
REND. SEM. MAT. UNIV. PADOVA, Vol. 107 (2002)

Examples of Birationality of Pluricanonical Maps.

SANDRA CHIARUTTINI (*) - REMO GATTAZZO (*)

ABSTRACT - By generalizing an Enriques construction, in P 4 we construct a double
space V of degree 12, whose branch locus has a 6-ple point of the type
z 61 Q Q Q1x 121 Q Q Q1y 1240. We demonstrate that a desingularization of V has
birational invariants q14q240, pg4P143, P247, P3413, P4422,
P5434, P6451. Moreover, we prove that the m-canonical transformation has
fibers that are generically finite sets if and only if mF2 and it is birational if
and only if mF6.

Introduction.

E. Bombieri [B] proved that the m-canonical transformation of any
nonsingular surface of general type is birational if mF5 and m45 is
the minimum for the surfaces (minimal models) with (K 2 ) 41 and
pg 42.

F. Enriques constructed a surface with (K 2 ) 41, pg 42 (see [E] § 14,
pp. 303-304); this is a desingularization of a double plane with a branch
curve of degree 10, having a singular [5,5] point on it.

At a seminar, E. Stagnaro suggested generalizing the Enriques
double plane to a three-dimensional double space for constructing new
examples of threefolds, whose m-canonical transformation becomes bira-
tional if m is large enough.

This paper touches first on a demonstration of the fact that the m-
canonical transformation of the Enriques example is birational if and
only if mF5, then such a situation is generalized, constructing a double
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space V. We thus have the birationality of the m-canonical transforma-
tion if and only if mF6. A desingularization of V has the birational
invariants q1 4q2 40, pg 4P1 43, P2 47, P3 413, P4 422, P5 434,
P6 451.

We define double space of degree 2n the projective closure in P 4 of
the affine hypersurface given by t 2 4 f2n (x , y , z), being f2n (x , y , z) a
polynomial of degree 2n; the surface of equation f2n (x , y , z) 40 is the
branch locus of the double space.

We must bear in mind that a double plane with a branch curve of de-
gree 10 with a singular [5,5] point on it is affinely represented by an
equation of the type z 2 1y 5 1 Q Q Q1x 10 40. In the following paragraphs,
said situation will be generalized by constructing a double space affinely
given by an equation of the type t 2 1z 6 1 Q Q Q1x 12 1 Q Q Q1y 12 40.

M. Chen [C] and S. Lee [L] proved that if the canonical divisor K of a
threefold is «nef» and (K 3 ) is positive, then the m-canonical transforma-
tion is birational for mF6. In the proposed example the said properties
are not simultaneously satisfied, but the birationality of the m-canonical
transformation holds true for mF6.

In this paper we consider surfaces and threefolds on the field C of
the complex numbers and we’ll write PN instead of PC

N .

1. Example of a double plane S of degree 10 in P 3 whose m-canoni-
cal transformation is birational if and only if mF5.

1.1. Description of S.

Let us choose a generic curve C in the linear system of curves in P 2

defined by

F10 (X0 , X1 , X2 ) 4aX0
5 X2

5 1bX0 X2
9 1cX1

10 1dX2
10 .

According to Bertini theorem, C has its unique singularity at the point
A0 4 (1 , 0 , 0 ). To be more precise, C has a [5 , 5 ] point at A0 , i.e. a 5-ple
point with an infinitely near 5-ple point. By using the affine coordi-
nates

x4
X1

X0

, y4
X2

X0

, z4
X3

X0
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we obtain the polynomial

f10 (x , y) 4ay 5 1by 9 1cx 10 1dy 10

and hence the double plane of affine equation z 2 4 f10 (x , y). Let S be its
projective closure in P 3 :

S : X0
8 X3

2 2aX0
5 X2

5 2bX0 X2
9 2cX1

10 2dX2
10 40 .

S is normal and its singularities are the points A3 4 (0 , 0 , 0 , 1 ) and
A0 4 (1 , 0 , 0 , 0 ). To be more precise:

– S has an 8-ple point at A3 and four double curves r1 , r2 , r3 , r4 in-
finitely near in the next neighbourhoods;

– S has a double point at A0 with a double curve r5 , a double point
P and again two double curves r6 and r7 infinitely near, in the next
neighbourhoods.

1.2. Birationality of the m-canonical transformation for mF5.

We state the birationality of the m-canonical transformation, mF5,
using the theory of adjoints of Enriques. This theory has recently been
revised by E. Stagnaro in [S2]. We keep the same nomenclature and no-
tations as are used in said paper. In our examples all the singularities
satisfy the hypothesis assumed in [S2].

The properties of a double plane are well known, but it may be useful
to mention the ones that will be generalized to the hypersurface (double
space) in P 4 that we construct later on.

It is maybe less well known, however see [E], [S1], [S2] (a detailed cal-
culation of the bicanonical adjoints is given in [S1]), that the m-canonical
adjoints to a double plane of affine equation S : z 2 4 f2n (x , y), with a
nonsingular branch curve f2n (x , y) 40, are:

f m(n23) (x , y)1zf (m21) n23m (x , y) 40 ,

where f i (x , y) denotes a polynomial of degree i in x , y .
In compliance with [S2], let us call the m-canonical adjoints defined

by f m(n23) (x , y) 40 as global and the m-canonical adjoints defined by
zf (m21) n23m (x , y) 40 as non-global.

Let us emphasize the following facts.

1. The m-canonical transformation W NmKN coincides (on an open
set), up to isomorphisms, with the rational transformation c mNS pro-
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duced by the linear system of the m-canonical adjoints restricted
to the double plane S (see [S2], section 16).

2. If we want c mNS to be birational, it is necessary (but generally
not sufficient) for at least one of the m-canonical adjoints to be of the
kind zf (m21) n23m (x , y) 40. Conversely, the transformation is generi-
cally 2 : 1, at most.

3. It is possible to prove (but we omit the demonstration) that in
every m-canonical adjoint, mG4, the «z» coefficient vanishes as soon as
the branch curve has a [5, 5] point on it.

4. From 2 and 3 it follows for mG4 that c mNS , so W NmKN , cannot be
birational. Moreover, one can prove directly that c 5NS is birational and
also that c mNS is birational for mF5, because pg is positive.

The idea for generalizing all this to double spaces is to transfer the
properties 1, 2, 3 and 4 to a suitable double space. As a result, in the case
of our example at least, the birationality holds true if and only if
mF6.

2. Example of a double space V of degree 12 in P 4 , whose m-canoni-
cal transformation is birational if and only if mF6.

2.1. Description of V.

To extend the foregoing situation to P 4, let S be a generic surface in
the linear system of surfaces in P 3 defined by

F12 (X0 , X1 , X2 , X3 ) 4aX0
6 X3

6 1bX0 X3
11 1cX1

12 1dX2
12 1eX3

12 .

According to Bertini theorem, S has a unique singularity at the point
A0 4 (1 , 0 , 0 , 0 ). To be more specific, S has a 6-ple point at A0 with an in-
finitely near 6-ple curve. By using the affine coordinates

x4
X1

X0

, y4
X2

X0

, z4
X3

X0

, t4
X4

X0

we obtain the polynomial

f12 (x , y , z) 4az 6 1bz 11 1cx 12 1dy 12 1ez 12

and hence the hypersurface of affine equation t 2 4 f12 (x , y , z).
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Let V be its projective closure in P 4 :

V : X0
10 X4

2 2aX0
6 X3

6 2bX0 X3
11 2cX1

12 2dX2
12 2eX3

12 40 .

We call V a double space, according to our definition.
V is normal and only has singularities at A4 4 (0 , 0 , 0 , 0 , 1 ) and at

A0 4 (1 , 0 , 0 , 0 , 0 ). To be more precise:

– V has a 10-ple point at A4 with 5 double surfaces a 1 , R , a 5 in-
finitely near, in the next neighbourhoods,

– V has a double point at A0 with 2 double surfaces a 6 , a 7 , 1
double curve s, and 2 double surfaces a 8 , a 9 infinitely near, in the next
neighbourhoods.

2.2. Computation of pg 4P1 and Pm of V.

Now we calculate the genus and plurigenera of V, i.e.

Pm 4dimC H 0 (X , OX (mKX ) ) 4dimNmKXN11, mF1, pg 4P1 ,

where X denotes a nonsingular model of V.
The path chosen for constructing X consists in two sequences of rela-

tions owing to the singularities of V at A4 and A0 .
To solve the singularity at A4 we have the following sequence of

blow-ups:

V6 %P6 K
p 6

P5 K
p 5

P4 K
p 4

P3 K
p 3

P2 K
p 2

P1 K
p 1

P 4 &V(1)

where p 1 denotes the blow-up of P 4 at A4 and p i (2 G iG6) is the blow-
up of Pi21 along a i21 . From (1) the relations follow:

.
/
´

KP1

V1

4p 1*(KP 4 )13EA4

4p 1*(V)210EA4

.
/
´

KPi

Vi

4p i*(KPi21
)1Ea i21

4p i*(Vi21 )22Ea i21

(2 GiG6),

where EA4
, Ea i

denote the exceptional divisors of the blow-ups at A4 and
a i and Vi denotes the strict transformation of Vi21 .

To solve the singularity at A0 we have the following sequence of
blow-ups:

V12 %P12 K
p 12

P11 K
p 11

P10 K
p 10

P9 K
p 9

P8 K
p 8

P7 K
p 7

P6 &V6(2)

(in the following V12 will be X), where p 7 is the blow-up of P6 at A0 , p 8

and p 9 are the blow-ups of P7 and P8 along a 6 and a 7 , p 10 is the blow-up
of P9 along s and finally p 11 and p 12 are the blow-ups of P10 and P11 along
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a 8 and a 9 . From (2) we can say that:

.
/
´

KP7

V7

4p 7*(KP6
)13EA0

4p 7*(V6 )22EA0

.
/
´

KP8

V8

4p 8*(KP7
)1Ea 6

4p 8*(V7 )22Ea 6

.
/
´

KP9

V9

4p 9*(KP8
)1Ea 7

4p 9*(V8 )22Ea 7

.
/
´

KP10

V10

4p 10* (KP9
)12Es

4p 10* (V9 )22Es

.
/
´

KP11

V11

4p 11* (KP10
)1Ea 8

4p 11* (V10 )22Ea 8

.
/
´

KP12

X4V12

4p 12* (KP11
)1Ea 9

4p 12* (V11 )22Ea 9
,

where EA0
, Ea i

and Es denote the exceptional divisors of the blow-ups at
A0 , a i and s.

Because X is nonsingular, we can apply the adjunction formula that
states: if D is a divisor linearly equivalent to KP12

1X, i.e. DfKP12
1X, and

if DNX is defined, then DNX4KX , where KX is a canonical divisor on X .
Substituting from the above relations, we obtain

KP12
1X4(3)

p 12* (p 11* (p 10* (p 9*(p 8*(p 7*(p 6*(p 5*(p 4*(p 3*(p 2*(p 1*(KP4 1V)27EA4
)2

Ea 1
)2Ea 2

)2Ea 3
)2Ea 4

)2Ea 5
)1EA0

)2Ea 6
)2Ea 7

) )2Ea 8
)2Ea 9

.

We now have KP 4 f25H and Vf12H, where H is a hyperplane in P 4. If
F 7f7H denotes a hypersurface of degree 7 in P4, we deduce from (3)

KP12
1Xf(4)

p 12* (p 11* (p 10* (p 9*(p 8*(p 7*(p 6*(p 5*(p 4*(p 3*(p 2*(p 1*(F 7)27EA4
)2Ea 1

)2Ea 2
)2

Ea 3
)2Ea 4

)2Ea 5
)1EA0

)2Ea 6
)2Ea 7

) )2Ea 8
)2Ea 9

4D .

We see from the adjunction formula that, if DNX is defined, then it is a
canonical divisor K 8X on X, i.e. DNX 4K 8X fKX .

If we multiply (4) by the integer mF1, we obtain

m(KP12
1X) f(5)

p 12* (p 11* (p 10* (p 9*(p 8*(p 7*(p 6*(p 5*(p 4*(p 3*(p 2*(p 1*(F 7m)27mEA4
)2mEa 1

)2

mEa 2
)2mEa 3

)2mEa 4
)2mEa 5

)1mEA0
)2mEa 6

)2mEa 7
))2mEa 8

)2mEa 9
4

mD4D 8 ,

where F 7m is a hypersurface of degree 7m in P 4 .
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As before we obtain D 8NX fmKX .
Let s NX : XKV, where s4p 12 i R i p 2 i p 1 , be the desingularization

of V described.
Using the theory of adjoints and pluriadjoints, we can calculate

pg 4P1 and Pm ; again we use the nomenclature and notations of [S2].
F 7m , mF1, is an m-canonical adjoint to V (with respect to s) if D 8NX is

effective, i.e. D 8NX F0 (see [S2], section 2).
We see first how the presence of the singular point A4 characterizes

the canonical and m-canonical adjoints.
The condition p 1*(F 7 )27EA4

F0 in (4), given by A4 , says that if F 7 is
a global canonical adjoint, then A4 must be a 7-ple point for F 7 itself, i.e.
F 7 is defined by a form F7 in X0 , X1 , X2 , X3 . The further condition given
by A4

p 6*(p 5*(p 4*(p 3*(p 2*(p 1*(F 7 )27EA4
)2Ea 1

)2Ea 2
)2Ea 3

)2Ea 4
)2Ea 5

F0

(see (4)), implies that it is

F7 (X0 , X1 , X2 , X3 , X4 ) 4X0
5 F2 (X0 , X1 , X2 , X3 ).

The condition

[p 6*(p 5*(p 4*(p 3*(p 2*(p 1*(F 7m )27mEA4
)2mEa 1

)2mEa 2
)2mEa 3

)2

mEa 4
)2mEa 5

]NV6
F0

imposed by A4 on the m-canonical adjoints (see (5)) implies that

F7m (X0 , X1 , X2 , X3 , X4 ) 4X0
5m [X0

5 X4 F2m26 (X0 , X1 , X2 , X3 )1

F2m (X0 , X1 , X2 , X3 ) ].

So we have a situation much the same as the double plane. To be more
precise, the m-canonical adjoints to a double space of affine equation
t 2 4 f2n (x , y , z), with a nonsingular branch locus f2n (x , y , z) 40, are:

f m(n24) (x , y , z)1 tf (m21) n24m (x , y , z) 40

where f i (x , y , z) denotes a polynomial of degree i in x , y , z .
Here again, let us call the m-canonical adjoints given by

f m(n24) (x , y , z) 40 global and those given by tf (m21) n24m (x , y , z) 40
non-global.

Now let us examine the point A0 , which is a singular point for the
double space because there is a 6-ple point on its branch locus.
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From (4) it must be that

F7 (X0 , X1 , X2 , X3 , X4 ) 4X0
5 X3 (a1 X1 1a2 X2 1a3 X3 ).

Let W 87 be the vector space of the forms defining global canonical ad-
joints and W 87 be the vector space of the forms defining canonical ad-
joints. Since W 87 4 W 87 and pg 4dimNKXN11 (see [S2], section 3), it fol-
lows that

pg 43.

We can move on now to consider the point A0 for calculating the m-
canonical adjoints (mD1). The conditions imposed by A0 produce differ-
ent results, depending on the value of m.

For mE6 the vector spaces of the forms defining global m-canonical
adjoints, W 87m , and those of the forms defining m-canonical adjoints,
W 87m , coincide; but the equality does not hold true for m46. Indeed, be-
ing an m-canonical adjoint implies that

F 7m : f m(624) (x , y , z)1 tf (m21) 624m (x , y , z) 40

must satisfy the condition (see (5)):

[p 12* (p 11* (p 10* (p 9*(p 8*(p 7*(F 7m )1mEA0
)2mEa 6

)2mEa 7
) )2(6)

mEa 8
)2mEa 9

) ]NX F0.

Now, if mE6, the degree of the «t» coefficient is too low and it satisfies the
condition (6) if and only if f (m21) 624m(x, y, z) vanishes. So, for mE6, F 7m is
an m-canonical adjoint if and only if it is defined by a form

F7m (X0 , X1 , X2 , X3 , X4 ) 4X0
5m X3

m Fm (X0 , X1 , X2 , X3 ) ,

i.e. if and only if F 7m is really a global m-canonical adjoint.
To be more precise, we have

W 814 4W 814 4 ]X0
10 X3

2 (b1 X0 X3 1b2 X1
2 1b3 X1 X2 1b4 X1 X3 1

1b5 X2
2 1b6 X2 X3 1b7 X3

2 ), bi �C(;

W 821 4W 821 4 ]X0
15 X3

3 (b1 X0 X1 X3 1b2 X0 X2 X3 1 Q Q Q

Q Q Q1b12 X2 X3
2 1b13 X3

3 ), bi �C(;

W 828 4W 828 4 ]X0
20 X3

4 (b1 X0
2 X3

2 1b2 X0 X1
2 X3 1 Q Q Q

Q Q Q1b21 X2 X3
3 1b22 X3

4 ), bi �C(;

W 835 4W 835 4 ]X0
25 X3

5 (b1 X0
2 X1 X3

2 1b2 X0
2 X2 X3

2 1 Q Q Q

Q Q Q1b33 X2 X3
4 1b34 X3

5 ), bi �C(.
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If m46, the degree of the «t» coefficient is (m21) 624m46. This is
the minimum that can satisfy condition (6) and we have the first non-global
m-canonical adjoint which is affinely given by tz 640. To be more specific,
F 7m is an m-canonical adjoint (m46) if and only if it is defined by a form

F42 (X0 , X1 , X2 , X3 , X4 ) 4X0
30 [X3

6 F6 (X0 , X1 , X2 , X3 )1X0
5 X3

6 X4 ]

and, in affine coordinates, it has the equation

f 42 (x , y , z , t) 4z 6 f 6 (x , y , z)1 tz 6 40.

In a detailed expression we obtain

W 842 4 ]X0
30 X3

6 (aX0
5 X4 1

1b1 X0
3 X3

3 1b2 X0
2 X1

2 X3
2 1 Q Q Q1b49 X2 X3

5 1b50 X3
6 ), a , bi �C(.

So we have a non-global 6-canonical adjoint defined by the form X0
35 X3

6 X4 .
In particular, the plurigenera Pi4dimNiKXN11, iF1 (see [S2]), are

pg 4P1 43, P2 47, P3 413, P4 422, P5 434, P6 451.

2.3. The m-canonical transformations W NmKXN , 1 GmG5.

In this paragraph, we prove that W NmKXN is a generically 2 : 1 map for
2 GmG5.

Let us consider the following triangle

where s NX is the desingularization of V and c mNV is the rational transfor-
mation, restricted to V, defined by the linear system of bicanonical ad-
joints to V. The foregoing diagram is commutative because the divisors
of NmKXN are of the kind

[p 12* (p 11* Q Q Q (p 1*(F 7m )27mEA4
) Q Q Q2mEa 8

)2mEa 9
]NX .

To prove that W NmKXN is generically 2 : 1, it sufficies to consider such a
transformation on an open set of X. s is a sequence of blow-ups and so it
is an isomorphism outside the exceptional divisors of the single blow-
ups; so, on an open set of X, s NX is an isomorphism. As a result, to say
that W NmKXN is generically 2 : 1 means that c mNV generically 2 : 1.
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Now let us demonstrate that c 2NV is generically 2 : 1.
Bearing in mind that

W 814 4W 814 4 ]X0
10 X3

2 (b1 X0 X3 1b2 X1
2 1b3 X1 X2 1

1b4 X1 X3 1b5 X2
2 1b6 X2 X3 1b7 X3

2 ), bi �C(,

we shall have

V%P 4

(X0 , X1 , X2 , X3 , X4 )

K
c 2

O

P 6

(Y0 , R , Y6 )

defined by

.
`
`
/
`
`
´

Y0 4 (X0
10 X3

2 ) X0 X3

Y1 4 (X0
10 X3

2 ) X1
2

Y2 4 (X0
10 X3

2 ) X1 X2

Y3 4 (X0
10 X3

2 ) X1 X3

Y4 4 (X0
10 X3

2 ) X2
2

Y5 4 (X0
10 X3

2 ) X2 X3

Y6 4 (X0
10 X3

2 ) X3
2 .

Let U4P 4 2 ]X0 4X1 4X3 40( be the affine open set chosen in P 4,
with the coordinates

x4
X0

X1

, y4
X2

X1

, z4
X3

X1

, t4
X4

X1

.

Let T4P 6 2 ]Y1 4Y3 40( be the affine open set in P 6 with the
coordinates

y1 4
Y0

Y1

, y2 4
Y2

Y1

, R , y6 4
Y6

Y1

.

We shall thus have

c 2NU : U
(x , y , z , t)

K

O
T

(y1 , R , y6 )
:

.
`
/
`
´

y1 4xz

y2 4y

y3 4z

y4 4y 2

y5 4yz

y6 4z 2 .
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Let P4(y1 , R , y6 ) be a generic point of Imc 2NU ; the fiber on P is

c 2NU
21 (P) 4

.
`
/
`
´

(x , y , z , t) :

C
`
`
`
D

xz
y
z

y 2

yz
z 2

4

4

4

4

4

4

y1

y2

y3

y4

y5

y6

ˆ
`
¨
`
˜

4
.
/
´

(x , y , z , t) :
C
`
D

xz
y
z

4

4

4

y1

y2

y3

ˆ
¨
˜

.

The fiber on P intersects VU 4VOU at two points; indeed,

VU Oc 2NU
21 (P) 4

.
/
´

x 10 t 2 2ax 6 z 6 2bxz 11 2c2dy 12 2ez 12 40

xz4 y1

y4 y2

z4 y3

4

.
`
/
`
´

g y1

y3
h10

t 2

y

z

x

4

4

4

4

ay1
6 1by1 y3

10 1c1dy2
12 1ey3

12

y2

y3

y1

y3

.

This means that c 2NV : VKP 6, so W N2KXN : XKP 6, is generically 2 : 1. In
particular, we find that V is of general type (Kodaira dimension 3).
It follows that W NmKXN , mD2, is also generically n : 1, with nG2.

Let us consider an effective canonical divisor K, which exists because
pg is positive; putting nK1N2KXN4 ]nK1D , D�N2KXN( for n41,
2 , R (nK fixed part of the linear system), we consider the linear
systems

K1N2KXN%N3KXN, 2K1N2KXN%N4KXN,R,(m22) K1N2KXN%NmKXN,R .

All these linear systems K1N2KXN , 2 K1N2KXN , R give rise to ratio-
nal transformations which are generically n : 1, nG2, and so are the
transformations W NmKXN , mF2.

If 2 GmG5, the absence of any non-global m-canonical adjoint im-
plies that n42, which is the statement.

REMARK 1. We said previously that the canonical transformation
W NKXN coincides, up to isomorphisms, with c 1NV on an open set. We
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can now note that c 1NV is generically the projection map of V from
the straight line X1 4X2 4X3 40 on a plane.

2.4. The 6-canonical transformation W N6KXN .

Our aim is to prove that W N6KXN is birational. Unlike the foregoing cas-
es, this will be based on the existence of the non-global 6-canonical ad-
joint defined by the form G7 4X0

35 X3
6 X4 .

As we did previously, we choose a canonical effective divisor K
(e.g. let K be given by L4X0

5 X3 X1) and we construct the linear system
4K1N2KXN%N6KXN . The linear system 4 K1N2KXN%N6KXN defines a
rational transformation which coincides with W N2KXN on an open set, so it
defines a generically 2 : 1 transformation. Now let’s consider the non-
global 6-canonical adjoint given by G7 and let D be the divisor on X de-
fined by it. Note that D f6KX . Let S be the linear system

]L 4 (l 0 F0 1 Q Q Q1l 6 F6 )1l 7 G7 40, l i �C(,

with F0 4 (X0
10 X3

2 ) X0 X3 , F1 4 (X0
10 X3

2 ) X1
2 , F2 4 (X0

10 X3
2 ) X1 X2 , F3 4

4 (X0
10 X3

2 ) X1 X3 ,F4 4 (X0
10 X3

2 ) X2
2 ,F5 4 (X0

10 X3
2 ) X2 X3 ,F6 4 (X0

10 X3
2 ) X3

2 .
Note that F0 , R , F6 span W 814 4 W 814 and L 4 F0 , R , L 4 F6 , G7 span a
vector subspace of W 842 . We obtain 4 K1N2KXN%S%N6KXN. The linear
system S defines a rational transformation

V%P 4

(X0 , X1 , X2 , X3 , X4 )

K
c

O

P 7

(Y0 , R , Y7 )

given by:

.
`
/
`
´

Y0 4 (X0
5 X3 X1 )4 (X0

10 X3
2 ) X0 X3

Y1 4 (X0
5 X3 X1 )4 (X0

10 X3
2 ) X1

2

Y2 4 (X0
5 X3 X1 )4 (X0

10 X3
2 ) X1 X2

Y3 4 (X0
5 X3 X1 )4 (X0

10 X3
2 ) X1 X3

.
`
/
`
´

Y4 4 (X0
5 X3 X1 )4 (X0

10 X3
2 ) X2

2

Y5 4 (X0
5 X3 X1 )4 (X0

10 X3
2 ) X2 X3

Y6 4 (X0
5 X3 X1 )4 (X0

10 X3
2 ) X3

2

Y7 4X0
35 X3

6 X4 .

Let us now consider the open affine set U4P 4 2 ]X0 4X1 4X3 40(

in P 4 with the coordinates

x4
X0

X1

, y4
X2

X1

, z4
X3

X1

, t4
X4

X1
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and the open affine set T4P 7 2 ]Y1 4Y3 40( in P 7 with the coordi-
nates

y1 4
Y0

Y1

, R , y7 4
Y7

Y1

.

We obtain:

c NU : U
(x , y , z , t)

K

O

T
(y1 , R , y7 )

:

.
`
/
`
´

y1 4xz
y2 4y
y3 4z
y4 4y 2

y5 4yz
y6 4z 2

y7 4x 5 t .

c NU is 1 : 1. Indeed let P1 (x1 , y1 , z1 , t1 ) and P2 (x2 , y2 , z2 , t2 ) be two
points on U such that c NU (P1 ) 4c NU (P2 ), i.e.

x1 z1 4x2 z2 , y1 4y2 , z1 4z2 , R , x1
5 t1 4x2

5 t2 .

From y1 4y2 and z1 4z2 , it follows that x1 4x2 and finally that t1 4 t2 .
This proves that c, so W N6KXN is birational.

The birationality of W NmKXN , mD6, follows from this last fact. Indeed,
let us consider an effective canonical divisor K, and let us construct the
linear systems K1N6KXN%N7KXN, 2 K1N6KXN%N8KXN , R . All these
linear systems give rise to rational transformations which are generical-
ly 1 : 1. So all the transformations W NmKXN , mF6, are birational.

REMARK 2. Note that if we «delete» y7 4x 5 t in the expression of
c NU : UKT, we obtain the c 2NU of section 2.3. So we have obtained all
the informations we need on the pluricanonical transformations only
considering the linear system of bicanonical adjoints to V and the non-
global 6-canonical adjoint given by X0

35 X3
6 X4 .

2.5. Irregularities of V.

We have to show that the following two relations hold true:

q1 (X) 4dimC H 1 (X , OX ) 40, q2 (X) 4dimC H 2 (X , OX ) 40.

To do this, we use the arguments of [S2], section 4. We consider the sur-
face of degree 12 S4s21 (HOV), where H is the generic hyperplane in
P 4 . Since A0 and A4 are isolated singular points on V, then HOV, and so
S, is nonsingular. Thus it is well known (and easy to see, cf. for instance
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formula (36)), that q(S) 40. We deduce from remark 8 that

q1 (X) 4q(S) 40.

In addition from formula (36), we have

q2 (X) 4pg (X)1pg (S)2dimC W8 ,

where W8 is the vector space of the forms defining global adjoints to V in
P 4 of degree 8. Thus

q2 (X) 4311652168 40.

This proves the statement.
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