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A Global Existence Result in Sobolev Spaces
for MHD System in the Half-Plane.

EMANUELA CASELLA (*) - PAOLA TREBESCHI (*)

ABSTRACT - The main result of this paper is a global existence theorem in suitable
Sobolev spaces for 2D incompressible MHD system in the half-plane. The
existence result derives by the existence of a global classical solution in Holder
spaces, by proving some a-priori estimates in Sobolev spaces and, finally, by
applying the Banach-Caccioppoli fixed point theorem. Hence, the uniqueness
of the solution follows.

1. Introduction.

Let Q be the half-plane R?% := {(x;, 23) e R*: 2, >0}, and let I" be
the boundary of Q. In Q; :=2 X (0, T), with 7> 0, we consider the

equations of magneto-hydrodynamics for 2D incompressible ideal
fluid

1

1) w+ (u-V)u + Vo + EV|B|2— (B-V)B=0 in Qy,
@) B+ (uV)B—(B-V)u—udB=0 in Qp,
3) div =0 in Q,
@) divB=0 in Qy,

(*) Indirizzo degli AA.: Dip. di Matematica, Universita di Brescia, Facolta di
Ingegneria, Via Valotti 9, 25133 Brescia.
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6) wv=0 on I'x (0, 7),
6) B-v=0 on I'x (0, T),
) rotB=0 on I'x (0, T),
® u(x, 0) = ug(x) in Q,
©) B(x, 0) = By(x) in Q.

Here u=wu(x, t) = (ul(x, t), u?(x, t)), B=B(x,t) = (B(x, t), B%(x, t))
and o = z1(x, t) denote the unknown velocity field, the magnetic field and
the pressure of the fluid respectively. The functions u, = (ug (), ué(x))
and B, = (B{ (x), B¢(x)) denote the given initial data, v the unit outward
normal on I and u a real positive constant. Moreover, we use the
notation

3 o)
ft:a_];’ B=— V=018, wV=u's+u’s,
32
O%= ——, A=03%+3%.
ij azaj 11 22

In case the magnetic field B is identically equal to zero, i.e. in the case of
Euler equations, such a problem for global classical solutions was stu-
died by many authors, starting from Lichtenstein [10] and Wolibner [15].
The existence of global solutions in Hélder spaces in bounded domains
has been proven by Kato [6]. This result was extended to the exterior do-
main case by Kikuchi [8]. On the other hand, the existence of a classical
solution for MHD system was shown by Kozono [9] and by Casella, Sec-
chi and Trebeschi [5] in the bounded and unbounded case, respectively.

Existence results in Sobolev spaces were proved by several authors.
For the Euler equation we refer to Temam [14], Kato and Lai [7] and
Beirdo Da Veiga [3], [4]. Existence and uniqueness results in W*-spaces
for the equations of magneto-hydrodynamics, when u =0, have been
proved by Alexseev [1]. Moreover, in this case, Secchi [12] and Schmidt
[11] proved not only existence and uniqueness results, but also the con-
tinuous dependence on the data. In this paper we prove a global exis-
tence result in suitable Sobolev spaces for MHD system in the half-plane
case. To prove this result, firstly, we show a local existence theorem in
Sobolev spaces. Then we derive some a-priori estimates, global in time,
which come from the all-time existence of classical solution of system (1)-
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(9) in Holder-spaces. We underline that energy-method works well,
since the classical solution (u, B) is such that ||u(t)||Lw<Q), ||B(t)||Lw(9),
[Vu®) |2, = @) IVB®)||L, =0y and ||[B, ()1, = (o) are uniformly bounded in time
on the whole interval [0, T'].

We observe that the main result obtained in the present paper is a
necessary first step in the analysis of slightly compressible MHD fluids,
which will be the object of a forecoming work.

The plan of the paper is the following. In next section we fix some no-
tations and we introduce some preliminary results and the main theo-
rem. In Section 3 we show some a-priori estimates, and finally in Section
4 we prove the main result.

2. — Notations and results.

For a scalar-valued function ¢, we set
Rotg = (6.9, —0:19),
for a vector-valued function u = (u!, u?), we use the notation
rotu =0, u?—u' and divu=V-u=03u'+ du?.

We denote the norm of L?(2), 1 <p < o, by ||[,». H™(2) denotes the
usual Sobolev space of order m =1, and ||-||;;» denotes its norm. For sim-
plicity we use the abbreviated notation L”, H™. We also use the same
symbol for spaces of scalar and vector-valued functions.

Moreover, if X is a normed space, then L”(0,T;X), with 1<p< + o,
denotes the set of all measurable functions «(¢) with values in X such that:

T ’ 1/p
”u”L/’(X) i= ( f||u(t)||§dt) < + o,
0

where |||y is the norm in X.

Given T > 0 arbitrary, the set of all essentially bounded (with respect
to the norm of X) measurable functions of ¢ with values in X is denoted by
L~(0,T; X). We equip this space with the usual norm

£l == sup [lf®x.
tel0, T

In particular, the norm of L (0, T'; L?),1 <p < + o, is denoted by

Il = -
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Let €™ ([0, T]; X) denote the set of all X-valued m-times continuou-
sly differentiable functions (l)f t, for 0st<T.

We define X™(T) : = kOO Ck([0, T; H™*) equipped with the usual
norm

m—1
||u”§(m = Sup E ||8é€u(t)||1211mf/c.
[0,T1k=0

We denote by B(Q2) (resp. B(Qr)) the Banach space of all real valued
continuous and bounded functions on Q (resp. @), with the usual
norm.

For 0 <a <1, C*(Q) denotes the usual space of functions in B(Q),
uniformly Hélder continuous on © with exponent «; the norm of C*(Q) is
Il = + [-1., where

19~ 9|
rEY, v, ye |9€—2/|a
For 0 < a <1 and integer k, C***(Q) denotes the space of functions ¢
with D ¢ € B(Q) for |B| <k, and D? ¢ € C*(Q) for |y| = k. The norm
is

(¢l =

|¢|k+a: max||Dﬂ¢||L°° + maX[Dyd)]a'
Bl <k ly| =k

With %7 (Qy) for integers k, j = 0 we mean the set of all functions ¢ for
which every 9107¢ exists and is continuous on Qr, for 0 <|q| <k,
0<r<j. Ctt®ith(@Q,), for integers k, j=0and 0 < a, B <1 is the sub-
set of C"/(Qr), consisting of Hélder continuous functions with expo-
nents « in x and S in t.

For every function ¢ e C***/"A(@Q,), we consider the following
seminorm:

. |¢(9€,t)—¢(?/7t)| |¢(9€,t)—¢(96', S)l
[¢l.,s:=  sup - + sup 7 ,
@y, tel0, T] |x—vy| t=s, 2 |t —s]|

and the norm
|@|ksajipi= max sup |940;¢(x, t)| + max[818]¢],. 4.
- ol <k 7<7 (o, 1) e Ty lgl =k ’

We shall denote by C and by C;, teN, some real positive constants
which may be different in each occurrence, and by C, (¢) a real function
in L (0, T) depending on [[ut)|,=, [BO)|L=, [Vu®)|.=, [VB@®)|L=
|B;(t)||,» and some their suitable powers.
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We now set Z:=rotu, E:=rotB, Z, :=rotuy, and &, :=rot By,. By
applying rot to both sides of equations (1) and (2), we get

(10) Z,+u-VZ-B-VE=0,
1) &, +u-VE—B-VZ+238,u'DB +23,B2Du — ude =0,

where Du = 3, u%+ d,u', and DB = 3, B> + 3, B'. Finally, let F, ¢, F, v
be defined as

F=—-uVE+B-VZ—-28,u'DB—23,B?Du,

3
9(s) = 2 [|oF &),

3
Hs) = 2 [6FF(s)lfrs-s,

3
v = 3 [kl
We now recall a result (see [5]) which will be fundamental to prove
that, under suitable assumptions on initial data, the classical solution of
problem (1)-(9) belongs to suitable Sobolev spaces.

THEOREM 2.1. Let T >0 be arbitrary. Let uye C**%(Q), rotuye
eLY(Q), Bye C2T9(Q)NH(Q) for some 0 <0 <1, such that divu,=
=divBy =01 Q and uy-v=By-v =0 on I. Then there exists a positive
constant Cy, such that, if |Bollg1+ |Bo|2+0 < Cy, then there exists a solu-
tion {u, B, n} € CH1(@Qp) X C> (@) X CV*(@Qy) of system (1)-(9). Such
a solution 1s unique up to an arbitrary function of t which may be
added to m.

REMARK 2.2. In [5] Kozono’s result obtained in [9] and Kikuechi’s re-
sult, see [8], are extended to the exterior domain case and to the half-
plane case, and to the MHD equations, respectively. In [5] the existence
of the global classical solution for MHD system in Hdlder spaces is
proved by applying the Schauder fixed point theorem. The authors fol-
lowed the idea of Kato [6], Kikuchi [8], Kozono [9]. The crucial step is the
definition of a map, defined on a suitable class, the same already consid-
ered by Kozono in [9], which satisfies the conditions of the Schauder
fixed point theorem. The uniqueness of the solutions of the studied pro-
blem is obtained by following standard tecniques, see Temam [13].

The main result, we are going to prove, is:
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THEOREM 2.3. Let T >0 be arbitrary. Let the couple (uy, By) €
eHNLY rotuge L', divug=divB, =0 in Q and uy-v=Byv=0o0n I
Assume also that, for some 0 <0 <1,

1Bollerr + | Bo |2+ 0 < Ci,

where C,. is the constant obtained in Theorem 2.1.
Then problem (1)-(9) has a unique solution (u, B, w) such that

ueX*(T), BeX*(T)NL?*0,T;H®), VaeX*T).

3. Some a-priori estimates.
We devote this section to prove

LEMMA 3.1. The following energy-type estimate
1d
a2) - —0® +ZD[) + Cry) < C. @) + [Z2Df)

holds in [0, T].

Note that Theorem 2.1 ensures us that the time functions |[u(t)||,, = q),
IB®)|L =@y V)|l = (25 IVB®Il = (@), and [B,(#)]|, (o) are uniformly
bounded in time on the whole interval [0, T]. Consequently, the real
function C, (t) (appearing in (12) and in some preliminary lemmata given
below) belongs to L (0, T). We shall prove (12) for regular sol-
utions.

LEMMA 3.2. The couple (u, B) satisfies the following energy-type
estimate

(13) el = 22y + IBIE = .2y + 20l 2 < o |22 + [1Bo [

Proor. We multiply equations (1) and (2) by » and B respectively.
By standard calculations and by summing the resulting expressions, we
get easily the thesis. =

LeEmMA 3.3. The following inequality holds

NZAE = z2) + 18l = o) + gIIVSH%Z@T) < C(l1Zo |2 + 15 o).
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Proor. We multiply equations (10) and (11) by Z and & respectively.
Since

- j(B-V) E-Zdx= j(B-V) Z-Ede,
Q2

Q

by summing the resulting expressions, we obtain

1d
ad) = — 2D+ EDE) +2 [(3r DB + 8, B, Du) édr +
Q

+ullVE® = 0.
Since [[Vu(®)ll,: < ClZ(®)|,> and [VB(®) [+ < ClE® 12 [VED 17, we easily
obtain that
(15) 2 [|(81u DB + 8, By Du) | de < %va(t)ngz +CllZ@) |3 llE@) 3 .
Q

By collecting (14) and (15), we get

1d
5 7 (POIE: + @z + %IIVS(t)II%z < CllE®E=AZ@ 22+ IEE -

The thesis follows by using Lemma 3.2 and the Gronwall lem-
ma. u

The next step is to estimate the L *(0; T; L?)-norm of 3“Z, where a
is a multi-index such that 1 < |a| <4. We get the following result.

LEMMA 3.4. Let ¢ >0. Then the following inequality

1d
3 EH@(‘Z(UH%Z <C.W)18“ZD) |7 + ellE®) s,

holds in [0, T, where C.,, depends also on .

Proor. By applying 9“ to both sides of equation (10), we get
(16) 0“Zi+ (u-V)9*Z = —[0*, u-V]IZ + 3“((B-V) &),

where [+, -] denotes the commutator operator. We now multiply (16) by
0“Z and we estimate term by term. We use the Holder and Young in-
equalities and some suitable interpolation inequalities (obtained by the
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well-known Gagliardo-Nirenberg one). More precisely,

amn D%l < C[VullL% 1|21},
(18) 1D B|,+ < C|[VBI [I&]i,
(19) D3l < C[Vull2 1| Z1[}2,
(20) D2 Bll,« < C|[VBI[ [I&],
(21) ID* ull« < C[Vull 21|21,
(22) ID*BllL+ < C|[VBIL [I&l3,
(23) ID? By I« < CIIB, [ [1& . [I13.

By using (17)-(23), we easily obtain the thesis. =

LEMMA 3.5. The following estimate

1d
3 @d)(t) + Cryp(t) < Co(TH) + (1))

holds in [0, T].

Proor. We write (11) in the form 0,& — u4& = F. For each integer
k=1, ...,4, we take (k — 1) time derivatives and we obtain the follow-

ing problems
OFE—uAdt~1E=03"1F in Q,
©24) { tf_lﬂ i & t
7" E=0 on 09Q.

For each fixed k, we multiply the first equation of (24) by 8% ! & and by
—A3¥~1&. By using the Holder inequality one has

| =

25) 1851 &t B + g(llvaf*at)n%z +[ladt -1 aw) ) <

1
2

U

t
<C(|a 1 F@) 7= +l0F 1 E®)E2).
We now write (24) in the form of the elliptic problem

—uAdFlE= —3kE+ 8 'F in Q,

df7"E=0 on 09.

By well-known results on the regularity of the solutions of problems
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(26), we get

@D [oF T ED g2 < CUOFED g + [|0F T ED ez + 107~ F@) |57

We now sum (25) for k=1, ..., 4, and we add to both sides of the re-
sulting expression the term

2
“(jatewlf+ 3 o e
2 h=0

By observing that ||&,,(t) |52 is equivalent to ||& . (t)|gr + |AE w2, we
get

1d "
2 dt
We use inequality (27) firstly for k=1, 2, 3 and m =4 — k, and again in

the cases k=1, 2 and m = 1. By summing the resulting expressions we
obtain the thesis. =

2
() + Cyy(t) < Cg(ff(t) +||3ED)|22 + Eouafg(t)uzﬁ_k) )

We now estimate each term appearing in J(t). The result we are go-
ing to show is

LEMMA 3.6. The following inequality

Ft) < Co ()(p(@®) + 12 |Fr0)
holds in [0, T].

Proor. We split the proof of the previous statement in several steps.
As first step we write explicity ||[F(¢)|zs. By using the Hélder and
Gagliardo-Nirenberg inequalities, we easily obtain

[F@)|z < Co )IED) s + 12 |r).

By using (27) in the following cases (k, m) = (1, 2),(k, m) = (2, 0), and
finally (k, m) = (1, 0), one has

2
Il <0 S st el + IR0l + IF@).
By straightfull calculations, we get
IF@®fzz < Co OAEDFr + 11O + 2@ o),

IF,()|F2 < C ED) B + 1|15, + 12 o).
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Hence
[F)|2s < C. (t)(p(t) + IZ(E) o).

In order to estimate |F,(t)|yz, |Fyu(®)|; and ||[Fyu(t)]|,2, we follow the
same lines as in the previous step, and we consider the following interpo-
lation inequalities

28) 1D Bll,s < C|[VBI#* [I&]li1,
(29) D% ull,s < C[Vaul 1| ZI[F1,
(30) ID? Bll,s < CIIBIZ* [|]lH4°,
(31) D3 ulls < Cllul 2 12114,
(32) ID* Bl < C|[VBI#* ||,
(33) ID*Bl,ss < C[VBI[* ||Elf/4,
(34) ID? Bl 55 < CIIVBI[F* ||&]1#6,
(35) D2 By |52 < ClIB, [[1/% [I& [[32.-

By virtue of the Holder inequality, of (17)-(23) and of (28)-(35) we
get

17,z + [|Fi (D[22 < Co (0)(@(8) + [|Z(0)|[r4),
[ () |2 < Co. 0)(p(t) + 1 Z()|r0) + |D3 B, DZ|3 2.

By (35), by recalling that B,e L *(2), and by using again (27), we
get

IF®Fr < Co 0)(@p@) + 12 s + 116, ) [r5) <
< Coo (1) (p() + 12O 7o + £ 71 +
+HEw O + 1F @ ) <
< C.. ()(p(®) + 1 Z(®) |9
Hence, the claim follows. =

By collecting Lemmata 3.3-3.6 we obtain inequality (12).



A global existence result in Sobolev spaces etc. 89

4. — Proof of Theorem 2.3.

The first topic which we treat is a local existence result in Sobolev
spaces for system (1)-(9). Obtained that the classical solution of (1)-(9)
belongs locally to H®>(£), from the a-priori estimates (12) and (13) we
can extend such a solution on the whole time interval [0, 7.

ProoF. In order to show the local existence of a solution in Sobolev
spaces, we apply the Banach-Caccioppoli theorem. In particular, let
0 <t < T be sufficiently small and let

S:={(u, Bye L™ (0,t H(Q)): |(u, B)llL =, n5 < 24},

where A is a real positive constant such that A > Cy(||u %5 + [|B |[5) for
a suitable constant C;, which will be fixed later.
Given the couple (u, B) in S and satisfying (3)-(9), let

A:S—=AS)
be the map defined by
U:=(u,B)—U:=@,B),

where U := (i, B) is the solution of the following linear system

(36) iy + (u-V) % —(B-V) B = %V|B|2 in Qr,
(37 B+ (wV)B—(B-V)#—udB =0 in Qr,
(38) divii =0 in Qp,
39) divB =0 in Qy,
(40) wv=0 on I'x (0, T),
(41) Bwv=0 on I'x (0, T),
(42) rot B=0 on I'x (0, T),
(43) u(x, 0) =wug(x) in Q,

(44) B(x, 0) = By(x) in Q.
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We now show that the map A satisfies all the assumptions of the Banach-
Caccioppoli theorem. We now apply to both sides of equation (36)-(37)
rot and 9%, where a is a multi-index with |a| <4. We multiply the re-
sulting expressions by the test functions 3“Z and 3, where Z : = rot %
and & : = rot B. By suitable integrations by parts, and by using the Hold-
er and Young inequalities, an application of the Gronwall lemma yields
that

i
CI+|U®)g5)*dt
Ysdtte o ,

frs < {1 CollUC0)]

i
max || )| e+ C [ U]
tel0,17] 0

where ||[U(0)|5 = |lug |75 + ||Bo |25 Since U belongs to S, we get

max || U(t)[}s < (A + CH2A)) e 11 +247,

te[0,1]

Consequently, if ¢ is small enough, /1 maps the set S into itself. We now
show that A is a contraction with respect to L *(0,t; L?)-norm. Let

= (%, B,) and U, := (7, By) be solutions of system (36)-(44). We
now consider the difference between equations (36), written for i =1, 2,
and equations (37), again written for i =1, 2. We use as test functions
%, — i, and B, — B, respectively. By standard arguments, we get

1T, - ﬁZ”%”(O,i;LZ) = CZQMZZHUl — Uslf =0,1 1.2)-

If t is sufficiently small, A is a contraction and the unique fixed point of
the map A is a solution of system (1)-(9). The thesis follows by the
uniqueness of the classical solution and by using (12) and (13). =
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