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A Global Existence Result in Sobolev Spaces
for MHD System in the Half-Plane.

EMANUELA CASELLA (*) - PAOLA TREBESCHI (*)

ABSTRACT - The main result of this paper is a global existence theorem in suitable
Sobolev spaces for 2D incompressible MHD system in the half-plane. The
existence result derives by the existence of a global classical solution in Hölder
spaces, by proving some a-priori estimates in Sobolev spaces and, finally, by
applying the Banach-Caccioppoli fixed point theorem. Hence, the uniqueness
of the solution follows.

1. Introduction.

Let V be the half-plane R2
1 »4 ](x1 , x2 ) �R2 : x1 D0(, and let G be

the boundary of V. In QT »4V3 (0 , T), with TD0, we consider the
equations of magneto-hydrodynamics for 2D incompressible ideal
fluid

ut 1 (u Q˜)u1˜p1
1

2
˜NBN2 2 (B Q˜) B40 in QT ,(1)

Bt 1 (u Q˜) B2 (B Q˜) u2mDB40 in QT ,(2)

div u40 in QT ,(3)

div B40 in QT ,(4)

(*) Indirizzo degli AA.: Dip. di Matematica, Università di Brescia, Facoltà di
Ingegneria, Via Valotti 9, 25133 Brescia.
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u Qn40 on G3 (0 , T),(5)

B Qn40 on G3 (0 , T),(6)

rot B40 on G3 (0 , T),(7)

u(x , 0 ) 4u0 (x) in V ,(8)

B(x , 0 ) 4B0 (x) in V .(9)

Here u4u(x , t) 4 (u 1 (x , t), u 2 (x , t) ), B4B(x , t) 4 (B 1 (x , t), B 2 (x , t) )
and p4p(x , t) denote the unknown velocity field, the magnetic field and
the pressure of the fluid respectively. The functions u0 4 (u 1

0 (x), u 2
0 (x) )

and B0 4 (B 1
0 (x), B 2

0 (x) ) denote the given initial data, n the unit outward
normal on G and m a real positive constant. Moreover, we use the
notation

ft 4
¯f

¯t
, ¯i 4

¯

¯xi

, ˜4 (¯1 , ¯2 ), u Q˜4u 1 ¯1 1u 2 ¯2 ,

¯ 2
ij 4

¯ 2

¯i ¯j

, D4¯ 11
2 1¯ 22

2 .

In case the magnetic field B is identically equal to zero, i.e. in the case of
Euler equations, such a problem for global classical solutions was stu-
died by many authors, starting from Lichtenstein [10] and Wolibner [15].
The existence of global solutions in Hölder spaces in bounded domains
has been proven by Kato [6]. This result was extended to the exterior do-
main case by Kikuchi [8]. On the other hand, the existence of a classical
solution for MHD system was shown by Kozono [9] and by Casella, Sec-
chi and Trebeschi [5] in the bounded and unbounded case, respectively.

Existence results in Sobolev spaces were proved by several authors.
For the Euler equation we refer to Temam [14], Kato and Lai [7] and
Beirão Da Veiga [3], [4]. Existence and uniqueness results in W k-spaces
for the equations of magneto-hydrodynamics, when m40, have been
proved by Alexseev [1]. Moreover, in this case, Secchi [12] and Schmidt
[11] proved not only existence and uniqueness results, but also the con-
tinuous dependence on the data. In this paper we prove a global exis-
tence result in suitable Sobolev spaces for MHD system in the half-plane
case. To prove this result, firstly, we show a local existence theorem in
Sobolev spaces. Then we derive some a-priori estimates, global in time,
which come from the all-time existence of classical solution of system (1)-
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(9) in Hölder-spaces. We underline that energy-method works well,
since the classical solution (u , B) is such that Vu(t)VL Q (V), VB(t)VL Q (V),
V˜u(t)VL Q (V), V˜B(t)VL Q (V) and VBt (t)VL Q (V) are uniformly bounded in time
on the whole interval [0 , T].

We observe that the main result obtained in the present paper is a
necessary first step in the analysis of slightly compressible MHD fluids,
which will be the object of a forecoming work.

The plan of the paper is the following. In next section we fix some no-
tations and we introduce some preliminary results and the main theo-
rem. In Section 3 we show some a-priori estimates, and finally in Section
4 we prove the main result.

2. – Notations and results.

For a scalar-valued function f, we set

Rot f4 (¯2 f , 2¯1 f) ,

for a vector-valued function u4 (u 1 , u 2 ), we use the notation

rot u4¯1 u 2 2¯2 u 1 and div u4˜ Qu4¯1 u 1 1¯2 u 2 .

We denote the norm of L p (V), 1 GpGQ , by V QVL p . H m (V) denotes the
usual Sobolev space of order mF1, and V QVH m denotes its norm. For sim-
plicity we use the abbreviated notation L p , H m . We also use the same
symbol for spaces of scalar and vector-valued functions.

Moreover, if X is a normed space, then L p(0, T; X), with 1GpE1Q,
denotes the set of all measurable functions u(t) with values in X such that:

VuVL p (X) »4 u �
0

T

Vu(t)VX
p dtv1/p

E1Q ,

where V QVX is the norm in X.
Given TD0 arbitrary, the set of all essentially bounded (with respect

to the norm of X) measurable functions of t with values in X is denoted by
L Q (0 , T ; X). We equip this space with the usual norm

V f VL Q (X) 4 sup
t� [0 , T]

V f (t)VX .

In particular, the norm of L Q (0 , T ; L p ), 1 GpE1Q , is denoted by
V QVL Q (L p ) .
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Let C m ( [0 , T]; X) denote the set of all X-valued m-times continuou-
sly differentiable functions of t, for 0 G tGT.

We define X m (T) »4 1
k40

m21

C k ( [0 , T]; H m2k ) equipped with the usual
norm

VuV

2
X m »4 sup

[0, T]
!

k40

m21

V¯ t
k u(t)VH m2k

2 .

We denote by B(V) (resp. B(QT )) the Banach space of all real valued
continuous and bounded functions on V (resp. QT), with the usual
norm.

For 0 EaE1, C a (V) denotes the usual space of functions in B(V),
uniformly Hölder continuous on V with exponent a ; the norm of C a (V) is
V QVL Q 1 [Q]a , where

[f]a »4 sup
xcy , x , y� V

Nf(x)2f(y)N

Nx2yNa
.

For 0 EaE1 and integer k , C k1a (V) denotes the space of functions f
with D b f� B(V) for NbNGk , and D g f�C a (V) for NgN4k . The norm
is

NfNk1a4 max
NbNGk

VD b fVL Q 1 max
NgN4k

[D g f]a .

With C k , j (QT ) for integers k , jF0 we mean the set of all functions f for
which every ¯x

q ¯ t
r f exists and is continuous on QT, for 0 GNqNGk,

0 GrG j. C k1a , j1b (QT ), for integers k , jF0 and 0 Ga , bE1 is the sub-
set of C k , j (QT ), consisting of Hölder continuous functions with expo-
nents a in x and b in t.

For every function f� C k1a , j1b (QT ), we consider the following
seminorm:

[f]a , b »4 sup
xcy , t� [0 , T]

Nf(x , t)2f(y , t)N

Nx2yNa
1 sup

tcs , x� V

Nf(x , t)2f(x , s)N

Nt2sNb
,

and the norm

NfNk1a , j1b »4 max
NqNGk , rG j

sup
(x , t) � QT

N¯ q
x ¯ r

t f(x , t)N1 max
NqN4k

[¯ q
x ¯ j

t f]a , b .

We shall denote by C and by Ci , i�N , some real positive constants
which may be different in each occurrence, and by CQ (t) a real function
in L Q (0 , T) depending on Vu(t)VL Q , VB(t)VL Q , V˜u(t)VL Q , V˜B(t)VL Q,
VBt (t)VL Q and some their suitable powers.
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We now set Z»4rot u , j»4rot B , Z0 »4rot u0 and j 0 »4rot B0 . By
applying rot to both sides of equations (1) and (2), we get

Zt 1u Q˜Z2B Q˜j40 ,(10)

j t 1u Q˜j2B Q˜Z12¯1 u 1 DB12¯2 B 2 Du2mDj40,(11)

where Du4¯1 u 2 1¯2 u 1 , and DB4¯1 B 2 1¯2 B 1 . Finally, let F , f , F, c
be defined as

F42u Q˜j1B Q˜Z22¯1 u 1 DB22¯2 B 2 Du ,

f(s) »4 !
k40

3

V¯ t
k j(s)VH 1

2 ,

F(s) »4 !
k40

3

V¯ t
k F(s)VH 32k

2 ,

c(s) »4 !
k40

3

V¯ t
k j(s)VH 52k

2 .

We now recall a result (see [5]) which will be fundamental to prove
that, under suitable assumptions on initial data, the classical solution of
problem (1)-(9) belongs to suitable Sobolev spaces.

THEOREM 2.1. Let TD0 be arbitrary. Let u0 � C 11u (V), rot u0 �
�L 1 (V), B0 � C 21u (V)OH 1 (V) for some 0 EuE1, such that div u0 4

4div B0 40 in V and u0 Qn4B0 Qn40 on G. Then there exists a positive
constant C* such that, if VB0 VH 11NB0N21uGC*, then there exists a solu-
tion ]u , B , p( � C 1, 1 (QT )3 C 2, 1 (QT )3 C 1, 0 (QT ) of system (1)-(9). Such
a solution is unique up to an arbitrary function of t which may be
added to p.

REMARK 2.2. In [5] Kozono’s result obtained in [9] and Kikuchi’s re-
sult, see [8], are extended to the exterior domain case and to the half-
plane case, and to the MHD equations, respectively. In [5] the existence
of the global classical solution for MHD system in Hölder spaces is
proved by applying the Schauder fixed point theorem. The authors fol-
lowed the idea of Kato [6], Kikuchi [8], Kozono [9]. The crucial step is the
definition of a map, defined on a suitable class, the same already consid-
ered by Kozono in [9], which satisfies the conditions of the Schauder
fixed point theorem. The uniqueness of the solutions of the studied pro-
blem is obtained by following standard tecniques, see Temam [13].

The main result, we are going to prove, is:
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THEOREM 2.3. Let TD0 be arbitrary. Let the couple (u0 , B0 ) �
�H 5 OL 1, rot u0 �L 1 , div u0 4div B0 40 in V and u0 Qn4B0 Qn40 on G.
Assume also that, for some 0 EuE1,

VB0 VH 1 1NB0N21uGC*,

where C* is the constant obtained in Theorem 2.1.
Then problem (1)-(9) has a unique solution (u , B , p) such that

u�X 5 (T), B�X 5 (T)OL 2 (0 , T ; H 6 ), ˜p�X 4 (T).

3. Some a-priori estimates.

We devote this section to prove

LEMMA 3.1. The following energy-type estimate

1

2

d

dt
(f(t)1VZ(t)VH 4

2 )1C1 c(t) GCQ (t)(f(t)1VZ(t)VH 4
2 )(12)

holds in [0 , T].

Note that Theorem 2.1 ensures us that the time functions Vu(t)VL Q (V) ,
VB(t)VL Q (V), V˜u(t)VL Q (V) , V˜B(t)VL Q (V) , and VBt (t)VL Q (V) are uniformly
bounded in time on the whole interval [0 , T]. Consequently, the real
function CQ (t) (appearing in (12) and in some preliminary lemmata given
below) belongs to L Q (0 , T). We shall prove (12) for regular sol-
utions.

LEMMA 3.2. The couple (u , B) satisfies the following energy-type
estimate

VuVL Q (L 2 )
2 1VBVL Q (L 2 )

2 12mVjVL 2 (QT )
2 GVu0 VL 2

2 1VB0 VL 2
2 .(13)

PROOF. We multiply equations (1) and (2) by u and B respectively.
By standard calculations and by summing the resulting expressions, we
get easily the thesis. r

LEMMA 3.3. The following inequality holds

VZVL Q (L 2 )
2 1VjVL Q (L 2 )

2 1
m

2
V˜jVL 2 (QT )

2 GC(VZ0 VL 2
2 1Vj 0 VL 2

2 ).
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PROOF. We multiply equations (10) and (11) by Z and j respectively.
Since

2�
V

(B Q˜) j QZ dx4�
V

(B Q˜) Z Qj dx ,

by summing the resulting expressions, we obtain

(14)
1

2

d

dt
(VZ(t)VL 2

2 1Vj(t)VL 2
2 )12 �

V

(¯1 u1 DB1¯2 B2 Du) j dx1

1mV˜j(t)VL 2
2 40.

Since V˜u(t)VL 2 GCVZ(t)VL 2 and V˜B(t)VL 4 GCVj(t)VL 2
1 /2

V˜j(t)VL 2
1 /2 , we easily

obtain that

(15) 2 �
V

N(¯1 u1 DB1¯2 B2 Du) jNdxG
m

2
V˜j(t)VL 2

2 1CVZ(t)VL 2
2

Vj(t)VL 2
2 .

By collecting (14) and (15), we get

1

2

d

dt
(VZ(t)VL 2

2 1Vj(t)VL 2
2 )1

m

2
V˜j(t)VL 2

2 GCVj(t)VL 2
2 (VZ(t)VL 2

2 1Vj(t)VL 2
2 ).

The thesis follows by using Lemma 3.2 and the Gronwall lem-
ma. r

The next step is to estimate the L Q (0 ; T ; L 2 )-norm of ¯a Z , where a
is a multi-index such that 1 GNaNG4. We get the following result.

LEMMA 3.4. Let eD0. Then the following inequality

1

2

d

dt
V¯a Z(t)VL 2

2 GCQ (t)V¯a Z(t)VL 2
2 1eVj(t)VH 5

2 ,

holds in [0 , T], where CQ depends also on e .

PROOF. By applying ¯a to both sides of equation (10), we get

¯a Zt 1 (u Q˜) ¯a Z42[¯a , u Q˜] Z1¯a ( (B Q˜) j),(16)

where [Q , Q] denotes the commutator operator. We now multiply (16) by
¯a Z and we estimate term by term. We use the Hölder and Young in-
equalities and some suitable interpolation inequalities (obtained by the
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well-known Gagliardo-Nirenberg one). More precisely,

VD 2 uVL 4 GCV˜uVL Q
1/2

VZVH 2
1 /2 ,(17)

VD 2 BVL 4 GCV˜BVL Q
1/2

VjVH 2
1 /2 ,(18)

VD 3 uVL 4 GCV˜uVL Q
1/2

VZVH 4
1 /2 ,(19)

VD 3 BVL 4 GCV˜BVL Q
1/2

VjVH 4
1 /2 ,(20)

VD 4 uVL 4 GCV˜uVL Q
1/6

VZVH 4
5 /6 ,(21)

VD 4 BVL 4 GCV˜BVL Q
1/6

VjVH 4
5 /6 ,(22)

VD 2 Bt VL 4 GCVBt VL Q
1/2

Vj t VH 3
1 /2 .(23)

By using (17)-(23), we easily obtain the thesis. r

LEMMA 3.5. The following estimate

1

2

d

dt
f(t)1C1 c(t) GC2 (F(t)1f(t) )

holds in [0 , T].

PROOF. We write (11) in the form ¯t j2mDj4F . For each integer
k41, R , 4 , we take (k21) time derivatives and we obtain the follow-
ing problems

.
/
´

¯ t
k j2mD¯k21

t j4¯k21
t F in V ,

¯ t
k21 j40 on ¯V .

(24)

For each fixed k , we multiply the first equation of (24) by ¯ t
k21 j and by

2D¯ t
k21 j . By using the Hölder inequality one has

(25)
1

2

d

dt
V¯ t

k21 j(t)VH 1
2 1

m

2
(V˜¯ t

k21 j(t)VL 2
2 1VD¯ t

k21 j(t)VL 2
2 ) G

GC(V¯t
k21 F(t)VL 2

2 1V¯ t
k21 j(t)VL 2

2 ) .

We now write (24) in the form of the elliptic problem

.
/
´

2mD¯k21
t j42¯ t

k j1¯k21
t F in V ,

¯ t
k21 j40 on ¯V .

(26)

By well-known results on the regularity of the solutions of problems
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(26), we get

V¯ t
k21 j(t)VH m12 GC(V¯ t

k j(t)VH m 1V¯ t
k21 j(t)VH m 1V¯ t

k21 F(t)VH m ).(27)

We now sum (25) for k41, R , 4 , and we add to both sides of the re-
sulting expression the term

m

2
g
V¯ t

3 j(t)VL 2
2 1 !

h40

2

V¯ t
h j(t)VH 52h

2 h .

By observing that Vj ttt (t)VH 2 is equivalent to Vj ttt (t)VH 1 1VDj ttt VL 2 , we
get

1

2

d

dt
f(t)1C1 c(t) GC2gF(t)1V¯t

3 j(t)VL 2
2 1 !

k40

2

V¯ t
k j(t)VH 52k

2 h .

We use inequality (27) firstly for k41, 2 , 3 and m442k , and again in
the cases k41, 2 and m41. By summing the resulting expressions we
obtain the thesis. r

We now estimate each term appearing in F(t). The result we are go-
ing to show is

LEMMA 3.6. The following inequality

F(t) GCQ (t)(f(t)1VZ(t)VH 4
2 )

holds in [0 , T].

PROOF. We split the proof of the previous statement in several steps.
As first step we write explicity VF(t)VH 3 . By using the Hölder and
Gagliardo-Nirenberg inequalities, we easily obtain

VF(t)VH 3
2 GCQ (t)(Vj(t)VH 4

2 1VZ(t)VH 4
2 ).

By using (27) in the following cases (k , m) 4 (1 , 2 ), (k , m) 4 (2 , 0 ), and
finally (k , m) 4 (1 , 0 ), one has

Vj(t)VH 4
2 GC g !

k40

2

V¯ t
k j(t)VL 2

2 1VFt (t)VL 2
2 1VF(t)VH 2

2 h .

By straightfull calculations, we get

VF(t)VH 2
2 GCQ (t)(Vj(t)VH 1

2 1Vj t (t)VH 1
2 1VZ(t)VH 4

2 ),

VFt (t)VL 2
2 GCQ (t)(Vj(t)VH 1

2 1Vj t (t)VH 1
2 1VZ(t)VH 4

2 ).
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Hence

VF(t)VH 3
2 GCQ (t)(f(t)1VZ(t)VH 4

2 ).

In order to estimate VFt (t)VH 2 , VFtt (t)VH 1 and VFttt (t)VL 2 , we follow the
same lines as in the previous step, and we consider the following interpo-
lation inequalities

VD 2 BVL 8 GCV˜BVL Q
3/4

VjVH 4
1 /4 ,(28)

VD 2 uVL 8 GCV˜uVL Q
3/4

VZVH 4
1 /4 ,(29)

VD 3 BVL 8 GCVBVL Q
5/16

VjVH 4
11/16 ,(30)

VD 3 uVL 8 GCVuVL Q
5/16

VZVH 4
11/16 ,(31)

VD 4 BVL 4 GCV˜BVL Q
3/8

VjVH 5
5 /8 ,(32)

VD 4 BVL 8/3 GCV˜BVL Q
1/4

VjVH 4
3 /4 ,(33)

VD 5 BVL 8/3 GCV˜BVL Q
3/16

VjVH 5
13/16 ,(34)

VD 3 Bt VL 8/3 GCVBt VL Q
1/4

Vj t VH 3
3 /4 .(35)

By virtue of the Hölder inequality, of (17)-(23) and of (28)-(35) we
get

VFt (t)VH 2
2 1VFttt (t)VL 2

2 GCQ (t)(f(t)1VZ(t)VH 4
2 ),

VFtt (t)VH 1
2 GCQ (t)(f(t)1VZ(t)VH 4

2 )1VD 3 Bt DZV

2
L 2 .

By (35), by recalling that Bt �L Q (V), and by using again (27), we
get

VFtt (t)VH 1
2 GCQ (t)(f(t)1VZ(t)VH 4

2 1Vj t (t)V

2
H 3) G

GCQ (t) (f(t)1VZ(t)VH 4
2 1Vj t (t)V

2
H 1 1

1Vj tt (t)V

2
H 1 1VFt (t)V

2
H 1 )G

GCQ (t)(f(t)1VZ(t)VH 4
2 ) .

Hence, the claim follows. r

By collecting Lemmata 3.3-3.6 we obtain inequality (12).
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4. – Proof of Theorem 2.3.

The first topic which we treat is a local existence result in Sobolev
spaces for system (1)-(9). Obtained that the classical solution of (1)-(9)
belongs locally to H 5 (V), from the a-priori estimates (12) and (13) we
can extend such a solution on the whole time interval [0 , T].

PROOF. In order to show the local existence of a solution in Sobolev
spaces, we apply the Banach-Caccioppoli theorem. In particular, let
0 E tA GT be sufficiently small and let

S»4 ](u , B) �L Q (0 , tA; H 5 (V) ) : V(u , B)VL Q (0 , tA; H 5 ) G2A( ,

where A is a real positive constant such that ADC0 (Vu0 VH 5
2 1VB0 VH 5

2 ) for
a suitable constant C0 , which will be fixed later.

Given the couple (u , B) in S and satisfying (3)-(9), let

L : SKL(S)

be the map defined by

U»4 (u , B) K UA »4 (uA, BA) ,

where UA »4 (uA, BA) is the solution of the following linear system

uAt 1 (u Q˜) uA 2(B Q˜) BA 4
1

2
˜NBN2 in QT ,(36)

BAt 1 (u Q˜) BA2(B Q˜) uA 2mDBA 40 in QT ,(37)

div uA 40 in QT ,(38)

div BA 40 in QT ,(39)

uA Qn40 on G3 (0 , T),(40)

BA Qn40 on G3 (0 , T),(41)

rot BA 40 on G3 (0 , T),(42)

uA(x , 0 ) 4u0 (x) in V ,(43)

BA(x , 0 ) 4B0 (x) in V .(44)
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We now show that the map L satisfies all the assumptions of the Banach-
Caccioppoli theorem. We now apply to both sides of equation (36)-(37)
rot and ¯a , where a is a multi-index with NaNG4. We multiply the re-
sulting expressions by the test functions ¯a ZA and ¯aj

A, where ZA »4rot uA

and j
A

»4rot BA. By suitable integrations by parts, and by using the Höld-
er and Young inequalities, an application of the Gronwall lemma yields
that

max
t� [0 , tA]

VUA(t)VH 5
2 G {C0 VU(0)VH 5

2 1C�
0

t
A

VU(t)VH 5
4 dt} e

Cs
0

tA

(11VU(t)VH 5 )2 dt
,

where VU(0)VH 5
2 4Vu0 VH 5

2 1VB0 VH 5
2 . Since U belongs to S , we get

max
t� [0 , tA]

VUA(t)VH 5
2 G (A1CtA(2A)4 ) e Ct

A
(112A)2

.

Consequently, if tA is small enough, L maps the set S into itself. We now
show that L is a contraction with respect to L Q (0 , tA; L 2 )-norm. Let
UA1 »4 (uA1 , BA1 ) and UA2 »4 (uA2 , BA2 ) be solutions of system (36)-(44). We
now consider the difference between equations (36), written for i41, 2,
and equations (37), again written for i41, 2 . We use as test functions
uA1 2uA2 and BA1 2BA2 respectively. By standard arguments, we get

VUA1 2UA2 VL Q (0 , tA; L 2 )
2 GCtA e 4A 2 t

A
VU1 2U2 VL Q (0 , tA; L 2 )

2 .

If tA is sufficiently small, L is a contraction and the unique fixed point of
the map L is a solution of system (1)-(9). The thesis follows by the
uniqueness of the classical solution and by using (12) and (13). r
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