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Spherical Harmonics and Spherical Averages
of Fourier Transforms.

PER SJÖLIN (*)

ABSTRACT - We give estimates for spherical averages of Fourier transforms of
functions which are linear combinations of products of radial functions and
spherical harmonics. This generalizes the case of radial functions.

1. Introduction.

We shall here study Fourier transforms in Rn and we shall always as-
sume nF2. Let u denote the area measure on S n21 and set

s ( f )(R) 4 �
S n21

N f×(Rj)N2 du(j) , RD1 ,

where f× denotes the Fourier transform of a function f�L 1 (Rn ). We are
interested in estimates of the type

s ( f )(R) GCR 2b�
Rn

N f×(j)N2 1

NjNn2a
dj , RD1 .(1)

For 0 EaGn we shall consider the statement

.
/
´

there exists a constant C4Ca , b such that (1)

holds for all f�C Q
0 (Rn ) with supp f%B1 and fF0 .

(2)

Here B1 denotes the unit ball in Rn .

(*) Indirizzo dell’A.: Department of Mathematics, Royal Institute of Techno-
logy, S-100 44 Stockholm, Sweden. E-mail: persHmath.kth.se
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We set b 1 (a) 4 sup ]b ; (2 ) holds(. The number b 1 (a) has been
studied in Mattila [2], Sjölin [4], Bourgain [1], and Wolff [9]. In the case
n42 it is known that

b 1 (a) 4
.
/
´

a ,

1 /2 ,

a/2 ,

0 EaG1/2

1/2 EaG1

1 EaG2

(see [2] and [9]). For nF3 one knows that b 1 (a) 4a for 0 EaG (n2

21) /2 , max ((n21) /2 , a21)Gb 1 (a) G min (a , a/21n/221) for (n2

21) /2 EaEn , and b 1 (n) 4n21 (see [2] and [4]).
Results of this type have applications in geometric measure theory in

the study of distance sets.
In Sjölin and Soria [6], [7], u is replaced by general measures and in

these papers one also studies the case when the condition fF0 in (2) is
removed.

The case when f is also assumed to be radial is studied in Sjölin [5].
We shall here generalize the case of radial functions. We recall that

L 2 (Rn ) 4 !
k40

Q

5Hk , where Hk is the space of all linear combinations of

functions of the form fP , where f ranges over the radial functions and P
over the solid spherical harmonics of degree k , so that fP belongs to
L 2 (Rn ) (see Stein and Weiss [8], p. 151).

Now fix kF0 and let P1 , P2 , R , Pak
be an orthonormal basis for the

space of solid spherical harmonics of degree k (where we use the inner
product in L 2 (S n21 )). The elements in Hk can be written in the
form

f (x) 4 !
j41

ak

fj (r) Pj (x) (here r4NxN)(3)

and

�
Rn

Nf (x)N2 dx4!
1

ak

�
0

Q

Nfj (r)N2 r n12k21 dr .

We let R denote the class of all functions g on [0 , Q), which satisfy the
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following conditions:

g(r) F0

g is C Q

g(r) 40

for rF0 ,

on (0 , Q) ,

for rD1 ,

and

there exists eD0 such that g(r) 40 for 0 GrGe .

We say that f� Sk , k40, 1 , 2 , R , if f is given by (3) with all
fj � R.

For 0 EaGn we shall consider the statement:

there exists C4Ca , b , k such that (1) holds for all f� Sk .(4)

We then set b(a) 4b k (a) 4b n , k (a) 4 sup ]b ; (4) holds(.
We have the following result.

THEOREM. For k40, 1 , 2 , R , we have b k (a) 4a for 0 EaGn21,
and b k (a) 4n21 for n21 EaGn.

We shall first give a proof of the theorem which works directly for all
kF0. Another possibility is to first treat the case k40 (i.e. the case of
radial functions), and then use the case k40 to study the case kF1. We
shall also say something about this second approach.

2. Proofs.

If f is a function on [0 , Q) we shall also use the notation f for the cor-
responding radial function in Rn . We also let Fn denote the Fourier
transformation in Rn .

PROOF OF THE THEOREM. Assume that f is given by (3) with all
fj belonging to R. It then follows from [8], p. 158, that

f×(x) 4!
1

ak

Fj (r) Pj (x) (here r4NxN) ,
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where

Fj (r) 4ck r 12n/22k�
0

Q

fj (s) Jn/21k21 (rs) s n/21k ds , rD0 ,

and Jm denotes Bessel functions.
For NjN41 we obtain

f×(Rj) 4!
j

Fj (R) Pj (Rj) 4R k!
j

Fj (R) Pj (j)

and hence

s ( f )(R) 4R 2k �
S n21

N!
j

Fj (R) Pj (j) N
2
du(j) 4R 2k!

j
NFj (R)N2 .

We also have

�
R n

N f×(j)N2 NjNa2n dj4�
0

Qu �
S n21

N f×(rj 8 )N2 du(j 8 )v r a21 dr

4�
0

Q

r 2kg!
j

NFj (r)N2h r a21 dr4!
j
�

0

Q

NFj (r)N2 r 2k1a21 dr

4!
j

�
Rn

NFj (r)N2 NjN2k1a2n dj

(where r4NjN in the last integral).
It follows that the statement (4) is equivalent to the statement:

if f�R and

F(r) 4ck r 12n/22k�
0

Q

f (s) Jn/21k21 (rs) s n/21k ds , rD0 ,(5)

then

R 2k NF(R)N2 GCk R 2b �
R n

NF(r)N2 NjN2k1a2n dj , RD1 .(6)

Now assume that f� R and that F is given by (5). It is then clear
that

F(r) 4ck Fn12k f (r)(7)
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and since f�C Q
0 (Rn12k ) it follows that F� S(Rn12k ), where S denotes

the Schwartz class. Assume that 22n22kGbG1. Then n/21k21 F

F2b/2 and it follows that

NJn/21k21 (s)NGCs 2b/2 , sD0

(cf. [8], p. 158).
Inserting this estimate in (5) we obtain

NF(r)NGCr 12n/22k�
0

1

f (s)(rs)2b/2 s n/21k ds

4Cr 12n/22k�
0

Q

f (s) W(s)(rs)2b/2 s n/21k ds ,

where W�C Q
0 (0 , Q) , WF0 and

W(s) 4
.
/
´

1,

0 ,

0 EsG1

sF2
.

The Fourier inversion formula implies that

f (s) 4ck s 12n/22k�
0

Q

F(t) Jn/21k21 (st) t n/21k dt

and hence

NF(r)NGCr 12n/22k�
0

Qus 12n/22k�
0

Q

F(t) Jn/21k21 (st) t n/21k dtv
Q W(s)(rs)2b/2 s n/21k ds

4Cr 12n/22k2b/2�
0

Q

F(t) t n/21ku �
0

Q

W(s) s 12b/2 Jn/21k21 (st) dsv dt .

We conclude that

r k NF(r)NGCr 12n/22b/2�
0

Q

F(t) t n/21k I(t) dt ,(8)
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where

I(t) 4�
0

Q

W(s) s 12b/2 Jn/21k21 (st) ds , tD0 .

We shall now estimate I(t). Setting g4b/21n/21k21 we obtain

I(t) 4 t n/21k21 t 12n/22k�
0

Q

W(s) Jn/21k21 (st) s n/21k s 2n/22k112b/2 ds

4ck t n/21k21 Fn12k (W(s) s 12b/22n/22k )(t)

4ck t n/21k21 Fn12k (W(s) s 2g )(t) , tD0.

First assume 22n22kEbG1. Then gG1/21n/21k21 En12k
and gD12n/22k1n/21k21 40. It follows that Fn12k (W(s) s 2g ) 4

4ck (Fn12k W)˜s 2n22k1g , where the convolution is taken in Rn12k . Since
Fn12k W� S(Rn12k ) we obtain

N Fn12k (W(s) s 2g )(t)NGC(11 t)2n22k1g , tD0 .(9)

In the remaining case b422n22k we have g40 and it is clear
that (9) holds also in this case.

We have n12k2g4n12k2b/22n/22k11 4n/21k2b/211,
and hence

NI(t)NGCt n/21k21 (11 t)2n/22k1b/221 , tD0 .

Thus NI(t)NGCt n/21k21 for 0 E tG1, and NI(t)NGCt b/222 for tD1.
Invoking (8) we then get

r k NF(r)NGCr 12n/22b/2�
0

Q

NF(t)N c(t) dt , rD0 ,(10)

where c(t) 4 t n12k21 for 0 E tG1, and c(t) 4 t n/21k1b/222 for tD1.
Using the Schwarz inequality we obtain

�
0

Q

NFNc dtG u �
0

Q

NF(t)N2 t 2k1a21 dtv1/2

(11)

u �
0

Q

c(t)2 t 22k2a11 dtv1/2

.
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We have

�
0

1

c(t)2 t 22k2a11 dt4�
0

1

t 2n14k2222k2a11 dt

4�
0

1

t 2n12k2a21 dtEQ

since 2n12k2aFn . On the other hand we also have

�
1

Q

c(t)2 t 22k2a11 dt4�
1

Q

t n12k1b2422k2a11 dt

4�
1

Q

t n1b2a23 dt ,

which is finite if n1b2a23 E21 i.e. bE21a2n .
Invoking (10) and (11) we conclude that

r 2k NF(r)N2 GCr 22n2b�
0

Q

NF(t)N2 t 2k1a21 dt , rD0 ,

if 22n22kGbG1 and bE21a2n . Setting M4 ]b ; 22n22kG

GbG1 and bE21a2n( we obtain

b(a) F sup
b�M

(b1n22) 4n221sup M .(12)

Then assume 0 EaGn21. We have 22n22kE21a2nG1, and
it follows that sup M421a2n and thus b(a) Fn22121a2n4a
in this case.

Then assume n21 EaGn . In this case 21a2nD1 and it follows
that sup M41. Invoking (12) we obtain b(a) Fn21.

Thus we have obtained lower bounds for b(a). We shall now obtain
upper bounds, and we first assume 0 EaGn21. Also assume that (6)
holds for all F given by (5) with f� R. We shall prove that then bGa .
First choose f� R with fg0. Then there exists bD0 such that F(b) c0.
Also set fa (s) 4 f (as), aD1, and

Fa (r) 4ck r 12n/22k�
0

Q

f (as) Jn/21k21 (rs) s n/21k ds , rD0 .
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Performing a change of variable as4 t we obtain

Fa (r) 4ck r 12n/22k�
0

Q

f (t) Jn/21k21 (rt/a) t n/21k dt a 2n/22k21

4a 2n22k F(r/a),

and (6) yields

r 2k a 22n24k NF(r/a)N2 GCr 2b�
0

Q

NF(r/a)N2 r 2k1a21 dr a 22n24k .

Performing a change of variable we then get

r 2k NF(r/a)N2 GCr 2b�
0

Q

NF(s)N2 s 2k1a21 ds a 2k1a(13)

4Cr 2b a 2k1a

for all aD1 and rD1, where C depends on f but not on a or r . We now
choose a4r/b , where r is large, and it follows from (13) that

r 2k NF(b)N2 GCr 2b r 2k1a b 22k2a .

We conclude that r bGCr a and it follows that bGa . Hence b(a) Ga
for 0 EaGn21 and we have proved that b(a) 4a in this case.

It remains to study the case n21 EaGn . Assume as above that (6)
holds for all f� R.

Let L1 denote the class of all f�L 1 [0 , Q) with fF0 and satisfying
f (r) 40 for rF7/8 and f (r) 40 for 0 GrGe for some eD0. It is then
easy to see that (6) holds also for all f� L1 . In fact, this follows from ap-
proximation of f� L1 with f˜W e , where the convolution is taken in
Rn12k and W e is an approximate identity in Rn12k .

Then choose W�C Q
0 (0 , Q) with supp W% (1 /2 , 7 /8), WF0, and

W(3 /4) 41. Also set

f (s) 4 fR (s) 4e 2iRs W(s) , sD0,

where R is large. Then

f4 f1 2 f2 1 if3 2 if4 ,

where fj � L1 and fj GNfN for j41, 2 , 3 , 4 . Let Fj correspond to fj in the
same way as F corresponds to f in (5). Then Fj 4ck Fn12k fj and since (6)
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holds for Fj we obtain

R 2k NF(R)N2 GCR 2k!
j

NFj N
2 GCR 2b!

j
�

0

Q

NFj (r)N2 r 2k1a21 dr

4CR 2b!
j

�
Rn12k

NFj (r)N2 NjNa2n dj .

In the case n21 EaEn we invoke Lemma 12.12 in Mattila [5], p.
162, and then get

R 2k NF(R)N2 GCR 2b!
j

�
Rn12k

�
Rn12k

Nx2yN2a22k fj (x) fj (y) dx dy

GCR 2b �
Rn12k

�
Rn12k

Nx2yN2a22k Nf (x)N Nf (y)Ndx dy .

Hence

R 2k NF(R)N2 GCR 2b ,(14)

where C depends on W but not on R . In the case a4n (14) follows from
an application of the Plancherel theorem.

We have

R k F(R) 4cR 12n/2�
0

Q

e 2iRs W(s) Jn/21k21 (Rs) s n/21k ds

and we shall use the asymptotic formula

Jn/21k21 (t) 4c1 e it t 21/2 1c2 e 2it t 21/2 1 O(t 23/2 ) , tKQ

(see [8], p. 158). We obtain

R k F(R) 4cR 12n/2�
0

1

yc1
e iRs

(Rs)1/2
1c2

e 2iRs

(Rs)1/2
1 O ((Rs)23/2 )z

Q s n/21k e 2iRs W(s) ds

4cc1 R 1/22n/2�
0

1

s n/21k21/2 W(s) ds
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1cc2 R 1/22n/2�
0

1

e 22 iRs s n/21k21/2 W(s) ds

1 O(R 21/22n/2 ) FcR 1/22n/2

and hence

R 2k NF(R)N2 FcR 12n

for large values of R .
The formula (14) then yields

R 12n GCR 2b

i.e.

R bGCR n21

and we conclude that bGn21. Hence b(a) Gn21 for n21 EaGn
and it follows that b(a) 4n21 in this case. The proof of the theorem is
complete.

We shall finally discuss how results for radial functions (i.e. the case
k40) can be used to study the case kF1. Therefore assume nF2, kF1
and 0 EaGn . If f� R and F is given by (5), then the estimate

NF(R)N2 GCR 2b�
0

Q

NF(r)N2 r a12k21 dr

is equivalent to the estimate

R 2k NF(R)N2 GCR 2(b22k)�
0

Q

NF(r)N2 r a12k21 dr .

It follows that

b n , k (a) 4b n12k , 0 (a12k)22k .(15)

Assume then that we know that b n , 0 (a) 4 min (a , n21) for all nF2
and 0 EaGn . For kF1, nF2 and 0 EaGn (15) then yields

b n , k (a) 4 min (a12k , n12k21)22k4 min (a , n21) ,

which is the desired formula.
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