
REND. SEM. MAT. UNIV. PADOVA, Vol. 109 (2003)

Polarized Surfaces (X , L)
with g(L) 4q(X)1m and h 0 (L) Fm12.

YOSHIAKI FUKUMA (**)

ABSTRACT - Let (X , L) be a polarized surface. In this paper, we study (X , L) with
g(L) 4q(X)1m and h 0 (L) Fm12. In particular, we get that k (X) 42Q if
h 0 (L) D0. Furthermore we obtain that if X is minimal with k (X) 42Q and
q(X) 40, then h 0 (L) Dm12 for any ample line bundle L of X. We also study
some special cases with k (X) 42Q and q(X) F1.

0. Introduction.

Let X be a smooth projective variety over the complex number field C
of dim X4n , and let L be an ample (resp. a nef and big) line bundle on X.
Then we call the pair (X , L) a polarized (resp. quasi-polarized) mani-
fold. In order to study polarized manifolds (X , L) deeply, we often use
some invariants of (X , L) (for example, the degree L n , the delta genus
D(L), etc.). The sectional genus g(L) is one of famous invariants of
(X , L) and it is defined as follows:

g(L) 411
1

2
(KX 1 (n21) L) L n21 ,

where KX is the canonical line bundle of X. If L is very ample, then the
sectional genus is exactly the genus of a curve which is obtained by inter-
secting general n21 elements of the complete linear system NLN.
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A classification of (X , L) with small value of sectional genus was ob-
tained by several authors. On the other hand, Fujita proved the follow-
ing theorem (see Theorem (II.13.1) in [Fj3]).

THEOREM. Let (X , L) be a polarized manifold. Then for fixed g(L)
and n4 dim X , there are only finitely many deformation types of
(X , L) unless (X , L) is a scroll over a smooth curve.

(For a definition of the deformation type of (X , L), see § 13 of Chap-
ter II in [Fj3].) By this theorem, Fujita proposed the following
conjecture:

CONJECTURE (FUJITA). Let (X , L) be a polarized manifold. Then
g(L) Fq(X), where q(X) 4h 1 (OX ): the irregularity of X.

(See (13.7) in [Fj3]. See also Question 7.2.11 in [BeSo].) Here we state
the known facts about this conjecture.

First we consider the case where dim X42. Then the conjecture is
true if (X , L) is one of the following cases (see [Fk1]):

(a-1) k (X) G1,

(a-2) L is an ample line bundle on X with h 0 (L) »4 dim H 0 (L)D0.

By these facts, the remaining case for dim X42 is the follow-
ing:

(a-?) X is of general type and L is an ample line bundle with
h 0 (L) 40.

We can also prove that the conjecture is true for some special cases of
(a-?) (see [Fk2]), but in general it is unknown whether the conjecture is
true or not for the case (a-?).

Next we consider the case where dim X4nF3. Then the conjecture
is true if (X , L) is one of the following:

(b-1) 0 Gk (X) G1 and L n F2 (see [Fk3]),
(b-2) dim BsNLNG0, where BsNLN denotes the base locus of NLN

(see [Fk5]),
(b-3) dim X43 and h 0 (L) F2 (see [Fk7]).

In particular, we note that if L is very ample, then g(L) Fq(X) holds
by virtue of Lefschetz’ theorems on hyperplane sections. Here we also
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note that even if dim XF3 and h 0 (L) D0, it is unknown whether the
conjecture is true or not. The above are representative cases, and we can
also prove that the conjecture is true for many special polarized vari-
eties. But in general it is also unknown whether the conjecture is true or
not.

Here we consider the case where dim X43 and h 0 (L) F2. Then we
get that g(L) Fq(X) by (b-3) above. So it is natural to try to classify po-
larized manifolds (X , L) with dim X43 and h 0 (L) F2 by the value of
g(L)2q(X). By this motivation, the author studied polarized 3-folds
(X , L) with h 0 (L) F2, and we obtained the classification of polarized 3-
folds (X , L) with the following types:

(b-3-1) g(L) 4q(X) and h 0 (L) F3 (see [Fk7]),
(b-3-2) g(L) 4q(X)11 and h 0 (L) F4 (see [Fk4]),
(b-3-3) g(L) 4q(X)12 and h 0 (L) F5 (see [Fk8]).

By considering this result of 3-dimensional case, it is natural to con-
sider the following problem:

PROBLEM. Let (X , L) be a polarized manifold with dim X4n and
g(L) 4q(X)1m , where m is a nonnegative integer. Assume that
h 0 (L) Fn1m. Then classify (X , L) with these properties.

In [Fk9], we get a classification of polarized manifolds (X , L) with
n»4 dim XF3, g(L) 4q(X)1m , dim BsNLNG0, and h 0 (L) Fm1n.

In this paper, we consider the case in which n42, g(L) 4q(X)1m
and h 0 (L) Fm12. The contents of this paper are the following:

(I) We will prove that if h 0 (L) D0, then k (X) 42Q (see Theorem
2.1 and Theorem 2.2 below).

(II) We consider the case in which k (X) 42Q.

(II-1) If X is minimal with q(X) 40, then for any ample line bundle
L , we get that h 0 (L) Dm12 (see Theorem 2.5 below). We also study the
case where X is not minimal with q(X) 40 (see Remark 2.6).

(II-2) We consider some special cases with q(X) F1 (see Proposi-
tion 2.7 and Theorem 2.9 below).

By considering Theorem 2.5 and Remark 2.6, the author thinks that
there are many examples of polarized surfaces (X , L) with g(L) 4

4q(X)1m and h 0 (L) Fm12. So it is difficult to classify all (X , L) with
g(L) 4q(X)1m and h 0 (L) Fm12.
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Last of all, we note that if nF3, then we can use the adjunction the-
ory for KX 1 (n22)L. But if n42, then we cannot use the theory. So we
need to study (X , L) by the value of the Kodaira dimension.

We use the customary notation in algebraic geometry.

1. Preliminaries.

THEOREM 1.1. Let (X , L) be a polarized manifold with n4

4 dim XF2. Assume that NLN has a ladder and g(L) FD(L), where D(L)
is the delta genus of (X , L).

(1) If L n F2D(L)11, then g(L) 4D(L) and q(X) 40.
(2) If L n F2D(L), then BsNLN4¯.
(3) If L n F2D(L)21, then NLN has a regular ladder.

PROOF. See (I.3.5) in [Fj3]. r

THEOREM 1.2. Let (X , L) be a polarized manifold with n4

4 dim XF2. If dim BsNLNG0 and L n F2D(L)21, then NLN has a
ladder.

PROOF. See (I.4.15) in [Fj3]. r

DEFINITION 1.3. (See Definition 1.1 in [Fj1].) Let (X , L) be a polar-
ized surface. Then (X , L) is called a hyperelliptic polarized surface if
BsNLN4¯ , the morphism defined by NLN is of degree two onto its image
W , and if D(W , H) 40 for the hyperplane section H on W.

THEOREM 1.4. Let (X , L) be a polarized manifold such that
BsNLN4¯ , L n 42D(L), and g(L) DD(L). Then (X , L) is hyperelliptic
unless L is simplely generated and (X , L) is a Fano-K3 variety.

PROOF. See Theorem 1.4 in [Fj1]. r

THEOREM 1.5. Let (X , L) be a hyperelliptic polarized surface.
Then (X , L) is one of the following types:
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Type
(Ia )
(IVa )
(*IIa )
(!(d 1 , d 2 )1

a , b )
(!(d 1 , d 2 )0

b )
(!(m , m)4

a )
(!(m12g , m)2

a )

L 2

2
8
4
2NdN

2NdN

4m
4(m1g)

g(L)
a
2a11
2a
aNdN1b21
b21
am21
am12ag2g21

q(X)
0
0
0
0
b21
a21
0

Furthermore the Kodaira dimension of X is the following:

Value of k (X)
(Ia )
(IVa )
(*IIa )
(!(d 1 , d 2 )1

a , b )
(!(d 1 , d 2 )0

b )
(!(m , m)4

a )
(!(m12g , m)2

a )

2
aD2
aD2
aD1
case (5)
—
—
aD2

1
—
—
—
case (4)
—
—
a42 and gD2

Value of k (X)
(Ia )
(IVa )
(*IIa )
(!(d 1 , d 2 )1

a , b )
(!(d 1 , d 2 )0

b )
(!(m , m)4

a )
(!(m12g , m)2

a )

0
a42
a42
—
case (3) and (6a)
—
—
a4g42

2Q

aE2
—
a41
case (1) and (2)
any b
any a
a42 and gD1

For the definition of the above types, see [Fj1]. In particular for the
cases of the type (!(d 1 , d 2 )1

a , b ), see (5.20) in [Fj1].

PROOF. See [Fj1]. (Here we remark that the case (6b) of type
(!(d 1 , d 2 )1

a , b ) is impossible because dim X42.) r

DEFINITION 1.6 (See Definition 1.9 in [Fk1].)

(1) Let (X , L) be a quasi-polarized surface. Then (X , L) is called L-
minimal if LED0 for any (21)-curve E on X.

(2) Let (X , L) and (Y , A) be quasi-polarized surfaces. Then (Y , A) is
called an L-minimalization of (X , L) if there exists a birational mor-
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phism m : XKY such that L4m*(A) and (Y , A) is A-minimal. (We re-
mark that an L-minimalization of (X , L) always exists.)

(3) Let (X , L) and (X 8 , L 8 ) be polarized surfaces. Then (X , L) is
called a simple blowing up of (X 8 , L 8 ) if X is a blowing up of X 8 at x�X 8

and (E , LE ) ` (P1 , OP 1 (1 ) ) for the exceptional divisor E.
(4) Let (X , L) be a polarized surface. Then (X , L) is called the re-

duction model if (X , L) is not obtained by finite times of a simple blow-
ing up of another polarized surface.

REMARK 1.6.1. (1) Let X be a smooth projective surface and let L
be an ample line bundle on X. Then (X , L) is L-minimal.

(2) Let (X , L) be a polarized surface. Then there exist a polarized
surface (Y , A) and a birational morphism p : XKY such that (X , L) is fi-
nite times of a simple blowing up of (Y , A), and (Y , A) is the reduction
model. In this case we obtain that g(L) 4g(A), q(X) 4q(Y), and
h 0 (L) Gh 0 (A).

THEOREM 1.7. Let (X , L) be a quasi-polarized surface with
h 0 (L) F2 and k (X) 42. Assume that g(L) 4q(X)1m. Then L 2 G2m.
Moreover if L 2 42m and (X , L) is L-minimal, then X`C1 3C2 and
LfC1 12C2 , where C1 and C2 are smooth curves with g(C1 ) F2 and
g(C2 ) 42.

PROOF. See Theorem 3.1 in [Fk6]. r

REMARK 1.7.1. Let (X , L) be as in Theorem 1.7. Then L 2 G2m is
equivalent to KX LF2q(X)22.

THEOREM 1.8. Let (X , L) be a quasi-polarized surface with k(X)40
or 1. Assume that g(L) 4q(X)1m. Then L 2 G2m12.

If this equality holds and (X , L) is L-minimal, then (X , L) is one of
the following;

(1) k (X) 40 case.

X is an Abelian surface and L is any nef and big divisor.

(2) k (X) 41 case.

X`F3C and LfC1 (m11) F , where F and C are smooth curves
with g(C) F2 and g(F) 41. If h 0 (L) D0, then L4C1 !

x�I
mx Fx , where

Fx is a fiber of the second projection over x�C , I is a set of a finite point
of C , and mx is a positive integer with !

x�I
mx4m11.
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PROOF. See Theorem 2.1 in [Fk6]. r

REMARK 1.8.1. Let (X , L) be as in Theorem 1.8. Then L 2 G2m12
is equivalent to KX LF2q(X)24.

THEOREM 1.9. Let (X , L) be a quasi-polarized surface. Assume
that D(L) 40. Then k (X) 42Q.

PROOF. See Corollary 1.7 in [Fj2] and Theorem 3.1 in
[Fk1]. r

2. Main Theorem.

THEOREM 2.1. Let X be a smooth projective surface defined over
the complex number field C , and let L be an ample line bundle on X. As-
sume that dim BsNLNG0 and h 0 (L) Fm12, where m4g(L)2q(X).
Then k (X) 42Q.

PROOF. We assume that k (X) F0. By taking the reduction model, if
necessary, we may assume that (X , L) is the reduction model by Remark
1.6.1 (2).

(1) The case in which k (X) 42.

Then by Theorem 1.7, we get that L 2 G2m. We put t42m2L 2.
Then we get that

D(L) 421L 2 2h 0 (L)

4212m2 t2h 0 (L)

G212m2 t2 (m12)

4m2 t

4m2 (2m2L 2 )

4L 2 2m

GL 2 2
1

2
L 2

4
1

2
L 2 .
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Since g(L) 411 (1 /2)(KX 1L) LD (1 /2) L 2 FD(L) and dim BsNLNG0,
we get that NLN has a ladder and by Theorem 1.1 we get that
BsNLN4¯.

If L 2 F2D(L)11, then we get that L is very ample, g(L) 4D(L), and
q(X) 40, that is, g(L) 4m. By the definition of sectional genus, we get
that

11
1

2
(KX 1L) L4m ,

that is,

2m22 4 (KX 1L) LFL 2 .

On the other hand, we get that

D(L) 421L 2 2h 0 (L)

G212m222 (m12)

4m22 Eg(L).

But this is impossible. Therefore we may assume that L 2 42D(L).
Then h 0 (L) 4m12 and L 2 42m. Here we remark that g(L) D

D (1 /2) L 2 4D(L). By Theorem 1.4, we get that (X , L) is a hyperelliptic
polarized surface. So we can use the list of the classification of hyperel-
liptic polarized surfaces. (See Theorem 1.5.) Since k (X) 42, we obtain
that q(X) 40 and g(L) 4m. Therefore

m4g(L) 411 (1 /2)(KX 1L) L

411 (1 /2)KX L1m

Dm .

But this is impossible.

(2) The case in which k (X) 40 or 1.

Then by Theorem 1.8, we get that L 2 G2m12.

(2.A) The case where L 2 42m12.

Then KX L42q(X)24. If k (X) 41, then dim BsNLN41 by Theorem
1.8 (2), and this is impossible. If k (X) 40, then by Theorem 1.8 (1) X is
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an abelian surface and h 0 (L) 4L 2 /2 Gm11 and this is a contradiction
by hypothesis. So we assume that L 2 G2m11.

(2.B) The case where L 2 42m11.

Then

D(L) 421L 2 2h 0 (L) G2m132 (m12)

4m11

4
1

2
(2m)11

4
1

2
(L 2 21)11

4
1

2
L 2 1

1

2
.

Hence L 2 F2D(L)21 and NLN has a regular ladder by Theorem 1.1
(3).

(2.B.1) The case in which k (X) 40.

Then g(L) 4q(X)1mG21m by the classification of surfaces. So we
get that

21mFg(L) 411
1

2
(KX L12m11)

4
1

2
KX L1m1

3

2
.

Hence KX LG1. Since L 2 42m11 is odd, we get that KX L41 and
q(X) 42. Therefore X is a one point blowing up of an abelian surface S ,
p : XKS and L4p*(A)2E for an ample line bundle A on S. Since
A 2 42m12, we get that h 0 (A) 4A 2 /2 4m11. But since m12 G

Gh 0 (L) 4h 0 (p* A2E) Gh 0 (p* A) 4h 0 (A) 4m11, we get a contra-
diction.

(2.B.2) The case where k (X) 41.

Then there exists an elliptic fibration f : XKC , where C is a
smooth projective curve. Let m : XKS be the relatively minimal model
of f : XKC and let h : SKC be a relatively minimal elliptic fibration
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such that f4h i m. We put A4m *(L). Then A is ample. Here we
remark that q(X) Gg(C)11.

(2.B.2.1) The case in which g(C) G1.

Then q(X) G2 and g(L) Gm12. So we get that

21mFg(L) 411
1

2
(KX L12m11)

4
1

2
KX L1m1

3

2
.

Therefore KX L41 because k (X) 41 and L is ample. If X is not relative-
ly minimal, then KX LDKS A and this is impossible because KX L41.
So X is relatively minimal. By the canonical bundle formula, we get
that

KX f (2g(C)221x(OX ) ) F1!
i

(mi 21) Fi ,

where F is a general fiber of f and mi Fi is the multiple fiber of f.
If g(C) 40, then q(X) G1, and g(L) G11m. Then

11mFg(L) 411
1

2
(KX L12m11)

4
1

2
KX L1m1

3

2

Dm1
3

2
,

and this is a contradiction.
If g(C) 41 and q(X) 42, then x(OX ) 40 and KX f!

i
(mi 21) Fi .

Since k (X) 41, there exists at least two multiple fibers (see Proposition
1.3 in [Se2]). So we get that KX LF2 and this is a contradiciton.

If g(C) 41 and q(X) 41, then g(L) 4m11 and this is impossible by
the same argument as above.

(2.B.2.2) The case in which g(C) F2.

Then KX LFKS AF (2g(C)221x(OX ) )AF. Since L 2 42m11, we
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get that

g(L)411
1

2
(KX 1L) L

F11
1

2
(2g(C)221x(OX ) ) AF1m1

1

2
.

If q(X) 4g(C), then this is impossible.
If q(X) 4g(C)11, then x(OX ) 40 (see Lemma 1.6 in [Se1]) and so we

have

g(L) F11 ( g(C)21) AF1m1
1

2

4m1
3

2
1 (g(C)21) AF .

If AFF2, then

g(L) Fm1
3

2
12g(C)22

4g(C)1m1g(C)2
1

2

4g(C)111m1g(C)2
3

2

Dq(X)1m .

So we get that AF41. Since q(X) 4g(C)11, by Lemma 1.13 in [Fk1],
we get that S`C3F and AfC1aF for an integer a. Since LF4AF4

41, we get that X is minimal. Here we remark that f has no multiple fiber
because LF41. Hence by the canonical bundle formula we get that

g(L) 411
1

2
(KX 1L) L

411 (g(C)21)1
1

2
L 2

4q(X)211
1

2
L 2 .

But this is a contradiction because L 2 42m11 by assumption.
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(2.C) The case in which L 2 G2m.

Here we do the above argument. We put t»42m2L 2. Then tF0 and
we get that

D(L) 421L 2 2h 0 (L)

4212m2 t2h 0 (L)

G212m2 t2 (m12)

4m2 t

4m2 (2m2L 2 )

4L 2 2m

GL 2 2
1

2
L 2

4
1

2
L 2 .

Therefore we get L 2 F2D(L). Here we remark that

g(L) 411
1

2
(KX 1L) L

F11
1

2
L 2

DD(L).

Since dim BsNLNG0, we get that NLN has a ladder by Theorem 1.2. If
L 2 F2D(L)11, then g(L) 4D(L) and q(X) 40 by Theorem 1.1 (1).
Hence m4g(L) 4D(L) G (L 2 21) /2 , that is, L 2 F2m11 and this is
impossible. Therefore we may assume that L 2 42D(L). In this case L 2 4

42m , D(L) 4m , and h 0 (L) 4m12 by the above inequalities. By Theo-
rem 1.1 (2), we get that BsNLN4¯. So by Theorem 1.4, we get that (X , L)
is either a hyperelliptic polarized surface or a polarized K3-surface.

If X is a K3-surface, then q(X) 40 and g(L) 4m. So we get that

m4g(L) 411
1

2
(KX 1L) L411

1

2
L 2 .

Hence L 2 42m22 and D(L) 4m21. But then h 0 (L) 421L 2 2

2(m21) 4m11 and this is impossible.
If (X , L) is a hyperelliptic polarized surface, then since k (X) 40 or 1
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by the list of hyperelliptic polarized surface (see Theorem 1.5) we get
that (X , L) is one of the following types:

Type
(I2 )
(!(d 1 , d 2 )1

a , b )
(!(m12g , m)2

2 )

L 2

2
2NdN

4(m1g)

g(L)
2
aNdN1b21
2m13g21

q(X)
0
0
0

Here we remark that if (X , L) is the type (!(m12g , m)2
2 ), then

gF2.
If (X , L) is the type (I2 ) (resp. (IV2 ), (!(m12g , m)2

2 )), then h 0 (L) 4

4D(L)12 4
L 2

2
12 43 (resp. 6 , 2(m1g11)).

If (X , L) is the type (I2 ) or (IV2 ), then h 0(L)4g(L)114m11Em12.
If (X , L) is the type (!(m12g , m)2

2 ), then h 0 (L) 4g(L)2g4m2

2gEm12. In each case we get a contradiction.
If (X , L) is the type (!(d 1 , d 2 )1

a , b ), then (X , L) is the case (3), the
case (4) or the case (6a) in (5.20) in [Fj1]. Here we use the notation in
(5.20) in [Fj1].

Assume that (X , L) is the case (3) in (5.20) in [Fj1]. Then q(X) 40,
h 0 (KX ) 41, and KX 40. Hence m4g(L) 411 (L 2 /2 ), that is, L 2 4

42m22. By the Riemann-Roch theorem and the Kodaira vanishing theo-
rem, we get that

h 0 (L) 4x(L) 4x(OX )1
1

2
(L 2 2KX L)

421m21

4m11
and this is a contradiction.

Assume that (X , L) is the case (4) in (5.20) in [Fj1]. In this case
a4 dim X42 and g(L) 42NdN1b21. Here we calculate h 0 (L).

h 0 (L) 421L 2 2D(L)

4212D(L)2D(L)

4D(L)12

4
L 2

2
12

4NdN12.
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Here we remark that L 2 42m and D(L) 4m. So in particular h 0 (L) 4

4m12. Hence NdN4m. On the other hand since q(X) 40, we get that
m4g(L) 42NdN1b21 42m1b21. Therefore NdN1b21 40. But
since b 84NdN1b22 D0 by (5.20) in [Fj1]. This is a contradiction.

Assume that (X , L) is the case (6a) in (5.20) in [Fj1]. Then d 1 4

4d 211 and NdN4d 11d 242d 211. Furthermore a4 dim X11 43 and
b42(dim X11)d 2 423d 2. Therefore

g(L) 43(2d 2 11)23d 2 21

43d 2 12,

and

L 2 42(2d 2 11)

44d 2 12.

On the other hand

h 0 (L) 4D(L)12 4
L 2

2
12 42d 2 13.

Since h 0 (L) Fm12 and g(L) 4q(X)1m4m , we get that

2d 2 13 4h 0 (L) Fm12 4g(L)12 43d 2 14,

that is, d 2 G21. But then g(L) 43d 2 12 G21 and this is impossible.
These complete the proof of Theorem 2.1. r

THEOREM 2.2. Let (X , L) be a polarized surface with dim BsNLN41
and h 0 (L) Fm12 for m4g(L)2q(X). Then k (X) 42Q.

PROOF. Assume that k (X) F0. By the Kodaira vanishing theorem
and the Riemann-Roch theorem we get that

h 0 (KX 1L)2h 0 (KX ) 4g(L)2q(X).

If h 0 (KX ) D0, then since h 0 (L) Fm12 we get that

m11 Gh 0 (L)21 Gh 0 (KX 1L)2h 0 (KX ) 4g(L)2q(X) 4m

and this is impossible. Hence h 0 (KX ) 40. By the classification theory
of surfaces we get that q(X) G1. Let (Y , A) be the reduction model
of (X , L). Then KY 1A is nef, g(A) 4q(Y)1m , q(Y) G1, and h 0 (A) F
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Fm12. Let MA be the movable part of NAN and let ZA be the fixed
part of NAN.

(I) The case where MA is nef and big.

Then we get that

11mFq(Y)1m4g(A)

411
1

2
(KY 1A) A

F11
1

2
(KY 1A) MA

F11
1

2
(KY 1MA ) MA .

Hence (KY 1MA )MA G2m. Here we also remark that g(MA ) Gq(Y)1m
by the above inequalities.

If MA
2 Gm , then

D(MA ) 421MA
2 2h 0 (MA )

G21m2 (m12) 40.

So we get that D(MA ) 40 and by Theorem 1.9 this is impossible because
k (Y) F0. Hence MA

2 Fm11 and KY MA Gm21, that is, MA
2 DKY MA .

In particular h 2 (MA ) 4h 0 (KY 2MA ) 40 because MA is nef. So by the
Riemann-Roch theorem, we get that

h 0 (MA ) 4h 1 (MA )1x(OY )1
1

2
(MA

2 2KY MA ).

(I.1) The case in which KY MA D0.

(I.1.1) The case in which a general member of NMAN is irreducible.

Let C be a general member of NMAN. Then C is an irreducible curve.
So by the following exact sequence

0 KKY 2MA KKY KKYNC K0,

we get the following exact sequence

0 4H 0 (KY ) KH 0 (KYNC ) KH 1 (KY 2MA ) KH 1 (KY ).



Yoshiaki Fukuma28

Since g(C) 4g(MA ) F2, we get that h 0 (KYNC ) Gdeg KYNC 4KY MA .
If q(Y) 40, then h 1 (KY 2MA ) 4h 0 (KYNC ) GKY MA and x(OY ) 41. So

we get that

h 0 (MA ) 4h 1 (MA )1x(OY )1
1

2
(MA

2 2KY MA )

GKY MA 111
1

2
(MA

2 2KY MA )

4g(MA ) Gm

and this is impossible.
If q(Y) 41, then h 1 (KY 2MA ) 4h 0 (KYNC )11 GKY MA 11 and

x(OY ) 40. So we get that

h 0 (MA ) 4h 1 (MA )1x(OY )1
1

2
(MA

2 2KY MA )

GKY MA 111
1

2
(MA

2 2KY MA )

4g(MA ) Gm11

and this is also impossible.

(I.1.2) The case in which a general member of MA is not irre-
ducible.

Let D4 !
i41

a

Ci be a general member of MA , where aF2. Then

D is reduced since dim BsNMANG0. In this case we get that h 0 (KYNCi
) G

Gdeg (KYNCi
)11 and h 0 (KYND ) Gh 0 (KYNCi

) for any i. Hence

ah 0 (KYND ) G g!
i41

a

deg (KYNCi
)h1a

4KY D1a

4KY MA 1a .

Therefore

h 0 (KYND ) G
1

a
KY MA 11.

CLAIM 2.2.1. h 0 (KYND ) GKY MA if KY MA F1.
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PROOF. If KY MA 41, then h 0 (KYND ) G (1 /a)11. But since aF2
and h 0 (KYND ) is integer, we get that h 0 (KYND ) G1 4KY MA .

If KY MA F2, then KY MA F2 Fa/(a21). Hence

a21

a
KY MA F1

and so we get that

KY MA 4
1

a
KY MA 1

a21

a
KY MA F

1

a
KY D11 Fh 0 (KY ND ).

This completes the proof of Claim 2.2.1. r

If q(Y) 40, then h 1 (KY 2MA ) 4h 0 (KYND ) GKY MA and x(OY ) 41. So we
get that

h 0 (MA ) 4h 1 (MA )1x(OY )1
1

2
(MA

2 2KY MA )

GKY MA 111
1

2
(MA

2 2KY MA )

4g(MA ) Gm

and this is impossible.
If q(Y) 41, then h 1 (KY 2MA ) 4h 0 (KYND )11 GKY MA 11 and

x(OY ) 40. So we get that

h 0 (MA ) 4h 1 (MA )1x(OY )1
1

2
(MA

2 2KY MA )

GKY MA 111
1

2
(MA

2 2KY MA )

4g(MA ) Gm11

and this is also impossible.

(I.2) The case in which KY MA 40.

Let (S , H) be an MA-minimal model of (Y , MA ). Then (S , H) is a
quasi-polarized surface. Since KY MA 40 and k (Y) F0, we get that S is
minimal with KS H40. Since H 2 D0 and KS

2 F0, we get that KS f0 and
so we obtain that k (S) 40. Here we remark that g(MA ) 4g(H), MA

2 4

4H 2 , and q(Y) 4q(S) G1. In particular H 2 DKS H and by the Riemann-
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Roch theorem we get that

h 0 (H) 4h 1 (H)1x(OY )1
1

2
(H 2 2KY H).

If q(S) 40, then H 2 42m22, h 1 (KS 2H) G1, and x(OS ) 41. Hence

h 0 (MA ) 4h 0 (H) 4h 1 (H)1x(OS )1
1

2
(H 2 2KS H)

G21m21

4m11
and this is impossible.

If q(S) 41, then S is a bielliptic surface and H 2 42m. So we get that
h 0 (L) 4h 0 (A) 4h 0 (MA ) 4h 0 (H) 4H 2 /2 4m and this is impossible.

(II) The case where MA is nef but not big.

Then BsNMAN4¯. By using this linear system NMAN , we get that
there exists a fiber space f : YKC over a smooth projective curve C.
Moreover we get that MA faF , where F is a general fiber of f. So we get
that

g(A) 411
1

2
(KY 1A) A

F11
1

2
(KY 1A) MA

411
a

2
(KY 1A) F

411
a

2
(2g(F)221AF)

411a( g(F)21)1
a

2
AF .

Here we remark that g(F) F1 because k (Y) F0.
If g(F) F2, then 11mFg(A) Da11, that is, aEm. So we get that

h 0 (L) Gh 0 (A) 4h 0 (MA ) GaEm and this is a contradiction.
If AFF2, then 11mFg(A) Fa11, that is, aGm. So we get that

h 0 (L) Gh 0 (A) 4h 0 (MA ) GaGm and this is impossible.
So we may assume that g(F) 41 and AF41. Since A is ample with
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AF41, we get that f is relatively minimal, and f has no multiple fiber.
Therefore by the canonical bundle formula, we get that the case where
g(C) 40 is impossible because x(OY ) G1. So we obtain that g(C) 41.
Since 1 Fq(Y) Fg(C) 41, we get that q(Y) 41 and x(OY ) 40. By the
canonical bundle formula, we obtain that KY f0 and since q(Y) 41, we
get that A 2 42m. Hence Y is a bielliptic surface because q(Y) 41. By
using the Kodaira vanishing theorem and the Riemann-Roch theorem,
we have

h 0 (A) 4
A 2

2
4

2m

2
4m .

But then h 0 (L) Gh 0 (A) 4m and this is impossible. These complete the
proof of Theorem 2.2. r

REMARK 2.2.1. By the same argument as the proof of Theorem 2.2,
we can prove that k (X) 42Q if (X , L) is a polarized surface with
dim BsNLNG0, h 0 (L) Fm12, and m4g(L)2q(X).

Next we consider the case in which k (X) 42Q. First we fix the no-
tation which is used later.

NOTATION 2.3 (See also Chapter V in [Ha].) Let X4P(E) be a P1-bun-
dle over a smooth projective curve C and let p : XKC be its projec-
tion, where E is a vector bundle of rank two on C. Assume that E is normal-
ized. Let C0 be a minimal section of p and let F be a fiber of p. We put
e42C0

2 . Then eF2g(C) by Nagata’s theorem.

REMARK 2.4. Here we use Notation 2.3. We put L4aC0 1bF for
some integer a and b. Then

g(L) 4q(X)1 (a21) gq(X)211b2
1

2
aeh

and

L 2 42ab2a 2 e .

Here we put m4 (a21) gq(X)211b2
1

2
aeh.

First we study the case in which q(X) 40.

THEOREM 2.5. Let X be a two-dimensional projective space P 2 or a
Hirzebruch surface, and let L be an ample line bundle on X. Then L is
very ample and h 0 (L) Dm12, where m4g(L)2q(X) 4g(L).
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PROOF. Assume that X4P2. Let L4 O(a). Then L is very ample,

h 0 (L) 4
(a12)(a11)

2
,

and

g(L) 411
a(a23)

2
.

Then

m4g(L) 411
a(a23)

2
.

So we get that

h 0 (L)2m4
(a12)(a11)

2
212

a(a23)

2

43aF3.
Hence h 0 (L) Fm13.

Assume that X is a Hirzebruch surface. Here we use Notation 2.3.
Then by Remark 2.4, we get that

m4 (a21) gb2
1

2
ae21h .

Furthermore by calculating h 0 (L), we get that

h 0 (L) 4 (a11)(b11)2
1

2
a(a11) e

because L is ample. Hence

h 0 (L)2m4 (a11)(b11)2
1

2
a(a11) e2 (a21) gb2

1

2
ae21h

42a12b2ae

42a1b1 (b2ae).

Since L is ample, we get that aD0 and b2aeD0 by Corollary 2.18 of
Chapter V in [Ha]. Here we also remark that eF0. Hence bD0.
Therefore

h 0 (L)2m42a1b1 (b2ae)

F21111 44.
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Hence h 0 (L) Fm14. By Corollary 2.18 of Chapter V in [Ha] we get that
L is very ample. These complete the proof of Theorem 2.5. r

REMARK 2.6. Let X be a smooth projective surface with k(X)42Q.
Let L be an ample line bundle on X. Assume that q(X) 40 and X is not
minimal.

Let r : XKX 8 be a minimal model of X. We put X0 »4X and L0 »4L.
Let r i11 : Xi KXi11 be a blowing down of (21)-curve Ei on Xi such that
r4r n i R i r 1 : X0 KX1 KRKXn , where Xi is a smooth projective
surface for i41, R , n. We put Li11 4 (p i11 )*(Li ). Then X 84Xn and
L 84Ln . We put Li 4 (p n11 )*(Li11 )2mi Ei , where mi is a positive inte-
ger. Then

g(L 8 ) 4g(L)1 !
i40

n21 mi (mi 21)

2
.

We put g(L) 4q(X)1m. Then

g(L 8 ) 4q(X)1m1 !
i40

n21 mi (mi 21)

2

4q(X 8 )1m1 !
i40

n21 mi (mi 21)

2
.

We put

m 84m1 !
i40

n21 mi (mi 21)

2
.

Here we calculate h 0 (L). Then

h 0 (L) 4h 0 (L0 )

Fh 0 (L1 )2
m0 (m0 11)

2

Fh 0 (L2 )2 !
i40

1 mi (mi 11)

2

QQ
Q

Fh 0 (L 8 )2 !
i40

n21 mi (mi 11)

2
.
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So if h 0 (L 8 ) Fm 8121 !
i41

n21

mi , then

h 0 (L) Fh 0 (L 8 )2 !
i40

n21 mi (mi 11)

2

Fm 8121 !
i41

n21

mi 2 !
i40

n21 mi (mi 11)

2

4m 82 !
i40

n21 mi (mi 21)

2
12

4m12.
Next we consider the case where q(X) F1.

PROPOSITION 2.7. Let (X , L) be a polarized surface with
dim BsNLNG0 and h 0 (L) Fm12, where m4g(L)2q(X). Assume that
k (X) 42Q , q(X) F1, and L 2 G2m , then (X , L) is the following
type;

(X , L) is a hyperelliptic polarized surface of the type (!(2 , 2 )4
4 ) with

L 2 48, g(L) 47, q(X) 43, and k (X) 42Q.

PROOF. If L 2 G2m , then by the same argument as Theorem 2.1 we
get that

D(L) 421L 2 2h 0 (L)

421 (2m2 t)2h 0 (L)

G2m122 t2m22

4m2 t

4m2 (2m2L 2 )

4L 2 2m

G
1

2
L 2 ,

where t42m2L 2. Therefore L 2 F2D(L). Here we remark that g(L) 4

4q(X)1mF (1 /2) L 2 FD(L). Therefore NLN has a ladder because
dim BsNLNG0.

If L 2 F2D(L)11, then q(X) 40 by Theorem 1.1 (1). But this is a
contradiction by hypothesis.

Hence we may assume that L 2 42D(L). Then L 2 42m and m4
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4D(L). Since q(X) F1, we get that g(L) 4q(X)1mDm4D(L). So by
Theorem 1.1 (2) we get that BsNLN4¯ and (X , L) is a hyperelliptic po-
larized surface. Since q(X) F1, we get that (X , L) is one of the types
(!2 (d 1 , d 2 )0

b ) and (!(m , m)4
a ) by the classification of hyperelliptic polar-

ized surfaces (see Theorem 1.5).
If (X , L) is the type (!2 (d 1 , d 2 )0

b ), then g(L) 4q(X). So we get that
m40. But since L 2 G2m by hypothesis, this is impossible.

If (X , L) is the type (!(m , m)4
a ), then we get that

g(L) 4am21 4 (a21)1a(m21)(˜)

4q(X)1a(m21),

and so we obtain that mc1 because g(L)2q(X) 4mc0. Since L 2 44m
by Theorem 1.5, we get that 2m4L 2 44m. Hence m42m. On the
other hand m4a(m21) by (˜). So we get that a4 (2m) /(m21) 421

1(2/(m21)). Since a is integer and 0EL 244m, we get that m42. Hence
L 2 48, m42, a44, q(X) 43, m44, and g(L) 47. This completes the
proof of Proposition 2.7. r

REMARK 2.8. Assume that X is a P 1-bundle with q(X) F1. Here we
use Notation 2.3. By Proposition 2.7, we may assume that L 2 D2m if
dim BsNLNG0. Then by Remark 2.4 we get that

L 242ab2a 2 e

42a gb2
1

2
aeh

42a g m

a21
2q(X)11h

4
2a

a21
m22a(q(X)21)

42m1
2

a21
m22a(q(X)21).

Therefore

2

a21
mD2a(q(X)21)
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that is,

m

a(a21)
11 Dq(X).

THEOREM 2.9. Let X be a P 1-bundle over a smooth projective curve
C with g(C) F1. Let L be an ample line bundle on X such that L 2 D2m ,
where m4g(L)2q(X). Assume that mF1. If LFFm , then g(C) 41
and L is one of the following types: (Here we put L4aC0 1bF.)

e
0
0
1
21
21
21
21
21
21
21

a
m11
m

2
11

2
5
2
7
4
3
2m11
m11

b
1
2
3
22
1
23
21
0
2m
12m

2

m
F1
even with mF2
2
2
2
3
3
3
F1
odd with mF1

PROOF. First we remark that (X , L) is not a scroll over a smooth
curve because mF1. In particular aF2. By Remark 2.8 we get that
q(X) 41 because a4LFFm.

(1) The case in which mF2.

Since L is ample, we get that b2 (1 /2) aeD0. So since q(X) 41 and
aFm , we get that

m4 (a21) gq(X)211b2
1

2
aeh

F (m21) gq(X)211b2
1

2
aeh

4 (m21) gb2
1

2
aeh .
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Hence we get that

11
1

m21
Fb2

1

2
ae .

Since mF2, we obtain that b2 (ae) /2 G2.
If eF0, then b2aeD0. Hence we get that

b2
1

2
aeD

1

2
ae .

If b2 (ae) /2 41/2 , then aeE1. But this is impossible because aF2,
and a and b are integer.

If b2 (ae) /2 41, then aeE2. So we get that e40, a4m11 and
b41 because a and b are integer.

If b2 (ae) /2 43/2 , then aeE3. But this is impossible because aF2,
and a and b are integer.

If b2 (ae) /2 42, then aeE4. So we get that e40, a411 (m/2 ) is
any, and b42 or e41, a42 and b43 because aF2, and a and b are
integer.

If eE0, then e421 because eF2g(C) 421.
If m42, then 0 Eb2 (ae) /2 G2 and 2 4 (a21)(b2 (ae) /2 ). Hence

we get the following type:

b2 (ae) /2
1/2
2

a
5
2

b
22
1

If m43, then 0 Eb2 (ae) /2 G3/2 and 3 4 (a21)(b2 (ae) /2 ).
Hence we get the following type:

b2 (ae) /2
1/2
1
3/2

a
7
4
3

b
23
21
0

If mF4, then 0 Eb2 (ae) /2 G1.
If b2 (ae) /2 41/2 , then m4 (a21) /2 and b42m.
If b2 (ae) /2 41, then m4 (a21) and b4 (12m) /2. In particular m

is odd in this case.
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(2) The case in which m41.

Since (X , L) is not scroll over a smooth curve, LFF2. Since
b2 (ae/2 ) D0 and

1 4m4 (a21) gq(X)211b2
1

2
aeh4 (a21) gb2

1

2
aeh ,

we get that (a , b2 (ae) /2 ) 4 (2 , 1 ) or (3 , 1 /2).
If eF0, then b2aeD0. Hence if b2 (ae) /2 41, then

1

2
ae112aeD0.

Hence aeG1. So e40 and b41.
If b2 (ae) /2 41/2 , then

1

2
ae1

1

2
2aeD0.

Hence aeG0. So e40 and b41/2. But this is impossible because b is
integer.

If e421, a42, and b2 (ae) /2 41, then b40.
If e421, a43, and b2 (ae) /2 41/2 , then b421. These complete

the proof of Theorem 2.9. r

PROBLEM 2.10. Let (X , L) be a polarized surface with k (X) 42Q

and h 0 (L) Fm12 for m4g(L)2q(X).

(1) Classify (X , L) such that X is not minimal with q(X) 40.
(2) Classify (X , L) such that X is a P1-bundle with q(X) F1 and

LFGm21.
(3) Classify (X , L) such that X is not minimal with L 2 F2m11

and q(X) F1.
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