A Global Existence Result in Sobolev Spaces for MHD System in the Half-Plane.

Emanuela Casella (*) - Paola Trebeschi (*)

Abstract - The main result of this paper is a global existence theorem in suitable Sobolev spaces for 2D incompressible MHD system in the half-plane. The existence result derives by the existence of a global classical solution in Hölder spaces, by proving some a-priori estimates in Sobolev spaces and, finally, by applying the Banach-Caccioppoli fixed point theorem. Hence, the uniqueness of the solution follows.

1. Introduction.

Let Ω be the half-plane $\mathbb{R}_{+}^{2}:=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}>0\right\}$, and let Γ be the boundary of Ω. In $Q_{T}:=\Omega \times(0, T)$, with $T>0$, we consider the equations of magneto-hydrodynamics for 2D incompressible ideal fluid

$$
\begin{equation*}
u_{t}+(u \cdot \nabla) u+\nabla \pi+\frac{1}{2} \nabla|B|^{2}-(B \cdot \nabla) B=0 \text { in } Q_{T} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
B_{t}+(u \cdot \nabla) B-(B \cdot \nabla) u-\mu \Delta B=0 \text { in } Q_{T} \tag{2}
\end{equation*}
$$

(3)

$$
\begin{align*}
& \operatorname{div} u=0 \text { in } Q_{T}, \\
& \operatorname{div} B=0 \text { in } Q_{T}, \tag{4}
\end{align*}
$$

(*) Indirizzo degli AA.: Dip. di Matematica, Università di Brescia, Facoltà di Ingegneria, Via Valotti 9, 25133 Brescia.

$$
\begin{gather*}
u \cdot v=0 \text { on } \Gamma \times(0, T), \\
B \cdot v=0 \text { on } \Gamma \times(0, T), \tag{6}\\
\operatorname{rot} B=0 \text { on } \Gamma \times(0, T), \tag{7}\\
u(x, 0)=u_{0}(x) \text { in } \Omega \tag{8}\\
B(x, 0)=B_{0}(x) \text { in } \Omega . \tag{9}
\end{gather*}
$$

Here $u=u(x, t)=\left(u^{1}(x, t), u^{2}(x, t)\right), B=B(x, t)=\left(B^{1}(x, t), B^{2}(x, t)\right)$ and $\pi=\pi(x, t)$ denote the unknown velocity field, the magnetic field and the pressure of the fluid respectively. The functions $u_{0}=\left(u_{0}^{1}(x), u_{0}^{2}(x)\right)$ and $B_{0}=\left(B_{0}^{1}(x), B_{0}^{2}(x)\right)$ denote the given initial data, v the unit outward normal on Γ and μ a real positive constant. Moreover, we use the notation

$$
\begin{gathered}
f_{t}=\frac{\partial f}{\partial t}, \quad \partial_{i}=\frac{\partial}{\partial x_{i}}, \quad \nabla=\left(\partial_{1}, \partial_{2}\right), \quad u \cdot \nabla=u^{1} \partial_{1}+u^{2} \partial_{2} \\
\partial_{i j}^{2}=\frac{\partial^{2}}{\partial_{i} \partial_{j}}, \quad \Delta=\partial_{11}^{2}+\partial_{22}^{2}
\end{gathered}
$$

In case the magnetic field B is identically equal to zero, i.e. in the case of Euler equations, such a problem for global classical solutions was studied by many authors, starting from Lichtenstein [10] and Wolibner [15]. The existence of global solutions in Hölder spaces in bounded domains has been proven by Kato [6]. This result was extended to the exterior domain case by Kikuchi [8]. On the other hand, the existence of a classical solution for MHD system was shown by Kozono [9] and by Casella, Secchi and Trebeschi [5] in the bounded and unbounded case, respectively.

Existence results in Sobolev spaces were proved by several authors. For the Euler equation we refer to Temam [14], Kato and Lai [7] and Beirão Da Veiga [3], [4]. Existence and uniqueness results in W^{k}-spaces for the equations of magneto-hydrodynamics, when $\mu=0$, have been proved by Alexseev [1]. Moreover, in this case, Secchi [12] and Schmidt [11] proved not only existence and uniqueness results, but also the continuous dependence on the data. In this paper we prove a global existence result in suitable Sobolev spaces for MHD system in the half-plane case. To prove this result, firstly, we show a local existence theorem in Sobolev spaces. Then we derive some a-priori estimates, global in time, which come from the all-time existence of classical solution of system (1)-
(9) in Hölder-spaces. We underline that energy-method works well, since the classical solution (u, B) is such that $\|u(t)\|_{L^{\infty}(\Omega)},\|B(t)\|_{L^{\infty}(\Omega)}$, $\|\nabla u(t)\|_{L^{\infty}(\Omega)},\|\nabla B(t)\|_{L^{\infty}(\Omega)}$ and $\left\|B_{t}(t)\right\|_{L^{\infty}(\Omega)}$ are uniformly bounded in time on the whole interval $[0, T]$.

We observe that the main result obtained in the present paper is a necessary first step in the analysis of slightly compressible MHD fluids, which will be the object of a forecoming work.

The plan of the paper is the following. In next section we fix some notations and we introduce some preliminary results and the main theorem. In Section 3 we show some a-priori estimates, and finally in Section 4 we prove the main result.

2. - Notations and results.

For a scalar-valued function ϕ, we set

$$
\operatorname{Rot} \phi=\left(\partial_{2} \phi,-\partial_{1} \phi\right),
$$

for a vector-valued function $u=\left(u^{1}, u^{2}\right)$, we use the notation

$$
\operatorname{rot} u=\partial_{1} u^{2}-\partial_{2} u^{1} \quad \text { and } \quad \operatorname{div} u=\nabla \cdot u=\partial_{1} u^{1}+\partial_{2} u^{2} .
$$

We denote the norm of $L^{p}(\Omega), 1 \leqslant p \leqslant \infty$, by $\|\cdot\|_{L^{p}} . H^{m}(\Omega)$ denotes the usual Sobolev space of order $m \geqslant 1$, and $\|\cdot\|_{H^{m}}$ denotes its norm. For simplicity we use the abbreviated notation L^{p}, H^{m}. We also use the same symbol for spaces of scalar and vector-valued functions.

Moreover, if X is a normed space, then $L^{p}(0, T ; X)$, with $1 \leqslant p<+\infty$, denotes the set of all measurable functions $u(t)$ with values in X such that:

$$
\|u\|_{L^{p}(X)}:=\left(\int_{0}^{T}\|u(t)\|_{X}^{p} d t\right)^{1 / p}<+\infty
$$

where $\|\cdot\|_{X}$ is the norm in X.
Given $T>0$ arbitrary, the set of all essentially bounded (with respect to the norm of X) measurable functions of t with values in X is denoted by $L^{\infty}(0, T ; X)$. We equip this space with the usual norm

$$
\|f\|_{L^{\infty}(X)}=\sup _{t \in[0, T]}\|f(t)\|_{X}
$$

In particular, the norm of $L^{\infty}\left(0, T ; L^{p}\right), 1 \leqslant p<+\infty$, is denoted by $\|\cdot\|_{L^{\infty}\left(L^{p}\right)}$.

Let $\mathcal{C}^{m}([0, T] ; X)$ denote the set of all X-valued m-times continuously differentiable functions of t, for $0 \leqslant t \leqslant T$.

We define $X^{m}(T):=\bigcap_{k=0}^{m-1} \mathcal{C}^{k}\left([0, T] ; H^{m-k}\right)$ equipped with the usual norm

$$
\|u\|_{X^{m}}^{2}:=\sup _{[0, T] k=0}^{m-1} \sum_{k=0}^{k}\left\|\partial_{t}^{k} u(t)\right\|_{H^{m-k}}^{2} .
$$

We denote by $\mathcal{B}(\bar{\Omega})$ (resp. $\mathcal{B}\left(\bar{Q}_{T}\right)$) the Banach space of all real valued continuous and bounded functions on $\bar{\Omega}$ (resp. \bar{Q}_{T}), with the usual norm.

For $0<\alpha<1, C^{\alpha}(\bar{\Omega})$ denotes the usual space of functions in $\mathcal{B}(\bar{\Omega})$, uniformly Hölder continuous on $\bar{\Omega}$ with exponent α; the norm of $C^{\alpha}(\bar{\Omega})$ is $\|\cdot\|_{L^{\infty}}+[\cdot]_{a}$, where

$$
[\phi]_{\alpha}:=\sup _{x \neq y, x, y \in \bar{\Omega}} \frac{|\phi(x)-\phi(y)|}{|x-y|^{\alpha}} .
$$

For $0<\alpha<1$ and integer $k, C^{k+\alpha}(\bar{\Omega})$ denotes the space of functions ϕ with $D^{\beta} \phi \in \mathcal{B}(\bar{\Omega})$ for $|\beta| \leqslant k$, and $D^{\gamma} \phi \in C^{\alpha}(\bar{\Omega})$ for $|\gamma|=k$. The norm is

$$
|\phi|_{k+\alpha}=\max _{|\beta| \leqslant k}\left\|D^{\beta} \phi\right\|_{L^{\infty}}+\max _{|\gamma|=k}\left[D^{\gamma} \phi\right]_{\alpha} .
$$

With ${ }^{k, j}\left(\bar{Q}_{T}\right)$ for integers $k, j \geqslant 0$ we mean the set of all functions ϕ for which every $\partial_{x}^{q} \partial_{t}^{r} \phi$ exists and is continuous on \bar{Q}_{T}, for $0 \leqslant|q| \leqslant k$, $0 \leqslant r \leqslant j$. $\mathcal{C}^{k+\alpha, j+\beta}\left(\bar{Q}_{T}\right)$, for integers $k, j \geqslant 0$ and $0 \leqslant \alpha, \beta<1$ is the subset of $\mathfrak{C}^{k, j}\left(\bar{Q}_{T}\right)$, consisting of Hölder continuous functions with exponents α in x and β in t.

For every function $\phi \in \mathfrak{C}^{k+\alpha, j+\beta}\left(\bar{Q}_{T}\right)$, we consider the following seminorm:

$$
[\phi]_{\alpha, \beta}:=\sup _{x \neq y, t \in[0, T]} \frac{|\phi(x, t)-\phi(y, t)|}{|x-y|^{\alpha}}+\sup _{t \neq s, x \in \bar{\Omega}} \frac{|\phi(x, t)-\phi(x, s)|}{|t-s|^{\beta}},
$$

and the norm

$$
|\phi|_{k+\alpha, j+\beta}:=\max _{|q| \leqslant k, r \leqslant j} \sup _{(x, t) \in \bar{\Phi}_{T}}\left|\partial_{x}^{q} \partial_{t}^{r} \phi(x, t)\right|+\max _{|q|=k}\left[\partial_{x}^{q} \partial_{t}^{j} \phi\right]_{\alpha, \beta} .
$$

We shall denote by C and by $C_{i}, i \in \mathbb{N}$, some real positive constants which may be different in each occurrence, and by $C_{\infty}(t)$ a real function in $L^{\infty}(0, T)$ depending on $\|u(t)\|_{L^{\infty}},\|B(t)\|_{L^{\infty}},\|\nabla u(t)\|_{L^{\infty}},\|\nabla B(t)\|_{L^{\infty}}$, $\left\|B_{t}(t)\right\|_{L^{\infty}}$ and some their suitable powers.

We now set $Z:=\operatorname{rot} u, \xi:=\operatorname{rot} B, Z_{0}:=\operatorname{rot} u_{0}$ and $\xi_{0}:=\operatorname{rot} B_{0}$. By applying rot to both sides of equations (1) and (2), we get

$$
\begin{gather*}
Z_{t}+u \cdot \nabla Z-B \cdot \nabla \xi=0 \tag{10}\\
\xi_{t}+u \cdot \nabla \xi-B \cdot \nabla Z+2 \partial_{1} u^{1} \mathrm{D} B+2 \partial_{2} B^{2} \mathrm{D} u-\mu \Delta \xi=0 \tag{11}
\end{gather*}
$$

where $\mathbb{D} u=\partial_{1} u^{2}+\partial_{2} u^{1}$, and $\mathrm{D} B=\partial_{1} B^{2}+\partial_{2} B^{1}$. Finally, let $F, \phi, \mathscr{F}, \psi$ be defined as

$$
\begin{aligned}
& F=-u \cdot \nabla \xi+B \cdot \nabla Z-2 \partial_{1} u^{1} \mathrm{D} B-2 \partial_{2} B^{2} \mathrm{D} u \\
& \phi(s):=\sum_{k=0}^{3}\left\|\partial_{t}^{k} \xi(s)\right\|_{H^{1}}^{2}, \\
& \mathscr{H}(s):=\sum_{k=0}^{3}\left\|\partial_{t}^{k} F(s)\right\|_{H^{3-k}}^{2}, \\
& \psi(s):=\sum_{k=0}^{3}\left\|\partial_{t}^{k} \xi(s)\right\|_{H^{5-k}}^{2}
\end{aligned}
$$

We now recall a result (see [5]) which will be fundamental to prove that, under suitable assumptions on initial data, the classical solution of problem (1)-(9) belongs to suitable Sobolev spaces.

THEOREM 2.1. Let $T>0$ be arbitrary. Let $u_{0} \in \mathcal{C}^{1+\theta}(\bar{\Omega})$, $\operatorname{rot} u_{0} \in$ $\in L^{1}(\Omega), B_{0} \in \mathcal{C}^{2+\theta}(\bar{\Omega}) \cap H^{1}(\Omega)$ for some $0<\theta<1$, such that $\operatorname{div} u_{0}=$ $=\operatorname{div} B_{0}=0$ in Ω and $u_{0} \cdot v=B_{0} \cdot v=0$ on Γ. Then there exists a positive constant C_{*} such that, if $\left\|B_{0}\right\|_{H^{1}}+\left|B_{0}\right|_{2+\theta} \leqslant C_{*}$, then there exists a solution $\{u, B, \pi\} \in \mathcal{C}^{1,1}\left(\bar{Q}_{T}\right) \times \mathcal{C}^{2,1}\left(\bar{Q}_{T}\right) \times \mathcal{C}^{1,0}\left(\bar{Q}_{T}\right)$ of system (1)-(9). Such a solution is unique up to an arbitrary function of t which may be added to π.

Remark 2.2. In [5] Kozono's result obtained in [9] and Kikuchi's result, see [8], are extended to the exterior domain case and to the halfplane case, and to the MHD equations, respectively. In [5] the existence of the global classical solution for MHD system in Hölder spaces is proved by applying the Schauder fixed point theorem. The authors followed the idea of Kato [6], Kikuchi [8], Kozono [9]. The crucial step is the definition of a map, defined on a suitable class, the same already considered by Kozono in [9], which satisfies the conditions of the Schauder fixed point theorem. The uniqueness of the solutions of the studied problem is obtained by following standard tecniques, see Temam [13].

The main result, we are going to prove, is:

Theorem 2.3. Let $T>0$ be arbitrary. Let the couple $\left(u_{0}, B_{0}\right) \in$ $\in H^{5} \cap L^{1}, \operatorname{rot} u_{0} \in L^{1}$, $\operatorname{div} u_{0}=\operatorname{div} B_{0}=0$ in Ω and $u_{0} \cdot v=B_{0} \cdot v=0$ on Γ. Assume also that, for some $0<\theta<1$,

$$
\left\|B_{0}\right\|_{H^{1}}+\left|B_{0}\right|_{2+\theta} \leqslant C_{*},
$$

where C_{*} is the constant obtained in Theorem 2.1.
Then problem (1)-(9) has a unique solution (u, B, π) such that

$$
u \in X^{5}(T), \quad B \in X^{5}(T) \cap L^{2}\left(0, T ; H^{6}\right), \quad \nabla \pi \in X^{4}(T)
$$

3. Some a-priori estimates.

We devote this section to prove
Lemma 3.1. The following energy-type estimate

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\left(\phi(t)+\|Z(t)\|_{H^{4}}^{2}\right)+C_{1} \psi(t) \leqslant C_{\infty}(t)\left(\phi(t)+\|Z(t)\|_{H^{4}}^{2}\right) \tag{12}
\end{equation*}
$$

holds in $[0, T]$.
Note that Theorem 2.1 ensures us that the time functions $\|u(t)\|_{L^{\infty}(\Omega)}$, $\|B(t)\|_{L^{\infty}(\Omega)},\|\nabla u(t)\|_{L^{\infty}(\Omega)},\|\nabla B(t)\|_{L^{\infty}(\Omega)}$, and $\left\|B_{t}(t)\right\|_{L^{\infty}(\Omega)}$ are uniformly bounded in time on the whole interval [$0, T$]. Consequently, the real function $C_{\infty}(t)$ (appearing in (12) and in some preliminary lemmata given below) belongs to $L^{\infty}(0, T)$. We shall prove (12) for regular solutions.

Lemma 3.2. The couple (u, B) satisfies the following energy-type estimate

$$
\begin{equation*}
\|u\|_{L^{\infty}\left(L^{2}\right)}^{2}+\|B\|_{L^{\infty}\left(L^{2}\right)}^{2}+2 \mu\|\xi\|_{L^{2}\left(Q_{T}\right)}^{2} \leqslant\left\|u_{0}\right\|_{L^{2}}^{2}+\left\|B_{0}\right\|_{L^{2}}^{2} . \tag{13}
\end{equation*}
$$

Proof. We multiply equations (1) and (2) by u and B respectively. By standard calculations and by summing the resulting expressions, we get easily the thesis.

Lemma 3.3. The following inequality holds

$$
\|Z\|_{L^{\infty}\left(L^{2}\right)}^{2}+\|\xi\|_{L^{\infty}\left(L^{2}\right)}^{2}+\frac{\mu}{2}\|\nabla \xi\|_{L^{2}\left(Q_{T}\right)}^{2} \leqslant C\left(\left\|Z_{0}\right\|_{L^{2}}^{2}+\left\|\xi_{0}\right\|_{\left.L^{2}\right)}^{2} .\right.
$$

Proof. We multiply equations (10) and (11) by Z and ξ respectively. Since

$$
-\int_{\Omega}(B \cdot \nabla) \xi \cdot Z d x=\int_{\Omega}(B \cdot \nabla) Z \cdot \xi d x
$$

by summing the resulting expressions, we obtain

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t}\left(\|Z(t)\|_{L^{2}}^{2}+\|\xi(t)\|_{L^{2}}^{2}\right)+2 \int_{\Omega}\left(\partial_{1} u_{1} \mathrm{D} B+\partial_{2} B_{2} \mathrm{D} u\right) \xi d x+ \tag{14}\\
& \quad+\mu\|\nabla \xi(t)\|_{L^{2}}^{2}=0 .
\end{align*}
$$

Since $\|\nabla u(t)\|_{L^{2}} \leqslant C\|Z(t)\|_{L^{2}}$ and $\|\nabla B(t)\|_{L^{4}} \leqslant C\|\xi(t)\|_{L^{2}}^{1 / 2}\|\nabla \xi(t)\|_{L^{2}}^{1 / 2}$, we easily obtain that

$$
\begin{equation*}
2 \int_{\Omega}\left|\left(\partial_{1} u_{1} \mathrm{D} B+\partial_{2} B_{2} \mathrm{D} u\right) \xi\right| d x \leqslant \frac{\mu}{2}\|\nabla \xi(t)\|_{L^{2}}^{2}+C\|Z(t)\|_{L^{2}}^{2}\|\xi(t)\|_{L^{2}}^{2} . \tag{15}
\end{equation*}
$$

By collecting (14) and (15), we get

$$
\frac{1}{2} \frac{d}{d t}\left(\|Z(t)\|_{L^{2}}^{2}+\|\xi(t)\|_{L^{2}}^{2}\right)+\frac{\mu}{2}\|\nabla \xi(t)\|_{L^{2}}^{2} \leqslant C\|\xi(t)\|_{L^{2}}^{2}\left(\|Z(t)\|_{L^{2}}^{2}+\|\xi(t)\|_{L^{2}}^{2}\right) .
$$

The thesis follows by using Lemma 3.2 and the Gronwall lemma.

The next step is to estimate the $L^{\infty}\left(0 ; T ; L^{2}\right)$-norm of $\partial^{\alpha} Z$, where α is a multi-index such that $1 \leqslant|\alpha| \leqslant 4$. We get the following result.

Lemma 3.4. Let $\varepsilon>0$. Then the following inequality

$$
\frac{1}{2} \frac{d}{d t}\left\|\partial^{\alpha} Z(t)\right\|_{L^{2}}^{2} \leqslant C_{\infty}(t)\left\|\partial^{\alpha} Z(t)\right\|_{L^{2}}^{2}+\varepsilon\|\xi(t)\|_{H^{5}}^{2},
$$

holds in $[0, T]$, where C_{∞} depends also on ε.
Proof. By applying ∂^{α} to both sides of equation (10), we get

$$
\begin{equation*}
\partial^{\alpha} Z_{t}+(u \cdot \nabla) \partial^{\alpha} Z=-\left[\partial^{\alpha}, u \cdot \nabla\right] Z+\partial^{\alpha}((B \cdot \nabla) \xi), \tag{16}
\end{equation*}
$$

where $[\cdot, \cdot]$ denotes the commutator operator. We now multiply (16) by $\partial^{a} Z$ and we estimate term by term. We use the Hölder and Young inequalities and some suitable interpolation inequalities (obtained by the
well-known Gagliardo-Nirenberg one). More precisely,

$$
\begin{align*}
& \left\|D^{2} u\right\|_{L^{4}} \leqslant C\|\nabla u\|_{L^{\infty}}^{1 / 2}\|Z\|_{H^{2}}^{1 / 2}, \tag{17}\\
& \left\|D^{2} B\right\|_{L^{4}} \leqslant C\|\nabla B\|_{L^{\infty}}^{1 / 2}\|\xi\|_{H^{2}}^{1 / 2}, \tag{18}\\
& \left\|D^{3} u\right\|_{L^{4}} \leqslant C\|\nabla u\|_{L^{\infty}}^{1 / 2}\|Z\|_{H^{4}}^{1 / 2}, \tag{19}\\
& \left\|D^{3} B\right\|_{L^{4}} \leqslant C\|\nabla B\|_{L^{\infty}}^{1 / 2}\|\xi\|_{H^{4}}^{1 / 2}, \tag{20}\\
& \left\|D^{4} u\right\|_{L^{4}} \leqslant C\|\nabla u\|_{L^{\infty}}^{1 / 6}\|Z\|_{H^{4}}^{5 / 6} \tag{21}\\
& \left\|D^{4} B\right\|_{L^{4}} \leqslant C\|\nabla B\|_{L^{\infty}}^{1 / 6}\|\xi\|_{H^{4}}^{5 / 6}, \tag{22}\\
& \left\|D^{2} B_{t}\right\|_{L^{4}} \leqslant C\left\|B_{t}\right\|_{L^{\infty}}^{1 / 2}\left\|\xi_{t}\right\|_{H^{3}}^{1 / 2} . \tag{23}
\end{align*}
$$

By using (17)-(23), we easily obtain the thesis.
Lemma 3.5. The following estimate

$$
\frac{1}{2} \frac{d}{d t} \phi(t)+C_{1} \psi(t) \leqslant C_{2}(\mathscr{H}(t)+\phi(t))
$$

holds in $[0, T]$.
Proof. We write (11) in the form $\partial_{t} \xi-\mu \Delta \xi=F$. For each integer $k=1, \ldots, 4$, we take $(k-1)$ time derivatives and we obtain the following problems

$$
\left\{\begin{array}{l}
\partial_{t}^{k} \xi-\mu \Delta \partial_{t}^{k-1} \xi=\partial_{t}^{k-1} F \text { in } \Omega, \tag{24}\\
\partial_{t}^{k-1} \xi=0 \text { on } \partial \Omega .
\end{array}\right.
$$

For each fixed k, we multiply the first equation of (24) by $\partial_{t}^{k-1} \xi$ and by $-\Delta \partial_{t}^{k-1} \xi$. By using the Hölder inequality one has

$$
\begin{align*}
\frac{1}{2} \frac{d}{d t}\left\|\partial_{t}^{k-1} \xi(t)\right\|_{H^{1}}^{2}+\frac{\mu}{2}\left(\| \nabla \partial_{t}^{k-1}\right. & \left.\xi(t)\left\|_{L^{2}}^{2}+\right\| \Delta \partial_{t}^{k-1} \xi(t) \|_{L^{2}}^{2}\right) \leqslant \tag{25}\\
& \leqslant C\left(\left\|\partial_{t}^{k-1} F(t)\right\|_{L^{2}}^{2}+\left\|\partial_{t}^{k-1} \xi(t)\right\|_{L^{2}}^{2}\right)
\end{align*}
$$

We now write (24) in the form of the elliptic problem

$$
\left\{\begin{array}{l}
-\mu \Delta \partial_{t}^{k-1} \xi=-\partial_{t}^{k} \xi+\partial_{t}^{k-1} F \quad \text { in } \Omega, \tag{26}\\
\partial_{t}^{k-1} \xi=0 \text { on } \partial \Omega
\end{array}\right.
$$

By well-known results on the regularity of the solutions of problems
(26), we get

$$
\begin{equation*}
\left\|\partial_{t}^{k-1} \xi(t)\right\|_{H^{m+2}} \leqslant C\left(\left\|\partial_{t}^{k} \xi(t)\right\|_{H^{m}}+\left\|\partial_{t}^{k-1} \xi(t)\right\|_{H^{m}}+\left\|\partial_{t}^{k-1} F(t)\right\|_{H^{m}}\right) \tag{27}
\end{equation*}
$$

We now sum (25) for $k=1, \ldots, 4$, and we add to both sides of the resulting expression the term

$$
\frac{\mu}{2}\left(\left\|\partial_{t}^{3} \xi(t)\right\|_{L^{2}}^{2}+\sum_{h=0}^{2}\left\|\partial_{t}^{h} \xi(t)\right\|_{H^{5-h}}^{2}\right)
$$

By observing that $\left\|\xi_{t t t}(t)\right\|_{H^{2}}$ is equivalent to $\left\|\xi_{t t t}(t)\right\|_{H^{1}}+\left\|\Delta \xi_{t t t}\right\|_{L^{2}}$, we get

$$
\frac{1}{2} \frac{d}{d t} \phi(t)+C_{1} \psi(t) \leqslant C_{2}\left(\mathscr{T}(t)+\left\|\partial_{t}^{3} \xi(t)\right\|_{L^{2}}^{2}+\sum_{k=0}^{2}\left\|\partial_{t}^{k} \xi(t)\right\|_{H^{5-k}}^{2}\right)
$$

We use inequality (27) firstly for $k=1,2,3$ and $m=4-k$, and again in the cases $k=1,2$ and $m=1$. By summing the resulting expressions we obtain the thesis.

We now estimate each term appearing in $\mathscr{H}(t)$. The result we are going to show is

Lemma 3.6. The following inequality

$$
\mathscr{T}(t) \leqslant C_{\infty}(t)\left(\phi(t)+\|Z(t)\|_{H^{4}}^{2}\right)
$$

holds in [0, T].
Proof. We split the proof of the previous statement in several steps. As first step we write explicity $\|F(t)\|_{H^{3}}$. By using the Hölder and Gagliardo-Nirenberg inequalities, we easily obtain

$$
\|F(t)\|_{H^{3}}^{2} \leqslant C_{\infty}(t)\left(\|\xi(t)\|_{H^{4}}^{2}+\|Z(t)\|_{H^{4}}^{2}\right) .
$$

By using (27) in the following cases $(k, m)=(1,2),(k, m)=(2,0)$, and finally $(k, m)=(1,0)$, one has

$$
\|\xi(t)\|_{H^{4}}^{2} \leqslant C\left(\sum_{k=0}^{2}\left\|\partial_{t}^{k} \xi(t)\right\|_{L^{2}}^{2}+\left\|F_{t}(t)\right\|_{L^{2}}^{2}+\|F(t)\|_{H^{2}}^{2}\right)
$$

By straightfull calculations, we get

$$
\begin{aligned}
& \|F(t)\|_{H^{2}}^{2} \leqslant C_{\infty}(t)\left(\|\xi(t)\|_{H^{1}}^{2}+\left\|\xi_{t}(t)\right\|_{H^{1}}^{2}+\|Z(t)\|_{H^{4}}^{2}\right), \\
& \left\|F_{t}(t)\right\|_{L^{2}}^{2} \leqslant C_{\infty}(t)\left(\|\xi(t)\|_{H^{1}}^{2}+\left\|\xi_{t}(t)\right\|_{H^{1}}^{2}+\|Z(t)\|_{H^{4}}^{2}\right) .
\end{aligned}
$$

Hence

$$
\|F(t)\|_{H^{3}}^{2} \leqslant C_{\infty}(t)\left(\phi(t)+\|Z(t)\|_{H^{4}}^{2}\right) .
$$

In order to estimate $\left\|F_{t}(t)\right\|_{H^{2}},\left\|F_{t t}(t)\right\|_{H^{1}}$ and $\left\|F_{t t t}(t)\right\|_{L^{2}}$, we follow the same lines as in the previous step, and we consider the following interpolation inequalities

$$
\begin{align*}
& \left\|D^{2} B\right\|_{L^{8}} \leqslant C\|\nabla B\|_{L^{\infty}}^{3 / 4}\|\xi\|_{H^{4}}^{1 / 4}, \tag{28}\\
& \left\|D^{2} u\right\|_{L^{8}} \leqslant C\|\nabla u\|_{L^{\infty}}^{3 / 4}\|Z\|_{H^{4}}^{1 / 4}, \tag{29}\\
& \left\|D^{3} B\right\|_{L^{8}} \leqslant C\|B\|_{L^{\infty}}^{5 / 16}\|\xi\|_{H^{4}}^{1116}, \tag{30}\\
& \left\|D^{3} u\right\|_{L^{8}} \leqslant C\|u\|_{L^{\infty}}^{5 / 16}\|Z\|_{H^{4}}^{11 / 16}, \tag{31}\\
& \left\|D^{4} B\right\|_{L^{4}} \leqslant C\|\nabla B\|_{L^{\infty}}^{3 / 8}\|\xi\|_{H^{3}}^{5 / 8}, \tag{32}\\
& \left\|D^{4} B\right\|_{L^{8 / 3}} \leqslant C\|\nabla B\|_{L^{\infty}}^{1 / 4}\|\xi\|_{H^{4}}^{3 / 4}, \tag{33}\\
& \left\|D^{5} B\right\|_{L^{8 / 3}} \leqslant C\|\nabla B\|_{L^{\infty}}^{3 / 16}\|\xi\|_{H^{5}}^{13 / 16}, \tag{34}\\
& \left\|D^{3} B_{t}\right\|_{L^{8 / 3}} \leqslant C\left\|B_{t}\right\|_{L^{\infty}}^{1 / 4}\left\|\xi_{t}\right\|_{H^{3 / 4}}^{3 /} \tag{35}
\end{align*}
$$

By virtue of the Hölder inequality, of (17)-(23) and of (28)-(35) we get

$$
\begin{gathered}
\left\|F_{t}(t)\right\|_{H^{2}}^{2}+\left\|F_{t t t}(t)\right\|_{L^{2}}^{2} \leqslant C_{\infty}(t)\left(\phi(t)+\|Z(t)\|_{H^{4}}^{2}\right), \\
\left\|F_{t t}(t)\right\|_{H^{1}}^{2} \leqslant C_{\infty}(t)\left(\phi(t)+\|Z(t)\|_{H^{4}}^{2}\right)+\left\|D^{3} B_{t} D Z\right\|_{L^{2}}^{2} .
\end{gathered}
$$

By (35), by recalling that $B_{t} \in L^{\infty}(\Omega)$, and by using again (27), we get

$$
\begin{aligned}
\left\|F_{t t}(t)\right\|_{H^{1}}^{2} \leqslant & C_{\infty}(t)\left(\phi(t)+\|Z(t)\|_{H^{4}}^{2}+\left\|\xi_{t}(t)\right\|_{H^{3}}^{2}\right) \leqslant \\
\leqslant & C_{\infty}(t)\left(\phi(t)+\|Z(t)\|_{H^{4}}^{2}+\left\|\xi_{t}(t)\right\|_{H^{1}}^{2}+\right. \\
& \left.\quad+\left\|\xi_{t t}(t)\right\|_{H^{1}}^{2}+\left\|F_{t}(t)\right\|_{H^{1}}^{2}\right) \leqslant \\
\leqslant & C_{\infty}(t)\left(\phi(t)+\|Z(t)\|_{H^{4}}^{2}\right) .
\end{aligned}
$$

Hence, the claim follows.
By collecting Lemmata 3.3-3.6 we obtain inequality (12).

4. - Proof of Theorem 2.3.

The first topic which we treat is a local existence result in Sobolev spaces for system (1)-(9). Obtained that the classical solution of (1)-(9) belongs locally to $H^{5}(\Omega)$, from the a-priori estimates (12) and (13) we can extend such a solution on the whole time interval [$0, T$].

Proof. In order to show the local existence of a solution in Sobolev spaces, we apply the Banach-Caccioppoli theorem. In particular, let $0<\tilde{t} \leqslant T$ be sufficiently small and let

$$
S:=\left\{(u, B) \in L^{\infty}\left(0, \tilde{t} ; H^{5}(\Omega)\right):\|(u, B)\|_{L^{\infty}\left(0, \tilde{t} ; H^{5}\right)} \leqslant 2 A\right\},
$$

where A is a real positive constant such that $A>C_{0}\left(\left\|u_{0}\right\|_{H^{5}}^{2}+\left\|B_{0}\right\|_{H^{5}}^{2}\right)$ for a suitable constant C_{0}, which will be fixed later.

Given the couple (u, B) in S and satisfying (3)-(9), let

$$
\Lambda: S \rightarrow \Lambda(S)
$$

be the map defined by

$$
U:=(u, B) \rightarrow \widetilde{U}:=(\tilde{u}, \widetilde{B})
$$

where $\widetilde{U}:=(\widetilde{u}, \widetilde{B})$ is the solution of the following linear system

$$
\begin{equation*}
\tilde{u}_{t}+(u \cdot \nabla) \tilde{u}-(B \cdot \nabla) \widetilde{B}=\frac{1}{2} \nabla|B|^{2} \text { in } Q_{T} \tag{36}
\end{equation*}
$$

$$
\begin{equation*}
\widetilde{B} \cdot v=0 \text { on } \Gamma \times(0, T) \tag{41}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{rot} \widetilde{B}=0 \text { on } \Gamma \times(0, T), \tag{42}
\end{equation*}
$$

$$
\begin{align*}
\widetilde{B}_{t}+(u \cdot \nabla) \widetilde{B}-(B \cdot \nabla) \tilde{u}-\mu \Delta \widetilde{B} & =0 \text { in } Q_{T} \tag{37}\\
\operatorname{div} \tilde{u} & =0 \text { in } Q_{T} \tag{38}\\
\operatorname{div} \widetilde{B} & =0 \text { in } Q_{T} \tag{39}
\end{align*}
$$

$$
\begin{equation*}
\tilde{u} \cdot v=0 \text { on } \Gamma \times(0, T) \tag{40}
\end{equation*}
$$

$$
\begin{equation*}
\tilde{u}(x, 0)=u_{0}(x) \text { in } \Omega \tag{43}
\end{equation*}
$$

$$
\begin{equation*}
\widetilde{B}(x, 0)=B_{0}(x) \text { in } \Omega \tag{44}
\end{equation*}
$$

We now show that the map Λ satisfies all the assumptions of the BanachCaccioppoli theorem. We now apply to both sides of equation (36)-(37) rot and ∂^{α}, where α is a multi-index with $|\alpha| \leqslant 4$. We multiply the resulting expressions by the test functions $\partial^{\alpha} \widetilde{Z}$ and $\partial^{\alpha} \tilde{\xi}$, where $\widetilde{Z}:=\operatorname{rot} \tilde{u}$ and $\tilde{\xi}:=\operatorname{rot} \widetilde{B}$. By suitable integrations by parts, and by using the Hölder and Young inequalities, an application of the Gronwall lemma yields that

$$
\max _{t \in[0, \hat{t}]}\|\widetilde{U}(t)\|_{H^{5}}^{2} \leqslant\left\{C_{0}\|U(0)\|_{H^{5}}^{2}+C \int_{0}^{\tilde{t}}\|U(t)\|_{H^{5}}^{4} d t\right\} e^{c_{0}^{\bar{j}}\left(1+\|U(t)\|_{\left.H^{5}\right)^{2}} d t\right.}
$$

where $\|U(0)\|_{H^{5}}^{2}=\left\|u_{0}\right\|_{H^{5}}^{2}+\left\|B_{0}\right\|_{H^{5}}^{2}$. Since U belongs to S, we get

$$
\max _{t \in[0, \tilde{i}]}\|\widetilde{U}(t)\|_{H^{5}}^{2} \leqslant\left(A+C \tilde{t}(2 A)^{4}\right) e^{C \tilde{t}(1+2 A)^{2}}
$$

Consequently, if \tilde{t} is small enough, Λ maps the set S into itself. We now show that Λ is a contraction with respect to $L^{\infty}\left(0, \tilde{t} ; L^{2}\right)$-norm. Let $\widetilde{U}_{1}:=\left(\widetilde{u}_{1}, \widetilde{B}_{1}\right)$ and $\widetilde{U}_{2}:=\left(\widetilde{u}_{2}, \widetilde{B}_{2}\right)$ be solutions of system (36)-(44). We now consider the difference between equations (36), written for $i=1,2$, and equations (37), again written for $i=1,2$. We use as test functions $\tilde{u}_{1}-\tilde{u}_{2}$ and $\widetilde{B}_{1}-\widetilde{B}_{2}$ respectively. By standard arguments, we get

$$
\left\|\widetilde{U}_{1}-\widetilde{U}_{2}\right\|_{L^{\infty}\left(0, \tilde{t} ; L^{2}\right)}^{2} \leqslant C \tilde{t} e^{4 A^{2} \tilde{t}}\left\|U_{1}-U_{2}\right\|_{L^{\infty}\left(0, \tilde{t} ; L^{2}\right)}^{2} .
$$

If \tilde{t} is sufficiently small, Λ is a contraction and the unique fixed point of the map Λ is a solution of system (1)-(9). The thesis follows by the uniqueness of the classical solution and by using (12) and (13).

REFERENCES

[1] G. V. Alexseev, Solvability of a homogeneous initial-boundary value problem for equations of magnetohydrodynamics of an ideal fluid, (Russian), Dinam. Sploshn. Sredy, 57 (1982), pp. 3-20.
[2] H. Beirão da Veiga, Boundary-value problems for a class of first order partial differential equations in Sobolev spaces and applications to the Euler flow, Rend. Sem. Mat. Univ. Padova, 79 (1988), pp. 247-273.
[3] H. Beirão da Veiga, Kato's perturbation theory and well posedness for the Euler equations in bounded domains, Arch. Rat. Mech Anal., 104 (1988), pp. 367-382.
[4] H. Beirão da Veiga, A well posedness theorem for non-homogeneous inviscid fluids via a perturbation theorem, (II) J. Diff. Eq., 78 (1989), pp. 308-319.
[5] E. Casella - P. Secchi - P. Trebeschi, Global classical solutions for MHD system, to appear on Journal of Math. Fluid Mech., Mathematic.
[6] T. Kato, On Classical Solutions of Two-Dimensional Non-Stationary Euler Equation, Arch. Rat. Mech. Anal., 25 (1967), pp. 188-200.
[7] T. Kato - C. Y. Lai, Nonlinear evolution equations and the Euler flow, J. Funct. Analysis, 56 (1984), pp. 15-28.
[8] K. Kikuchi, Exterior problem for the two-dimensional Euler equation, J. Fac. Sci. Univ. Tokyo, Sec IA 30 (1983), pp. 63-92.
[9] H. Kozono, Weak and Classical Solutions of the Two-dimensional magnetohydrodynamic equations, Tohoku Math. J., 41 (1989), pp. 471-488.
[10] L. Lichtenstein, Grundlagen der Hydromechanik, Edition of 1928 Springer, Berlin, 1968.
[11] P. G. Schmdt, On a magnetohydrodynamic problem of Euler type, J. Diff. Eq., 74 (1988), pp. 318-335.
[12] P. Secchi, On the Equations of Ideal Incompressible Magneto-Hydrodynamics, Rend. Sem. Mat. Univ. Padova, 90 (1993), pp. 103-119.
[13] R. Temam, Navier-Stokes Equations, 2nd Ed., North-Holland, Amsterdam, 1979.
[14] R. Temam, On the Euler equations of incompressible perfect fluids, J. Funct. Anal., 20 (1975), pp. 32-43.
[15] W. Wolibner, Un théorèm sur l'existence du mouvement plan d'un fluide parfait, homogène, incompressible, pendant un temps infiniment longue, Math. Z., 37 (1933), pp. 698-726.

Manoscritto pervenuto in redazione il 17 aprile 2002.

