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Zk1l3Z2-Graded Polynomial Identities for Mk , l (E)7E.

ONOFRIO MARIO DI VINCENZO (*) - VINCENZO NARDOZZA (**)

ABSTRACT - Let K be a field of characteristic zero, and E be the Grassmann alge-
bra over an infinite-dimensional K-vector space. We endow Mk , l (E)7E with
a Zk1 l3Z 2-grading, and determine a generating set for the ideal of its grad-
ed polynomial identities. As a consequence, we prove that Mk , l (E)7E and
Mk1 l (E) are PI-equivalent with respect to this grading. In particular, this
leads to their ordinary PI-equivalence, a classical result obtained by Kemer.

1. Introduction.

Let K be a field of characteristic zero, and E be the Grassmann alge-
bra over an infinite-dimensional K-vector space. For fixed integers k , l
(kF l) we consider the K-algebra Mk , l (E), whose elements are the fol-
lowing block matrices with entries in the even and odd part of E , resp.
E0 and E1 :

g E0 E1

E1 E0
h

k l

N
–
–
–

k
lN

l l l

As follows by the results of Kemer [K], these algebras generate non-
trivial prime varieties, and their study is essential in the theory of PI-al-
gebras. Since Mk , l (E) is a subalgebra of Mk1 l (E), the following inclusion
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for the ideals of polynomial identities follows: T(Mk , l (E) ) *T(Mk1 l (E) ).
It is somehow surprising that to get a PI-equivalence with Mk1 l (E) it
suffices to consider the tensor product Mk , l (E)7E , regardless to k , l ,
i.e. the T-ideals of the polynomial identities of these algebras are equal.
Originally, this fact was proved by Kemer in [K1] as a consequence of his
structure theory for varieties of algebras. Other proofs are in the papers
of Regev [R] and Berele [B]. In this paper, we shall study Mk , l (E)7E as
a graded algebra. Recall briefly that, for a given group G , a K-algebra R
is G-graded if, for each g�G , there is a subspace R g of R (the g-homoge-
neous component of R) such that

R4 !
g�G

R g and R g R h ’R g1h for all g , h�G .

We shall write ¯G (r) 4g (or simply ¯(r) 4g if G is clear from the con-
text) to denote the G-homogeneous degree of the homogeneous element
r�R g .

The study of graded algebras is almost a standard approach in many
problems of PI-theory, and many algebras have natural grading which
enrich them with nice structure properties. The algebras Mn (K),
Mk , l (E), Mn (E), for instance, are Z 2-graded algebras in a natural way.
Before getting into details in the next section, we briefly recall some
terminology:

Let G be a group; for each g�G let X g be a countable set of non-com-
muting variables, and let X G be their disjoint union. Then the algebra
KaX G b is a free object in the class of G-graded algebras. A polynomial
f4 f (x1

g1 , R , xr
gr ) with variables xi

gi �X gi is a graded polynomial identity
for R if for all substitutions xi

gi Kai �R gi (i41, R , r) it results
f (a1 , R , ar ) 40. The set of all graded polynomial identities for R is an
ideal of KaX G b invariant under all endomorphisms of KaX G b preserving
the homogeneous components; we call it the TG-ideal of R , and denote it
by TG (R). Now call:

Vr
G »4spanK axs(1)

g1
R xs(r)

gr Ns�Sr , g1 , R , gr �Gb.

We call Vr
G the space of graded multilinear polynomials, and it is easily

seen that the usual left action of Sr endows Vr
G with the structure of left

Sr-module as in the ordinary case. Moreover, since the field K is of char-
acteristic zero, standard arguments yield that TG (R) is generated by its
multilinear parts, i.e. by the Sr-submodules Vr

G OTG (R) for all r�N .
There are many more examples of these and other concepts related to
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graded algebras; for shortness, we introduce those who are related to
this paper. The first is the natural Zn-grading for the algebra
Mn (K):

(Mn (K) )t »4spanK aeij N j2 i 4 t�Zn b.

Vasilovsky in [V] proved that its TZ n
-ideal is generated by the following

multilinear polynomials:

[x1
0 , x2

0 ] x1
t x 2t x2

t 2x2
t x 2t x1

t (t�Zn ).

The second instance is about the algebra Mn (E) `Mn (K)7E , which
has the natural Zn 3Z 2-grading

(Mn (E) )(t , l) »4Mn (K)t 7El

where the first component is the t-homogeneous component of Mn (K) in
the previous grading for Mn (K). The authors in [DVN] found a system of
generators for the TZ n3Z 2

-ideal of its graded polynomial identities.
In this paper, for n4k1 l , we define a Zn 3Z 2-grading for

Mk , l (E)7E and describe a set of generators for TZ n3Z 2
(Mk , l (E)7E).

In particular it turns out that this set generates TZ n3Z 2
(Mn (E) ) as well.

Hence Mk , l (E)7E and Mn (E) are equivalent as graded PI-algebras.
General arguments lead to their ordinary PI-equivalence, and we obtain
a new proof for the mentioned result of Kemer, using only elementary
tools.

2. Preliminaries.

Consider the K-algebra Mk , l (E), and let n»4k1 l in the following.
We may start from the natural Zn-grading on Mn (K) in order to endow
Mk , l (E) with the following Zn 3Z 2-grading:

(Mk , l (E) )(t , l) »4spanK aEl eij N j2 i 4 t�Zn bOMk , l (E).

Of course some of the graded components may be trivial (for instance,
(Mk , l (E) )(0 , 1) 40). It is easy to verify, however, that this is actually a
grading for Mk , l (E). Next, consider Mk , l (E)7E and define

(Mk , l (E)7E)(t , l) »4 (Mk , l (E) )(t , l) 7E0 5 (Mk , l (E) )(t , l11) 7E1 .

Then Mk , l (E)7E is Zn 3Z 2-graded, and we shall prove that it is PI-
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equivalent to the algebra Mn (E) with the Zn 3Z 2-grading

(Mn (E) )(t , l) 4spanK aeij 7El N j2 i 4 t�Zn b.

In order to have a clearer view of the problem, the following consid-
erations are useful:

DEFINITION 2.1. Let e :]1, R , n(3 ]1, R , n( KZ 2 be the map
defined via

e(i , j) »4
.
/
´

0

1

if i , jGk or i , jDk

otherwise .

Moreover, let E0 be the natural K-basis for E0 , and E1 be the correspond-
ing basis for E1 .

It is immediate to see that

A »4 ]aeij Ni , jGn , a� Ee(i , j) (

is a K-basis for Mk , l (E), and

B »4 ]aeij 7bNi , jGn , a� Ee(i , j) , b� El(

is a K-basis for Mk , l (E)7E . Moreover, writing a l as a shorthand for
a� El , it holds:

(Mk , l (E) )(t , l) 4spanK aa e(i , j) eij N j2 i 4 t�Zn , e(i , j) 4lb

and

(Mk , l (E)7E)(t , l) 4spanK aa e(i , j) eij 7b l1e(i , j) N j2 i 4 t�Zn b.

By use of these definitions, the fact that Mk , l (E)7E is a Zn 3Z 2-
graded algebra follows easily. By the way, we find useful to remark a
couple of lemmas which will be of help in the following of this part.

LEMMA 2.2. Let

As »4as
e(is , js ) eis js

7bs
l s1e(is , js ) � B for s41, 2 .

If A1 A2 is not zero, then there exists c� ]1, 21( such that

cA1 A2 � B .
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In particular it holds:

j1 4 i2 ; e(i1 , j1 )1e(i2 , j2 ) 4e(i1 , j2 ); ¯(A1 A2 ) 4 ( j2 2 i1, l 1 1l 2 ) .

PROOF. Suppose A1 A2 c0 and look at e(i1 , j1 ) »4e 1 and e(i2 , j2 ) »4

e 2 . If e 1 4e 2 41, we know that i1 and j1 4 i2 are by opposite side with re-
spect to k and this forces that j2 and i1 are by the same side with respect
to k , so e(i1 , j2 ) 40 4e 1 1e 2 . Apply the same argument for the other
cases to get e 1 1e 2 4e(i1 , j2 ). Then, say V the infinite-dimensional vec-
tor space which generates the Grassmann algebra E , and say

a1 4vl1
R vlr

and a2 4vm1
R vmt

where vl1
, R , vlr

, vm1
, R , vmt

are pairwise-distinct vectors in an ordered
basis for V since A1 A2 c0, with vl1

Evl2
EREvlh

and vm1
Evm2

ERE

Evmt
. Then we may rearrange the entries in the word a1 a2 and obtain an

element of Ee 11e 2
which is equal to a1 a2 up to its sign. The same argu-

ments apply to the b’s, and using the first part of this Lemma we get the
result. r

DEFINITION 2.3. Let m be a monomial in Vr
Z n3Z 2 , and let

S :(A1 , A2 , R , Ar ) be the substitution xi KAi (i41, R , r). We say that
S is a standard substitution if

i) ¯(xi ) 4¯(Ai ) for each xi occurring in m ;

ii) Ai � B for each i .

Since char K40, the graded polynomial identities of
TZ n3Z 2

(Mk , l (E)7E) are determined by the multilinear ones, i.e. by the
spaces

Vr
Z n3Z 2 OTZ n3Z 2

(Mk , l (E)7E) for all r�N .

Actually, it suffices to prove that a multilinear polynomial is zero un-
der all standard substitutions in order to prove that it is a graded poly-
nomial identity. In the next considerations, the following Lemma is use-
ful. Its proof can be found in ([V], Lemma 1), and we shall omit it
here.

LEMMA 2.4. Let ei1 j1
, eij , ei2 j2

�Mn (K) be elementary matrices with
Zn-degrees

¯Z n
(ei1 j1

) 4¯Z n
(ei2 j2

) 42¯Z n
(eij ) .
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Then

ei1 j1
eij ei2 j2

c0 if and only if i1 4 j4 i2 and j1 4 i4 j2 .

If this is the case, it holds: ei1 j1
eij ei2 j2

4ei2 j2
eij ei1 j1

.

DEFINITION 2.5. Let I be the following set of multilinear polynomials:

[x1
(0 , 0) , x2

(0 , 0) ] [x1
(0 , 1) , x2

(0 , 0) ] x1
(0 , 1)

i x2
(0 , 1)

x1
(t , 0 ) x (2t , 0 ) x2

(t , 0 )2x2
(t , 0 ) x (2t , 0 ) x1

(t , 0 ) x1
(t , 1 ) x (2t , 0 ) x2

(t , 0 )2x2
(t , 0 ) x (2t , 0 ) x1

(t , 1 )

x1
(t , 0 ) x (2t , 1 ) x2

(t , 0 )2x2
(t , 0 ) x (2t , 1 ) x1

(t , 0 ) x1
(t , 1 ) x (2t , 0 ) x2

(t , 1 )1x2
(t , 1 ) x (2t , 0 ) x1

(t , 1 )

x1
(t , 1 ) x (2t , 1 ) x2

(t , 0 )1x2
(t , 0 ) x (2t , 1 ) x1

(t , 1 ) x1
(t , 1 ) x (2t , 1 ) x2

(t , 1 )1x2
(t , 1 ) x (2t , 1 ) x1

(t , 1 )

where t varies in Zn and a i b denotes the Jordan product a i b4ab1ba .
We shall denote by I the TZ n3Z 2

-ideal generated by I.

PROPOSITION 2.6.

I’TZ n3Z 2
(Mk , l (E)7E) .

PROOF. It is enough to test polynomials listed in Definition 2 under
standard substitutions, and verify they are zero for each such substitu-
tions. The generic standard substitution for 3-degree polynomials will be

A1 4a1
e(i1 , j1 ) ei1 j1

7b1
l 11e(i1 , j1 )

A2 4a2
e(i2 , j2 ) ei2 j2

7b2
l 21e(i2 , j2 )

A4a e(i , j) eij 7b l1e(i , j)

for j1 2 i1 4 j2 2 i2 4 i2 j 4 t�Zn . By Lemma 2.4, the products
ei1 j1

eij ei2 j2
and ei2 j2

eij ei1 j1
are both zero unless

i1 4 i2 4 j and j1 4 j2 4 i

and in this case they are equal (to eji) and e(i1 , j1 ) 4e(i2 , j2 ) 4e(i , j)
4: e . So the substitutions we have to test are of kind

A14a1
e eji7b1

l 11e A24a2
e eji 7b2

l 21e A4a e eij7b l1e ( for i2 j4t) .
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Here we verify just one of them, the other ones can be treated in the
same way. For instance, consider x1

(t , 1 ) x (2t , 1 ) x2
(t , 0 ) 1x2

(t , 0 ) x (2t , 1 ) x1
(t , 1 ):

l 1 4l41, l 2 40. If e40, then

A2 AA1 4a2
0 a 0 a1

0 eji 7b2
0 b 1 b1

1 42A1 AA2

and if e41, then

A2 AA1 4a2
1 a 1 a1

1 eji 7b2
1 b 0 b1

0 42A1 AA2 .

The same arguments and the use of Lemma 2.2 yield that the polynomi-
als of second degree in the list are graded identities for Mk , l (E)7E as
well. r

In the rest of the section, let m»4x1 R xr be a multilinear graded
monomial of length r . If s�Sr , we denote by ms the monomial
xs(1) R xs(r) . If S is any (graded) substitution, we denote by mNS the value
of m under the substitution S.

REMARK 2.7. For each s�Sr there exists a graded standard substi-
tution S such that

ms NS c0 .

This is easy to prove, for instance using induction on the length r .

DEFINITION 2.8. For 1 GpGqGr , call

ms
[p , q] »4xs(p) R xs(q) .

REMARK 2.9. Let S be a standard substitution, and fix from now on

S : xs KAs »4as
e(is , js ) eis js

7bs
l s1e(is , js ) (s41, R , r) ,

where ¯(xs ) 4 ( js 2 is, l s ) 4¯(As ). If

ms NS 4As(1) R As(r) c0

then there exists A� B, c� ]1, 21( such that ms NS 4cA . Moreover,
ms NS c0 if and only if (p , q 1 GpGqGr it is ms

[p , q] NS c0, and in this
case it holds

¯(ms
[p , q] ) 4 (js(q) 2 is(p), l s(p) 1R1l s(q) ) .
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In fact it is:

¯(ms
[p , q] )4¯(xs(p) )1R1¯(xs(q) ) 4

4 ( js(p) 2 is(p), l s(p) )1R1 ( js(q) 2 is(q), l s(q) ) 4

4 ( js(q) 2 is(p), l s(p) 1R1l s(q) )

by Lemma 2.2.

3. Technical results.

The considerations in this (and the next) section are similar to those
in [V]. We start with rearranging a lemma. The symbols used are the
same listed in the previous section. We recall that I denotes the TZ n3Z 2

-
ideal generated by the polynomials listed in Definition 2.5.

LEMMA 3.1. Suppose that for a graded standard substitution S it
results

ms NS 46mNS c0 .

Then there exists c� ]1, 21( such that

msfcx1 m 8 (x2 , R , xr ) mod I .

PROOF. First of all, note that ms NS 46mNS c0 implies that i1 4 is(1) .
Of course, we may suppose s(1) c1, so 1 Es21 (1). We may write the in-
tegers in [1 , s21 (1) ] in the form s21 ( j11) for j40, R , r21; then
call

t»4 min ] jGr21N1 Gs21 ( j11) Es21 (1)( .

By its definitions, t satisfies 1 Gs21 (t11) Es21 (1) Gs21 (t); set

p»4s21 (t11) q»4s21 (1) u»4s21 (t)

and consider the two possibilities: p41 or pD1. For convenience,
define

l s
[a , b] »4l s(a) 1R1l s(b) .
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First, suppose p41. By Lemma 2.9, it results

¯(ms
[1 , q21] ) 4 ( js(q21) 2 is(1), l s

[1 , q21] )

¯(ms
[q , u] ) 4 ( js(u) 2 is(q) , l s

[q , u] )

and both the words are not zero under the substitution S; by Lemma 2.9
this yields

js(q21) 2 is(1)

js(u) 2 is(q)

4 is(q) 2 i1 4 i1 2 i1 40

4 jt 2 i1 4 it11 2 i1 4 is(p) 2 i1 4 is(1) 2 i1 4 i1 2 i1 40 .

With respect to the parities of l s
[1 , q21] and l s

[q , u] there is c� ]1, 21(

such that

x1
(0 , l s

[1 , q21] ) x2
(0 , l s

[q , u] )
fcx2

(0 , l s
[q , u] ) x1

(0 , l s
[1 , q21] ) mod I .

Hence we get

msfcms
[q , u] ms

[1 , q21] ms
[u11, r] mod I ,

and ms
[q , u] starts with x1 . Now consider the case pD0; with considera-

tion similar to the previous case, it is

¯(ms
[1 , p21] ) 4 ( js(p21) 2 is(1), l s(1) 1R1l s(p21) )

¯(ms
[p , q21] ) 4 ( js(q21) 2 is(p), l s(p) 1R1l s(q21) )

¯(ms
[q , u] ) 4 ( js(u) 2 is(q), l s(q) 1R1l s(u) ) .

Call

d»4
.
/
´

it11 2 i1

it11 2 ii 1n

if it11 2 i1 F1

if it11 2 i1 E1 .

Then it holds that:

js(p21) 2 is(1) 4 is(p) 2 i1 4 it11 2 i1 fd mod n

js(q21) 2 is(p) 4 is(q) 2 is(p) 4 i1 2 it11 f2d mod n

js(u) 2 is(q) 4 jt 2 i1 4 it11 2 i1 fd mod n .

As before, there is c� ]1, 21( such that

x1
(d , l s

[1 , p21] ) x (2d , l s
[p , q21] ) x2

(d , l s
[q , u] )

fcx2
(d , l s

[q , u] ) x (2d , l s
[p , q21] ) x1

(d , l s
[1 , p21] )
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modulo I; then

msfcms
[q , u] ms

[p , q21] ms
[1 , p21] ms

[u11, r] mod I

and this monomial starts with x1 . r

LEMMA 3.2. With the same notation as in the previous Lemma, if
for a standard substitution S it holds

ms NS 4cmNS c0 ,

for a certain c� ]1, 21(, then

msfcm mod I .

PROOF. Let s be the greatest positive integer such that

msfc0 x1 R xs m 8 (xs11 , R , xr ) mod I

for a certain c0 � ]1, 21(. By Lemma 3.1, the number s does exist and it
is at least 1 . We want to show that s4r . Suppose on the contrary that
1 GsEr , so that sGr22. It holds

x1 R xs m 8 (xs11 , R , xr )NS 46ms NS 46mNS c0 .

Now compare m 8 NS and xs11 R xr NS . If we consider only the elementary
matrices which occur in S, it has to be true that

ei1 j1
R eis js

m 8 (eis11 js11
, R , eir jr

) 4ei1 j1
R eis js

(eis11 js11
R eir jr

) c0

so

ei1 js
m 8 (eis11 js11

, R , eir jr
) 4ei1 js

eis11 jr
c0 .

Then m 8 (eis11 js11
, R , eir jr

) has to be an elementary matrix, say epq , and
this leads to p4 js and q4 jr , so we get

m 8 (eis11 js11
, R , eir jr

) 4eis11 js11
R eir jr

c0 .

Therefore the restriction S8 of S to t4s11, R , r is such that

m 8 (xs11 , R , xr )NS846(xs11 R xr )NS8c0

and by Lemma 3.1 this yields that there exists c 8� ]1, 21( such
that

m 8fc 8 xs11 m 9 (xs12 , R , xr ) mod I .
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Then

msfc0 c 8 x1 R xs xs11 m 9 (xs12 , R , xr ) mod I

which contradicts the definition of s . Now it follows easily that
c0 4c . r

COROLLARY 3.3. Let s , t be in Sr , and suppose that for a standard
substitution S it results

ms NS 4cmt NS c0

for a certain c� ]1, 21(. Then

msfcmt mod I .

4. The main results.

THEOREM 4.1. Let n4k1 l . Then the set I described in Definition
2.5 generates TZ n3Z 2

(Mk , l (E)7E), that is

I4TZ n3Z 2
(Mk , l (E)7E) .

PROOF. By Proposition 2.6 we have to prove only that every multilin-
ear graded identity for Mk , l (E)7E is in I . Suppose on the contrary that
there exists a polynomial

f4 f (x1 , R , xr ) �Vr
Z n3Z 2 OTZ n3Z 2

(Mk , l (E)7E)

which is not in I . Then we may write

ff !
s41

t

ds s
ms s

mod I

for some monomials ms s
�Vr

Z n3Z 2 , s s �Sr , non-zero scalars 0 cds �K
and s41, R , t . Take t minimal with this property (of course, t should be
at least 2 by Remark 2.7): we want to prove that t40.

By Remark 2.7 there exists a graded standard substitution S such
that ms 1

NS c0. Since f is an identity for Mk , l (E)7E it is fNS 40.
Hence

ds 1
ms 1

NS 42 !
s42

t

ds s
ms s

NS .
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As in Remark 2.9, there exists A� B such that

0 cms 1
NS 4c1 A for some c1 � ]1, 21( .

Hence there must be p� ]2, R , t( such that

0 cms p
NS 4c2 A for some c2 � ]1, 21( .

Then

0 cms 1
NS 4c1 c2 ms p

NS ,

and applying Corollary 3.3 we get

ms p
fcms 1

mod I for c4c1 c2 .

In the end, it is

ff (ds 1
1cds p

) ms 1
1 !

s42, scp

t

ds s
ms s

mod I

contradicting the minimality of t . r

Now we recall the main result in [DVN]:

THEOREM 4.2. TZ n3Z 2
(Mn(E) ) is generated by the polynomials in I.

As a corollary of Theorems 4.1 and 4.2 we get

COROLLARY 4.3. The algebras Mk , l (E)7E and Mn (E) are PI-
equivalent as Zn 3Z 2-graded algebras.

Then it follows

COROLLARY 4.4. For n4k1 l , the algebras Mk , l (E)7E and
Mn (E) are PI-equivalent.

PROOF What we have to show is that the multilinear parts of the or-
dinary T-ideals T(Mk , l (E)7E) and T(Mn (E) ) are equal. Note that each
of them is a subset of the corresponding TZ n3Z 2

-ideal.
So take f�Vr OT(Mn (E) ). Then it suffices to prove that fNS 40 for

any ordinary standard substitution, i.e. for every substitution

S : xi KAi , (i41, R , r)

such that A1 , R , Ar � B.
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Let S be a ordinary standard substitution with elements in B, and
define

fA »4 f (x1
¯(A1 ) , R , xr

¯(Ar ) ) �Vr
Z n3Z 2 .

fA is a multilinear graded element in TZ n3Z 2
(Mn (E) ) 4

TZ n3Z 2
(Mk , l (E)7E), and the substitution S is admissible for this poly-

nomial. Hence fNS 4 fA NS 40 and this means that f�T(Mk , l (E)7E). Re-
versing the roles of T(Mn (E) ) and T(Mk , l (E)7E) leads to the reverse
inclusion. r
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