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Differential Equations and Maximal Ideals
on the Weyl Algebra A2 (C).

GIULIANO BRATTI (*) - MASAKO TAKAGI (**)

ABSTRACT - We characterize the differential operators S4¯/¯x1b ¯/¯y1g such
that the ideal A2 (C) S is maximal in A2 (C).

1. Introduction.

Let An 4C[x1 , R , xn ]a¯/¯x1 , R , ¯/¯xn b be the Weyl algebra, in n
variables, over the complex field C . In [3], the author proves, among
other things, that the differential operators

¯1 1 !
i42

n

(xi ai (x1 )1bi (x1 ) ) ¯i 1 !
i42

n

hi (x1 ) xi �An(1.1)

where: ¯i 4¯/¯xi ; the polynomials ai , bi and hi belong to C[x1 ]; the ai’s
are linearly independent on the field of rational numbers Q , and more-
over we have

deg (ai ) D max ]deg (bi ), deg (hi )( F0 ,

generate left maximal ideals in An (Th. 3.6, page 412.)
The operators of type (1.1) generalize the following operator, of [5]:

P4x1 1¯1g!
i42

n

l i xi ¯ih1 !
i42

n

(xi 2¯i ) �An ,(1.2)

(*) Indirizzo degli AA.: Dipartimento di Matematica Pura ed Applicata, Uni-
versità di Padova, Via Belzoni 7, 35131 Padova, Italy.



Giuliano Bratti - Masako Takagi210

where the l i’s in C are linearly independent over Q , which generates
a right maximal ideal in An (1).

Always in [5], page 627, it is proved that: also the operator,

x2 1x1 ¯1 ¯2 1l(¯ 1
2 x1 2m¯1 )1x1 �A2 ,(1.3)

with l�C0Q and m�Z , generates a right maximal ideal in A2 ; and in
[3], page 416, it is asked if it is possible to extend Theorem 3.6 in order to
include the example 1.3.

This paper studies the operators of type (1.1) and (1.3) in A2 . The
main result (Theorem 2.2 in the following section) is as follows:

Let S4¯x 1b Q¯y 1g�A2 4C[x , y]a¯x , ¯yb, (or S4¯y 1b Q¯x 1

1g�A2 ). Then, we have that A2 S is maximal in A2 if and only if:
(R�C[x , y]a¯y b (or (R�C[x , y]a¯x b), it follows that

[S , R] 4SR2RS�C[x , y] R .(1.4)

In the case that b�C[x , y] with degy b41, namely, in the case of
operators of type (1.1), one can easily rephrase the maximality of A2 S as
follows (Theorem 2.4 of the following section):

Let S4¯x 1b Q¯y 1g�A2 4C[x , y]a¯x , ¯yb, and let b4b 0 1b 1 y ,
b 1 �C[x] 0]0(. Then, A2 S is maximal in A2 if and only if: the following
equations

¯xg p

q
h1b ¯yg p

q
h1 (¯y b) g p

q
h4¯y g ;

¯xg r

s
h2b 1g r

s
h42 b 0

don’t have any solution respectively in C(x , y) and in C(x).

Finally, in the third section, utilizing Corollary 3.1, a corollary of
Theorem 2.2, we will give a somewhat simplified proof of the following
result [5], Prop. 2.2 page 627:

(1) If F : AnKAn is Fourier transformation, then we have F (xi ) 42¯i and
F (¯i ) 4xi . Moreover, if R : AnKAn is the standard transposition, R(x a ¯b ) 4
4 (21)NbN ¯b x a , then we obtain, in A2 , F (1 . 2 )R4¯11 (11lx1 x2 ) ¯21x2 , which
is of type (1.1).
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The operators

F (1.3)R4¯y 1 (11xy1lx 2 ) ¯x 1l(m12) x�A2 , (l , m) �C2 ,

with l�Z and m�Z , generate, in A2 , left maximal ideals.

In the end, we would like to add some comments. The operator (1.2)
of [5], solves, for the first time, the conjecture of [2], page 31, which
asks:

Is it true that, for each finitely generated An-module M , we have

GK dim(M) 4Krdim (M)1n?(1.5)

Here, GK dim indicates Gelfand-Kirillov dimension, and Kr dim
means Krull dimension. If nF2, since (P) An is maximal in An , we
have

GK dim (An /(P) An ) 42n21 DKr dim (An /(P) An )1n(1.6)

because An /(P) An is simple.
In [1], they give many families of simple An-modules M which are not

holonomic (namely, GK dim (M) Dn); anyway, as is said in [3], page 405,
the examples 1.1 and 1.3 originally given in [5] are not members of any
these families.

2. – Let S4¯y 1b ¯x 1g�A2 4C[x , y]a¯x , ¯y b. If P�A2 , then we
have

P4QS1R , where R�C[x , y]a¯x b ,

and moreover, [S , R] 4SR2RS�C[x , y]a¯x b. Therefore, in order to
prove that A2 S is a maximal ideal in A2 , it is enough to prove that

A2 S1A2 R4A2 , (R�C[x , y]a¯x b

LEMMA 2.1. Let A2 S be a maximal ideal in A2 . Then: b is not di-
visible by x ; and moreover (¯x b)(¯x g) c0.

PROOF. Let b4x b
A, and let f be a holomorphic function in a neigh-

borhood of zero in C2 , such that

(¯y 1x b
A

1g2b
A) f40

and f (0 , 0 ) 41: such an f exists by Theorem of Cauchy-Kowalewsky, [4],
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page 119. We have:

S g f

x
h4

fy

x
1

xb
A(xfx 2 f )

x 2
1

gf

x
40 ,

where fx and fy mean ¯x ( f ) and ¯y ( f ) respectively, and moreover,
lS1mx41; hence we get x(lS(f/x)1m( f ) ) 4 f , and therefore,

xm( f )(x , 0 ) 4 f (x , 0 ) :

which is impossible.
If ¯x b40, then let p(x , y)42s

0

y

b(t) dt1x . We have ¯y p1b¯x p40.
Now, if

(¯y 1b¯x ) f42g

where f is holomorphic in some neighborhood of zero in C2 , then we have
S(e f/p) 40, and from the equation lS1mp41, we obtain

pm(e f) 4e f :

which is a contradiction.
Finally, if ¯x g40, then let u(y) 4e 2s0

y g(t) dt . Then, S(u) 4¯x (u) 4

40, which contradicts to the equation lS1m¯x 41. r

THEOREM 2.2. The following statements are equivalent.

P1 ): A2 S is a maximal ideal in A2 .

P2 ): (R�C[x , y]a¯x b, where R is not a constant, we have [S , R] �
�C[x , y] R .

PROOF. First, we prove that P1 implies P2 . Let lS1mR41; if
deg¯y

l4m , then deg¯y
m4m11. Dividing l and m by S , we obtain

lS1mR4 !
k40

m

Bk S k11 1 !
k40

m11

Ck S k R41 ,

for some Bk and Ck in C[x , y]a¯y b; hence [y , lS1mR]42 !
k40

m

(k11) Bk S k2

2 !
k41

m11

kCk S k21 R40; repeating in this manner m more times, we

get

Bm 1Cm11 R40 .
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From here, if [S , R] 4aR , then we would have

lS1mR4 !
k40

m21

Bk S k11 1 !
k40

m

Ck S k R2Cm11 [R , S m11 ] 4

4 !
k40

m21

Ek S k11 1 !
k40

m

Dk S k R41 ,

for some Ek and Dk in C[x , y]a¯x b. Proceeding in this way, we obtain

ES1D0 R1D1 SR41 ;

where E42D1 R , and hence we get the following contradiction:

D0 R1D1 [R , S] 4D0 R2D1 aR41 .

We, now, prove that P2 ) implies P1 ). Let R4 !
k40

N

pk ¯x
k ; if [S , R] 4

4 !
k40

N

qk ¯x
k , then since [S , R] �C[x , y] R , we have

0 G deg¯x
(pN [S , R]2qN R) GN21 .

This inequality implies that the ideal A2 S1A2 R contains a polynomial

p4 !
k40

N

rk x k which is not zero.

Let N be the least degree in x among all the polynomials contained in
A2 S1A2 R . If N were strictly greater than zero, then we would
have

t4 degx [S , p] FN ,

and therefore, rN
t [S , p] 4ap : if rN does not divide p , then we would have

[S , p] 4a 1 p , which is impossible from the hypothesis. If, instead, rN di-
vides p , let us put p4a 0 p0 , where a 0 is the greatest common divisor of
the elements r0 , , R , rN . Then, we would have

[S , a 0 p0 ] 4 [S , a 0 ]p0 1a 0 [S , p0 ] 4 g a

rN
t h a 0 p0 ,

which again contradicts the hypothesis. r

OBSERVATION 1. The theorem is valid also for operators of type

¯x 1b¯y 1g .
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In this case, if R4 !
k40

n

pk ¯y
k , where nF1, the routine calculations

give the following expression of [S , R]:

[S , R]4R1 y¯x (pn21 )1b¯y (pn21 )2 gn21

n22
h pn21 ¯y (b)

2g n

n22
h pn ¯y

2 (b)z ¯y
n211y¯x (pn )1¯y (pn )2g n

n21
h (¯y (b) ) pnz ¯y

n ,

where we follow the convention that gn
0
h41, and that, if n41, gn21

n22
h4

4 g n
n22

h40. Therefore, in the expression

pn [S , R]2 (¯x (pn )1b¯y (pn )2n¯y (b) pn ) R ,

the coefficient, cn �C[x , y], of ¯y
n21 is the following:

(2.3) cn 4pn
2k¯xg pn21

pn
h1b¯yg pn21

pn
h1

1¯y (b) g pn21

pn
h2n¯y (g)2 g n(n21)

2
h ¯y

2 bl .

In the case of operators, in A2 , as the operator (1.1) of [3], we have
the following theorem:

THEOREM 2.4. Let S4¯x+ b ¯y 1g�A2 , where b(x , y) 4b 0 (x)1

1b 1 (x) y . Then the following statements are equivalent:

P1 ): A2 S is a maximal ideal in A2 .

P2 ): The equations

¯xg p

q
h1b ¯yg p

q
h1 (¯y b)

p

q
4¯y g(2.5)

and

¯xg r

s
h2b 1g r

s
h42b 0 ,(2.6)

don’t have any solutions respectively in C(x , y) and in C(x).
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PROOF. First, we prove that P1 ) implies P2 ). If there were a solution
p/q of (2.5), then letting R4p1q¯y , we would have

q[S , R]2lR40 ,

where l is the coefficient of ¯y in [S , R], which is contrary to
Theorem 2.2.

Now, if r/s were a solution of (2.6), let us put p4r(x)1s(x) y , and
again we would obtain

s[S , p]2 (s 81b 1 s) p40 ,

which contradicts Theorem 2.2.
Conversely, let us assume P2 ). Please observe that, in the case that

b4b 0 1b 1 y , the equation (2.3) is of the following form:

cn 4npn
2k¯xg pn21

npn
h1b¯yg pn21

npn
h1b 1g pn21

npn
h2¯y gl ;

hence, if R4 !
k40

n

pk ¯y
k and if the equation (2.5) does not have any solu-

tion, then the ideal A2 S1A2 R contains an element of the form

R1 4 !
k40

n21

qk ¯y
k , where deg¯y

R1 4n21 ,

and therefore,

(A2 S1A2 R)O (C[x , y] 0]0() c¯ .

Similarly, since the equation (2.6) does not have any solution, we
conclude that (A2 S1A2 R)O (C[x] 0]0() c¯ , and hence A2 S1A2 R4

4A2 . r

OBSERVATION 2. This research was initiated by the direct verifica-
tion (see Observation 3) that the equation (2.5), in the case that b411

1xy , does not have any solution in C(x , y).

OBSERVATION 3 [M. Takagi]. The equation

L( f ) 4 (¯x 1 (11xy) ¯y 1x) f41

does not have any solution f�C(x , y).
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PROOF. Assume that there were a solution of L( f ) 41, where
f4p/q�C(x, y) such that p and q are mutually prime. Then, we have

q(l2q) 4pm ,

where l4¯x p1 (11xy) ¯y p1xp and m4¯x q1 (11xy) ¯y q . There-
fore, there exists r�C[x , y], such that

.
/
´

l2q4pr

m4qr .

We, now, show that r is of type: r (x , y) 4ax1b , where (a , b) �C2 . In
fact, if degx q4k and degy q4h , then we have

degx mGk11, and degy mGh .

Therefore, from the equation m4qr , we obtain degx rG1 and degy r40.
For k and h , we see easily that hF1 because q4 f (x), where f is a

polynomial, does not satisfy the equation m4q(ax1b). It is also easy to
verify that kF2 because if

q4xg(y)1h(y) ,

where g and h are polynomials, then q does not satisfy the equation
m4q(ax1b).

Finally, we show that any of

q4 !
i40

k

!
j40

h

ai , j x i y j, where kF2 and hF1 ,

cannot satisfy the equation m4q(ax1b). In fact, we obtain

m4 !
i40

k

!
j40

h

iai , j x i21 y j1 !
i40

k

!
j41

h

jai , j x i y j211 !
i40

k

!
j41

h

jai , j x i11 y j

and

q(ax1b) 4 !
i40

k

!
j40

h

aai , j x i11 y j1 !
i40

k

!
j40

h

bai , j x i y j.

Since only qax contains x k11 , it must be that aak , 0 40. Now, if a40 we
must have

jak , j 4aak , j ,

and hence, ak , j 40 for all j41, R , h . Since (ak , h , R , ak , 0 ) c0. Com-
paring the coefficients of x k in m4q(ax1b), we have

ak , 1 4aak21, 0 1bak , 0 ,
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which implies that b40. Therefore, (¯a 1 (11xy) ¯y ) q40, that is,
q40.

If, instead, ak , 0 40, then, comparing, always in m4q(ax1b), the
coefficients of x k11 y j , where 1 G jGh , we must have

jak , j 4aak , j ,

from which we obtain that a4 l for some l� ]1, R , h(, ak , l c0, and
ak , j 40 if jc l .

If l4h , then, confronting the coefficients of x k y h , we have

hak21, h 4hak21, h 1bak , h

with ak , h c0 and therefore, b40. Moreover, from the coefficients of
x k21 y h , we also have

kak , h 1hak22, h 4hak22, h

which gives the contradiction: ak , h 40.
Let us, now, suppose that lEh . Then, ak , h 40 4ak , 0 . Equating the

coefficients of x k y h , we obtain

hak21, h 4aak21, h 1bak , h (a4 lEh) ,

and therefore, ak21, h 40; while confronting the coefficients of x i y k (i ,
we have

(i11) ai11, h 4hai21, h 1bai , h , 0 G iGk (ak21, h 40) ,

which imply that ai , h 40, and this contradicts to the hypothesis that
degy q4h . r

3. – If S4¯y 1b ¯x 1g , then the equation (2.3) has the following
form:

cn 4pn
2k¯yg pn21

pn
h1b¯xg pn21

pn
h1

1¯x (b) g pn21

pn
h2n¯x (g)2 g n(n21)

2
h ¯x

2 (b)l .

The following corollary of Theorem 2.2 is immediate.



Giuliano Bratti - Masako Takagi218

COROLLARY 3.1. If the equations

cn 40 (nF1(3.2)

do not have solutions in C(x , y); and if (p4 !
k40

n

pk (y) y k , we have

[S , p] �C[x , y] p ,(3.3)

then, A2 S is a maximal ideal.

PROOF. The equation (3.2) says that, (R4 !
k40

n

rk ¯x
k , nF1, the ideal

A2 S1A2 R contains an element p�C[x , y] 0]0(.
The hypothesis (3.3) says that A2 S1A2 p contains some element

q�C[y] 0]0(. r

OBSERVATION 4. If l�Z and m�Z , then, the differential operator

S4 (F (y1x¯x ¯y 1l(¯x
2 x2m¯x )1x) )R4

4¯y 1 (11xy1lx 2 ) ¯x 1l(m12) x ,

satisfies the hypotheses of Corollary 3.1, and therefore, A2 S is a maxi-
mal ideal in A2 .

PROOF. Let us suppose that cn (p/q) 40 for some n�N , nF1, with
p/q�C(x , y).

a) First, we show that q cannot be a constant. If it were, then we
would have

py 1 (11xy1lx 2 ) px 1 (y12lx) p4nl(m1n11) c0 ,

which is impossible.

b) Now, let us assume that p and q are mutually prime. Then, the
equation cn (p/q) 40 gives the following:

qy 1 (11xy1lx 2 ) qx 4rq (qx c0) ,

for some r�C[x , y]. If v is an (non-constant) irreducible factor of q , we
also have

vy 1 (11xy1lx 2 ) vx 4r0 v , r0 �C[x , y] .
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Let l(y) be a function defined implicitly by the equation v(l(y), y)40.
Then we have

vy 1 l 8 (y) vx 40 ,

and therefore, the function l is an algebraic solution (that is, l belongs to
a finite extension of C(y)) of the differential equation

l 8 (y) 411yl(y)1ll(y)2 ,

which is also impossible [cf. Observation 5].
Up to this point, we have shown that the equations cn 40 do not pos-

sess any solutions in C(x , y), namely, that: (R�C[x , y]a¯x b, deg¯x
RF1,

we have

(A2 S1A2 R)O (C[x , y]0]0() c¯ .

Similarly, we can show (3.3). r

OBSERVATION 5 [M. Takagi]. 1) The differential equation

y 8411xy1ly 2(3.4)

does not have rational solutions provided that l�Z .

PROOF. If p(x) /q(x)(�C(x) ) were a solution of the equation (3.4),
where p and q are mutually prime, then, we would obtain the following
system

.
/
´

qx 4rq2lp

px 4 (x1r) p1q

for some r�C[x]. We, now, examine the three cases.
If rc0 and r1xc0, then we have that deg (rq) 4 deg p from the

first equation and that deg (x1r) p4 deg q from the second. Hence, it
follows that deg r (x1r) p4 deg rq4 deg p , which is impossible because
pc0.

If r40, then the system becomes as follows:

.
/
´

qx 4q2lp

px 4xp1q .
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Taking the derivative of the second equation, and substituting qx with
the first equation, we obtain

pxx 4 (12l) p1xpx .

Hence, we have (12l) cN x N 1NcN x N 40, where cN is the leading coef-
ficient of p . However, this equation contradicts the assumption that l is
not an integer.

Finally, if r1x40, then the system is the following:

.
/
´

qx 42xq2lp

px 4q .

Differentiating the first equation, and substituting px with q , we
have

qxx 42(11l) q2xqx .

Therefore, it follows that (11l) dM x M 1MdM x M , where dN is the lead-
ing coefficient of q and hence 11l1M40, which is impossible because
l is not an integer. r

2) Let p�N such that pF2. Suppose that

v(x) 4 !
k42N

1Q

ck (x2a)k/p , a�C , N�Z ,

satisfies (2) the equation (3.4). Then, ck 40 if k

p
�Q0Z , namely, each al-

gebraic solution of (3.4) is rational.

PROOF. Let us prove, first, that N4p . Let

w(t) 4 !
k42N

1Q

ck t k and t4 t(x) 4 (x2a)1/p .

Then, v(x) 4w i t(x), and since dt

dx
4

1

p
t 12p , we obtain

dv

dx
4

dw

dt
Q

dt

dx
4

1

p
!

k42N2p

1Q

(k1p) ck1p t k .

(2) The series v(x) 4 !
k42N

1Q

ck (x2a)k/p is called Puiseux series of v ,
0 ENx2aNGe .
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Utilizing the equation x4 t p 1a , and substituting v 8 , x , and v in the
equation (3.4), we have the following equation of series:

(3.5)
1

p
!

k42N2p

1Q

(k1p) ck1p t k 4

411 !
k42N1p

1Q

ck2p t k 1a !
k42N

1Q

ck t k 1l !
k422N

1Q

!
n42N

k1N

cn ck2n t k .

Comparing the coefficient of t 22N , we conclude that ck 40 if kE2p , and

hence, we may write w(t) 4 !
k42p

1Q

ck t k .

Now, let us prove that c2p11 4R4c21 40. In order to do so, we
rewrite the equation (3.5):

1

p
!

k422p

1Q

(k1p) ck1p t k 4

411 !
k40

1Q

ck2p t k 1a !
k42p

1Q

ck t k 1l !
k422p

1Q

!
n42p

k1p

cn ck2n t k .

Confronting the coefficients of t 22p , t 22p11 , R , t 2p21 , we have the fol-
lowing system of equations:

.
`
`
/
`
`
´

1

p
(2p) c2p 4lc 2

2p

1

p
(2p11) c2p11 4l g !

n42p

2p11

cn c22p112nh
QQ
Q

1

p
(21) c21 4l !

n42p

21

cn c2p212n .

From the first equation, we see immediately that c2p 40 or l421/c2p .
Hence, we consider the two cases.

If c2p 40, then from the second equation, c2p11 42lC2p c2p11 40.
Similarly, by induction, we conclude that cl40, where 2p11GlG21.

If c2p c0, then l421/c2p , and from the second equation, we have
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p11

p
c2p11 40. Since p11 c0, we have c2p11 40. Similarly, by induc-

tion, we obtain that cl 40, where 2p11 G lG21. Therefore, in either
case, we may write

w(t) 4c2p t 2p 1 !
k40

1Q

ck t k ,

where, c2p may, or may not be zero.
Let us suppose that we have shown that w(t) 4 !

l421

N21

clp t lp 1 !
k4Np

1Q

ck t k ,

and we will prove that w(t) 4 !
l421

N

clp t lp 1 !
k4 (N11) p

1Q

ck t k .

With this form of w(t), the equation (3.4) becomes

2c2p t 22p 1 !
l40

N22

(l11) c(l11)p t lp 1
1

p
!

k4 (N21) p

1Q

(k1p) ck1p t k 4

11 !
l40

N12

c(l21)p t lp 1a !
l421

N21

clp t lp 1 !
k4 (N11) p

1Q

ck2p t k 1a !
k4Np

1Q

ck t k 1

l g !
l421

N21

clp t lph2

12l g !
l421

N21

clp t lph g !
k4Np

1Q

ck t kh1l g !
k4Np

1Q

ck t kh2

,

where we agree that !
l40

N22

(l11) c(l11) p t lp 40 if N40. Comparing the

coefficients of the terms, t (N21) p11 , R , t Np21 , we obtain the following
equations if Nc0:

.
`
/
`
´

1

p
( (N21) p111p) cNp11 40

QQ
Q

1

p
(Np211p) cNp211p 40 .

Therefore, we conclude that cNp11 4R4c(N11) p21 40.
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If, instead, N40, we have the following:

.
`
/
`
´

1

p
c1 42lc2p c1

QQ
Q

1

p
cp21 42lc2p cp21 .

Since 1 /pc2lc2p , we conclude that c1 4R4cp21 40. r
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