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Global Homeomorphism Theorem
for Manifolds and Polyhedra (*).

KUNG-CHING CHANG (**) - JIA-QUAN LIU (**)

ABSTRACT - We improved a version of Global Homeomorphism Theorem due to
Katriel such that it can be applied to more general geometric objects: Hilbert
Riemannian manifolds, graphs, and polyhedra.

1. Introduction.

Hadamard’s Global Homeomorphism Theorem (GHT) is concerned
with a differential mapping F between Banach spaces X and Y , in which,
the speed of decay of the function VF 8 (x)21

V

21 plays an important role.
In fact, he (1906) only studied finite dimensional case. Extensions were
made by many authors, e.g., P. Levy (1920), Caccioppoli (1932), Banach-
Mazur (1934), etc. It would be natural to ask whether this may be ex-
tended to other geometric objects, or the differentiability of the map F
may be removed. We should mention the pioneer works of F. Browder
[Br], Prodi-Ambrosetti [PA], R. Plastock [Pl], and A. D. Ioffe [Io]. In
[Ka], Katriel generalized the result to certain continuous mappings be-
tween metric spaces. The main point in his approach is to use the surjec-
tion constant due to Ioffe in [Io]. However, in [Ka], the metric space Y is
assumed to be «nice». Although this notion includes Banach spaces, and
the unit sphere of a Hilbert space as special examples, it is very restric-
tive. The purpose of this paper is to improve the version of GHT in [Ka],
so that it can be applied to more general geometric objects. Following
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Browder and Plastock, our idea returns to show that F is a covering map.
The crucial point is to verify a kind of weak properness of F . The new in-
gredient in the verification relies on a recent deformation lemma for con-
tinuous functions on metric spaces due to Corvellec [Co]. Accordingly,
the restriction on Y is considerably reduced. Not only all Hilbert-Rie-
mannian manifolds but also infinite graphs as well as the abstract poly-
hedra are included.

Before going to state our main result, we introduce the necessary no-
tations and terminologies. Let (X , r) be a metric space, g : XKR 1 be a
continuous function. (x�X , (dD0, a continuous map

H : Bd (x)3 [0 , d) KX is called admissible, if it satisfies

r(H(y , t), y) G t , ((y , t) �Bd (x)3 [0 , d).

One (cf. J. N. Corvellec, M. DeGiovanni, and M. Marzocchi [CDM])
defines the weak slope of g at x to be

NdgN(x) 4 sup ]s� [0 , 1Q)N )dD0, )H : Bd (x)3 [0 , d) KX , s.t.

g(H(y , t) ) Gg(y)2st ((y , t) �Bd (x)3 [0 , d)(,

where H is admissible.
A point x0 is called critical if NdgN(x0 ) 40, otherwise, it is called regu-

lar. For a map F : XKY between two metric spaces, we set

Sur (F , x)(t) 4 sup ]rF0NBr (F(x) ) %F(Bt (x) )( (x�X , (tD0,

and set

sur (F , x) 4 lim inf
tK10

1

t
Sur (F , x)(t), (x�X .

The later is called the surjection constant of F at x , see [Io]. Our main
results, which includes the versions of GHT for manifolds and polyhedra
as special cases reads as follow:

THEOREM 1.1. Let (X , r), (Y , d) be two complete and path connect-
ed metric spaces. Assume

(H1) (y0 �Y , there is a neighborhood U4U(y0 ), there is a continuous
function g4gy0

: UKR 1 , and there is a constant bD0 such that

g(y0 ) 40, g(y) D0, NdgN(y) Db , (y�U0]y0 (.

And assume that F : XKY is a local homeomorphism satisfying
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(H2) (y�Y , ) a neighborhood U4U(y) and ) a constant kD0 such
that

sur (F , x) Fk , (x�F 21 (U) .

Then F is a covering map. Furthermore, if p 1 (Y) %F * p 1 (X), then F is a
global homeomorphism.

Let us recall the weak properness of a map F between path connect-
ed topological spaces X and Y:

(H3 )( path s : [0 , 1 ] KY with s (0) 4y0 , (x0 �F 21 (y0 ), and ( half open
path g : [0 , d) with dG1, satisfying F(g(t) ) 4s (t), (t� [0 , d), the limit

lim
tKd20

g(t) exists.

It is known ([D] or [Ch]) that if a local homeomorphism F is weakly
proper, then it possesses the Uniqueness Path-Lifting Property. Accord-
ing to F. E. Browder [Br] and R. Plastock [Pl], a map between path con-
nected, locally path-connected and locally simply connected topological
spaces is a covering map if and only if it is a local homeomorphism and
possesses the Uniqueness Path-Lifting Property.

The following deformation lemma is due to J. N. Corvellec [Co]: Let
X be a metric space, f : XKR 1 be continuous, and let aEc , and sD0 be
constants. Assume that f 21 [a , c] is complete and that NdfN(x) Ds , (x�
� f 21 ( (a , c] ). Then there is a deformation h : [0 , 1 ]3 fc K fc , where fc 4

4 ]x�XNf (x) Gc(, such that

f (h(t , x) ) G f (x), x� fa ¨ h(t , x) 4x , and h(1 , fc ) % fa .

i.e., fa is a strong deformation retract of fc . More precisely, in fact, by the
same proof, there is a continuous function t on fc such that 0 E t(x) G

Gs21 (f (x)2a), (x� f 21 (a , c], there exists a path g : [0 , t(x) ] K f 21 [a , c]
such that g(0) 4x , g(t(x) ) � f 21 (a), and r(g(t), x) G t , (t� [0 , t(x) ].

PROOF OF THEOREM 1. We are going to verify:

(1) (y0 �Y , there exists a neighborhood V4V(y0 ) such that V is path-
connected and simply connected.

(2) the map F is weakly proper.

Step 1. (The choice of V). Since there are U , g : UKR 1 and bD0 sat-
isfying (H1 ), without loss of generality, we may assume that U is closed.
(cD0, define V4 ]y�UNg(y) Gc(. V is a closed neighborhood of y0 , so
is complete. Now we apply the Deformation Lemma due to Corvellec, V
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is contractible and path connected. Combining with the fact that F is a
local homeomorphism, X is also locally path-connected and locally simply
connected.

Step 2. (The weak properness of F) First we need

LEMMA 1. Let V be defined above. Then under the assumptions of
Theorem 1 there are a continuous t : F 21 (V) KR 1 , and a path
a : [0 , t(x) ] KF 21 (V) such that a(0) 4x , F(a(t(x) ) ) 4y0 , 0 G t(x) G

G
1

kb
g(F(x) ), and r(a(t), x) G t , (x�F 21 (V).

PROOF. Define f4g i F : F 21 (V) KR 1 . Again f is continuous, and
F 21 (V) is complete. Provided by a result due to Ioffe [Io], we have

NdfN(x) FNdgN(y)3sur (F , x) Fbk»4aD0,

(x�F 21 (V0]y0 () 4 f 21 (0 , c] .

Now, we apply the Deformation Lemma due to Corvellec, there exist
a continuous function t : fc KR 1 satisfying 0 E t(x) Ga21 f (x), and a
path s : [0 , t(x) ] K fc such that s (0) 4x , and s (t(x) ) � f 21 (0). Noticing
that fc 4F 21 (V), and f0 4F 21 (y0 ), the lemma is proved.

LEMMA 2. Under the assumptions of Theorem 1, if 0 EdG1 and
g : [0 , d) KX is a path such that lim

tKd20
F(g(t) ) 4y0 �Y , then the limit

lim
tKd20

g(t) exists in X.

PROOF. Suppose that g(t) has no limit as tKd20. Then there exist
eD0 and tn E tn8Ed with tn Kd20, such that r(g(tn ), g(tn8 ) ) Fe , and
F(g(tn ) ), F(g(tn8 ) ) Ky0 . Therefore we may assume xn 4g(tn ), and x 8n 4

4g(tn8 ) �F 21 (V), where V4V(y0 ) is defined in step 1. Let g and f4g i F
be defined as above w.r.t y0 , one has f (xn ) K0. For large n , we may as-

sume f (xn ) E
1

3
ae . According to Lemma 1, there is a path

s : [0 , t(xn ) ] KF 21 (V), with s (0) 4xn , F(s (t(xn ) ) ) 4y0 and

r(s (t), xn ) G t , where 0 E t(xn ) Ga21 f (xn ) E
1

3
e .

Denoting z4s (t(xn ) ), we have r(z , xn ) G
1

3
e .

Similarly, we have a path s 8 : [0 , t(xn8 ) ] KF 21 (V), satisfying

s 8 (0) 4x 8n , F(s 8 (t(x 8n ) ) ) 4y0

and r(z 8 , x 8n ) G
1

3
e , where z 84s 8 (t(x 8n ) ).
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Thus zcz 8 , both z , z 8�F 21 (y0 ).
Now, we construct a path h4s 8 i g i s*, where s*(t) 4s (12 t); i.e.,

h is a path starting from z , goes along s* to xn , then along g to x 8n , and
then along s 8 to z 8 .

We have h : [0 , 1 ] KF 21 (V) with h(0) 4z and h(1) 4z 8 . Again, we
write f4g i F on F 21 (V).

Applying the Deformation Lemma due to Corvellec, we obtain a path
j(t) 4z(1 , h(t) ) % f 21 (0) 4F 21 (y0 ), (t� [0 , 1 ], where z : [0 , 1 ]3 fc K fc

is the deformation satisfying z(1 , fc ) % f0 .
This contradicts with the assumption that F is a local homeomor-

phism. The lemma is proved.
As to the last assertion, it is a well known fact in elementary topolo-

gy, which follows directly from the Uniqueness Path Lifting property
and the Homotopy Path Lifting Theorem.

THEOREM 2. Suppose that X and Y are complete, path-connected
metric spaces, and that F : XKY is a local homeomorphism. Assume
(H1) and (H2). If X is path-connected after the removal of any discrete
subset, and if there exists a continuous function h : YKR 1, satisfying
the (PS) condition, and possessing a unique minimizer and a discrete
set of maximizers as the only critical points, Then F is a global
homeomorphism.

PROOF OF THEOREM 2. Let Y0 be the set of maximizers of h, and
Y1 4Y0Y0 .

According to the critical point theory for continuous functionals, Y1 is
contractible, because the only critical point of h1 »4hNY1

is the unique
minimizer. Let X0 4F 21 (Y0 ) and X1 4X0X0 , then X0 is a discrete subset
of X, and then X1 is again path-connected. Provided by Theorem 1, F is a
covering map, so is F1 »4FNX1

. However, F1 (X1 ) %Y1 , the later is con-
tractible, F1 is a global homeomorphism, according to Theorem 1. This
implies that (z�Y1 , JF 21 (z) 41. Therefore, JF 21 (y) 41 (y�Y . This
proves that F is a global homeomorphism.

REMARK 1. Comparing Theorem 2 with Theorem 6.1 in [Ka], the
only difference is that in the definition of «nice» space, all functions gy0

defined in (H1) are assumed to have the same property as h in Theorem
2, (y0 �Y; while in our case only one such h is needed.

We present here few examples:
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EXAMPLE 1 (Hilbert Riemannian manifold). Let (M , g) be a
Hilbert Riemannian manifold, modelled on a Hilbert space E with Rie-
mannian metric g . It is known that the topology derived by the distance,
which is defined by the length of the geodesics between two points, coin-
cides with the given topology on M. With this distance d, M is a metric
space (M , d).

Claim: (M , d) satisfies (H1 ).
Indeed, (p�M , let V be the domain of normal coordinates around p ,

and let exp be the exponential map. Br (u p ), Br (p) are the r-balls with
centers at u p �Tp (M), the tangent space at p , and at p�M respectively.
We assume that Br (p) %V . Now, (y0 �Br/2 (p)0]p(, we set d4

4
1

2
min ]d(y0 , p), r( and U4Bd (y0 ). Thus d(y , p) Gr , (y�U , and then

j4expp
21 (y) is well defined, and d(y , p) 4VjV , where V i V4V i Vp denotes

the norm induced by g on Tp (M). Let j 0 denotes the unit vector of j .
Define H(y , t) 4expp (j2 tj 0 ) and h(y) 4Vexpp

21 (y)V ((y , t) �U3

3 [0 , d). Since,

tEdGd(y0 , p)2d(y , y0 ) Gd(y , p) 4VjV ,

H(y , t) �Br (p) is well defined. It is easy to verify: d(H(y , t), y) 4 t , and
h(H(y , t) ) 4VjV2 t4h(y)2 t . Therefore, (H1 ) is verified.

COROLLARY 1. Suppose that (M , g) and (N , h) are Hilbert-Rie-
mannian manifolds, and that F : MKN is a local homeomorphism
satisfying the following condition: there exists kD0, (p�M , there
exists r4r(p) D0, such that

kr(q , p) Gd(F(q), F(p) ) (q�Br (p),

In particular, if F is a C 1 mapping, VdF(p)21
VFk (p�M. Then F is

a covering map. Furthermore if p 1 (N) %F * p 1 (M), then F is a global
homeomorphism.

PROOF OF COROLLARY 1. We only need to prove the C 1 case. Let r
and d be the induced distance on M and N resp. Then (M , r), (N , d) are
complete, path connected, locally path-connected, locally simply con-
nected metric spaces, satisfying (H1 ). According to the Implicit Function
Theorem, F is a local homeomorphism. It remains to verify:

sur (F , p) Fk (p�M

Indeed, provided by the assumption on the boundedness of VdF 21
V ,
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there are a neighborhood U of p and a constant mFk , such that
Bmr (u F(q) ) %dF(q)(Br (u q ) ), (q�U .

There exists dD0, such that if tEd, then Btk (F(p) ) %F(U)OV,
where V is the domain of normal coordinates around F(p) in N.

Therefore, (y�Btk (F(p) ), h4expF(p)
21 (y) �TF(p) (N) is well defined.

Setting s (s) 4expF(p) (sh), l(s) 4F 21 (s (s) ), (s� [0 , 1 ], and x4

4F 21 (y), then l(0) 4p , l(1) 4x , and l 8 (0) 4 (dF(p) )21 h�Tp (M).
We have

r(x , p) G

G

G

G

�
0

1

Vl 8 (s)Vl(s) ds

�
0

1

V(dF)21 (l(s) ) s 8 (s)Vl(s) ds

1

k
d(y , F(p) )

t .

This proves the Corollary.

REMARK 2. The conclusion in this Corollary could be extended to
the case of Finsler-Banach manifold, provided we are able to define the
exponential map on such a manifold.

LEMMA 3. Suppose that (Y , d) is a metric space. If (y0 �Y there
exist a neighborhood U4U(y0 ), a norm space (E , V .V), and a local
homeomorphism F : UKE such that

(1) d(u , v) GVF(u)2F(v)V (u , v�U .

(2) F(y0 ) 4u and F(U) is a star-shaped with respect to u.
Then T satisfies (H1).

PROOF OF LEMMA 3. Now, we define g(y) 4VF(y)V and choose d�
� (0 , VF(u)V), with Bd (y0 ) %U , and then defined on Bd (y0 )3 (0 , d) the
mapping:

H(u , t) 4F21g12
t

VF(u)V

h F(u)

if u�U0]y0 (, and H(y0 , t) 4y0 .
The verification is trivial.
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EXAMPLE 2. Let X and Y be subsets in Banach spaces E and F ,
resp. in which each point has a star-shaped neighborhood, and let r and
d be the induced metrics respectively.

COROLLARY 2. Suppose that F : (X , r) K (Y , d) is a local homeo-
morphism that d(F(x), F(y) ) Fkr(x , y), where k is a positive constant.
Then F is a covering map.

PROOF OF COROLLARY 2. It follows directly from Theorem 1 and
Lemma 3.

One may consider other geometric objects.

EXAMPLE 3 (Infinite graph). Let E be a Banach space with norm
V .V. Given a set of isolated points A4 ]a1 , a2 , R(, and a set of closed
segments connecting some pairs of these points L4 ]l1 , l2 , R(.

If the intersection of any two segments is either empty or a point in
A, then we denote them by a triple ]A , L , E(. The triple determines a
metric space (Y , d), in which

Y4 0
i41

Q

li

endowed with the reduced distance from E. It is called an infinite
graph.

COROLLARY 3. Suppose that (X , r) and (Y , d) are two infinite
graphs determined by the triples ]A , L , E( and ]B , M , F( respect-
ively. Assume that F : XKY is a mapping such that F maps (A , L) to
(B , M), which is a local bijection, and is linear on each l�L. If there
are positive constants m and k(a) such that

mG
NF(l)N

NlN
Gk(a) ,

if a� l , (l�L , (a�A , where N i N is the length of a segment. Then F is a
covering map. Furthermore if every loop in Y is the image of a loop in
X, then F is a global homeomorphism. In particular, if Y is a tree, then
F is a global homeomorphism.
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PROOF OF COROLLARY 3. The verification of (H1 ) is divided into two
cases: (1) y0 � int (l) for some l�L , (2) y0 �A . In the former, it is a special
case of Corollary 2. In the later, there is dD0 such that AOBd (y0 ) 4y0 .

Define gy0
(y) 4Vy2y0 V , and H(y , t) 4y2

t

Vy2y0 V

(y2y0 ) (y�V4YO
OBd (y0 ).

EXAMPLE 4 (Abstract Polyhedra). Let E be a Banach space with
norm V .V. Given a set of isolated points A%E . For any index set I4

4 ]i0 , i1 , R( finite or infinite, let

D I 4Cl]conv (ai0
, ai1

, R)(

be a geometric simplex in E. A geometric complex G in E is defined to be
a set of index sets satisfying:

(1) If I 8%I , and I�G; then I 8�G .

(2)

D IOJ 4D I1D J (I , J�G

The subset

K4 0
I�G

D I

endowed with the distance induced from E is called an infinite
polyhedron.

Let (Z , d) be a metric space, and let t : KKZ be a surjective
satisfying

C1 Vj2hVGd(t(j), t(h) ) GC2 Vj2hV , (j , h�K .

for some positive constants C1 , C2 . Let Y4t(K) endowed with the in-
duced metric d, then (Y , d) is a metric space. We call it an abstract
polyhedron.

Let (X , r), (Y , d) be two abstract polyhedra determined by
]A , G , E , t(, and ]B , L , F , h(, respectively. F : XKY is called bi-Lip-
schitzian, if

F : t(D I ) Kh(D J ), is a surjective, (I�G , and for some J4J(I) �L ,
and is bi-Lipschitzian in each t(D I ), I�G . i.e.,

C1 (I) r(x , x 8 ) Gd(F(x), F(x 8 ) ) GC2 (I) r(x , x 8 ), (x , x 8�t(D I ),

where C1 (I), C2 (I) are positive constants depending on I.
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COROLLARY 4. Suppose that (X , r) and (Y , d) are two complete
path connected polyhedra. If F : XKY is a bi-Lipschitzian map, and
also a local surjection, and if there is a positive constant k such that

C1 (I) Fk (I�G

Then F is a covering map. Moreover, let L and M be the graphs (1-skele-
tons) determined by G and L respectively. If any loop in M is the image
of a loop in L; then F is a global homeomorphism.

The proof is similar to that of Corollary 3 and that of Lemma 3.

REMARK 3. An index set I�G is called maximal, if (J�G , JOIc¯ ,
implies J%I . If we assume that the X is such an abstract polyhe-
dron:

(x�X , t21 (x) is in at most finite many D I , where I is maximal in G .
Then the assumption on the local homeomorphism of F in Corollary 4

can be replaced by the assumption that the map: IKJ4J(I), is one to
one.
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