$\mathbb{Z}_{k+l} \times \mathbb{Z}_{2}$-Graded Polynomial Identities for $M_{k, l}(E) \otimes E$.

Onofrio Mario Di Vincenzo (*) - Vincenzo Nardozza(**)

Abstract - Let \mathbb{K} be a field of characteristic zero, and E be the Grassmann algebra over an infinite-dimensional \mathbb{K}-vector space. We endow $M_{k, l}(E) \otimes E$ with a $\mathbb{Z}_{k+l} \times \mathbb{Z}_{2^{2}}$-grading, and determine a generating set for the ideal of its graded polynomial identities. As a consequence, we prove that $M_{k, l}(E) \otimes E$ and $M_{k+l}(E)$ are PI-equivalent with respect to this grading. In particular, this leads to their ordinary PI-equivalence, a classical result obtained by Kemer.

1. Introduction.

Let \mathbb{K} be a field of characteristic zero, and E be the Grassmann algebra over an infinite-dimensional \mathbb{K}-vector space. For fixed integers k, l ($k \geqslant l$) we consider the \mathbb{K}-algebra $M_{k, l}(E)$, whose elements are the following block matrices with entries in the even and odd part of E, resp. E_{0} and E_{1} :

$$
\underset{\substack{E_{0} \\ E_{1} \\ \hline E_{1} \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline}}{\left(E_{0}\right.}+l
$$

As follows by the results of Kemer [K], these algebras generate nontrivial prime varieties, and their study is essential in the theory of PI-algebras. Since $M_{k, l}(E)$ is a subalgebra of $M_{k+l}(E)$, the following inclusion
(*) Indirizzo dell'A.: Dipartimento Interuniversitario di Matematica, via Orabona 4, 70125 Bari, Italia; e-mail: divincenzo@dm.uniba.it
(**) Indirizzo dell'A.: Dipartimento di Matematica, c.da Macchia Romana, 85100 Potenza, Italia; e-mail: vickkk@tiscalinet.it

Partially supported by MURST COFIN '99.
for the ideals of polynomial identities follows: $T\left(M_{k, l}(E)\right) \supseteq T\left(M_{k+l}(E)\right)$. It is somehow surprising that to get a PI-equivalence with $M_{k+l}(E)$ it suffices to consider the tensor product $M_{k, l}(E) \otimes E$, regardless to k, l, i.e. the T-ideals of the polynomial identities of these algebras are equal. Originally, this fact was proved by Kemer in [K1] as a consequence of his structure theory for varieties of algebras. Other proofs are in the papers of Regev [R] and Berele [B]. In this paper, we shall study $M_{k, l}(E) \otimes E$ as a graded algebra. Recall briefly that, for a given group G, a \mathbb{K}-algebra R is G-graded if, for each $g \in G$, there is a subspace R^{g} of R (the g-homogeneous component of R) such that

$$
R=\sum_{g \in G} R^{g} \quad \text { and } \quad R^{g} R^{h} \subseteq R^{g+h} \text { for all } g, h \in G
$$

We shall write $\partial_{G}(r)=g$ (or simply $\partial(r)=g$ if G is clear from the context) to denote the G-homogeneous degree of the homogeneous element $r \in R^{g}$.

The study of graded algebras is almost a standard approach in many problems of PI-theory, and many algebras have natural grading which enrich them with nice structure properties. The algebras $M_{n}(\mathbb{K})$, $M_{k, l}(E), M_{n}(E)$, for instance, are \mathbb{Z}_{2}-graded algebras in a natural way. Before getting into details in the next section, we briefly recall some terminology:

Let G be a group; for each $g \in G$ let X^{g} be a countable set of non-commuting variables, and let X^{G} be their disjoint union. Then the algebra $\mathbb{K}\left\langle X^{G}\right\rangle$ is a free object in the class of G-graded algebras. A polynomial $f=f\left(x_{1}^{g_{1}}, \ldots, x_{r}^{g_{r}}\right)$ with variables $x_{i}^{g_{i}} \in X^{g_{i}}$ is a graded polynomial identity for R if for all substitutions $x_{i}^{g_{i}} \rightarrow a_{i} \in R^{g_{i}} \quad(i=1, \ldots, r)$ it results $f\left(a_{1}, \ldots, a_{r}\right)=0$. The set of all graded polynomial identities for R is an ideal of $\mathbb{K}\left\langle X^{G}\right\rangle$ invariant under all endomorphisms of $\mathbb{K}\left\langle X^{G}\right\rangle$ preserving the homogeneous components; we call it the T_{G}-ideal of R, and denote it by $T_{G}(R)$. Now call:

$$
V_{r}^{G}:=\operatorname{span}_{\mathbb{K}}\left\langle x_{\sigma(1)}^{g_{1}} \ldots x_{\sigma(r)}^{g_{r}} \mid \sigma \in S_{r}, g_{1}, \ldots, g_{r} \in G\right\rangle
$$

We call V_{r}^{G} the space of graded multilinear polynomials, and it is easily seen that the usual left action of S_{r} endows V_{r}^{G} with the structure of left S_{r}-module as in the ordinary case. Moreover, since the field \mathbb{K} is of characteristic zero, standard arguments yield that $T_{G}(R)$ is generated by its multilinear parts, i.e. by the S_{r}-submodules $V_{r}^{G} \cap T_{G}(R)$ for all $r \in \mathbb{N}$. There are many more examples of these and other concepts related to
graded algebras; for shortness, we introduce those who are related to this paper. The first is the natural \mathbb{Z}_{n}-grading for the algebra $M_{n}(\mathbb{K})$:

$$
\left(M_{n}(\mathbb{K})\right)^{t}:=\operatorname{span}_{\mathbb{K}}\left\langle\boldsymbol{e}_{i j} \mid \overline{j-i}=t \in \mathbb{Z}_{n}\right\rangle .
$$

Vasilovsky in [V] proved that its $T_{\mathrm{Z}_{n}}$-ideal is generated by the following multilinear polynomials:

$$
\left[x_{1}^{0}, x_{2}^{0}\right] \quad x_{1}^{t} x^{-t} x_{2}^{t}-x_{2}^{t} x^{-t} x_{1}^{t} \quad\left(t \in \mathbb{Z}_{n}\right) .
$$

The second instance is about the algebra $M_{n}(E) \cong M_{n}(\mathbb{K}) \otimes E$, which has the natural $\mathbb{Z}_{n} \times \mathbb{Z}_{2}$-grading

$$
\left(M_{n}(E)\right)^{(t, \lambda)}:=M_{n}(\mathbb{K})^{t} \otimes E_{\lambda}
$$

where the first component is the t-homogeneous component of $M_{n}(\mathbb{K})$ in the previous grading for $M_{n}(\mathbb{K})$. The authors in [DVN] found a system of generators for the $T_{Z_{n} \times \mathrm{Z}_{2}}$-ideal of its graded polynomial identities.

In this paper, for $n=k+l$, we define a $\mathbb{Z}_{n} \times \mathbb{Z}_{2}$-grading for $M_{k, l}(E) \otimes E$ and describe a set of generators for $T_{\mathrm{Z}_{n} \times \mathrm{Z}_{2}}\left(M_{k, l}(E) \otimes E\right)$. In particular it turns out that this set generates $T_{\mathrm{Z}_{n} \times \mathrm{Z}_{2}}\left(M_{n}(E)\right)$ as well. Hence $M_{k, l}(E) \otimes E$ and $M_{n}(E)$ are equivalent as graded PI-algebras. General arguments lead to their ordinary PI-equivalence, and we obtain a new proof for the mentioned result of Kemer, using only elementary tools.

2. Preliminaries.

Consider the \mathbb{K}-algebra $M_{k, l}(E)$, and let $n:=k+l$ in the following. We may start from the natural \mathbb{Z}_{n}-grading on $M_{n}(\mathbb{K})$ in order to endow $M_{k, l}(E)$ with the following $\mathbb{Z}_{n} \times \mathbb{Z}_{2^{-}}$-grading:

$$
\left(M_{k, l}(E)\right)^{(t, \lambda)}:=\operatorname{span}_{\mathbb{K}}\left\langle E_{\lambda} \boldsymbol{e}_{i j} \mid \overline{j-i}=t \in \mathbb{Z}_{n}\right\rangle \cap M_{k, l}(E) .
$$

Of course some of the graded components may be trivial (for instance, $\left.\left(M_{k, l}(E)\right)^{(0,1)}=0\right)$. It is easy to verify, however, that this is actually a grading for $M_{k, l}(E)$. Next, consider $M_{k, l}(E) \otimes E$ and define

$$
\left(M_{k, l}(E) \otimes E\right)^{(t, \lambda)}:=\left(M_{k, l}(E)\right)^{(t, \lambda)} \otimes E_{0} \oplus\left(M_{k, l}(E)\right)^{(t, \lambda+1)} \otimes E_{1} .
$$

Then $M_{k, l}(E) \otimes E$ is $\mathbb{Z}_{n} \times \mathbb{Z}_{2^{2}}$-graded, and we shall prove that it is PI-
equivalent to the algebra $M_{n}(E)$ with the $\mathbb{Z}_{n} \times \mathbb{Z}_{i_{2}}$-grading

$$
\left(M_{n}(E)\right)^{(t, \lambda)}=\operatorname{span}_{\mathbb{K}}\left\langle\boldsymbol{e}_{i j} \otimes E_{\lambda} \mid \overline{j-i}=t \in \mathbb{Z}_{n}\right\rangle .
$$

In order to have a clearer view of the problem, the following considerations are useful:

Definition 2.1. Let $\varepsilon:\{1, \ldots, n\} \times\{1, \ldots, n\} \rightarrow \mathbb{Z}_{2}$ be the map defined via

$$
\varepsilon(i, j):= \begin{cases}0 & \text { if } i, j \leqslant k \text { or } i, j>k \\ 1 & \text { otherwise } .\end{cases}
$$

Moreover, let δ_{0} be the natural \mathbb{K}-basis for E_{0}, and δ_{1} be the corresponding basis for E_{1}.

It is immediate to see that

$$
\mathfrak{G}:=\left\{a \boldsymbol{e}_{i j} \mid i, j \leqslant n, a \in \mathcal{E}_{\varepsilon(i, j)}\right\}
$$

is a \mathbb{K}-basis for $M_{k, l}(E)$, and

$$
\mathcal{B}:=\left\{a e_{i j} \otimes b \mid i, j \leqslant n, a \in \delta_{\varepsilon(i, j)}, b \in \delta_{\lambda}\right\}
$$

is a \mathbb{K}-basis for $M_{k, l}(E) \otimes E$. Moreover, writing a^{λ} as a shorthand for $a \in \mathcal{E}_{\lambda}$, it holds:

$$
\left(M_{k, l}(E)\right)^{(t, \lambda)}=\operatorname{span}_{\mathbb{K}}\left\langle a^{\varepsilon(i, j)} \boldsymbol{e}_{i j} \mid \overline{j-i}=t \in \mathbb{Z}_{n}, \quad \varepsilon(i, j)=\lambda\right\rangle
$$

and

$$
\left(M_{k, l}(E) \otimes E\right)^{(t, \lambda)}=\operatorname{span}_{\mathbb{K}}\left\langle a^{\varepsilon(i, j)} \boldsymbol{e}_{i j} \otimes b^{\lambda+\varepsilon(i, j)} \mid \overline{j-i}=t \in \mathbb{Z}_{n}\right\rangle .
$$

By use of these definitions, the fact that $M_{k, l}(E) \otimes E$ is a $\mathbb{Z}_{n} \times \mathbb{Z}_{2^{-}}$ graded algebra follows easily. By the way, we find useful to remark a couple of lemmas which will be of help in the following of this part.

Lemma 2.2. Let

$$
\boldsymbol{A}_{s}:=a_{s}^{\varepsilon\left(i_{s}, j_{s}\right)} \boldsymbol{e}_{i_{s} j_{s}} \otimes b_{s}^{\lambda_{s}+\varepsilon\left(i_{s}, j_{s}\right)} \in \mathcal{B} \text { for } s=1,2 .
$$

If $\boldsymbol{A}_{1} \boldsymbol{A}_{\mathbf{2}}$ is not zero, then there exists $c \in\{1,-1\}$ such that

$$
c \boldsymbol{A}_{1} \boldsymbol{A}_{2} \in \mathcal{B}
$$

In particular it holds:
$j_{1}=i_{2} ; \quad \varepsilon\left(i_{1}, j_{1}\right)+\varepsilon\left(i_{2}, j_{2}\right)=\varepsilon\left(i_{1}, j_{2}\right) ; \quad \partial\left(\boldsymbol{A}_{1} \boldsymbol{A}_{2}\right)=\left(\overline{j_{2}-i_{1}}, \lambda_{1}+\lambda_{2}\right)$.

Proof. Suppose $\boldsymbol{A}_{1} \boldsymbol{A}_{2} \neq 0$ and look at $\varepsilon\left(i_{1}, j_{1}\right):=\varepsilon_{1}$ and $\varepsilon\left(i_{2}, j_{2}\right):=$ ε_{2}. If $\varepsilon_{1}=\varepsilon_{2}=1$, we know that i_{1} and $j_{1}=i_{2}$ are by opposite side with respect to k and this forces that j_{2} and i_{1} are by the same side with respect to k, so $\varepsilon\left(i_{1}, j_{2}\right)=0=\varepsilon_{1}+\varepsilon_{2}$. Apply the same argument for the other cases to get $\varepsilon_{1}+\varepsilon_{2}=\varepsilon\left(i_{1}, j_{2}\right)$. Then, say V the infinite-dimensional vector space which generates the Grassmann algebra E, and say

$$
a_{1}=v_{l_{1}} \ldots v_{l_{r}} \quad \text { and } \quad a_{2}=v_{m_{1}} \ldots v_{m_{t}}
$$

where $v_{l_{1}}, \ldots, v_{l_{r}}, v_{m_{1}}, \ldots, v_{m_{t}}$ are pairwise-distinct vectors in an ordered basis for V since $\boldsymbol{A}_{1} \boldsymbol{A}_{2} \neq 0$, with $v_{l_{1}}<v_{l_{2}}<\ldots<v_{l_{h}}$ and $v_{m_{1}}<v_{m_{2}}<\ldots<$ $<v_{m_{t}}$. Then we may rearrange the entries in the word $a_{1} a_{2}$ and obtain an element of $\delta_{\varepsilon_{1}+\varepsilon_{2}}$ which is equal to $a_{1} a_{2}$ up to its sign. The same arguments apply to the b 's, and using the first part of this Lemma we get the result.

Definition 2.3. Let m be a monomial in $V_{r}^{Z_{n} \times \mathbb{Z}_{2}}$, and let $S:\left(\boldsymbol{A}_{1}, \boldsymbol{A}_{2}, \ldots, \boldsymbol{A}_{r}\right)$ be the substitution $x_{i} \rightarrow \boldsymbol{A}_{i}(i=1, \ldots, r)$. We say that S is a standard substitution if
i) $\partial\left(x_{i}\right)=\partial\left(\boldsymbol{A}_{i}\right)$ for each x_{i} occurring in m;
ii) $\boldsymbol{A}_{i} \in \mathcal{B}$ for each i.

Since char $\mathbb{K}=0$, the graded polynomial identities of $T_{Z_{n} \times Z_{2}}\left(M_{k, l}(E) \otimes E\right)$ are determined by the multilinear ones, i.e. by the spaces

$$
V_{r}^{\mathrm{Z}_{n} \times \mathrm{Z}_{2}} \cap T_{\mathbb{Z}_{n} \times \mathrm{Z}_{2}}\left(M_{k, l}(E) \otimes E\right) \text { for all } r \in \mathbb{N}
$$

Actually, it suffices to prove that a multilinear polynomial is zero under all standard substitutions in order to prove that it is a graded polynomial identity. In the next considerations, the following Lemma is useful. Its proof can be found in ([V], Lemma 1), and we shall omit it here.

Lemma 2.4. Let $\boldsymbol{e}_{i_{1} j_{1}}, \boldsymbol{e}_{i j}, \boldsymbol{e}_{i_{2} j_{2}} \in M_{n}(\mathbb{K})$ be elementary matrices with \mathbb{Z}_{n}-degrees

$$
\partial_{\mathbb{Z}_{n}}\left(\boldsymbol{e}_{i_{1} j_{1}}\right)=\partial_{\mathbb{Z}_{n}}\left(\boldsymbol{e}_{i_{2} j_{2}}\right)=-\partial_{\mathbb{Z}_{n}}\left(\boldsymbol{e}_{i j}\right) .
$$

Then

$$
\boldsymbol{e}_{i_{1} j_{1}} \boldsymbol{e}_{i j} \boldsymbol{e}_{i_{2} j_{2}} \neq 0 \quad \text { if } \text { and only if } i_{1}=j=i_{2} \text { and } j_{1}=i=j_{2} .
$$

If this is the case, it holds: $\boldsymbol{e}_{i_{1} j_{1}} \boldsymbol{e}_{i j} \boldsymbol{e}_{i_{2} j_{2}}=\boldsymbol{e}_{i_{2} j_{2}} \boldsymbol{e}_{i j} \boldsymbol{e}_{i_{1} j_{1}}$.
Definition 2.5. Let J be the following set of multilinear polynomials:

$$
\begin{aligned}
& {\left[x_{1}^{(0,0)}, x_{2}^{(0,0)}\right] \quad\left[x_{1}^{(0,1)}, x_{2}^{(0,0)}\right] \quad x_{1}^{(0,1)} \circ x_{2}^{(0,1)}} \\
& x_{1}^{(t, 0)} x^{(-t, 0)} x_{2}^{(t, 0)}-x_{2}^{(t, 0)} x^{(-t, 0)} x_{1}^{(t, 0)} x_{1}^{(t, 1)} x^{(-t, 0)} x_{2}^{(t, 0)}-x_{2}^{(t, 0)} x^{(-t, 0)} x_{1}^{(t, 1)} \\
& x_{1}^{(t, 0)} x^{(-t, 1)} x_{2}^{(t, 0)}-x_{2}^{(t, 0)} x^{(-t, 1)} x_{1}^{(t, 0)} x_{1}^{(t, 1)} x^{(-t, 0)} x_{2}^{(t, 1)}+x_{2}^{(t, 1)} x^{(-t, 0)} x_{1}^{(t, 1)} \\
& x_{1}^{(t, 1)} x^{(-t, 1)} x_{2}^{(t, 0)}+x_{2}^{(t, 0)} x^{(-t, 1)} x_{1}^{(t, 1)} x_{1}^{(t, 1)} x^{(-t, 1)} x_{2}^{(t, 1)}+x_{2}^{(t, 1)} x^{(-t, 1)} x_{1}^{(t, 1)}
\end{aligned}
$$

where t varies in \mathbb{Z}_{n} and $a \circ b$ denotes the Jordan product $a \circ b=a b+b a$. We shall denote by I the $T_{\mathrm{Z}_{n} \times \mathrm{Z}_{2}}$-ideal generated by J.

Proposition 2.6.

$$
I \subseteq T_{\mathbb{Z}_{n} \times \mathbb{Z}_{2}}\left(M_{k, l}(E) \otimes E\right)
$$

Proof. It is enough to test polynomials listed in Definition 2 under standard substitutions, and verify they are zero for each such substitutions. The generic standard substitution for 3-degree polynomials will be

$$
\begin{aligned}
\boldsymbol{A}_{1} & =a_{1}^{\varepsilon\left(i_{1}, j_{1}\right)} \boldsymbol{e}_{i_{1} j_{1}} \otimes b_{1}^{\lambda_{1}+\varepsilon\left(i_{1}, j_{1}\right)} \\
\boldsymbol{A}_{2} & =a_{2}^{\varepsilon\left(i_{2}, j_{2}\right)} \boldsymbol{e}_{i_{2} j_{2}} \otimes b_{2}^{\lambda_{2}+\varepsilon\left(i_{2}, j_{2}\right)} \\
\boldsymbol{A} & =a^{\varepsilon(i, j)} \boldsymbol{e}_{i j} \otimes b^{\lambda+\varepsilon(i, j)}
\end{aligned}
$$

for $\overline{j_{1}-i_{1}}=\overline{j_{2}-i_{2}}=\overline{i-j}=t \in \mathbb{Z}_{n}$. By Lemma 2.4, the products $\boldsymbol{e}_{i_{1} j_{1}} \boldsymbol{e}_{i j} \boldsymbol{e}_{i_{2} j_{2}}$ and $\boldsymbol{e}_{i_{2} j_{2}} \boldsymbol{e}_{i j} \boldsymbol{e}_{i_{1} j_{1}}$ are both zero unless

$$
i_{1}=i_{2}=j \quad \text { and } \quad j_{1}=j_{2}=i
$$

and in this case they are equal (to $\boldsymbol{e}_{j i}$) and $\varepsilon\left(i_{1}, j_{1}\right)=\varepsilon\left(i_{2}, j_{2}\right)=\varepsilon(i, j)$ $=: \varepsilon$. So the substitutions we have to test are of kind

$$
\boldsymbol{A}_{1}=a_{1}^{\varepsilon} \boldsymbol{e}_{j i} \otimes b_{1}^{\lambda_{1}+\varepsilon} \quad \boldsymbol{A}_{2}=a_{2}^{\varepsilon} \boldsymbol{e}_{j i} \otimes b_{2}^{\lambda_{2}+\varepsilon} \quad \boldsymbol{A}=a^{\varepsilon} \boldsymbol{e}_{i j} \otimes b^{\lambda+\varepsilon} \quad(\text { for } \overline{i-j}=t)
$$

Here we verify just one of them, the other ones can be treated in the same way. For instance, consider $x_{1}^{(t, 1)} x^{(-t, 1)} x_{2}^{(t, 0)}+x_{2}^{(t, 0)} x^{(-t, 1)} x_{1}^{(t, 1)}$: $\lambda_{1}=\lambda=1, \lambda_{2}=0$. If $\varepsilon=0$, then

$$
\boldsymbol{A}_{2} \boldsymbol{A} \boldsymbol{A}_{1}=a_{2}^{0} a^{0} a_{1}^{0} \boldsymbol{e}_{j i} \otimes b_{2}^{0} b^{1} b_{1}^{1}=-\boldsymbol{A}_{1} \boldsymbol{A} \boldsymbol{A}_{2}
$$

and if $\varepsilon=1$, then

$$
\boldsymbol{A}_{2} \boldsymbol{A} \boldsymbol{A}_{1}=a_{2}^{1} a^{1} a_{1}^{1} \boldsymbol{e}_{j i} \otimes b_{2}^{1} b^{0} b_{1}^{0}=-\boldsymbol{A}_{1} \boldsymbol{A} \boldsymbol{A}_{2} .
$$

The same arguments and the use of Lemma 2.2 yield that the polynomials of second degree in the list are graded identities for $M_{k, l}(E) \otimes E$ as well.

In the rest of the section, let $m:=x_{1} \ldots x_{r}$ be a multilinear graded monomial of length r. If $\sigma \in S_{r}$, we denote by m_{σ} the monomial $x_{\sigma(1)} \ldots x_{\sigma(r)}$. If \mathcal{S} is any (graded) substitution, we denote by $\left.m\right|_{s}$ the value of m under the substitution S.

Remark 2.7. For each $\sigma \in S_{r}$ there exists a graded standard substitution S such that

$$
\left.m_{\sigma}\right|_{s} \neq 0 .
$$

This is easy to prove, for instance using induction on the length r.
Definition 2.8. For $1 \leqslant p \leqslant q \leqslant r$, call

$$
m_{\sigma}^{[p, q]}:=x_{\sigma(p)} \ldots x_{\sigma q)} .
$$

Remark 2.9. Let S be a standard substitution, and fix from now on

$$
\mathcal{S}: x_{s} \rightarrow \boldsymbol{A}_{s}:=a_{s}^{\varepsilon\left(i_{s}, j_{s}\right)} \boldsymbol{e}_{i_{s} j_{s}} \otimes b_{s}^{\lambda_{s}+\varepsilon\left(i_{s}, j_{s}\right)} \quad(s=1, \ldots, r),
$$

where $\partial\left(x_{s}\right)=\left(\overline{j_{s}-i_{s}}, \lambda_{s}\right)=\partial\left(\boldsymbol{A}_{s}\right)$. If

$$
\left.m_{\sigma}\right|_{s}=\boldsymbol{A}_{\sigma(1)} \ldots \boldsymbol{A}_{\sigma(r)} \neq 0
$$

then there exists $\boldsymbol{A} \in \mathscr{B}, c \in\{1,-1\}$ such that $\left.m_{\sigma}\right|_{s}=c \boldsymbol{A}$. Moreover, $\left.m_{\sigma}\right|_{s} \neq 0$ if and only if $\forall p, q 1 \leqslant p \leqslant q \leqslant r$ it is $\left.m_{\sigma}^{[p, q]}\right|_{s} \neq 0$, and in this case it holds

$$
\partial\left(m_{\sigma}^{[p, q]}\right)=\left(\overline{j_{\sigma(q)}-i_{\sigma(p)}}, \lambda_{\sigma(p)}+\ldots+\lambda_{\sigma(q)}\right) .
$$

In fact it is:

$$
\begin{aligned}
\partial\left(m_{\sigma}^{[p, q]}\right) & =\partial\left(x_{\sigma(p)}\right)+\ldots+\partial\left(x_{\sigma(q)}\right)= \\
& =\left(\overline{j_{\sigma(p)}-i_{\sigma(p)}}, \lambda_{\sigma(p)}\right)+\ldots+\left(\overline{j_{\sigma(q)}-i_{\sigma(q)}}, \lambda_{\sigma(q)}\right)= \\
& =\left(\overline{j_{\sigma(q)}-i_{\sigma(p)}}, \lambda_{\sigma(p)}+\ldots+\lambda_{\sigma(q)}\right)
\end{aligned}
$$

by Lemma 2.2.

3. Technical results.

The considerations in this (and the next) section are similar to those in [V]. We start with rearranging a lemma. The symbols used are the same listed in the previous section. We recall that I denotes the $T_{\mathrm{Z}_{n} \times \mathrm{Z}_{2}}{ }^{-}$ ideal generated by the polynomials listed in Definition 2.5.

Lemma 3.1. Suppose that for a graded standard substitution S it results

$$
\left.m_{\sigma}\right|_{s}= \pm\left. m\right|_{s} \neq 0
$$

Then there exists $c \in\{1,-1\}$ such that

$$
m_{\sigma} \equiv c x_{1} m^{\prime}\left(x_{2}, \ldots, x_{r}\right) \bmod I
$$

Proof. First of all, note that $\left.m_{\sigma}\right|_{s}= \pm\left. m\right|_{S} \neq 0$ implies that $i_{1}=i_{\sigma(1)}$. Of course, we may suppose $\sigma(1) \neq 1$, so $1<\sigma^{-1}(1)$. We may write the integers in $\left[1, \sigma^{-1}(1)\right]$ in the form $\sigma^{-1}(j+1)$ for $j=0, \ldots, r-1$; then call

$$
t:=\min \left\{j \leqslant r-1 \mid 1 \leqslant \sigma^{-1}(j+1)<\sigma^{-1}(1)\right\} .
$$

By its definitions, t satisfies $1 \leqslant \sigma^{-1}(t+1)<\sigma^{-1}(1) \leqslant \sigma^{-1}(t)$; set

$$
p:=\sigma^{-1}(t+1) \quad q:=\sigma^{-1}(1) \quad u:=\sigma^{-1}(t)
$$

and consider the two possibilities: $p=1$ or $p>1$. For convenience, define

$$
\lambda_{\sigma}^{[a, b]}:=\lambda_{\sigma(a)}+\ldots+\lambda_{\sigma(b)}
$$

First, suppose $p=1$. By Lemma 2.9, it results

$$
\begin{aligned}
\partial\left(m_{\sigma}^{[1, q-1]}\right) & =\left(\overline{j_{\sigma(q-1)}-i_{\sigma(1)}}, \lambda_{\sigma}^{[1, q-1]}\right) \\
\partial\left(m_{\sigma}^{[q, u]}\right) & =\left(j_{\sigma(u)}-i_{\sigma(q)}, \lambda_{\sigma}^{[q, u]}\right)
\end{aligned}
$$

and both the words are not zero under the substitution S; by Lemma 2.9 this yields

$$
\begin{aligned}
j_{\sigma(q-1)}-i_{\sigma(1)} & =i_{\sigma(q)}-i_{1}=i_{1}-i_{1}=0 \\
j_{\sigma(u)}-i_{\sigma(q)} & =j_{t}-i_{1}=i_{t+1}-i_{1}=i_{\sigma(p)}-i_{1}=i_{\sigma(1)}-i_{1}=i_{1}-i_{1}=0
\end{aligned}
$$

With respect to the parities of $\lambda_{\sigma}^{[1, q-1]}$ and $\lambda_{\sigma}^{[q, u]}$ there is $c \in\{1,-1\}$ such that

$$
x_{1}^{\left(0, \lambda_{\sigma}^{[1, q-1]}\right)} x_{2}^{\left(0, \lambda_{\sigma}^{[q, u]}\right)} \equiv c x_{2}^{\left(0, \lambda_{\sigma}^{[q, u]}\right)} x_{1}^{\left(0, \lambda_{\sigma}^{[1, q-1]}\right)} \bmod I
$$

Hence we get

$$
m_{\sigma} \equiv c m_{\sigma}^{[q, u]} m_{\sigma}^{[1, q-1]} m_{\sigma}^{[u+1, r]} \bmod I
$$

and $m_{\sigma}^{[q, u]}$ starts with x_{1}. Now consider the case $p>0$; with consideration similar to the previous case, it is

$$
\begin{aligned}
\partial\left(m_{\sigma}^{[1, p-1]}\right) & =\left(\overline{j_{\sigma(p-1)}-i_{\sigma(1)}}, \lambda_{\sigma(1)}+\ldots+\lambda_{\sigma(p-1)}\right) \\
\partial\left(m_{\sigma}^{[p, q-1]}\right) & =\left(\overline{j_{\sigma(q-1)}-i_{\sigma(p)}}, \lambda_{\sigma(p)}+\ldots+\lambda_{\sigma(q-1)}\right) \\
\partial\left(m_{\sigma}^{[q, u]}\right) & =\left(\overline{j_{\sigma(u)}-i_{\sigma(q)}}, \lambda_{\sigma(q)}+\ldots+\lambda_{\sigma(u)}\right) .
\end{aligned}
$$

Call

$$
d:= \begin{cases}i_{t+1}-i_{1} & \text { if } i_{t+1}-i_{1} \geqslant 1 \\ i_{t+1}-i_{i}+n & \text { if } i_{t+1}-i_{1}<1\end{cases}
$$

Then it holds that:

$$
\begin{aligned}
j_{\sigma(p-1)}-i_{\sigma(1)} & =i_{\sigma(p)}-i_{1}=i_{t+1}-i_{1} \equiv d \bmod n \\
j_{\sigma(q-1)}-i_{\sigma(p)} & =i_{\sigma(q)}-i_{\sigma(p)}=i_{1}-i_{t+1} \equiv-d \bmod n \\
j_{\sigma(u)}-i_{\sigma(q)} & =j_{t}-i_{1}=i_{t+1}-i_{1} \equiv d \bmod n
\end{aligned}
$$

As before, there is $c \in\{1,-1\}$ such that
modulo I; then

$$
m_{\sigma} \equiv c m_{\sigma}^{[q, u]} m_{\sigma}^{[p, q-1]} m_{\sigma}^{[1, p-1]} m_{\sigma}^{[u+1, r]} \bmod I
$$

and this monomial starts with x_{1}.
Lemma 3.2. With the same notation as in the previous Lemma, if for a standard substitution S it holds

$$
\left.m_{\sigma}\right|_{S}=\left.c m\right|_{S} \neq 0,
$$

for a certain $c \in\{1,-1\}$, then

$$
m_{\sigma} \equiv c m \bmod I
$$

Proof. Let s be the greatest positive integer such that

$$
m_{\sigma} \equiv c_{0} x_{1} \ldots x_{s} m^{\prime}\left(x_{s+1}, \ldots, x_{r}\right) \bmod I
$$

for a certain $c_{0} \in\{1,-1\}$. By Lemma 3.1, the number s does exist and it is at least 1 . We want to show that $s=r$. Suppose on the contrary that $1 \leqslant s<r$, so that $s \leqslant r-2$. It holds

$$
\left.x_{1} \ldots x_{s} m^{\prime}\left(x_{s+1}, \ldots, x_{r}\right)\right|_{s}= \pm\left. m_{\sigma}\right|_{s}= \pm\left. m\right|_{s} \neq 0
$$

Now compare $\left.m^{\prime}\right|_{s}$ and $\left.x_{s+1} \ldots x_{r}\right|_{s}$. If we consider only the elementary matrices which occur in S, it has to be true that

$$
\boldsymbol{e}_{i_{1} j_{1}} \ldots \boldsymbol{e}_{i_{s} j_{s}} m^{\prime}\left(\boldsymbol{e}_{i_{s+1} j_{s}+1}, \ldots, \boldsymbol{e}_{i_{r} j_{r}}\right)=\boldsymbol{e}_{i_{1} j_{1}} \ldots \boldsymbol{e}_{i_{s} j_{s}}\left(\boldsymbol{e}_{i_{s+1} j_{s}+1} \ldots \boldsymbol{e}_{i_{r} j_{r}}\right) \neq 0
$$

so

$$
\boldsymbol{e}_{i_{1} j_{s}} m^{\prime}\left(\boldsymbol{e}_{i_{s+1} j_{s+1}}, \ldots, \boldsymbol{e}_{i_{r} j_{r}}\right)=\boldsymbol{e}_{i_{1} j_{s}} \boldsymbol{e}_{i_{s+1} j_{r}} \neq 0
$$

Then $m^{\prime}\left(\boldsymbol{e}_{i_{s+1} j_{s+1}}, \ldots, \boldsymbol{e}_{i_{r} j_{r}}\right)$ has to be an elementary matrix, say $\boldsymbol{e}_{p q}$, and this leads to $p=j_{s}$ and $q=j_{r}$, so we get

$$
m^{\prime}\left(\boldsymbol{e}_{i_{s+1} j_{s+1}}, \ldots, \boldsymbol{e}_{i_{r} j_{r}}\right)=\boldsymbol{e}_{i_{s+1} j_{s+1}} \ldots \boldsymbol{e}_{i_{r} j_{r}} \neq 0
$$

Therefore the restriction S^{\prime} of S to $t=s+1, \ldots, r$ is such that

$$
\left.m^{\prime}\left(x_{s+1}, \ldots, x_{r}\right)\right|_{s^{\prime}}= \pm\left.\left(x_{s+1} \ldots x_{r}\right)\right|_{s^{\prime}} \neq 0
$$

and by Lemma 3.1 this yields that there exists $c^{\prime} \in\{1,-1\}$ such that

$$
m^{\prime} \equiv c^{\prime} x_{s+1} m^{\prime \prime}\left(x_{s+2}, \ldots, x_{r}\right) \bmod I
$$

Then

$$
m_{\sigma} \equiv c_{0} c^{\prime} x_{1} \ldots x_{s} x_{s+1} m^{\prime \prime}\left(x_{s+2}, \ldots, x_{r}\right) \bmod I
$$

which contradicts the definition of s. Now it follows easily that $c_{0}=c$.

Corollary 3.3. Let σ, τ be in S_{r}, and suppose that for a standard substitution S it results

$$
\left.m_{\sigma}\right|_{S}=\left.c m_{\tau}\right|_{S} \neq 0
$$

for a certain $c \in\{1,-1\}$. Then

$$
m_{\sigma} \equiv c m_{\tau} \bmod I
$$

4. The main results.

Theorem 4.1. Let $n=k+l$. Then the set J described in Definition 2.5 generates $T_{\mathbb{Z}_{n} \times \mathbb{Z}_{2}}\left(M_{k, l}(E) \otimes E\right)$, that is

$$
I=T_{\mathbb{Z}_{n} \times \mathrm{Z}_{2}}\left(M_{k, l}(E) \otimes E\right)
$$

Proof. By Proposition 2.6 we have to prove only that every multilinear graded identity for $M_{k, l}(E) \otimes E$ is in I. Suppose on the contrary that there exists a polynomial

$$
f=f\left(x_{1}, \ldots, x_{r}\right) \in V_{r}^{Z_{n} \times \mathbb{Z}_{2}} \cap T_{\mathbb{Z}_{n} \times \mathbb{Z}_{2}}\left(M_{k, l}(E) \otimes E\right)
$$

which is not in I. Then we may write

$$
f \equiv \sum_{s=1}^{t} d_{\sigma_{s}} m_{\sigma_{s}} \bmod I
$$

for some monomials $m_{\sigma_{s}} \in V_{r}^{Z_{n} \times Z_{2}}, \sigma_{s} \in S_{r}$, non-zero scalars $0 \neq d_{s} \in \mathbb{K}$ and $s=1, \ldots, t$. Take t minimal with this property (of course, t should be at least 2 by Remark 2.7): we want to prove that $t=0$.

By Remark 2.7 there exists a graded standard substitution S such that $\left.m_{\sigma_{1}}\right|_{s} \neq 0$. Since f is an identity for $M_{k, l}(E) \otimes E$ it is $\left.f\right|_{s}=0$. Hence

$$
\left.d_{\sigma_{1}} m_{\sigma_{1}}\right|_{s}=-\left.\sum_{s=2}^{t} d_{\sigma_{s}} m_{\sigma_{s}}\right|_{s}
$$

As in Remark 2.9, there exists $\boldsymbol{A} \in \mathfrak{B}$ such that

$$
0 \neq\left. m_{\sigma_{1}}\right|_{s}=c_{1} \boldsymbol{A} \text { for some } c_{1} \in\{1,-1\} .
$$

Hence there must be $p \in\{2, \ldots, t\}$ such that

$$
0 \neq\left. m_{\sigma_{p}}\right|_{s}=c_{2} \boldsymbol{A} \text { for some } c_{2} \in\{1,-1\} .
$$

Then

$$
0 \neq\left. m_{\sigma_{1}}\right|_{s}=\left.c_{1} c_{2} m_{\sigma_{p}}\right|_{s}
$$

and applying Corollary 3.3 we get

$$
m_{\sigma_{p}} \equiv c m_{\sigma_{1}} \bmod I \text { for } c=c_{1} c_{2} .
$$

In the end, it is

$$
f \equiv\left(d_{\sigma_{1}}+c d_{\sigma_{p}}\right) m_{\sigma_{1}}+\sum_{s=2, s \neq p}^{t} d_{\sigma_{s}} m_{\sigma_{s}} \bmod I
$$

contradicting the minimality of t.
Now we recall the main result in [DVN]:
Theorem 4.2. $\quad T_{Z_{n} \times Z_{2}}\left(M_{n}(E)\right)$ is generated by the polynomials in \mathfrak{J}.
As a corollary of Theorems 4.1 and 4.2 we get
Corollary 4.3. The algebras $M_{k, l}(E) \otimes E$ and $M_{n}(E)$ are PIequivalent as $\mathbb{Z}_{n} \times \mathbb{Z}_{2_{2}}$-graded algebras.

Then it follows
Corollary 4.4. For $n=k+l$, the algebras $M_{k, l}(E) \otimes E$ and $M_{n}(E)$ are PI-equivalent.

Proof What we have to show is that the multilinear parts of the ordinary T-ideals $T\left(M_{k, l}(E) \otimes E\right)$ and $T\left(M_{n}(E)\right)$ are equal. Note that each of them is a subset of the corresponding $T_{\mathrm{Z}_{n} \times \mathrm{Z}_{2}}$-ideal.

So take $f \in V_{r} \cap T\left(M_{n}(E)\right)$. Then it suffices to prove that $\left.f\right|_{s}=0$ for any ordinary standard substitution, i.e. for every substitution

$$
\mathcal{S}: x_{i} \rightarrow \boldsymbol{A}_{i}, \quad(i=1, \ldots, r)
$$

such that $\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{r} \in \mathcal{B}$.

Let S be a ordinary standard substitution with elements in \mathcal{B}, and define

$$
\tilde{f}:=f\left(x_{1}^{\partial\left(\boldsymbol{A}_{1}\right)}, \ldots, x_{r}^{\partial\left(\boldsymbol{A}_{r}\right)}\right) \in V_{r}^{Z_{n} \times Z_{2}} .
$$

\tilde{f} is a multilinear graded element in $T_{\mathbb{Z}_{n} \times \mathbb{Z}_{2}}\left(M_{n}(E)\right)=$ $T_{\mathrm{Z}_{n} \times \mathrm{Z}_{2}}\left(M_{k, l}(E) \otimes E\right)$, and the substitution S is admissible for this polynomial. Hence $\left.f\right|_{s}=\left.\tilde{f}\right|_{s}=0$ and this means that $f \in T\left(M_{k, l}(E) \otimes E\right)$. Reversing the roles of $T\left(M_{n}(E)\right)$ and $T\left(M_{k, l}(E) \otimes E\right)$ leads to the reverse inclusion.

REFERENCES

[B] A. Berele, Supertraces and matrices over Grassmann algebras, Advances in Math., 108 (1) (1994), pp. 77-90.
[DVN] O. M. Di Vincenzo - V. Nardozza, Graded polynomial identities for tensor products by the Grassmann Algebra, Comm. Algebra (2002) (in press).
[K] A. R. Kemer, Varieties and Z_{2}-graded algebras, Math. USSR Izv., 25 (1985), pp. 359-374.
[K1] A. R. Kemer, Ideals of identities of associative algebras, AMS Trans. of Math. Monographs, 87 (1991).
[R] A. Regev, Tensor product of matrix algebras over the Grassmann algebra, J. Algebra, 133 (1990), pp. 351-369.
[V] S. Y. Vasilovsky, Z_{n}-graded polynomial identities of the full matrix algebra of order n, Proc. Amer. Math. Soc., 127 (12) (1999), pp. 35173524.

Manoscritto pervenuto in redazione il 14 dicembre 2001.

