Examples of Birationality of Pluricanonical Maps.

Sandra Chiaruttini(*) - Remo Gattazzo (*)

Abstract - By generalizing an Enriques construction, in \mathbb{P}^{4} we construct a double space V of degree 12 , whose branch locus has a 6 -ple point of the type $z^{6}+\cdots+x^{12}+\cdots+y^{12}=0$. We demonstrate that a desingularization of V has birational invariants $q_{1}=q_{2}=0, p_{g}=P_{1}=3, P_{2}=7, P_{3}=13, P_{4}=22$, $P_{5}=34, P_{6}=51$. Moreover, we prove that the m-canonical transformation has fibers that are generically finite sets if and only if $m \geqslant 2$ and it is birational if and only if $m \geqslant 6$.

Introduction.

E. Bombieri [B] proved that the m-canonical transformation of any nonsingular surface of general type is birational if $m \geqslant 5$ and $m=5$ is the minimum for the surfaces (minimal models) with $\left(K^{2}\right)=1$ and $p_{g}=2$.
F. Enriques constructed a surface with $\left(K^{2}\right)=1, p_{g}=2$ (see [E] § 14, pp. 303-304); this is a desingularization of a double plane with a branch curve of degree 10 , having a singular [5,5] point on it.

At a seminar, E. Stagnaro suggested generalizing the Enriques double plane to a three-dimensional double space for constructing new examples of threefolds, whose m-canonical transformation becomes birational if m is large enough.

This paper touches first on a demonstration of the fact that the m canonical transformation of the Enriques example is birational if and only if $m \geqslant 5$, then such a situation is generalized, constructing a double
${ }^{(*)}$ Indirizzo degli AA.: Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate, Via Belzoni, 7, Università di Padova, 35131 Padova, Italy.

E-mail: chiaruttini@dmsa.unipd.it; gattazzo@dmsa.unipd.it
space V. We thus have the birationality of the m-canonical transformation if and only if $m \geqslant 6$. A desingularization of V has the birational invariants $q_{1}=q_{2}=0, p_{g}=P_{1}=3, P_{2}=7, P_{3}=13, P_{4}=22, P_{5}=34$, $P_{6}=51$.

We define double space of degree $2 n$ the projective closure in \mathbb{P}^{4} of the affine hypersurface given by $t^{2}=f_{2 n}(x, y, z)$, being $f_{2 n}(x, y, z)$ a polynomial of degree $2 n$; the surface of equation $f_{2 n}(x, y, z)=0$ is the branch locus of the double space.

We must bear in mind that a double plane with a branch curve of degree 10 with a singular [5,5] point on it is affinely represented by an equation of the type $z^{2}+y^{5}+\cdots+x^{10}=0$. In the following paragraphs, said situation will be generalized by constructing a double space affinely given by an equation of the type $t^{2}+z^{6}+\cdots+x^{12}+\cdots+y^{12}=0$.
M. Chen [C] and S. Lee [L] proved that if the canonical divisor K of a threefold is «nef» and $\left(K^{3}\right)$ is positive, then the m-canonical transformation is birational for $m \geqslant 6$. In the proposed example the said properties are not simultaneously satisfied, but the birationality of the m-canonical transformation holds true for $m \geqslant 6$.

In this paper we consider surfaces and threefolds on the field \mathbb{C} of the complex numbers and we'll write \mathbb{P}^{N} instead of $\mathbb{P}_{\mathrm{C}}^{N}$.

1. Example of a double plane S of degree 10 in \mathbb{P}^{3} whose m-canonical transformation is birational if and only if $m \geqslant 5$.

1.1. Description of S.

Let us choose a generic curve C in the linear system of curves in \mathbb{P}^{2} defined by

$$
F_{10}\left(X_{0}, X_{1}, X_{2}\right)=a X_{0}^{5} X_{2}^{5}+b X_{0} X_{2}^{9}+c X_{1}^{10}+d X_{2}^{10}
$$

According to Bertini theorem, C has its unique singularity at the point $A_{0}=(1,0,0)$. To be more precise, C has a [5,5] point at A_{0}, i.e. a 5-ple point with an infinitely near 5 -ple point. By using the affine coordinates

$$
x=\frac{X_{1}}{X_{0}}, \quad y=\frac{X_{2}}{X_{0}}, \quad z=\frac{X_{3}}{X_{0}}
$$

we obtain the polynomial

$$
f_{10}(x, y)=a y^{5}+b y^{9}+c x^{10}+d y^{10}
$$

and hence the double plane of affine equation $z^{2}=f_{10}(x, y)$. Let S be its projective closure in \mathbb{P}^{3} :

$$
S: X_{0}^{8} X_{3}^{2}-a X_{0}^{5} X_{2}^{5}-b X_{0} X_{2}^{9}-c X_{1}^{10}-d X_{2}^{10}=0 .
$$

S is normal and its singularities are the points $A_{3}=(0,0,0,1)$ and $A_{0}=(1,0,0,0)$. To be more precise:

- S has an 8-ple point at A_{3} and four double curves $r_{1}, r_{2}, r_{3}, r_{4}$ infinitely near in the next neighbourhoods;
- S has a double point at A_{0} with a double curve r_{5}, a double point P and again two double curves r_{6} and r_{7} infinitely near, in the next neighbourhoods.

1.2. Birationality of the m-canonical transformation for $m \geqslant 5$.

We state the birationality of the m-canonical transformation, $m \geqslant 5$, using the theory of adjoints of Enriques. This theory has recently been revised by E. Stagnaro in $\left[\mathrm{S}_{2}\right]$. We keep the same nomenclature and notations as are used in said paper. In our examples all the singularities satisfy the hypothesis assumed in $\left[\mathrm{S}_{2}\right]$.

The properties of a double plane are well known, but it may be useful to mention the ones that will be generalized to the hypersurface (double space) in \mathbb{P}^{4} that we construct later on.

It is maybe less well known, however see $[\mathrm{E}],\left[\mathrm{S}_{1}\right],\left[\mathrm{S}_{2}\right]$ (a detailed calculation of the bicanonical adjoints is given in $\left[\mathrm{S}_{1}\right]$, that the m-canonical adjoints to a double plane of affine equation $S: z^{2}=f_{2 n}(x, y)$, with a nonsingular branch curve $f_{2 n}(x, y)=0$, are:

$$
\phi_{m(n-3)}(x, y)+z \phi_{(m-1) n-3 m}(x, y)=0,
$$

where $\phi_{i}(x, y)$ denotes a polynomial of degree i in x, y.
In compliance with $\left[\mathrm{S}_{2}\right]$, let us call the m-canonical adjoints defined by $\phi_{m(n-3)}(x, y)=0$ as global and the m-canonical adjoints defined by $z \phi_{(m-1) n-3 m}(x, y)=0$ as non-global.

Let us emphasize the following facts.

1. The m-canonical transformation $\varphi_{|m K|}$ coincides (on an open set), up to isomorphisms, with the rational transformation $\psi_{m \mid S}$ pro-
duced by the linear system of the m-canonical adjoints restricted to the double plane S (see $\left[\mathrm{S}_{2}\right]$, section 16).
2. If we want $\psi_{m \mid S}$ to be birational, it is necessary (but generally not sufficient) for at least one of the m-canonical adjoints to be of the kind $z \phi_{(m-1) n-3 m}(x, y)=0$. Conversely, the transformation is generically $2: 1$, at most.
3. It is possible to prove (but we omit the demonstration) that in every m-canonical adjoint, $m \leqslant 4$, the «z» coefficient vanishes as soon as the branch curve has a $[5,5]$ point on it.
4. From 2 and 3 it follows for $m \leqslant 4$ that $\psi_{m \mid S}$, so $\varphi_{|m K|}$, cannot be birational. Moreover, one can prove directly that $\psi_{5 \mid S}$ is birational and also that $\psi_{m \mid S}$ is birational for $m \geqslant 5$, because p_{g} is positive.

The idea for generalizing all this to double spaces is to transfer the properties 1, 2, 3 and 4 to a suitable double space. As a result, in the case of our example at least, the birationality holds true if and only if $m \geqslant 6$.

2. Example of a double space V of degree 12 in \mathbb{P}^{4}, whose m-canonical transformation is birational if and only if $m \geqslant 6$.

2.1. Description of V.

To extend the foregoing situation to \mathbb{P}^{4}, let S be a generic surface in the linear system of surfaces in \mathbb{P}^{3} defined by

$$
F_{12}\left(X_{0}, X_{1}, X_{2}, X_{3}\right)=a X_{0}^{6} X_{3}^{6}+b X_{0} X_{3}^{11}+c X_{1}^{12}+d X_{2}^{12}+e X_{3}^{12}
$$

According to Bertini theorem, S has a unique singularity at the point $A_{0}=(1,0,0,0)$. To be more specific, S has a 6 -ple point at A_{0} with an infinitely near 6 -ple curve. By using the affine coordinates

$$
x=\frac{X_{1}}{X_{0}}, \quad y=\frac{X_{2}}{X_{0}}, \quad z=\frac{X_{3}}{X_{0}}, \quad t=\frac{X_{4}}{X_{0}}
$$

we obtain the polynomial

$$
f_{12}(x, y, z)=a z^{6}+b z^{11}+c x^{12}+d y^{12}+e z^{12}
$$

and hence the hypersurface of affine equation $t^{2}=f_{12}(x, y, z)$.

Let V be its projective closure in \mathbb{P}^{4} :

$$
V: X_{0}^{10} X_{4}^{2}-a X_{0}^{6} X_{3}^{6}-b X_{0} X_{3}^{11}-c X_{1}^{12}-d X_{2}^{12}-e X_{3}^{12}=0 .
$$

We call V a double space, according to our definition.
V is normal and only has singularities at $A_{4}=(0,0,0,0,1)$ and at $A_{0}=(1,0,0,0,0)$. To be more precise:

- V has a 10 -ple point at A_{4} with 5 double surfaces $\alpha_{1}, \ldots, \alpha_{5}$ infinitely near, in the next neighbourhoods,
- V has a double point at A_{0} with 2 double surfaces $\alpha_{6}, \alpha_{7}, 1$ double curve s, and 2 double surfaces α_{8}, α_{9} infinitely near, in the next neighbourhoods.

2.2. Computation of $p_{g}=P_{1}$ and P_{m} of V.

Now we calculate the genus and plurigenera of V, i.e.

$$
P_{m}=\operatorname{dim}_{\mathbb{C}} H^{0}\left(X, \mathcal{O}_{X}\left(m K_{X}\right)\right)=\operatorname{dim}\left|m K_{X}\right|+1, \quad m \geqslant 1, \quad p_{g}=P_{1},
$$

where X denotes a nonsingular model of V.
The path chosen for constructing X consists in two sequences of relations owing to the singularities of V at A_{4} and A_{0}.

To solve the singularity at A_{4} we have the following sequence of blow-ups:

$$
\begin{equation*}
V_{6} \subset \mathbb{P}_{6} \xrightarrow{\pi_{6}} \mathbb{P}_{5} \xrightarrow{\pi_{5}} \mathbb{P}_{4} \xrightarrow{\pi_{4}} \mathbb{P}_{3} \xrightarrow{\pi_{3}} \mathbb{P}_{2} \xrightarrow{\pi_{2}} \mathbb{P}_{1} \mathbb{T}_{1} \mathbb{P}^{4} \supset V \tag{1}
\end{equation*}
$$

where π_{1} denotes the blow-up of \mathbb{P}^{4} at A_{4} and $\pi_{i}(2 \leqslant i \leqslant 6)$ is the blowup of \mathbb{P}_{i-1} along α_{i-1}. From (1) the relations follow:

$$
\left\{\begin{array} { c }
{ K _ { \mathrm { P } _ { 1 } } = \pi _ { \hat { 1 } } ^ { * } (K _ { \mathrm { P } ^ { 4 } }) + 3 E _ { A _ { 4 } } } \\
{ V _ { 1 } = \pi _ { \hat { 1 } } ^ { * } (V) - 1 0 E _ { A _ { 4 } } }
\end{array} \quad \left\{\begin{array}{c}
K_{\mathrm{P}_{i}}=\pi_{i}^{*}\left(K_{\mathrm{P}_{i-1}}\right)+E_{\alpha_{i-1}} \\
V_{i}=\pi_{i}^{*}\left(V_{i-1}\right)-2 E_{\alpha_{i-1}}
\end{array} \quad(2 \leqslant i \leqslant 6),\right.\right.
$$

where $E_{A_{4}}, E_{\alpha_{i}}$ denote the exceptional divisors of the blow-ups at A_{4} and α_{i} and V_{i} denotes the strict transformation of V_{i-1}.

To solve the singularity at A_{0} we have the following sequence of blow-ups:

$$
\begin{equation*}
V_{12} \subset \mathbb{P}_{12} \xrightarrow{\pi_{12}} \mathbb{P}_{11} \xrightarrow{\pi_{11}} \mathbb{P}_{10} \xrightarrow{\pi_{10}} \mathbb{P}_{9} \xrightarrow{\pi_{9}} \mathbb{P}_{8} \xrightarrow{\pi_{8}} \mathbb{P}_{7}{ }^{\pi_{7}} \mathbb{P}_{6} \supset V_{6} \tag{2}
\end{equation*}
$$

(in the following V_{12} will be X), where π_{7} is the blow-up of \mathbb{P}_{6} at A_{0}, π_{8} and π_{9} are the blow-ups of \mathbb{P}_{7} and \mathbb{P}_{8} along α_{6} and α_{7}, π_{10} is the blow-up of \mathbb{P}_{9} along s and finally π_{11} and π_{12} are the blow-ups of \mathbb{P}_{10} and \mathbb{P}_{11} along
α_{8} and α_{9}. From (2) we can say that:

$$
\begin{array}{ll}
\left\{\begin{array}{c}
K_{\mathrm{P}_{7}}=\pi_{7}^{*}\left(K_{\mathrm{P}_{6}}\right)+3 E_{A_{0}} \\
V_{7}=\pi_{7}^{*}\left(V_{6}\right)-2 E_{A_{0}}
\end{array}\right. & \left\{\begin{array}{c}
K_{\mathrm{P}_{8}}=\pi_{8}^{*}\left(K_{\mathrm{P}_{7}}\right)+E_{\alpha_{6}} \\
V_{8}=\pi_{8}^{*}\left(V_{7}\right)-2 E_{\alpha_{6}}
\end{array}\right. \\
\left\{\begin{array}{c}
K_{\mathrm{P}_{9}}=\pi_{9}^{*}\left(K_{\mathrm{P}_{8}}\right)+E_{\alpha_{7}} \\
V_{9}=\pi_{9}^{*}\left(V_{8}\right)-2 E_{\alpha_{7}}
\end{array}\right. & \left\{\begin{array}{c}
K_{\mathrm{P}_{10}}=\pi_{10}^{*}\left(K_{\mathrm{P}_{9}}\right)+2 E_{s} \\
V_{10}=\pi_{10}^{*}\left(V_{9}\right)-2 E_{s}
\end{array}\right. \\
\left\{\begin{aligned}
K_{\mathrm{P}_{11}}=\pi_{11}^{*}\left(K_{\mathrm{P}_{10}}\right)+E_{\alpha_{8}} \\
V_{11}=\pi_{11}^{*}\left(V_{10}\right)-2 E_{\alpha_{8}}
\end{aligned}\right. & \left\{\begin{array}{r}
K_{\mathrm{P}_{12}}=\pi_{12}^{*}\left(K_{\mathrm{P}_{11}}\right)+E_{\alpha_{9}} \\
X=V_{12}=\pi_{12}^{*}\left(V_{11}\right)-2 E_{\alpha_{9}},
\end{array}\right.
\end{array}
$$

where $E_{A_{0}}, E_{\alpha_{i}}$ and E_{s} denote the exceptional divisors of the blow-ups at A_{0}, α_{i} and s.

Because X is nonsingular, we can apply the adjunction formula that states: if D is a divisor linearly equivalent to $K_{\mathrm{P}_{12}}+X$, i.e. $D \equiv K_{\mathrm{P}_{12}}+X$, and if $D_{\mid X}$ is defined, then $D_{\mid X}=K_{X}$, where K_{X} is a canonical divisor on X.

Substituting from the above relations, we obtain

$$
\begin{equation*}
K_{\mathrm{P}_{12}}+X= \tag{3}
\end{equation*}
$$

$$
\begin{aligned}
& \pi_{12}^{*}\left(\pi _ { 1 1 } ^ { * } \left(\pi _ { 1 0 } ^ { * } \left(\pi _ { 9 } ^ { * } \left(\pi _ { 8 } ^ { * } \left(\pi _ { 7 } ^ { * } \left(\pi _ { 6 } ^ { * } \left(\pi _ { 5 } ^ { * } \left(\pi _ { 4 } ^ { * } \left(\pi _ { 3 } ^ { * } \left(\pi_{2}^{*}\left(\pi_{1}^{*}\left(K_{\mathrm{P}^{4}}+V\right)-7 E_{A_{4}}\right)-\right.\right.\right.\right.\right.\right.\right.\right.\right.\right. \\
& \left.\left.\left.\left.\left.\left.\left.\left.\left.\left.E_{\alpha_{1}}\right)-E_{\alpha_{2}}\right)-E_{\alpha_{3}}\right)-E_{\alpha_{4}}\right)-E_{\alpha_{5}}\right)+E_{A_{0}}\right)-E_{\alpha_{6}}\right)-E_{\alpha_{7}}\right)\right)-E_{\alpha_{8}}\right)-E_{\alpha_{9}}
\end{aligned}
$$

We now have $K_{\mathrm{P}^{4}} \equiv-5 H$ and $V \equiv 12 H$, where H is a hyperplane in P^{4}. If $\Phi_{7} \equiv 7 H$ denotes a hypersurface of degree 7 in \mathbb{P}^{4}, we deduce from (3)

$$
\begin{equation*}
K_{\mathbb{P}_{12}}+X \equiv \tag{4}
\end{equation*}
$$

$$
\begin{gathered}
\pi_{12}^{*}\left(\pi _ { 1 1 } ^ { * } \left(\pi _ { 1 0 } ^ { * } \left(\pi _ { 9 } ^ { * } \left(\pi _ { 8 } ^ { * } \left(\pi _ { 7 } ^ { * } \left(\pi _ { 6 } ^ { * } \left(\pi _ { 5 } ^ { * } \left(\pi_{4}^{*}\left(\pi_{3}^{*}\left(\pi_{2}^{*}\left(\pi_{1}^{*}\left(\Phi_{7}\right)-7 E_{A_{4}}\right)-E_{\alpha_{1}}\right)-E_{\alpha_{2}}\right)-\right.\right.\right.\right.\right.\right.\right.\right. \\
\left.\left.\left.\left.\left.\left.\left.\left.E_{\alpha_{3}}\right)-E_{\alpha_{4}}\right)-E_{\alpha_{5}}\right)+E_{A_{0}}\right)-E_{\alpha_{6}}\right)-E_{\alpha_{7}}\right)\right)-E_{\alpha_{8}}\right)-E_{\alpha_{9}}=D .
\end{gathered}
$$

We see from the adjunction formula that, if $D_{\mid X}$ is defined, then it is a canonical divisor K_{X}^{\prime} on X, i.e. $D_{\mid X}=K_{X}^{\prime} \equiv K_{X}$.

If we multiply (4) by the integer $m \geqslant 1$, we obtain

$$
\begin{equation*}
m\left(K_{\mathrm{P}_{12}}+X\right) \equiv \tag{5}
\end{equation*}
$$

$$
\begin{gathered}
\pi_{12}^{*}\left(\pi _ { 1 1 } ^ { * } \left(\pi _ { 1 0 } ^ { * } \left(\pi _ { 9 } ^ { * } \left(\pi _ { 8 } ^ { * } \left(\pi _ { 7 } ^ { * } \left(\pi _ { 6 } ^ { * } \left(\pi _ { 5 } ^ { * } \left(\pi _ { 4 } ^ { * } \left(\pi_{3}^{*}\left(\pi_{2}^{*}\left(\pi_{1}^{*}\left(\Phi_{7 m}\right)-7 m E_{A_{4}}\right)-m E_{\alpha_{1}}\right)-\right.\right.\right.\right.\right.\right.\right.\right.\right. \\
\left.\left.\left.\left.\left.\left.\left.\left.\left.m E_{\alpha_{2}}\right)-m E_{\alpha_{3}}\right)-m E_{\alpha_{4}}\right)-m E_{\alpha_{5}}\right)+m E_{A_{0}}\right)-m E_{\alpha_{6}}\right)-m E_{\alpha_{7}}\right)\right)-m E_{\alpha_{8}}\right)-m E_{\alpha_{9}}= \\
m D=D^{\prime},
\end{gathered}
$$

where $\Phi_{7 m}$ is a hypersurface of degree $7 m$ in \mathbb{P}^{4}.

As before we obtain $D_{\mid X}^{\prime} \equiv m K_{X}$.
Let $\sigma_{\mid X}: X \rightarrow V$, where $\sigma=\pi_{12} \circ \ldots \circ \pi_{2} \circ \pi_{1}$, be the desingularization of V described.

Using the theory of adjoints and pluriadjoints, we can calculate $p_{g}=P_{1}$ and P_{m}; again we use the nomenclature and notations of $\left[\mathrm{S}_{2}\right]$.
$\Phi_{7 m}, m \geqslant 1$, is an m-canonical adjoint to V (with respect to σ) if $D_{\mid X}^{\prime}$ is effective, i.e. $D_{\mid X}^{\prime} \geqslant 0$ (see $\left[\mathrm{S}_{2}\right]$, section 2).

We see first how the presence of the singular point A_{4} characterizes the canonical and m-canonical adjoints.

The condition $\pi_{1}^{*}\left(\Phi_{7}\right)-7 E_{A_{4}} \geqslant 0$ in (4), given by A_{4}, says that if Φ_{7} is a global canonical adjoint, then A_{4} must be a 7-ple point for Φ_{7} itself, i.e. Φ_{7} is defined by a form F_{7} in $X_{0}, X_{1}, X_{2}, X_{3}$. The further condition given by A_{4}

$$
\pi_{6}^{*}\left(\pi_{5}^{*}\left(\pi_{4}^{*}\left(\pi_{3}^{*}\left(\pi_{2}^{*}\left(\pi_{1}^{*}\left(\Phi_{7}\right)-7 E_{A_{4}}\right)-E_{\alpha_{1}}\right)-E_{\alpha_{2}}\right)-E_{\alpha_{3}}\right)-E_{\alpha_{4}}\right)-E_{\alpha_{5}} \geqslant 0
$$

(see (4)), implies that it is

$$
F_{7}\left(X_{0}, X_{1}, X_{2}, X_{3}, X_{4}\right)=X_{0}^{5} F_{2}\left(X_{0}, X_{1}, X_{2}, X_{3}\right)
$$

The condition

$$
\begin{gathered}
{\left[\pi _ { 6 } ^ { * } \left(\pi_{5}^{*}\left(\pi_{4}^{*}\left(\pi_{3}^{*}\left(\pi_{2}^{*}\left(\pi_{1}^{*}\left(\Phi_{7 m}\right)-7 m E_{A_{4}}\right)-m E_{\alpha_{1}}\right)-m E_{\alpha_{2}}\right)-m E_{\alpha_{3}}\right)-\right.\right.} \\
\left.\left.m E_{\alpha_{4}}\right)-m E_{\alpha_{5}}\right]_{\mid V_{6}} \geqslant 0
\end{gathered}
$$

imposed by A_{4} on the m-canonical adjoints (see (5)) implies that

$$
\begin{gathered}
F_{7 m}\left(X_{0}, X_{1}, X_{2}, X_{3}, X_{4}\right)=X_{0}^{5 m}\left[X_{0}^{5} X_{4} F_{2 m-6}\left(X_{0}, X_{1}, X_{2}, X_{3}\right)+\right. \\
\left.F_{2 m}\left(X_{0}, X_{1}, X_{2}, X_{3}\right)\right] .
\end{gathered}
$$

So we have a situation much the same as the double plane. To be more precise, the m-canonical adjoints to a double space of affine equation $t^{2}=f_{2 n}(x, y, z)$, with a nonsingular branch locus $f_{2 n}(x, y, z)=0$, are:

$$
\phi_{m(n-4)}(x, y, z)+t \phi_{(m-1) n-4 m}(x, y, z)=0
$$

where $\phi_{i}(x, y, z)$ denotes a polynomial of degree i in x, y, z.
Here again, let us call the m-canonical adjoints given by $\phi_{m(n-4)}(x, y, z)=0$ global and those given by $t \phi_{(m-1) n-4 m}(x, y, z)=0$ non-global.

Now let us examine the point A_{0}, which is a singular point for the double space because there is a 6 -ple point on its branch locus.

From (4) it must be that

$$
F_{7}\left(X_{0}, X_{1}, X_{2}, X_{3}, X_{4}\right)=X_{0}^{5} X_{3}\left(a_{1} X_{1}+a_{2} X_{2}+a_{3} X_{3}\right)
$$

Let W_{7}^{\prime} be the vector space of the forms defining global canonical adjoints and \mathcal{W}_{7}^{\prime} be the vector space of the forms defining canonical adjoints. Since $W_{7}^{\prime}=\mathcal{W}_{7}^{\prime}$ and $p_{g}=\operatorname{dim}\left|K_{X}\right|+1$ (see $\left[\mathrm{S}_{2}\right]$, section 3), it follows that

$$
p_{g}=3
$$

We can move on now to consider the point A_{0} for calculating the m canonical adjoints ($m>1$). The conditions imposed by A_{0} produce different results, depending on the value of m.

For $m<6$ the vector spaces of the forms defining global m-canonical adjoints, $W_{7 m}^{\prime}$, and those of the forms defining m-canonical adjoints, $\mathcal{W}_{7 m}^{\prime}$, coincide; but the equality does not hold true for $m=6$. Indeed, being an m-canonical adjoint implies that

$$
\Phi_{7 m}: \phi_{m(6-4)}(x, y, z)+t \phi_{(m-1) 6-4 m}(x, y, z)=0
$$

must satisfy the condition (see (5)):

$$
\begin{gather*}
{\left[\pi _ { 1 2 } ^ { * } \left(\pi_{11}^{*}\left(\pi_{10}^{*}\left(\pi_{9}^{*}\left(\pi_{8}^{*}\left(\pi_{7}^{*}\left(\Phi_{7 m}\right)+m E_{A_{0}}\right)-m E_{\alpha_{6}}\right)-m E_{\alpha_{7}}\right)\right)-\right.\right.} \tag{6}\\
\left.\left.\left.m E_{\alpha_{8}}\right)-m E_{\alpha_{9}}\right)\right]_{\mid X} \geqslant 0 .
\end{gather*}
$$

Now, if $m<6$, the degree of the «t» coefficient is too low and it satisfies the condition (6) if and only if $\phi_{(m-1) 6-4 m}(x, y, z)$ vanishes. So, for $m<6, \Phi_{7 m}$ is an m-canonical adjoint if and only if it is defined by a form

$$
F_{7 m}\left(X_{0}, X_{1}, X_{2}, X_{3}, X_{4}\right)=X_{0}^{5 m} X_{3}^{m} F_{m}\left(X_{0}, X_{1}, X_{2}, X_{3}\right)
$$

i.e. if and only if $\Phi_{7 m}$ is really a global m-canonical adjoint.

To be more precise, we have

$$
\begin{gathered}
\mathcal{W} \mathcal{Y}_{14}^{\prime}=W_{14}^{\prime}=\left\{X _ { 0 } ^ { 1 0 } X _ { 3 } ^ { 2 } \left(b_{1} X_{0} X_{3}+b_{2} X_{1}^{2}+b_{3} X_{1} X_{2}+b_{4} X_{1} X_{3}+\right.\right. \\
\left.\left.+b_{5} X_{2}^{2}+b_{6} X_{2} X_{3}+b_{7} X_{3}^{2}\right), b_{i} \in \mathrm{C}\right\} ; \\
\mathcal{T} \mathcal{Y}_{21}^{\prime}=W_{21}^{\prime}=\left\{X _ { 0 } ^ { 1 5 } X _ { 3 } ^ { 3 } \left(b_{1} X_{0} X_{1} X_{3}+b_{2} X_{0} X_{2} X_{3}+\cdots\right.\right. \\
\left.\left.\cdots+b_{12} X_{2} X_{3}^{2}+b_{13} X_{3}^{3}\right), b_{i} \in \mathrm{C}\right\} ; \\
\mathcal{W} \mathcal{Y}_{28}^{\prime}=W_{28}^{\prime}=\left\{X _ { 0 } ^ { 2 0 } X _ { 3 } ^ { 4 } \left(b_{1} X_{0}^{2} X_{3}^{2}+b_{2} X_{0} X_{1}^{2} X_{3}+\cdots\right.\right. \\
\left.\left.\cdots+b_{21} X_{2} X_{3}^{3}+b_{22} X_{3}^{4}\right), b_{i} \in \mathrm{C}\right\} ; \\
\mathcal{W} \mathcal{Y}_{35}^{\prime}=W_{35}^{\prime}=\left\{X _ { 0 } ^ { 2 5 } X _ { 3 } ^ { 5 } \left(b_{1} X_{0}^{2} X_{1} X_{3}^{2}+b_{2} X_{0}^{2} X_{2} X_{3}^{2}+\cdots\right.\right. \\
\left.\left.\cdots+b_{33} X_{2} X_{3}^{4}+b_{34} X_{3}^{5}\right), b_{i} \in \mathrm{C}\right\} .
\end{gathered}
$$

If $m=6$, the degree of the «t» coefficient is $(m-1) 6-4 m=6$. This is the minimum that can satisfy condition (6) and we have the first non-global m-canonical adjoint which is affinely given by $t z^{6}=0$. To be more specific, $\Phi_{7 m}$ is an m-canonical adjoint $(m=6)$ if and only if it is defined by a form

$$
F_{42}\left(X_{0}, X_{1}, X_{2}, X_{3}, X_{4}\right)=X_{0}^{30}\left[X_{3}^{6} F_{6}\left(X_{0}, X_{1}, X_{2}, X_{3}\right)+X_{0}^{5} X_{3}^{6} X_{4}\right]
$$

and, in affine coordinates, it has the equation

$$
\phi_{42}(x, y, z, t)=z^{6} \phi_{6}(x, y, z)+t z^{6}=0
$$

In a detailed expression we obtain

$$
\begin{aligned}
& \mathcal{W}_{42}^{\prime}=\left\{X _ { 0 } ^ { 3 0 } X _ { 3 } ^ { 6 } \left(a X_{0}^{5} X_{4}+\right.\right. \\
& \left.\left.\quad+b_{1} X_{0}^{3} X_{3}^{3}+b_{2} X_{0}^{2} X_{1}^{2} X_{3}^{2}+\cdots+b_{49} X_{2} X_{3}^{5}+b_{50} X_{3}^{6}\right), a, b_{i} \in \mathrm{C}\right\} .
\end{aligned}
$$

So we have a non-global 6-canonical adjoint defined by the form $X_{0}^{35} X_{3}^{6} X_{4}$. In particular, the plurigenera $P_{i}=\operatorname{dim}\left|i K_{X}\right|+1, i \geqslant 1$ (see $\left[\mathrm{S}_{2}\right]$), are $p_{g}=P_{1}=3, \quad P_{2}=7, \quad P_{3}=13, \quad P_{4}=22, \quad P_{5}=34, \quad P_{6}=51$.

2.3. The m-canonical transformations $\varphi_{\left|m K_{X}\right|}, 1 \leqslant m \leqslant 5$.

In this paragraph, we prove that $\varphi_{\left|m K_{X}\right|}$ is a generically 2:1 map for $2 \leqslant m \leqslant 5$.

Let us consider the following triangle

where $\sigma_{\mid X}$ is the desingularization of V and $\psi_{m \mid V}$ is the rational transformation, restricted to V, defined by the linear system of bicanonical adjoints to V. The foregoing diagram is commutative because the divisors of $\left|m K_{X}\right|$ are of the kind

$$
\left[\pi_{12}^{*}\left(\pi_{11}^{*} \cdots\left(\pi_{1}^{*}\left(\Phi_{7 m}\right)-7 m E_{A_{4}}\right) \cdots-m E_{\alpha_{8}}\right)-m E_{\alpha_{9}}\right]_{\mid X} .
$$

To prove that $\varphi_{\left|m K_{X}\right|}$ is generically $2: 1$, it sufficies to consider such a transformation on an open set of $X . \sigma$ is a sequence of blow-ups and so it is an isomorphism outside the exceptional divisors of the single blowups; so, on an open set of $X, \sigma_{\mid X}$ is an isomorphism. As a result, to say that $\varphi_{\left|m K_{X}\right|}$ is generically $2: 1$ means that $\psi_{m \mid V}$ generically $2: 1$.

Now let us demonstrate that $\psi_{2 \mid V}$ is generically 2:1.
Bearing in mind that

$$
\begin{aligned}
& \mathscr{W}_{14}^{\prime}=W_{14}^{\prime}=\left\{X _ { 0 } ^ { 1 0 } X _ { 3 } ^ { 2 } \left(b_{1} X_{0} X_{3}+b_{2} X_{1}^{2}+b_{3} X_{1} X_{2}+\right.\right. \\
&\left.\left.+b_{4} X_{1} X_{3}+b_{5} X_{2}^{2}+b_{6} X_{2} X_{3}+b_{7} X_{3}^{2}\right), b_{i} \in \mathrm{C}\right\},
\end{aligned}
$$

we shall have

$$
\begin{array}{ccc}
V \subset \mathbb{P}^{4} & \stackrel{\psi_{2}}{\rightarrow} \mathbb{P}^{6} \\
\left(X_{0}, X_{1}, X_{2}, X_{3}, X_{4}\right) & \mapsto\left(Y_{0}, \ldots, Y_{6}\right)
\end{array}
$$

defined by

$$
\left\{\begin{array}{l}
Y_{0}=\left(X_{0}^{10} X_{3}^{2}\right) X_{0} X_{3} \\
Y_{1}=\left(X_{0}^{10} X_{3}^{2}\right) X_{1}^{2} \\
Y_{2}=\left(X_{0}^{10} X_{3}^{2}\right) X_{1} X_{2} \\
Y_{3}=\left(X_{0}^{10} X_{3}^{2}\right) X_{1} X_{3} \\
Y_{4}=\left(X_{0}^{10} X_{3}^{2}\right) X_{2}^{2} \\
Y_{5}=\left(X_{0}^{10} X_{3}^{2}\right) X_{2} X_{3} \\
Y_{6}=\left(X_{0}^{10} X_{3}^{2}\right) X_{3}^{2} .
\end{array}\right.
$$

Let $U=\mathbb{P}^{4}-\left\{X_{0}=X_{1}=X_{3}=0\right\}$ be the affine open set chosen in \mathbb{P}^{4}, with the coordinates

$$
x=\frac{X_{0}}{X_{1}}, \quad y=\frac{X_{2}}{X_{1}}, \quad z=\frac{X_{3}}{X_{1}}, \quad t=\frac{X_{4}}{X_{1}} .
$$

Let $T=\mathbb{P}^{6}-\left\{Y_{1}=Y_{3}=0\right\}$ be the affine open set in \mathbb{P}^{6} with the coordinates

$$
y_{1}=\frac{Y_{0}}{Y_{1}}, \quad y_{2}=\frac{Y_{2}}{Y_{1}}, \ldots, \quad y_{6}=\frac{Y_{6}}{Y_{1}} .
$$

We shall thus have

$$
\underset{(x, y, z, t)}{\psi_{2 \mid U}: U} \rightarrow \underset{\left(y_{1}, \ldots, y_{6}\right)}{\rightarrow}:\left\{\begin{array}{l}
y_{1}=x z \\
y_{2}=y \\
y_{3}=z \\
y_{4}=y^{2} \\
y_{5}=y z \\
y_{6}=z^{2} .
\end{array}\right.
$$

Let $\bar{P}=\left(\bar{y}_{1}, \ldots, \bar{y}_{6}\right)$ be a generic point of $\operatorname{Im} \psi_{2 \mid U}$; the fiber on \bar{P} is

$$
\psi_{2 \mid U}^{-1}(\bar{P})=\left\{(x, y, z, t):\left[\begin{array}{r}
x z=\bar{y}_{1} \\
y=\bar{y}_{2} \\
z=\bar{y}_{3} \\
y^{2}=\bar{y}_{4} \\
y z=\bar{y}_{5} \\
z^{2}=\bar{y}_{6}
\end{array}\right\}=\left\{(x, y, z, t):\left[\begin{array}{c}
x z=\bar{y}_{1} \\
y=\bar{y}_{2} \\
z=\bar{y}_{3}
\end{array}\right\} .\right.\right.
$$

The fiber on \bar{P} intersects $V_{U}=V \cap U$ at two points; indeed,

$$
\begin{aligned}
& V_{U} \cap \psi_{2 \mid U}^{-1}(\bar{P})=\left\{\begin{array}{l}
x^{10} t^{2}-a x^{6} z^{6}-b x z^{11}-c-d y^{12}-e z^{12}=0 \\
x z=\bar{y}_{1} \\
y=\bar{y}_{2} \\
z=\bar{y}_{3}
\end{array}\right. \\
& \left\{\begin{aligned}
&\left(\frac{\bar{y}_{1}}{\bar{y}_{3}}\right)^{10} t^{2}=a \bar{y}_{1}^{6}+b \bar{y}_{1} \bar{y}_{3}^{10}+c+d \bar{y}_{2}^{12}+e \bar{y}_{3}^{12} \\
& y=\bar{y}_{2} \\
& z=\bar{y}_{3} \\
& x=\frac{\bar{y}_{1}}{\bar{y}_{3}} .
\end{aligned}\right.
\end{aligned}
$$

This means that $\psi_{2 \mid V}: V \rightarrow \mathbb{P}^{6}$, so $\varphi{ }_{\left|2 K_{X}\right|}: X \rightarrow \mathbb{P}^{6}$, is generically $2: 1$. In particular, we find that V is of general type (Kodaira dimension 3). It follows that $\varphi_{\left|m K_{X}\right|}, m>2$, is also generically $n: 1$, with $n \leqslant 2$.

Let us consider an effective canonical divisor \bar{K}, which exists because p_{g} is positive; putting $n \bar{K}+\left|2 K_{X}\right|=\left\{n \bar{K}+D, D \in\left|2 K_{X}\right|\right\}$ for $n=1$, $2, \ldots$ ($n \bar{K}$ fixed part of the linear system), we consider the linear systems

$$
\bar{K}+\left|2 K_{X}\right| \subset\left|3 K_{X}\right|, 2 \bar{K}+\left|2 K_{X}\right| \subset\left|4 K_{X}\right|, \ldots,(m-2) \bar{K}+\left|2 K_{X}\right| \subset\left|m K_{X}\right|, \ldots
$$

All these linear systems $\bar{K}+\left|2 K_{X}\right|, 2 \bar{K}+\left|2 K_{X}\right|, \ldots$ give rise to rational transformations which are generically $n: 1, n \leqslant 2$, and so are the transformations $\varphi_{\left|m K_{X}\right|}, m \geqslant 2$.

If $2 \leqslant m \leqslant 5$, the absence of any non-global m-canonical adjoint implies that $n=2$, which is the statement.

Remark 1. We said previously that the canonical transformation $\varphi_{\left|K_{X}\right|}$ coincides, up to isomorphisms, with $\psi_{1 \mid V}$ on an open set. We
can now note that $\psi_{1 \mid V}$ is generically the projection map of V from the straight line $X_{1}=X_{2}=X_{3}=0$ on a plane.

2.4. The 6-canonical transformation $\varphi_{\left|6 K_{X}\right|}$.

Our aim is to prove that $\varphi_{\left|6 K_{X}\right|}$ is birational. Unlike the foregoing cases, this will be based on the existence of the non-global 6-canonical adjoint defined by the form $G_{7}=X_{0}^{35} X_{3}^{6} X_{4}$.

As we did previously, we choose a canonical effective divisor \bar{K} (e.g. let \bar{K} be given by $L=X_{0}^{5} X_{3} X_{1}$) and we construct the linear system $4 \bar{K}+\left|2 K_{X}\right| \subset\left|6 K_{X}\right|$. The linear system $4 \bar{K}+\left|2 K_{X}\right| \subset\left|6 K_{X}\right|$ defines a rational transformation which coincides with $\varphi_{\left|2 K_{X}\right|}$ on an open set, so it defines a generically 2:1 transformation. Now let's consider the nonglobal 6-canonical adjoint given by G_{7} and let \bar{D} be the divisor on X defined by it. Note that $\bar{D} \equiv 6 K_{X}$. Let Σ be the linear system

$$
\left\{L^{4}\left(\lambda_{0} F_{0}+\cdots+\lambda_{6} F_{6}\right)+\lambda_{7} G_{7}=0, \lambda_{i} \in \mathbb{C}\right\}
$$

with $F_{0}=\left(X_{0}^{10} X_{3}^{2}\right) X_{0} X_{3}, F_{1}=\left(X_{0}^{10} X_{3}^{2}\right) X_{1}^{2}, F_{2}=\left(X_{0}^{10} X_{3}^{2}\right) X_{1} X_{2}, F_{3}=$ $=\left(X_{0}^{10} X_{3}^{2}\right) X_{1} X_{3}, F_{4}=\left(X_{0}^{10} X_{3}^{2}\right) X_{2}^{2}, F_{5}=\left(X_{0}^{10} X_{3}^{2}\right) X_{2} X_{3}, F_{6}=\left(X_{0}^{10} X_{3}^{2}\right) X_{3}^{2}$. Note that F_{0}, \ldots, F_{6} span $W_{14}^{\prime}=\mathcal{W}_{14}^{\prime}$ and $L^{4} F_{0}, \ldots, L^{4} F_{6}, G_{7}$ span a vector subspace of $\mathcal{W}_{42}^{\prime}$. We obtain $4 \bar{K}+\left|2 K_{X}\right| \subset \Sigma \subset\left|6 K_{X}\right|$. The linear system Σ defines a rational transformation

$$
\begin{array}{ccc}
V \subset \mathbb{P}^{4} & \xrightarrow{\psi} & \mathbb{P}^{7} \\
\left(X_{0}, X_{1}, X_{2}, X_{3}, X_{4}\right) & \mapsto & \left(Y_{0}, \ldots, Y_{7}\right)
\end{array}
$$

given by:

$$
\left\{\begin{array} { l }
{ Y _ { 0 } = (X _ { 0 } ^ { 5 } X _ { 3 } X _ { 1 }) ^ { 4 } (X _ { 0 } ^ { 1 0 } X _ { 3 } ^ { 2 }) X _ { 0 } X _ { 3 } } \\
{ Y _ { 1 } = (X _ { 0 } ^ { 5 } X _ { 3 } X _ { 1 }) ^ { 4 } (X _ { 0 } ^ { 1 0 } X _ { 3 } ^ { 2 }) X _ { 1 } ^ { 2 } } \\
{ Y _ { 2 } = (X _ { 0 } ^ { 5 } X _ { 3 } X _ { 1 }) ^ { 4 } (X _ { 0 } ^ { 1 0 } X _ { 3 } ^ { 2 }) X _ { 1 } X _ { 2 } } \\
{ Y _ { 3 } = (X _ { 0 } ^ { 5 } X _ { 3 } X _ { 1 }) ^ { 4 } (X _ { 0 } ^ { 1 0 } X _ { 3 } ^ { 2 }) X _ { 1 } X _ { 3 } }
\end{array} \left\{\begin{array}{l}
Y_{4}=\left(X_{0}^{5} X_{1}\right)^{4}\left(X_{0}^{10} X_{3}^{2}\right) X_{2}^{2} \\
Y_{5}=\left(X_{0}^{5} X_{3} X_{1}\right)^{4}\left(X_{0}^{10} X_{3}^{2}\right) X_{2} X_{3} \\
Y_{6}=\left(X_{0}^{5} X_{3} X_{1}\right)^{4}\left(X_{0}^{10} X_{3}^{2}\right) X_{3}^{2} \\
Y_{7}=X_{0}^{35} X_{3}^{6} X_{4}
\end{array}\right.\right.
$$

Let us now consider the open affine set $U=\mathbb{P}^{4}-\left\{X_{0}=X_{1}=X_{3}=0\right\}$ in \mathbb{P}^{4} with the coordinates

$$
x=\frac{X_{0}}{X_{1}}, \quad y=\frac{X_{2}}{X_{1}}, \quad z=\frac{X_{3}}{X_{1}}, \quad t=\frac{X_{4}}{X_{1}}
$$

and the open affine set $T=\mathbb{P}^{7}-\left\{Y_{1}=Y_{3}=0\right\}$ in \mathbb{P}^{7} with the coordinates

$$
y_{1}=\frac{Y_{0}}{Y_{1}}, \ldots, y_{7}=\frac{Y_{7}}{Y_{1}} .
$$

We obtain:

$$
\underset{(x, y, z, t) \mapsto\left(y_{1}, \ldots, y_{7}\right)}{\psi_{\mid U}: U}:\left\{\begin{array}{l}
y_{1}=x z \\
y_{2}=y \\
y_{3}=z \\
y_{4}=y^{2} \\
y_{5}=y z \\
y_{6}=z^{2} \\
y_{7}=x^{5} t .
\end{array}\right.
$$

$\psi_{\mid U}$ is $1: 1$. Indeed let $P_{1}\left(x_{1}, y_{1}, z_{1}, t_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}, z_{2}, t_{2}\right)$ be two points on U such that $\psi_{\mid U}\left(P_{1}\right)=\psi_{\mid U}\left(P_{2}\right)$, i.e.

$$
x_{1} z_{1}=x_{2} z_{2}, \quad y_{1}=y_{2}, \quad z_{1}=z_{2}, \ldots, \quad x_{1}^{5} t_{1}=x_{2}^{5} t_{2} .
$$

From $y_{1}=y_{2}$ and $z_{1}=z_{2}$, it follows that $x_{1}=x_{2}$ and finally that $t_{1}=t_{2}$. This proves that ψ, so $\varphi_{\left|6 K_{X}\right|}$ is birational.

The birationality of $\varphi_{\left|m K_{x}\right|}, m>6$, follows from this last fact. Indeed, let us consider an effective canonical divisor \bar{K}, and let us construct the linear systems $\bar{K}+\left|6 K_{X}\right| c\left|7 K_{X}\right|, 2 \bar{K}+\left|6 K_{X}\right| c\left|8 K_{X}\right|, \ldots$. All these linear systems give rise to rational transformations which are generically 1:1. So all the transformations $\varphi_{\left|m K_{x}\right|}, m \geqslant 6$, are birational.

Remark 2. Note that if we «delete» $y_{7}=x^{5} t$ in the expression of $\psi_{\mid U}: U \rightarrow T$, we obtain the $\psi_{2 \mid U}$ of section 2.3. So we have obtained all the informations we need on the pluricanonical transformations only considering the linear system of bicanonical adjoints to V and the nonglobal 6-canonical adjoint given by $X_{0}^{35} X_{3}^{6} X_{4}$.

2.5. Irregularities of V.

We have to show that the following two relations hold true:

$$
q_{1}(X)=\operatorname{dim}_{\mathrm{C}} H^{1}\left(X, \mathcal{O}_{X}\right)=0, \quad q_{2}(X)=\operatorname{dim}_{\mathrm{C}} H^{2}\left(X, \mathcal{O}_{X}\right)=0 .
$$

To do this, we use the arguments of $\left[\mathrm{S}_{2}\right]$, section 4 . We consider the surface of degree $12 S=\sigma^{-1}(H \cap V)$, where H is the generic hyperplane in P^{4}. Since A_{0} and A_{4} are isolated singular points on V, then $H \cap V$, and so \mathcal{S}, is nonsingular. Thus it is well known (and easy to see, cf. for instance
formula (36)), that $q(S)=0$. We deduce from remark 8 that

$$
q_{1}(X)=q(S)=0
$$

In addition from formula (36), we have

$$
q_{2}(X)=p_{g}(X)+p_{g}(S)-\operatorname{dim}_{\mathrm{C}} W_{8}
$$

where W_{8} is the vector space of the forms defining global adjoints to V in P^{4} of degree 8 . Thus

$$
q_{2}(X)=3+165-168=0 .
$$

This proves the statement.

REFERENCES

[B] E. Bombieri, Canonical Models of Surfaces of General Type, IHÉS, 42 (1973), pp. 447-495.
[C] M. Chen, On pluricanonical maps for threefolds of general type, J. Math. Soc. Japan, 50 (1998), pp. 615-621.
[E] F. Enriques, Le Superficie Algebriche, Ed. Zanichelli, Bologna 1949.
[L] S. Lee, Remarks on the pluricanonical and the adjoint linear series on projective threefolds, Comm. in Algebra, 27 (1999), pp. 4459-4476.
$\left[\mathrm{S}_{1}\right]$ E. Stagnaro, Canonical and pluricanonical adjoints III: elliptic double planes, R.T. n. 26, Dip. di Metodi e Modelli Mat., Università di Padova (1992).
[S_{2}] E. Stagnaro, Adjoints and pluricanonical adjoints to an algebraic hypersurface, Annali di Matematica, 180 (2001), pp. 147-201.

Manoscritto pervenuto in redazione il 20 febbraio 2001

