REND. SEM. MAT. UNIV. PADOVA, Vol. 108 (2002)

$\mathbb{Z}_{k+l} \times \mathbb{Z}_2$ -Graded Polynomial Identities for $M_{k,l}(E) \otimes E$.

ONOFRIO MARIO DI VINCENZO (*) - VINCENZO NARDOZZA (**)

ABSTRACT - Let \mathbb{K} be a field of characteristic zero, and E be the Grassmann algebra over an infinite-dimensional \mathbb{K} -vector space. We endow $M_{k,l}(E) \otimes E$ with a $\mathbb{Z}_{k+l} \times \mathbb{Z}_2$ -grading, and determine a generating set for the ideal of its graded polynomial identities. As a consequence, we prove that $M_{k,l}(E) \otimes E$ and $M_{k+l}(E)$ are PI-equivalent with respect to this grading. In particular, this leads to their ordinary PI-equivalence, a classical result obtained by Kemer.

1. Introduction.

Let \mathbb{K} be a field of characteristic zero, and E be the Grassmann algebra over an infinite-dimensional \mathbb{K} -vector space. For fixed integers k, l $(k \ge l)$ we consider the \mathbb{K} -algebra $M_{k,l}(E)$, whose elements are the following block matrices with entries in the even and odd part of E, resp. E_0 and E_1 :

$$\begin{pmatrix} \frac{E_0 | E_1}{E_1 | E_0} \end{pmatrix} \stackrel{\uparrow}{\downarrow} \stackrel{k}{l} \stackrel{l}{\downarrow} l$$

As follows by the results of Kemer [K], these algebras generate nontrivial prime varieties, and their study is essential in the theory of PI-algebras. Since $M_{k,l}(E)$ is a subalgebra of $M_{k+l}(E)$, the following inclusion

^(*) Indirizzo dell'A.: Dipartimento Interuniversitario di Matematica, via Orabona 4, 70125 Bari, Italia; e-mail: divincenzo@dm.uniba.it

^(**) Indirizzo dell'A.: Dipartimento di Matematica, c.da Macchia Romana, 85100 Potenza, Italia; e-mail: vickkk@tiscalinet.it

Partially supported by MURST COFIN '99.

for the ideals of polynomial identities follows: $T(M_{k,l}(E)) \supseteq T(M_{k+l}(E))$. It is somehow surprising that to get a PI-equivalence with $M_{k+l}(E)$ it suffices to consider the tensor product $M_{k,l}(E) \otimes E$, regardless to k, l, i.e. the *T*-ideals of the polynomial identities of these algebras are equal. Originally, this fact was proved by Kemer in [K1] as a consequence of his structure theory for varieties of algebras. Other proofs are in the papers of Regev [R] and Berele [B]. In this paper, we shall study $M_{k,l}(E) \otimes E$ as a graded algebra. Recall briefly that, for a given group *G*, a K-algebra *R* is *G*-graded if, for each $g \in G$, there is a subspace R^g of *R* (the *g*-homogeneous component of *R*) such that

$$R = \sum_{g \in G} R^g$$
 and $R^g R^h \subseteq R^{g+h}$ for all $g, h \in G$.

We shall write $\partial_G(r) = g$ (or simply $\partial(r) = g$ if G is clear from the context) to denote the *G*-homogeneous degree of the homogeneous element $r \in \mathbb{R}^g$.

The study of graded algebras is almost a standard approach in many problems of PI-theory, and many algebras have natural grading which enrich them with nice structure properties. The algebras $M_n(\mathbb{K})$, $M_{k,l}(E)$, $M_n(E)$, for instance, are \mathbb{Z}_2 -graded algebras in a natural way. Before getting into details in the next section, we briefly recall some terminology:

Let G be a group; for each $g \in G$ let X^g be a countable set of non-commuting variables, and let X^G be their disjoint union. Then the algebra $\mathbb{K}\langle X^G \rangle$ is a free object in the class of G-graded algebras. A polynomial $f = f(x_1^{g_1}, \ldots, x_r^{g_r})$ with variables $x_i^{g_i} \in X^{g_i}$ is a graded polynomial identity for R if for all substitutions $x_i^{g_i} \rightarrow a_i \in R^{g_i}$ $(i = 1, \ldots, r)$ it results $f(a_1, \ldots, a_r) = 0$. The set of all graded polynomial identities for R is an ideal of $\mathbb{K}\langle X^G \rangle$ invariant under all endomorphisms of $\mathbb{K}\langle X^G \rangle$ preserving the homogeneous components; we call it the T_G -ideal of R, and denote it by $T_G(R)$. Now call:

$$V_r^G := \operatorname{span}_{\mathbb{K}} \langle x_{\sigma(1)}^{g_1} \dots x_{\sigma(r)}^{g_r} \, | \, \sigma \in S_r, \, g_1, \, \dots, \, g_r \in G \rangle.$$

We call V_r^G the space of graded multilinear polynomials, and it is easily seen that the usual left action of S_r endows V_r^G with the structure of left S_r -module as in the ordinary case. Moreover, since the field \mathbb{K} is of characteristic zero, standard arguments yield that $T_G(R)$ is generated by its multilinear parts, i.e. by the S_r -submodules $V_r^G \cap T_G(R)$ for all $r \in \mathbb{N}$. There are many more examples of these and other concepts related to graded algebras; for shortness, we introduce those who are related to this paper. The first is the natural \mathbb{Z}_n -grading for the algebra $M_n(\mathbb{K})$:

$$(M_n(\mathbb{K}))^t := \operatorname{span}_{\mathbb{K}} \langle \boldsymbol{e}_{ij} \mid \overline{j-i} = t \in \mathbb{Z}_n \rangle.$$

Vasilovsky in [V] proved that its $T_{\mathbb{Z}_n}$ -ideal is generated by the following multilinear polynomials:

$$[x_1^0, x_2^0] \quad x_1^t x^{-t} x_2^t - x_2^t x^{-t} x_1^t \quad (t \in \mathbb{Z}_n).$$

The second instance is about the algebra $M_n(E) \cong M_n(\mathbb{K}) \otimes E$, which has the natural $\mathbb{Z}_n \times \mathbb{Z}_2$ -grading

$$(M_n(E))^{(t,\lambda)} := M_n(\mathbb{K})^t \otimes E_\lambda$$

where the first component is the *t*-homogeneous component of $M_n(\mathbb{K})$ in the previous grading for $M_n(\mathbb{K})$. The authors in [DVN] found a system of generators for the $T_{\mathbb{Z}_n \times \mathbb{Z}_2}$ -ideal of its graded polynomial identities.

In this paper, for n = k + l, we define a $\mathbb{Z}_n \times \mathbb{Z}_2$ -grading for $M_{k,l}(E) \otimes E$ and describe a set of generators for $T_{\mathbb{Z}_n \times \mathbb{Z}_2}(M_{k,l}(E) \otimes E)$. In particular it turns out that this set generates $T_{\mathbb{Z}_n \times \mathbb{Z}_2}(M_n(E))$ as well. Hence $M_{k,l}(E) \otimes E$ and $M_n(E)$ are equivalent as graded PI-algebras. General arguments lead to their ordinary PI-equivalence, and we obtain a new proof for the mentioned result of Kemer, using only elementary tools.

2. Preliminaries.

Consider the K-algebra $M_{k,l}(E)$, and let n := k + l in the following. We may start from the natural \mathbb{Z}_n -grading on $M_n(\mathbb{K})$ in order to endow $M_{k,l}(E)$ with the following $\mathbb{Z}_n \times \mathbb{Z}_2$ -grading:

$$(M_{k,l}(E))^{(t,\lambda)} := \operatorname{span}_{\mathbb{K}} \langle E_{\lambda} \boldsymbol{e}_{ij} | \overline{j-i} = t \in \mathbb{Z}_n \rangle \cap M_{k,l}(E).$$

Of course some of the graded components may be trivial (for instance, $(M_{k,l}(E))^{(0,1)} = 0$). It is easy to verify, however, that this is actually a grading for $M_{k,l}(E)$. Next, consider $M_{k,l}(E) \otimes E$ and define

$$(M_{k,l}(E)\otimes E)^{(t,\lambda)}:=(M_{k,l}(E))^{(t,\lambda)}\otimes E_0\oplus (M_{k,l}(E))^{(t,\lambda+1)}\otimes E_1.$$

Then $M_{k,l}(E) \otimes E$ is $\mathbb{Z}_n \times \mathbb{Z}_2$ -graded, and we shall prove that it is PI-

equivalent to the algebra $M_n(E)$ with the $\mathbb{Z}_n \times \mathbb{Z}_2$ -grading

$$(M_n(E))^{(t,\lambda)} = \operatorname{span}_{\mathbb{K}} \langle \boldsymbol{e}_{ij} \otimes E_{\lambda} \mid \overline{j-i} = t \in \mathbb{Z}_n \rangle.$$

In order to have a clearer view of the problem, the following considerations are useful:

DEFINITION 2.1. Let $\varepsilon: \{1, ..., n\} \times \{1, ..., n\} \rightarrow \mathbb{Z}_2$ be the map defined via

$$\varepsilon(i,j) := \begin{cases} 0 & \text{if } i, j \leq k \text{ or } i, j > k \\ 1 & \text{otherwise.} \end{cases}$$

Moreover, let \mathcal{E}_0 be the natural K-basis for E_0 , and \mathcal{E}_1 be the corresponding basis for E_1 .

It is immediate to see that

$$\mathcal{A} := \{ a \boldsymbol{e}_{ij} \mid i, j \leq n, \ a \in \mathcal{E}_{\varepsilon(i,j)} \}$$

is a K-basis for $M_{k,l}(E)$, and

$$\mathcal{B} := \{ a \boldsymbol{e}_{ij} \otimes b \mid i, j \leq n, a \in \mathcal{E}_{\varepsilon(i, j)}, b \in \mathcal{E}_{\lambda} \}$$

is a K-basis for $M_{k,l}(E) \otimes E$. Moreover, writing a^{λ} as a shorthand for $a \in \mathcal{E}_{\lambda}$, it holds:

$$(M_{k,l}(E))^{(t,\lambda)} = \operatorname{span}_{\mathbb{K}} \langle a^{\varepsilon(i,j)} \boldsymbol{e}_{ij} | \overline{j-i} = t \in \mathbb{Z}_n, \quad \varepsilon(i,j) = \lambda \rangle$$

and

$$(M_{k,l}(E)\otimes E)^{(t,\lambda)} = \operatorname{span}_{\mathbb{K}}\langle a^{\varepsilon(i,j)}\boldsymbol{e}_{ij}\otimes b^{\lambda+\varepsilon(i,j)} | \overline{j-i} = t \in \mathbb{Z}_n \rangle.$$

By use of these definitions, the fact that $M_{k,l}(E) \otimes E$ is a $\mathbb{Z}_n \times \mathbb{Z}_2$ graded algebra follows easily. By the way, we find useful to remark a couple of lemmas which will be of help in the following of this part.

LEMMA 2.2. Let

$$\boldsymbol{A}_{s} := a_{s}^{\varepsilon(i_{s}, j_{s})} \boldsymbol{e}_{i_{s}j_{s}} \otimes b_{s}^{\lambda_{s} + \varepsilon(i_{s}, j_{s})} \in \mathcal{B} \text{ for } s = 1, 2.$$

If A_1A_2 is not zero, then there exists $c \in \{1, -1\}$ such that

$$cA_1A_2 \in \mathcal{B}$$
.

 $\mathbb{Z}_{k+l} \times \mathbb{Z}_2$ -graded polynomial identities for $M_{k,l}(E) \otimes E$

In particular it holds:

$$j_1 = i_2; \qquad \varepsilon(i_1, j_1) + \varepsilon(i_2, j_2) = \varepsilon(i_1, j_2); \qquad \partial(A_1A_2) = (\overline{j_2 - i_1}, \lambda_1 + \lambda_2).$$

PROOF. Suppose $A_1A_2 \neq 0$ and look at $\varepsilon(i_1, j_1) := \varepsilon_1$ and $\varepsilon(i_2, j_2) := \varepsilon_2$. If $\varepsilon_1 = \varepsilon_2 = 1$, we know that i_1 and $j_1 = i_2$ are by opposite side with respect to k and this forces that j_2 and i_1 are by the same side with respect to k, so $\varepsilon(i_1, j_2) = 0 = \varepsilon_1 + \varepsilon_2$. Apply the same argument for the other cases to get $\varepsilon_1 + \varepsilon_2 = \varepsilon(i_1, j_2)$. Then, say V the infinite-dimensional vector space which generates the Grassmann algebra E, and say

$$a_1 = v_{l_1} \dots v_{l_r}$$
 and $a_2 = v_{m_1} \dots v_{m_r}$

where $v_{l_1}, \ldots, v_{l_r}, v_{m_1}, \ldots, v_{m_t}$ are pairwise-distinct vectors in an ordered basis for V since $A_1 A_2 \neq 0$, with $v_{l_1} < v_{l_2} < \ldots < v_{l_h}$ and $v_{m_1} < v_{m_2} < \ldots < v_{m_t}$. Then we may rearrange the entries in the word $a_1 a_2$ and obtain an element of $\mathcal{E}_{\varepsilon_1 + \varepsilon_2}$ which is equal to $a_1 a_2$ up to its sign. The same arguments apply to the *b*'s, and using the first part of this Lemma we get the result.

DEFINITION 2.3. Let *m* be a monomial in $V_r^{\mathbb{Z}_n \times \mathbb{Z}_2}$, and let $S:(A_1, A_2, \ldots, A_r)$ be the substitution $x_i \rightarrow A_i$ $(i = 1, \ldots, r)$. We say that S is a standard substitution if

i) $\partial(x_i) = \partial(A_i)$ for each x_i occurring in m;

ii) $A_i \in \mathcal{B}$ for each *i*.

Since char $\mathbb{K} = 0$, the graded polynomial identities of $T_{\mathbb{Z}_n \times \mathbb{Z}_2}(M_{k,l}(E) \otimes E)$ are determined by the multilinear ones, i.e. by the spaces

$$V_r^{\mathbb{Z}_n \times \mathbb{Z}_2} \cap T_{\mathbb{Z}_n \times \mathbb{Z}_2}(M_{k,l}(E) \otimes E) \text{ for all } r \in \mathbb{N}.$$

Actually, it suffices to prove that a multilinear polynomial is zero under all standard substitutions in order to prove that it is a graded polynomial identity. In the next considerations, the following Lemma is useful. Its proof can be found in ([V], Lemma 1), and we shall omit it here.

LEMMA 2.4. Let $e_{i_1j_1}$, e_{i_j} , $e_{i_2j_2} \in M_n(\mathbb{K})$ be elementary matrices with \mathbb{Z}_n -degrees

$$\partial_{\mathbb{Z}_n}(\boldsymbol{e}_{i_1j_1}) = \partial_{\mathbb{Z}_n}(\boldsymbol{e}_{i_2j_2}) = -\partial_{\mathbb{Z}_n}(\boldsymbol{e}_{ij}).$$

Then

$$e_{i_1 j_1} e_{i_2} e_{i_2 j_2} \neq 0$$
 if and only if $i_1 = j = i_2$ and $j_1 = i = j_2$.

If this is the case, it holds: $e_{i_1j_1}e_{i_j}e_{i_2j_2} = e_{i_2j_2}e_{i_j}e_{i_1j_1}$.

DEFINITION 2.5. Let \Im be the following set of multilinear polynomials:

$$\begin{bmatrix} x_1^{(0,0)}, x_2^{(0,0)} \end{bmatrix} \begin{bmatrix} x_1^{(0,1)}, x_2^{(0,0)} \end{bmatrix} x_1^{(0,1)} \circ x_2^{(0,1)} \\ x_1^{(t,0)} x^{(-t,0)} x_2^{(t,0)} - x_2^{(t,0)} x^{(-t,0)} x_1^{(t,0)} x_1^{(t,1)} x^{(-t,0)} x_2^{(t,0)} - x_2^{(t,0)} x^{(-t,0)} x_1^{(t,1)} \\ x_1^{(t,0)} x^{(-t,1)} x_2^{(t,0)} - x_2^{(t,0)} x^{(-t,1)} x_1^{(t,0)} x_1^{(t,1)} x^{(-t,0)} x_2^{(t,1)} + x_2^{(t,1)} x^{(-t,0)} x_1^{(t,1)} \\ x_1^{(t,1)} x^{(-t,1)} x_2^{(t,0)} + x_2^{(t,0)} x^{(-t,1)} x_1^{(t,1)} x_1^{(-t,1)} x_2^{(-t,1)} x_2^{(t,1)} + x_2^{(t,1)} x^{(-t,1)} x_1^{(t,1)} \\ x_1^{(t,1)} x^{(-t,1)} x_2^{(t,0)} + x_2^{(t,0)} x^{(-t,1)} x_1^{(t,1)} x_1^{(-t,1)} x_2^{(t,1)} + x_2^{(t,1)} x^{(-t,1)} x_1^{(t,1)} \\ x_1^{(t,1)} x^{(-t,1)} x_2^{(t,0)} + x_2^{(t,0)} x^{(-t,1)} x_1^{(t,1)} x_1^{(-t,1)} x_2^{(t,1)} + x_2^{(t,1)} x^{(-t,1)} x_1^{(t,1)} \\ x_1^{(t,1)} x^{(-t,1)} x_2^{(t,0)} + x_2^{(t,0)} x^{(-t,1)} x_1^{(t,1)} \\ x_1^{(t,1)} x^{(-t,1)} x_2^{(t,0)} + x_2^{(t,0)} x^{(-t,1)} x_1^{(t,1)} x^{(-t,1)} x_2^{(t,1)} + x_2^{(t,1)} x^{(-t,1)} x_1^{(t,1)} \\ x_1^{(t,1)} x^{(-t,1)} x_2^{(t,0)} + x_2^{(t,0)} x^{(-t,1)} x_1^{(t,1)} x^{(-t,1)} x_2^{(t,1)} + x_2^{(t,1)} x^{(-t,1)} x_1^{(t,1)} \\ x_1^{(t,1)} x^{(-t,1)} x_2^{(t,0)} + x_2^{(t,0)} x^{(-t,1)} x_1^{(t,1)} \\ x_1^{(t,1)} x^{(-t,1)} x_1^{(t,1)} x^{(-t,1)} \\ x_1^{(t,1)} x^{(-t,1)} x_1^{(t,1)} x^{(-t,1)} x_1^{(t,1)} \\ x_1^{(t,1)} x^{(-t,1)} x_1^{(t,1)} x^{(-t,1)} \\ x_1^{(t,1)} x^{(-t,1)} x_1^{(t,1)} \\ x_1^{(t,1)} x^{(-t,1)} x_1^{(t,1)} \\ x_1^{(t,1)} x^{(-t,1)} x_1^{(t,1)} \\ x_1^{(t,1)} x^{(-t,1)} x_1^{(t,1)} \\ x_1^{($$

where t varies in \mathbb{Z}_n and $a \circ b$ denotes the Jordan product $a \circ b = ab + ba$. We shall denote by I the $T_{\mathbb{Z}_n \times \mathbb{Z}_2}$ -ideal generated by 3.

PROPOSITION 2.6.

$$I \subseteq T_{\mathbb{Z}_n \times \mathbb{Z}_2}(M_{k,l}(E) \otimes E)$$

PROOF. It is enough to test polynomials listed in Definition 2 under standard substitutions, and verify they are zero for each such substitutions. The generic standard substitution for 3-degree polynomials will be

$$A_{1} = a_{1}^{\varepsilon(i_{1}, j_{1})} \boldsymbol{e}_{i_{1}j_{1}} \otimes b_{1}^{\lambda_{1} + \varepsilon(i_{1}, j_{1})}$$
$$A_{2} = a_{2}^{\varepsilon(i_{2}, j_{2})} \boldsymbol{e}_{i_{2}j_{2}} \otimes b_{2}^{\lambda_{2} + \varepsilon(i_{2}, j_{2})}$$
$$A = a^{\varepsilon(i, j)} \boldsymbol{e}_{ij} \otimes b^{\lambda + \varepsilon(i, j)}$$

for $\overline{j_1 - i_1} = \overline{j_2 - i_2} = \overline{i - j} = t \in \mathbb{Z}_n$. By Lemma 2.4, the products $e_{i_1 j_1} e_{i_j} e_{i_2 j_2}$ and $e_{i_2 j_2} e_{i_j} e_{i_1 j_1}$ are both zero unless

$$i_1 = i_2 = j$$
 and $j_1 = j_2 = i$

and in this case they are equal (to e_{ji}) and $\varepsilon(i_1, j_1) = \varepsilon(i_2, j_2) = \varepsilon(i, j)$ =: ε . So the substitutions we have to test are of kind

$$\boldsymbol{A}_1 = a_1^{\varepsilon} \boldsymbol{e}_{ji} \otimes b_1^{\lambda_1 + \varepsilon} \quad \boldsymbol{A}_2 = a_2^{\varepsilon} \boldsymbol{e}_{ji} \otimes b_2^{\lambda_2 + \varepsilon} \quad \boldsymbol{A} = a^{\varepsilon} \boldsymbol{e}_{ij} \otimes b^{\lambda + \varepsilon} \quad (\text{for } \overline{i - j} = t).$$

Here we verify just one of them, the other ones can be treated in the same way. For instance, consider $x_1^{(t,1)}x^{(-t,1)}x_2^{(t,0)} + x_2^{(t,0)}x^{(-t,1)}x_1^{(t,1)}$: $\lambda_1 = \lambda = 1, \lambda_2 = 0$. If $\varepsilon = 0$, then

$$A_2AA_1 = a_2^0 a^0 a_1^0 e_{ji} \otimes b_2^0 b^1 b_1^1 = -A_1AA_2$$

and if $\varepsilon = 1$, then

$$A_2AA_1 = a_2^1 a^1 a_1^1 e_{ji} \otimes b_2^1 b^0 b_1^0 = -A_1AA_2.$$

The same arguments and the use of Lemma 2.2 yield that the polynomials of second degree in the list are graded identities for $M_{k,l}(E) \otimes E$ as well.

In the rest of the section, let $m := x_1 \dots x_r$ be a multilinear graded monomial of length r. If $\sigma \in S_r$, we denote by m_{σ} the monomial $x_{\sigma(1)} \dots x_{\sigma(r)}$. If S is any (graded) substitution, we denote by $m|_S$ the value of m under the substitution S.

REMARK 2.7. For each $\sigma \in S_r$ there exists a graded standard substitution S such that

$$m_{\sigma}|_{s} \neq 0$$
.

This is easy to prove, for instance using induction on the length r.

DEFINITION 2.8. For $1 \le p \le q \le r$, call

$$m_{\sigma}^{\lfloor p, q \rfloor} := x_{\sigma(p)} \dots x_{\sigma(q)}.$$

REMARK 2.9. Let S be a standard substitution, and fix from now on

 $S: x_s \to A_s := a_s^{\varepsilon(i_s, j_s)} \boldsymbol{e}_{i_s, j_s} \otimes b_s^{\lambda_s + \varepsilon(i_s, j_s)} \quad (s = 1, \dots, r),$

where $\partial(x_s) = (\overline{j_s - i_s}, \lambda_s) = \partial(A_s)$. If

$$m_{\sigma}|_{\mathcal{S}} = A_{\sigma(1)} \dots A_{\sigma(r)} \neq 0$$

then there exists $A \in \mathcal{B}$, $c \in \{1, -1\}$ such that $m_{\sigma}|_{\mathcal{S}} = cA$. Moreover, $m_{\sigma}|_{\mathcal{S}} \neq 0$ if and only if $\forall p, q \ 1 \leq p \leq q \leq r$ it is $m_{\sigma}^{[p,q]}|_{\mathcal{S}} \neq 0$, and in this case it holds

$$\partial(m_{\sigma}^{[p, q]}) = (\overline{j_{\sigma(q)} - i_{\sigma(p)}}, \lambda_{\sigma(p)} + \ldots + \lambda_{\sigma(q)}).$$

In fact it is:

$$\begin{aligned} \partial(m_{\sigma}^{[p,q]}) &= \partial(x_{\sigma(p)}) + \ldots + \partial(x_{\sigma(q)}) = \\ &= (\overline{j_{\sigma(p)} - i_{\sigma(p)}}, \lambda_{\sigma(p)}) + \ldots + (\overline{j_{\sigma(q)} - i_{\sigma(q)}}, \lambda_{\sigma(q)}) = \\ &= (\overline{j_{\sigma(q)} - i_{\sigma(p)}}, \lambda_{\sigma(p)} + \ldots + \lambda_{\sigma(q)}) \end{aligned}$$

by Lemma 2.2.

3. Technical results.

The considerations in this (and the next) section are similar to those in [V]. We start with rearranging a lemma. The symbols used are the same listed in the previous section. We recall that I denotes the $T_{\mathbb{Z}_n \times \mathbb{Z}_2}$ ideal generated by the polynomials listed in Definition 2.5.

LEMMA 3.1. Suppose that for a graded standard substitution S it results

$$m_{\sigma}|_{s} = \pm m|_{s} \neq 0$$
.

Then there exists $c \in \{1, -1\}$ such that

$$m_{\sigma} \equiv c x_1 m'(x_2, \ldots, x_r) \mod I$$

PROOF. First of all, note that $m_{\sigma}|_{s} = \pm m|_{s} \neq 0$ implies that $i_{1} = i_{\sigma(1)}$. Of course, we may suppose $\sigma(1) \neq 1$, so $1 < \sigma^{-1}(1)$. We may write the integers in $[1, \sigma^{-1}(1)]$ in the form $\sigma^{-1}(j+1)$ for j = 0, ..., r-1; then call

$$t := \min \{ j \le r - 1 \mid 1 \le \sigma^{-1}(j+1) < \sigma^{-1}(1) \}.$$

By its definitions, t satisfies $1 \le \sigma^{-1}(t+1) < \sigma^{-1}(1) \le \sigma^{-1}(t)$; set

$$p := \sigma^{-1}(t+1)$$
 $q := \sigma^{-1}(1)$ $u := \sigma^{-1}(t)$

and consider the two possibilities: p = 1 or p > 1. For convenience, define

$$\lambda_{\sigma}^{[a, b]} := \lambda_{\sigma(a)} + \ldots + \lambda_{\sigma(b)}.$$

34

First, suppose p = 1. By Lemma 2.9, it results

$$\begin{aligned} \partial(m_{\sigma}^{[1, q-1]}) &= (\overline{j_{\sigma(q-1)} - i_{\sigma(1)}}, \lambda_{\sigma}^{[1, q-1]}) \\ \partial(m_{\sigma}^{[q, u]}) &= (j_{\sigma(u)} - i_{\sigma(q)}, \lambda_{\sigma}^{[q, u]}) \end{aligned}$$

and both the words are not zero under the substitution S; by Lemma 2.9 this yields

$$\begin{split} j_{\sigma(q-1)} - i_{\sigma(1)} &= i_{\sigma(q)} - i_1 = i_1 - i_1 = 0\\ j_{\sigma(u)} - i_{\sigma(q)} &= j_t - i_1 = i_{t+1} - i_1 = i_{\sigma(p)} - i_1 = i_{\sigma(1)} - i_1 = i_1 - i_1 = 0 \end{split}$$

With respect to the parities of $\lambda_{\sigma}^{[1, q-1]}$ and $\lambda_{\sigma}^{[q, u]}$ there is $c \in \{1, -1\}$ such that

$$x_1^{(0,\,\lambda_{\sigma}^{[1,\,q-1]})}x_2^{(0,\,\lambda_{\sigma}^{[q,\,u]})} \equiv cx_2^{(0,\,\lambda_{\sigma}^{[q,\,u]})}x_1^{(0,\,\lambda_{\sigma}^{[1,\,q-1]})} \operatorname{mod} I.$$

Hence we get

$$m_{\sigma} \equiv cm_{\sigma}^{[q,u]} m_{\sigma}^{[1,q-1]} m_{\sigma}^{[u+1,r]} \operatorname{mod} I,$$

and $m_{\sigma}^{[q,u]}$ starts with x_1 . Now consider the case p > 0; with consideration similar to the previous case, it is

$$\begin{split} \partial(m_{\sigma}^{[1, p-1]}) &= (\overline{j_{\sigma(p-1)} - i_{\sigma(1)}}, \lambda_{\sigma(1)} + \ldots + \lambda_{\sigma(p-1)}) \\ \partial(m_{\sigma}^{[p, q-1]}) &= (\overline{j_{\sigma(q-1)} - i_{\sigma(p)}}, \lambda_{\sigma(p)} + \ldots + \lambda_{\sigma(q-1)}) \\ \partial(m_{\sigma}^{[q, u]}) &= (\overline{j_{\sigma(u)} - i_{\sigma(q)}}, \lambda_{\sigma(q)} + \ldots + \lambda_{\sigma(u)}). \end{split}$$

Call

$$d := \left\{ \begin{array}{ll} i_{t\,+\,1} - i_1 & \text{ if } \ i_{t\,+\,1} - i_1 \geqslant 1 \\ i_{t\,+\,1} - i_i + n & \text{ if } \ i_{t\,+\,1} - i_1 < 1 \ . \end{array} \right.$$

Then it holds that:

$$\begin{split} j_{\sigma(p-1)} - i_{\sigma(1)} &= i_{\sigma(p)} - i_1 = i_{t+1} - i_1 \equiv d \mod n \\ j_{\sigma(q-1)} - i_{\sigma(p)} &= i_{\sigma(q)} - i_{\sigma(p)} = i_1 - i_{t+1} \equiv -d \mod n \\ j_{\sigma(u)} - i_{\sigma(q)} &= j_t - i_1 = i_{t+1} - i_1 \equiv d \mod n . \end{split}$$

As before, there is $c \in \{1, -1\}$ such that

$$x_1^{(d,\,\lambda_{\sigma}^{[1,\,p-1]})}x^{\,(-d,\,\lambda_{\sigma}^{[p,\,q-1]})}x_2^{(d,\,\lambda_{\sigma}^{[q,\,u]})} \equiv cx_2^{(d,\,\lambda_{\sigma}^{[q,\,u]})}x^{\,(-d,\,\lambda_{\sigma}^{[p,\,q-1]})}x_1^{(d,\,\lambda_{\sigma}^{[1,\,p-1]})}$$

modulo I; then

$$m_{\sigma} \equiv cm_{\sigma}^{[q,u]} m_{\sigma}^{[p,q-1]} m_{\sigma}^{[1,p-1]} m_{\sigma}^{[u+1,r]} \mod I$$

and this monomial starts with x_1 .

LEMMA 3.2. With the same notation as in the previous Lemma, if for a standard substitution S it holds

$$m_{\sigma}|_{s} = cm|_{s} \neq 0$$
,

for a certain $c \in \{1, -1\}$, then

$$m_{\sigma} \equiv cm \mod I$$
.

PROOF. Let s be the greatest positive integer such that

$$m_{\sigma} \equiv c_0 x_1 \dots x_s m'(x_{s+1}, \dots, x_r) \mod I$$

for a certain $c_0 \in \{1, -1\}$. By Lemma 3.1, the number *s* does exist and it is at least 1. We want to show that s = r. Suppose on the contrary that $1 \le s < r$, so that $s \le r - 2$. It holds

$$x_1 \dots x_s m'(x_{s+1}, \dots, x_r)|_s = \pm m_\sigma|_s = \pm m|_s \neq 0$$
.

Now compare $m'|_{\mathfrak{S}}$ and $x_{\mathfrak{s}+1} \dots x_r|_{\mathfrak{S}}$. If we consider only the elementary matrices which occur in \mathfrak{S} , it has to be true that

$$e_{i_1j_1} \dots e_{i_sj_s} m'(e_{i_{s+1}j_{s+1}}, \dots, e_{i_rj_r}) = e_{i_1j_1} \dots e_{i_sj_s}(e_{i_{s+1}j_{s+1}} \dots e_{i_rj_r}) \neq 0$$

 \mathbf{SO}

$$e_{i_1 j_s} m'(e_{i_{s+1} j_{s+1}}, \ldots, e_{i_r j_r}) = e_{i_1 j_s} e_{i_{s+1} j_r} \neq 0$$

Then $m'(e_{i_{s+1}j_{s+1}}, \ldots, e_{i_rj_r})$ has to be an elementary matrix, say e_{pq} , and this leads to $p = j_s$ and $q = j_r$, so we get

$$m'(e_{i_{s+1}j_{s+1}}, \ldots, e_{i_rj_r}) = e_{i_{s+1}j_{s+1}} \ldots e_{i_rj_r} \neq 0$$

Therefore the restriction S' of S to t = s + 1, ..., r is such that

$$m'(x_{s+1}, \ldots, x_r)|_{\mathcal{S}'} = \pm (x_{s+1} \ldots x_r)|_{\mathcal{S}'} \neq 0$$

and by Lemma 3.1 this yields that there exists $c' \in \{1, -1\}$ such that

$$m' \equiv c' x_{s+1} m''(x_{s+2}, \dots, x_r) \mod I$$
.

36

 $\mathbb{Z}_{k+l} \times \mathbb{Z}_2$ -graded polynomial identities for $M_{k,l}(E) \otimes E$

Then

$$m_{\sigma} \equiv c_0 c' x_1 \dots x_s x_{s+1} m''(x_{s+2}, \dots, x_r) \mod k$$

which contradicts the definition of s. Now it follows easily that $c_0 = c$.

COROLLARY 3.3. Let σ , τ be in S_r , and suppose that for a standard substitution S it results

$$m_{\sigma}|_{s} = cm_{\tau}|_{s} \neq 0$$

for a certain $c \in \{1, -1\}$. Then

$$m_{\sigma} \equiv c m_{\tau} \mod I$$
.

4. The main results.

THEOREM 4.1. Let n = k + l. Then the set 3 described in Definition 2.5 generates $T_{\mathbb{Z}_n \times \mathbb{Z}_2}(M_{k,l}(E) \otimes E)$, that is

$$I = T_{\mathbb{Z}_n \times \mathbb{Z}_2}(M_{k,l}(E) \otimes E).$$

PROOF. By Proposition 2.6 we have to prove only that every multilinear graded identity for $M_{k,l}(E) \otimes E$ is in *I*. Suppose on the contrary that there exists a polynomial

$$f = f(x_1, \ldots, x_r) \in V_r^{\mathbb{Z}_n \times \mathbb{Z}_2} \cap T_{\mathbb{Z}_n \times \mathbb{Z}_2}(M_{k, l}(E) \otimes E)$$

which is not in I. Then we may write

$$f \equiv \sum_{s=1}^{t} d_{\sigma_s} m_{\sigma_s} \mod I$$

for some monomials $m_{\sigma_s} \in V_r^{\mathbb{Z}_n \times \mathbb{Z}_2}$, $\sigma_s \in S_r$, non-zero scalars $0 \neq d_s \in \mathbb{K}$ and $s = 1, \ldots, t$. Take t minimal with this property (of course, t should be at least 2 by Remark 2.7): we want to prove that t = 0.

By Remark 2.7 there exists a graded standard substitution S such that $m_{\sigma_1}|_{s} \neq 0$. Since f is an identity for $M_{k,l}(E) \otimes E$ it is $f|_{s} = 0$. Hence

$$d_{\sigma_1}m_{\sigma_1}|_{\mathcal{S}} = -\sum_{s=2}^t d_{\sigma_s}m_{\sigma_s}|_{\mathcal{S}}.$$

As in Remark 2.9, there exists $A \in \mathcal{B}$ such that

 $0 \neq m_{\sigma_1}|_{s} = c_1 A$ for some $c_1 \in \{1, -1\}$.

Hence there must be $p \in \{2, ..., t\}$ such that

$$0 \neq m_{\sigma_n}|_{s} = c_2 A$$
 for some $c_2 \in \{1, -1\}$.

Then

$$0 \neq m_{\sigma_1} |_{\mathcal{S}} = c_1 c_2 m_{\sigma_n} |_{\mathcal{S}},$$

and applying Corollary 3.3 we get

$$m_{\sigma_p} \equiv c m_{\sigma_1} \mod I$$
 for $c = c_1 c_2$.

In the end, it is

$$f \equiv (d_{\sigma_1} + cd_{\sigma_p}) m_{\sigma_1} + \sum_{s=2, s \neq p}^{t} d_{\sigma_s} m_{\sigma_s} \mod I$$

contradicting the minimality of t.

Now we recall the main result in [DVN]:

THEOREM 4.2. $T_{\mathbb{Z}_n \times \mathbb{Z}_2}(M_n(E))$ is generated by the polynomials in \mathfrak{I} .

As a corollary of Theorems 4.1 and 4.2 we get

COROLLARY 4.3. The algebras $M_{k,l}(E) \otimes E$ and $M_n(E)$ are PIequivalent as $\mathbb{Z}_n \times \mathbb{Z}_2$ -graded algebras.

Then it follows

COROLLARY 4.4. For n = k + l, the algebras $M_{k,l}(E) \otimes E$ and $M_n(E)$ are PI-equivalent.

PROOF What we have to show is that the multilinear parts of the ordinary *T*-ideals $T(M_{k,l}(E) \otimes E)$ and $T(M_n(E))$ are equal. Note that each of them is a subset of the corresponding $T_{\mathbb{Z}_n \times \mathbb{Z}_2}$ -ideal.

So take $f \in V_r \cap T(M_n(E))$. Then it suffices to prove that $f|_{\mathcal{S}} = 0$ for any ordinary standard substitution, i.e. for every substitution

$$S: x_i \rightarrow A_i, (i = 1, \dots, r)$$

such that $A_1, \ldots, A_r \in \mathcal{B}$.

38

Let \mathcal{S} be a ordinary standard substitution with elements in \mathcal{B} , and define

$$\tilde{f} := f(x_1^{\partial(A_1)}, \ldots, x_r^{\partial(A_r)}) \in V_r^{\mathbb{Z}_n \times \mathbb{Z}_2}.$$

 \tilde{f} is a multilinear graded element in $T_{\mathbb{Z}_n \times \mathbb{Z}_2}(M_n(E)) = T_{\mathbb{Z}_n \times \mathbb{Z}_2}(M_{k,l}(E) \otimes E)$, and the substitution S is admissible for this polynomial. Hence $f|_s = \tilde{f}|_s = 0$ and this means that $f \in T(M_{k,l}(E) \otimes E)$. Reversing the roles of $T(M_n(E))$ and $T(M_{k,l}(E) \otimes E)$ leads to the reverse inclusion.

REFERENCES

- [B] A. BERELE, Supertraces and matrices over Grassmann algebras, Advances in Math., 108 (1) (1994), pp. 77-90.
- [DVN] O. M. DI VINCENZO V. NARDOZZA, Graded polynomial identities for tensor products by the Grassmann Algebra, Comm. Algebra (2002) (in press).
- [K] A. R. KEMER, Varieties and Z_2 -graded algebras, Math. USSR Izv., 25 (1985), pp. 359-374.
- [K1] A. R. KEMER, Ideals of identities of associative algebras, AMS Trans. of Math. Monographs, 87 (1991).
- [R] A. REGEV, Tensor product of matrix algebras over the Grassmann algebra, J. Algebra, 133 (1990), pp. 351-369.
- [V] S. Y. VASILOVSKY, Z_n -graded polynomial identities of the full matrix algebra of order n, Proc. Amer. Math. Soc., 127 (12) (1999), pp. 3517-3524.

Manoscritto pervenuto in redazione il 14 dicembre 2001.