m, then

AMy) =2+ M3 —h"(M,)
<24+m-(m+2)=0.

So we get that A(M,) = 0 and by Theorem 1.9 this is impossible because
k(Y)=0. Hence M3=m+1 and KyM,<m — 1, that is, M3 > KyM,.
In particular A%(M,) = h°(Ky — M,) =0 because M, is nef. So by the
Riemann-Roch theorem, we get that

1
hO(My) = h*(My) + 3 (Oy) + E(ME — KyMy).

(I.1) The case in which Ky M, > 0.

(I.1.1) The case in which a general member of |M,| is irreducible.

Let C be a general member of |M,|. Then C is an irreducible curve.
So by the following exact sequence

0—>Ky-My—Ky—Ky|c—0,
we get the following exact sequence

0= HO(KY) —>HO(KY|C) —>H1(KY_ My) —>H1(KY)-



28 Yoshiaki Fukuma

Since g(C) :g(MA) =2, we get that ]’LO(Kylc) < degKle:KyMA.
Ifq(Y) = O, then ]’Ll(KY— MA) = hO(Kylc) sKyMA and X(Oy) =1.S0
we get that

1
RO(My) = h'(My) + x(Oy) + E(MX —KyMy)

1
SKyMy+1+ E(Mﬁ—KYMA)

=gMy) sm

and this is impossible.
If q(Y) = 1, then hl(Ky_ MA) = hO(Ky|C) +1< KyMA +1 and
7(Oy) =0. So we get that

1
RO(My) =h*(My) + 3 (Oy) + E(ME —KyMy)

1
SKyMy+1+ E(M‘L%—KYMA)

=gMy)=m+1
and this is also impossible.

(I.1.2) The case in which a general member of M, is not irre-
ducible.

Let D= E C; be a general member of M,, where a=2. Then

D is reduced s1nce dim Bs|M, | <0. In this case we get that 1°(Ky|¢,) <
< deg (Ky|c) +1 and ho (Ky|p) <h (Ky|c,) for any i. Hence

ah*(Ky|p) < 3 deg (Ky|o)) +a

= KyD +a
= KyMA +a.
Therefore

1
BO(Ky|p) < — Ky My + 1.

Cramv 2.2.1. hO(Kle) < KyMA lf KyMA =1
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Proor. If KyM, =1, then hO(KY|D) < (1/a) +1. But since a=2
and h°(Ky|p) is integer, we get that h°(Ky|p) <1 =KyM,.
If KyM, =2, then KyM, =2 = a/(a — 1). Hence

a—1

KyM,=1

and so we get that

a—1

1 1
KyMA = —KyMA + KyMAB —KyD + 1 = h/o(KY |D)'
a a

This completes the proof of Claim 2.2.1. =

Ifq(Y) = 0, then hl(KY—MA) = hO(Kle) gKyMA and X(Oy) =1. So we
get that

1
RO(My) = h'(My) + x(Oy) + E(Mﬁ —KyMy)

1
sKyMA“Fl"‘ E(ME_KYMA)

=9(My)sm
and this is impossible.
If ¢(Y)=1, then h'(Ky—M,)=h°Ky|p)+1<KyM,+1 and
2(Oy) = 0. So we get that

1
RO(My) = h*(My) + x(Oy) + E(M‘% —KyM,)

1
SKyMy+1+ E(M‘L%—KYMA)

=gMy)<=m+1
and this is also impossible.

(1.2) The case in which KyM, = 0.

Let (S, H) be an M -minimal model of (Y, M,). Then (S, H) is a
quasi-polarized surface. Since Ky M, =0 and x(Y) =0, we get that S is
minimal with KgH = 0. Since H? > 0 and KZ = 0, we get that K= 0 and
so we obtain that x(S) = 0. Here we remark that g(M,) = g(H), M} =
=H?, and ¢(Y) = ¢(S) < 1. In particular H?> K H and by the Riemann-



30 Yoshiaki Fukuma
Roch theorem we get that
h(H) = h'(H) + 3(Oy) + %(H2 — KyH).
If ¢(S) =0, then H2=2m — 2, h'(Ky— H) <1, and x(Og) = 1. Hence
h°(My) =1°(H) = h'(H) + x(Os) + é(H2 — KgH)

<2+m-1
=m+1

and this is impossible.
If g(S) = 1, then S is a bielliptic surface and H?* = 2m. So we get that
hO(L) =h°(A) =h°(M,) = h°(H) = H?/2 =m and this is impossible.

(II) The case where M, is nef but not big.

Then Bs|M,| = 0. By using this linear system |M,|, we get that
there exists a fiber space f: Y—C over a smooth projective curve C.
Moreover we get that M, = aF', where F is a general fiber of f. So we get
that

1
glA) =1+ E(KY+A)A
1
=1+ E(KY+A)MA
a
a
=1+ E(Zg(F)—Z—irAF)

—1+a(g(F)—1)+ %AF.

Here we remark that g(F) =1 because x(Y) = 0.

If g(F) =2, then 1 + m =g(A) > a + 1, that is, a < m. So we get that
RO(L) <h°(A) =h°(M,) <a<m and this is a contradiction.

If AF =2, then 1+ m =g(A) =a+ 1, that is, a < m. So we get that
RO(L) <h°(A) =h°(M,) <a<m and this is impossible.

So we may assume that g(F) =1 and AF = 1. Since A is ample with
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AF =1, we get that f is relatively minimal, and f has no multiple fiber.
Therefore by the canonical bundle formula, we get that the case where
g(C) =0 is impossible because y(Oy) <1. So we obtain that g(C) =1.
Since 1 = q¢(Y) =g(C) =1, we get that ¢(Y) =1 and x(Oy) =0. By the
canonical bundle formula, we obtain that Ky =0 and since ¢(Y) =1, we
get that A%=2m. Hence Y is a bielliptic surface because ¢(Y) = 1. By
using the Kodaira vanishing theorem and the Riemann-Roch theorem,
we have

But then h°(L) <h°(A) = m and this is impossible. These complete the
proof of Theorem 2.2. =

REMARK 2.2.1. By the same argument as the proof of Theorem 2.2,

we can prove that x(X)= — o if (X, L) is a polarized surface with
dim Bs|L| <0, h°(L) 2m +2, and m = g(L) — ¢(X).
Next we consider the case in which x(X) = — «. First we fix the no-

tation which is used later.

NOTATION 2.3 (See also Chapter V in [Ha].) Let X = P(8) be a P!-bun-
dle over a smooth projective curve C and let 7 : X—C be its projec-
tion, where § is a vector bundle of rank two on C. Assume that § is normal-
ized. Let Cy be a minimal section of & and let F' be a fiber of 7. We put
e= —C¢. Then e= —g(C) by Nagata’s theorem.

REMARK 2.4. Here we use Notation 2.3. We put L = aCy + bF' for
some integer a and b. Then

9(L) =q¢X) + (a— 1)(q(X)— 1+b— %ae)

and
L%=2ab— aZe.
Here we put m=(a—1) (q(X) —-1+0b-— %ae).
First we study the case in which ¢(X) =0.
THEOREM 2.5. Let X be a two-dimensional projective space P% or a

Hirzebruch surface, and let L be an ample line bundle on X. Then L 1s
very ample and h°(L) >m + 2, where m = g(L) — q(X) = g(L).
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PROOF. Assume that X =P?% Let L = O(a). Then L is very ample,
(a+2)a+1)

(L) = ——M—~,
(L) 2
and
-3
oLy =1+ 223
Then
ala —3)
m=g(L)=1+ ——.
So we get that
+2)a+1 -3
hO(L)—WL:(a Na )_1_a(a )
2 2
=3a=3.

Hence h°(L) =m + 3.
Assume that X is a Hirzebruch surface. Here we use Notation 2.3.
Then by Remark 2.4, we get that

m= (a—l)(b— %ae—l).
Furthermore by calculating 7°(L), we get that
ROL)=(a+1)b+1)— %a(a +1)e
because L is ample. Hence
ROL)—m=(a+1)b+1)— %a(a+1)e—(a—l)(b— %ae—l)

=2a+2b—ae
=2a+b+ (b—ae).

Since L is ample, we get that a >0 and b — ae > 0 by Corollary 2.18 of
Chapter V in [Ha]. Here we also remark that e¢=0. Hence b > 0.
Therefore

RO(L)—m=2a+b+ (b—ae)
=2+1+1=4.
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Hence h°(L) = m + 4. By Corollary 2.18 of Chapter V in [Ha] we get that
L is very ample. These complete the proof of Theorem 2.5. =

REMARK 2.6. Let X be a smooth projective surface with x(X)= — .
Let L be an ample line bundle on X. Assume that ¢(X) =0 and X is not
minimal.

Let o : X— X' be a minimal model of X. We put X, := X and L, := L.
Let 0;.1: X;—X; 1 be a blowing down of (—1)-curve E; on X; such that
0=0,0...001: Xp—X;—...—~X,, where X, is a smooth projective
surface for 1 =1, ..., n. We put L; ,, = (7;,1)s(L;). Then X' =X, and
L' =L, Weput L; = (m,,1)*(L; 1) — m; E;, where m; is a positive inte-
ger. Then

! m(m; — 1)
> —

1=0

g(L") =g(L) +

We put g(L) = ¢(X) + m. Then

n—1 ; i_l)
o) = g0 +m+ 5 D)
n—1 . L
=qgX')+m+ > %
i=0

We put

" (my; — 1
m'=m+ 2, M
i=0 2

Here we calculate 4£°(L). Then
hO(L) =h°(Ly)

> hO(Ly) - —m‘)(W;ﬁ D
1 (m; + 1
>0 (L) = 2 —ml(mg )

n—1 . 11
>hL") - 2 —ml(mzz )
i=0
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n—1
Soif R%L")y=m' +2+ 2, m,;, then
i=1

n—1
WY=L~ > —mi(”? D
i=0

n—1

n—1
m; mz-}—l
iy S S D)
i=1 i=0 2

Sty (m; — 1
S D
i=0 2

=m+ 2.

Next we consider the case where g(X) = 1.

ProposITION 2.7. Let (X,L) be a polarized surface with
dim Bs|L| <0 and RO(L) =m + 2, where m = g(L) — q(X). Assume that
kKX)= -, ¢X)=1, and L®<2m, then (X, L) is the following
type;

(X, L) is a hyperelliptic polarized surface of the type (2.2, 2)i) with
L%=8, g(L)="1, qX) =3, and k(X)) = — .

Proor. If L2<2m, then by the same argument as Theorem 2.1 we
get that

AL) =2+ L% - K%L)
=24+ (2m—1t)—h%L)

where t = 2m — L2 Therefore L% = 2A(L). Here we remark that g(L) =
=q(X) +m = (1/2) L*>= A(L). Therefore |L| has a ladder because
dim Bs|L| =0.

If L?2=2A(L)+ 1, then ¢(X) =0 by Theorem 1.1 (1). But this is a
contradiction by hypothesis.

Hence we may assume that L?=2A(L). Then L?=2m and m =
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= A(L). Since ¢(X) =1, we get that g(L) = ¢(X) + m >m = A(L). So by
Theorem 1.1 (2) we get that Bs|L| = ¢ and (X, L) is a hyperelliptic po-
larized surface. Since ¢(X) =1, we get that (X, L) is one of the types
(22(01, 05))) and (u, u); ) by the classification of hyperelliptic polar-
ized surfaces (see Theorem 1.5).

If (X, L) is the type (C2(81, 65))), then g(L) = ¢(X). So we get that
m = 0. But since L*<2m by hypothesis, this is impossible.

If (X, L) is the type (Z(/J, Wye ), then we get that

(=) gL)=au—1=(a—1)+a(u—1)
=qX) +alu—1),

and so we obtain that u = 1 because g(L) — ¢(X) = m = 0. Since L2 =4u
by Theorem 1.5, we get that 2m =L%=4u. Hence m =2u. On the
other hand m = a(u — 1) by (*). So we get that a = (2u)/(u —1) =2+
+(2/(u—1)). Since a is integer and 0<L?=4u, we get that u=2. Hence
L?=8,u=2,a=4, ¢X)=3, m=4, and g(L) = 7. This completes the
proof of Proposition 2.7. =

REMARK 2.8. Assume that X is a P!-bundle with ¢(X) = 1. Here we
use Notation 2.3. By Proposition 2.7, we may assume that LZ>2m if
dim Bs|L| <0. Then by Remark 2.4 we get that

L?2=2ab—a’e

=2a(b— l(JLe)
2

=2a( " —q(X)+1)
a—1

= 20— 2a(g(X) - 1)
a—1

=2m+

m —2a(q(X) —1).
o —

Therefore

2 m>2a(q(X)—1)
a—1
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that is,

- 41 X).
a(a_1)+ > q(X)

THEOREM 2.9. Let X be a Pl-bundle over a smooth projective curve
C with g(C) = 1. Let L be an ample line bundle on X such that L* > 2m,
where m = g(L) — ¢(X). Assume that m = 1. If LF =m, then g(C) =1
and L is one of the following types: (Here we put L = aCy+ bF.)

e a b m

0 m+1 1 =1

0 % +1 2 even with m =2
1 2 3 2

-1 5 -2 2

-1 2 1 2

-1 7 -3 3

-1 4 -1 3

-1 3 0 3

-1 2m+1 -m =1

-1 m+1 1_Tm odd with m =1

Proor. First we remark that (X, L) is not a scroll over a smooth
curve because m = 1. In particular ¢ = 2. By Remark 2.8 we get that
q(X) =1 because a = LF =m.

(1) The case in which m = 2.

Since L is ample, we get that b — (1/2) ae > 0. So since ¢(X) =1 and
a=m, we get that

m=(a—1)(q(X)—1+b—%ae)
1
B(m—l)(q(X)—lan—Eae)

Z(WL—I)(b—%CL@).
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Hence we get that

1 1
=b— —ae.
2

1+
m—1

Since m =2, we obtain that b — (ae)/2 < 2.
If e=0, then b — ae > 0. Hence we get that

1
b— —ae> —ae.
2 2

If b — (ae)/2 = 1/2, then ae < 1. But this is impossible because a = 2,
and ¢ and b are integer.

If b—(ae)/2 =1, then ae <2. So we get that e=0, a =m + 1 and
b =1 because @ and b are integer.

If b — (ae)/2 = 3/2, then ae < 3. But this is impossible because a =2,
and o and b are integer.

If b — (ae)/2 =2, then ae <4. So we get that e=0, a =1+ (m/2) is
any, and b=2 or e=1, a =2 and b =3 because a =2, and a and b are
integer.

If e<O0, then e = —1 because e= —g(C) = —1.

If m=2,then 0 <b— (ae)/2<2 and 2 =(a—1)(b— (ae)/2). Hence
we get the following type:

b— (ae)/2 a b
12 5 -2
2 2 1

If m=3, then 0<b—(ae)/2<3/2 and 3= (a—1)b— (ae)/2).
Hence we get the following type:

b— (ae)/2 a b
1/2 7 -3
1 4 -1
3/2 3 0

If m=4, then 0<b—(ae)2<1.

If b— (ae)/2=1/2, then m = (a—1)/2 and b= —m.

If b — (ae)/2 =1, thenm = (e — 1) and b = (1 — m)/2. In particular m
is odd in this case.
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(2) The case in which m = 1.

Since (X, L) is not scroll over a smooth curve, LF =2. Since
b— (ae/2) >0 and

l=m=(a—-1) q(X)—1+b—éae)=(a—1)(b—%ae),

we get that (a, b — (ae)/2) = (2, 1) or (3, 1/2).
If e=0, then b —ae > 0. Hence if b — (ae)/2 =1, then

1
Eae+1—ae>0.

Hence ae<1. So e=0 and b=1.
If b— (ae)/2 =1/2, then

1 1
—ae+ — —ae>0.
2 2

Hence ae <0. So e =0 and b =1/2. But this is impossible because b is
integer.

Ife=-1,a=2, and b— (ae)/2 =1, then b=0.

Ife=—1,a=3, and b — (ae)/2 =1/2, then b = —1. These complete
the proof of Theorem 2.9. =

ProBLEM 2.10. Let (X, L) be a polarized surface with k(X) = — o
and h°(L) =m +2 for m=g(L) — ¢(X).

(1) Classify (X, L) such that X is not minimal with q(X) = 0.

(2) Classify (X, L) such that X is a P-bundle with ¢(X) =1 and
LF<m-—1.

(3) Classify (X, L) such that X is not minimal with L*=2m + 1
and ¢(X) = 1.
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