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Differential Equations and Maximal Ideals
on the Weyl Algebra A,(C).

GIULIANO BRATTI (*) - MASAKO TAKAGI (*%)

ABSTRACT - We characterize the differential operators S = 9/9x + 8 /9y + y such
that the ideal A,(C) S is maximal in A,(C).

1. Introduction.

Let A, =Clxy, ..., x,3/0x;, ..., /3x,) be the Weyl algebra, in n
variables, over the complex field C. In [3], the author proves, among
other things, that the differential operators

1.1) A+ 2 (wa;(wy) + b;(xy)) 3+ 2 hi(xy) €A,
i=2 i=2

where: 0; = 9/dx;; the polynomials a;, b; and &; belong to Clx;]; the a;’s
are linearly independent on the field of rational numbers Q, and more-
over we have

deg (a;) > max {deg (b;), deg(h;)} =0,

generate left maximal ideals in A, (Th. 3.6, page 412.)
The operators of type (1.1) generalize the following operator, of [5]:

(12) P +8,( 2 28] + 3 (- 8) €A,
1=2 1=2

(*) Indirizzo degli AA.: Dipartimento di Matematica Pura ed Applicata, Uni-
versita di Padova, Via Belzoni 7, 35131 Padova, Italy.
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where the 1’s in C are linearly independent over Q, which generates
a right maximal ideal in A4, (V).
Always in [5], page 627, it is proved that: also the operator,

(1.3) Ly + X1 31 32-1-1((9%961—/431)4-9616442,

with 1 e C\Q and u ¢ Z, generates a right maximal ideal in A,; and in
[3], page 416, it is asked if it is possible to extend Theorem 3.6 in order to
include the example 1.3.

This paper studies the operators of type (1.1) and (1.3) in A,. The
main result (Theorem 2.2 in the following section) is as follows:

Let S=09,+p-9,+yeA,=Clwx, yKox, dy), (or S=0,+p-9,+
+vedy). Then, we have that A,S is maximal in Ay if and only if:
VR e Clx, yK9,) (or VR e Clx, yK3,)), it follows that

1.4) [S,R]I=SR—-RS¢Clx,ylR.

In the case that e Clx, y] with deg,8 =1, namely, in the case of
operators of type (1.1), one can easily rephrase the maximality of A, S as
follows (Theorem 2.4 of the following section):

Let S=9,+-9,+yeAy=Clx, yKox, dy), and let B=pFo+ 1Y,
B1eClel\{0}. Then, A S is maximal in Ay if and only if: the following
equations

of2)ss[2) (22

LE)-(2)--

don’t have any solution respectively in C(x, y) and in C(x).

Finally, in the third section, utilizing Corollary 3.1, a corollary of
Theorem 2.2, we will give a somewhat simplified proof of the following
result [5], Prop. 2.2 page 627:

¢ If F: A,—A,, is Fourier transformation, then we have F(x;) = —3; and
J(3;) = x;. Moreover, if G: A,—A, is the standard transposition, G(x*3?) =
= (=1)I#1 38 %%, then we obtain, in Ay, F(1. 2)% = 8, + (1 + Aa;x5) 85 + a», which
is of type (1.1).
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The operators
F13)°=0,+ (1+ay+Ax®) 0, + Au+2)wedy, (4,un) eC?
with L ¢Z and u ¢'Z, generate, in A,, left maximal ideals.

In the end, we would like to add some comments. The operator (1.2)
of [5], solves, for the first time, the conjecture of [2], page 31, which
asks:

Is it true that, for each finitely generated A,-module M, we have
1.5) GK dim(M) = Krdim (M) + n?

Here, GK dim indicates Gelfand-Kirillov dimension, and Kr dim
means Krull dimension. If n =2, since (P) A, is maximal in A,, we
have

1.6) GKdim(A,/(P)A,) =2n—1>Krdim(A4,/(P)A,) +n

because A, /(P) A, is simple.

In [1], they give many families of simple A,-modules M which are not
holonomic (namely, GK dim (M) > n); anyway, as is said in [3], page 405,
the examples 1.1 and 1.3 originally given in [5] are not members of any
these families.

2. - Let S=9,+9,+yeAy=Clx, y3,, 9,). If PeAs;, then we
have
P=QS +R, where ReClx, yK3,),

and moreover, [S, R] =SR — RS e Clx, yI{0,). Therefore, in order to
prove that A,S is a maximal ideal in A,, it is enough to prove that

AzS +A2R:A2, VREC[QC,y:Kax)
LEMMA 2.1. Let A;S be a maximal ideal in As. Then:  is not di-
visible by x; and moreover (3,£)(3,y) = 0.

Proor. Let =2 f5, and let f be a holomorphic function in a neigh-
borhood of zero in C2, such that

@, +ap+y=pf=0
and f(0, 0) = 1: such an f exists by Theorem of Cauchy-Kowalewsky, [4],
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page 119. We have:

x 2 te Y

xr X xr

S(f)zg+ wBah,—f) o

where f, and f, mean J,(f) and 9,(f) respectively, and moreover,
AS + ux =1; hence we get x(AS(f/x) +u(f)) =f, and therefore,

ou(f)x, 0) =f(x, 0):

which is impossible.
If 9,8 =0, then let p(x, y) = —fﬁ(t) dt+x. We have 9,p+3,p=0.
Now, if

(8, +B3,) f=~vy

where fis holomorphic in some neighborhood of zero in C?, then we have
S(e’/p) =0, and from the equation AS + up =1, we obtain

pu(e’) =e’:

which is a contradiction. ,
Finally, if 8,7 = 0, then let u(y) = ¢ 07 % Then S(u) =3, (u) =
=0, which contradicts to the equation AS +ud,=1. =

THEOREM 2.2. The following statements are equivalent.

P)): A, S is a maximal ideal in A,.

P,): VR e Clx, yX3,), where R is not a constant, we have [S, R] ¢
¢Clx, yIR.

Proor. First, we prove that P; implies P,. Let AS +uR =1; if
degs A =m, then degs u =m + 1. Dividing 4 and u by S, we obtain

m m+1

lS‘f‘ﬂR: z BkSk+1+ z CkSkR:].,

for some By and Cy, in C[x, y1(3,); hence [y, AS +uR] = — 2(k+1)BkS"

m+1

— 2 kC,S* 'R =0; repeating in this manner m rnore times, we
k=1

get
B,+C, 1R=0.
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From here, if [S, R] = aR, then we would have

m—

AS +uR = Z B, SFH1+ Z C:S*R-C,, 1[R,S™ 1] =

m—1

ZES’““+ EDkS R=1,

for some K, and D, in Clx, yI(3,). Proceeding in this way, we obtain
ES+DyR+D,SR=1;
where £ = —D; R, and hence we get the following contradiction:

DyR + D,[R,S1=DyR—D,aR=1.

We now, prove that P,) implies P;). Let R = Z P 3k, if [S, R] =
E q: 9%, then since [S, R] ¢ Clx, y] R, we have

0 < deg, (py[S, R1- qyR) SN - 1.

This inequality implies that the ideal A, S + A, R contains a polynomial
p= 2 r,«* which is not zero.

Let N be the least degree in & among all the polynomials contained in
A;S+A,R. If N were strictly greater than zero, then we would
have

t= deg,[S, pl =N

and therefore, r§[S, p] = ap: if ry does not divide p, then we would have
[S, p] = a;p, which is impossible from the hypothesis. If, instead, ry di-
vides p, let us put p = aypy, where « is the greatest common divisor of
the elements »,, , ..., 7y. Then, we would have

a
ot

[S, aopel =[S, aglpy+ aolS, pol= ( )aopo,

rn
which again contradicts the hypothesis. =

OBSERVATION 1. The theorem is valid also for operators of type

o, + B9, +y.
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n
In this case, if R= X p, 0%, where n =1, the routine calculations
K=0

give the following expression of [S, R]:

[Sv R]= + [aw(pn—l) +ﬂay(pn—1) - (n 2) pn—lay(ﬂ)

n 2 n—1 " n
- n—29 pnay(ﬂ) ay + ax(pn)+ay(p7z)_ n—1 (ay(ﬁ))pn ay’

where we follow the convention that (g) =1, and that,if n =1, (Z:;) =

= (nqj 2) = 0. Therefore, in the expression

pn[S7 R]- (aa(pn) +ﬁay(pn) - nay(ﬁ) pn) R ’

the coefficient, ¢, e Clx, y], of 8’;’1 is the following:

2.3) cn=p5[ax(p"‘1 ) +,88y( Put ) +
P

n n

Pu- n(n —1)
+ay(ﬂ)( » ! ) —nd,(y) — (T) aiﬂ]

In the case of operators, in A,, as the operator (1.1) of [3], we have
the following theorem:
THEOREM 24. Let S=0,+ 8 9,+yeA,y, where p(x,y) =py(x)+

+B1(x) y. Then the following statements are equivalent:

P)): A, S is a maximal ideal in As.

Py): The equations

2.5) ax(ﬁ)m ay(ﬂ)ﬂayﬂ)ﬁ:ayy
q q q
and
(26) ax(z)_ﬂl(z)z_ﬁm
S S

don’t have any solutions respectively in C(x, y) and in C(x).
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Proor. First, we prove that P;) implies P,). If there were a solution
p/q of (2.5), then letting R =p + ¢9,, we would have

q[S, R1-AR =0,

where A is the coefficient of 9, in [S, R], which is contrary to
Theorem 2.2.

Now, if 7/s were a solution of (2.6), let us put p =»(x) + s(x) y, and
again we would obtain

s[S, pl—=(s"+B15)p=0,

which contradicts Theorem 2.2.
Conversely, let us assume P,). Please observe that, in the case that
B=po+ 1Yy, the equation (2.3) is of the following form:

cn:npg[aw(pnl ) +ﬂ8y(p"1 ) _I_ﬁl(pnl ) _ayy:|;

npy, npy oz

hence, if R= 2 pk 9% and if the equation (2.5) does not have any solu-

tion, then the 1deal A, S + Ay, R contains an element of the form

E Qi 9 ,,, where dega Ri=n-1,

and therefore,
(43S +A;R) N (Clw, y1\{0}) =0 .

Similarly, since the equation (2.6) does not have any solution, we
conclude that (4,8 + A, R) N (Clx]\{0}) = 0, and hence A, S + AR =
:Ag. |

OBSERVATION 2. This research was initiated by the direct verifica-
tion (see Observation 3) that the equation (2.5), in the case that § =1 +
+ xy, does not have any solution in C(zx, y).

OBSERVATION 3 [M. Takagi]. The equation
L(f)=(,+(1+wxy) d,+x) f=1

does not have any solution fe C(x, y).
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ProoF. Assume that there were a solution of L(f) =1, where
f=p/qeC(x,y) such that p and ¢ are mutually prime. Then, we have

qA—q) =pu,
where A=0,p+ (1+xy) d,p+xp and u=29,q+ (1+xy)J,q. There-
fore, there exists re C[x, y], such that

{l—qur
u=qr.

We, now, show that r is of type: »(x, y) =ax + b, where (a, b) e C%. In
fact, if deg,q =k and deg,q =&, then we have

deg,u<k+1, and deg,u<h.

Therefore, from the equation x=gr, we obtain deg,r<1 and deg,r=0.

For k and h, we see easily that 2 =1 because g = f(x), where fis a
polynomial, does not satisfy the equation 4 = g(ax + b). It is also easy to
verify that k£ =2 because if

q=ux9(y) + W(y),

where ¢ and & are polynomials, then ¢ does not satisfy the equation
u = q(ax + D).
Finally, we show that any of

k h
2 Ea xyf where k=2 and =1,

=0j=

cannot satisfy the equation u = g(ax + b). In fact, we obtain

u—z Eza”acl ! ’+E Zya7jac Y- 1+Z Eja7jac”1y
1=075=0 i=0j5=1

and

h

3
qlax +b) = E Zaa jattly 2 2 ba; 'y,
=075=0

i=037=0

Since only gax contains a**1

must have

, it must be that aa,, ¢ =0. Now, if a = 0 we

Jag, ;= ady ;,

and hence, a; ;=0 for all j=1, ..., h. Since (ay,, ..., a o) #0. Com-
paring the coefficients of x* in u = q(ax + b), we have

(1= a0y _1 o+ bay o,
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which implies that b=0. Therefore, (9, + (1+xy)d,) ¢=0, that is,
q=0.

If, instead, a;, =0, then, comparing, always in u = q(ax + b), the
coefficients of x**1y/, where 1 <j<h, we must have

Jag, j = ady, ;,

from which we obtain that a =1 for some le {1, ..., h}, a; ;#0, and
(lk7j:0 1f_7¢l
If [ = h, then, confronting the coefficients of x*y", we have

hay, 1,5, = hay, 1,5, + bay, 1,

with a; , #0 and therefore, b =0. Moreover, from the coefficients of

xk~1y" we also have

kag,, + hay g, = hay, 3, ),

which gives the contradiction: a; , = 0.
Let us, now, suppose that I <h. Then, a; ,=0 = q; . Equating the
coefficients of 2"y", we obtain

hay, 1 =aa, 1, +bag,, (a=1<h),

and therefore, a;,_; , = 0; while confronting the coefficients of xiy* Vi,
we have

G+ aji,p=ha_q1,,+ba;,, 0<i<k (a_1,=0),
which imply that a; , =0, and this contradicts to the hypothesis that
deg,g=h. =

3. - If S=9,+p9,+y, then the equation (2.3) has the following
form:

Cn:p5|:ay(pnl ) +ﬁax(pnl ) +

n n

£0,(8) (p—) nd(y) (@) ai(ﬁ)].

n

The following corollary of Theorem 2.2 is immediate.
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COROLLARY 3.1. If the equations
3.2) ¢, =0 Vn=1
do not have solutions in C(x, y); and if Vp = é‘,opk(y) y*, we have
(3.3) [S, pleClx, ylp,
then, A, S 1s a maximal ideal.

Proor. The equation (3.2) says that, VR = >, 7,8%, n =1, the ideal
0

k=
A;S + Ay R contains an element pe Clx, y]1\{0}.
The hypothesis (3.3) says that A,S + A;p contains some element
qeClyl\{0}. m=

OBSERVATION 4. If A¢Z and ue7Z, then, the differential operator
S = (F(y + 23,0, + M2w — ud,) +x))° =
=0, +(1+ay+Ax®) 0, +Au+2)w,

satisfies the hypotheses of Corollary 3.1, and therefore, AsS is a maxi-
mal ideal in As,.

Proor. Let us suppose that c,(p/q) =0 for some nelN, n =1, with
plqe Clx, ).

a) First, we show that ¢ cannot be a constant. If it were, then we
would have

py+ (L+ay+ie®) p,+ (y+2x) p=niu+n+1)#0,

which is impossible.

b) Now, let us assume that p and ¢ are mutually prime. Then, the
equation c,(p/q) =0 gives the following:

g+ A +ay +ie*) g, =rg  (q,#0),

for some re Clx, y]. If v is an (non-constant) irreducible factor of ¢, we
also have

v+ (A +ay+ie?)v,=rv, 1reCle,yl.
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Let I(y) be a function defined implicitly by the equation v(I(y),y)=0.
Then we have

v+ (Y v, =0,

and therefore, the function [ is an algebraic solution (that is, [ belongs to
a finite extension of C(y)) of the differential equation

U(y) =1+ ylly) + Aly)?,

which is also impossible [cf. Observation 5].

Up to this point, we have shown that the equations ¢, = 0 do not pos-
sess any solutions in C(x, y), namely, that: VR e C[x, y1(3,), deg; R =1,
we have

(A58 + A, R) N (Cle, y1\{0}) =0 .

Similarly, we can show (3.3). =

OBSERVATION 5 [M. Takagi]l. 1) The differential equation
(3.4) y' =1+axy+ ly®

does not have rational solutions provided that A ¢ 7.

Proor. If p(x)/q(x)(e C(x)) were a solution of the equation (3.4),
where p and ¢ are mutually prime, then, we would obtain the following
system

{qxﬂq—iﬂo
p=(@+7r)p+gq

for some re Cl[x]. We, now, examine the three cases.

If =0 and r+ « # 0, then we have that deg (rq) = deg p from the
first equation and that deg (« + r) p = deg ¢ from the second. Hence, it
follows that deg »(x + ) p = deg rq = deg p, which is impossible because
p#=0.

If »=0, then the system becomes as follows:

{qﬁq—lp
pe=xp+tq.
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Taking the derivative of the second equation, and substituting q, with
the first equation, we obtain

px%:(l_l)p+xpx

Hence, we have (1 — 1) cyx™ + Neyx™ = 0, where cy is the leading coef-
ficient of p. However, this equation contradicts the assumption that 1 is
not an integer.

Finally, if » 4+ « =0, then the system is the following:

{%=—wq—M>
Pe=q.

Differentiating the first equation, and substituting p, with ¢q, we
have

Quw = _(1+i)q_9ﬂh

Therefore, it follows that (1 + 4) dy,a™ + Mdy, 2™, where dy is the lead-
ing coefficient of ¢ and hence 1 + A + M = 0, which is impossible because
A is not an integer. =

2) Let pe N such that p=2. Suppose that

+ o

Mm: 2 %m—an aeC, NeZ,

satisfies (%) the equation (3.4). Then, ¢, =0 zf ¢ Q\Z, namely, each al-
gebraic solution of (3.4) is rational.

Proor. Let us prove, first, that N =p. Let

+
wt)= > ¢tf and t=t) = (x—a)'?.
k=N

Then, v(x) = wot(x), and since % =
X

ltl’p, we obtain

P

dv dw dt 1 +E°°
. (k+p)cp, th

dux dt dex pk=-N-p P Gy

+
() The series v(®)= > ¢, (x—a)?” is called Puiseux series of v,
0<|x—a|se. k=-N
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Utilizing the equation x =t” + «, and substituting v’, x, and v in the
equation (3.4), we have the following equation of series:

1 &
35 — 2 (k+p) e ,th=
P k=-N-p
o e k+N
=1+ 2 ¢t ta E cktk+/1 > S ¢, th.
k=-N+p k=—-2N n=-N

Comparing the coefficient of t 2V, we conclude that ¢, = 0 if k < —p, and
+ oo
hence, we may write w(t) = 2 c,t*.
k= —

Now, let us prove that ¢_,,;=...=c_;=0. In order to do so, we
rewrite the equation (3.5):

Z (e + ) eyt =

pk—f2p
+ o + o +® k+p
=1+ Eck,,,t’“nLa Doathta > S et
k=0 k=-p k=—-2p n=-p
Confronting the coefficients of ¢t “2°, ¢t 2?1, .. ¢ P! we have the fol-

lowing system of equations:

P

1
;(—p) c_,=Ac%,

1 p
_(_p+1)c—p+1=/l 2 Cnc—2p+1—n
P n=-p

1 -1
_(_1) C_1 zin;pcnc—p—l—n'

\

From the first equation, we see immediately that c_,=0or A= —1/c_,.
Hence, we consider the two cases.
If ¢c_,=0, then from the second equation, c_, ., =2AC_,c_,,;=0.
Similarly, by induction, we conclude that ¢;=0, where —p+1<i<—1.
If c_,#0, then A= —1/c_,, and from the second equation, we have
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pp%lc,pﬂ =0. Since p + 1 # 0, we have c_,,; =0. Similarly, by induc-

tion, we obtain that ¢; =0, where —p + 1 <[ < —1. Therefore, in either
case, we may write

+ o

wt) =c_,t P+ 2 g th,

where, ¢_, may, or may not be zero.
Let us suppose that we have shown that w(t) = 2 cl t + 2 crt”,

and we will prove that w(t) = E clp tr 4+ E cktk.
k=(N+1)p

With this form of w(t), the equatlon (3.4) becomes

+ o

N-2
, 1
—c_t 7+ 2 U+ Deginpt?+ = X (k+p) e th=
1=0 P k=WN-1)p

+

N+2 +®
1+ Z Ci- 1)ptp+a 2 Clptp'f' 2 Ck,ptk‘f'a Z thk+
=0 k=(N+1)p k=Np

N-1 2 N-1 +x + @ 2
A( > clptl”) +2/’L( > clptl”)( > ckt’”')+/1( > cktk) ,
1=-1 1=—1 k=Np k=Np
where we agree that Z (l+1)cqs1,t?=0 if N=0. Comparing the
=0

coefficients of the terms, t™ PP+ tNM~1 e obtain the following
equations if N #=0:

(1
;((N_l)p+l+p)CNp+1:0

1
L E(Np_l"l‘p)CNp_ler:O.

Therefore, we conclude that ¢y, 1=... =cw+1)p,-1=0.
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If, instead, N =0, we have the following:

.
—c=2Ac_,c;
p P

1
—c,_1=2Ac

,pCp,l .

L

Since 1/p #2Ac_,, we conclude that ¢;=...=¢,_;=0. =
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