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Counting Lamé Differential Operators.

RĂZVAN LIŢCANU (*)

ABSTRACT - Using some properties of Belyi functions (covers of P1 with at most
three branching points) and the combinatorics of the associated «dessins d’en-
fants» we obtain some effective results on Lamé operators Ln for n41.

0. Introduction.

In this note we reconsider the problem of Lamé differential
operators
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which have algebraic solutions, and more precisely the number of such
operators in the case n41.

This problem was already considered by Chiarellotto [5]. The results
and the estimates we obtain in what follows are not new, but they are ob-
tained with different techniques. In a forthcoming article we shall apply
these methods to prove some general results, and to calculate such esti-
mates in some other cases (for example the case n42).

Our approach, as Chiarellotto’s, is based on the fact that (cf. Theo-
rem 2.1 below) such a Lamé operator is a pullback by a rational map of a
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hypergeometric operator in «the basic Schwarz list». The key point in
our method is that such a rational function is a Belyi cover, and we use
the Grothendieck correspondence with the «dessins d’enfants» in order
to count, in fact, graphs on the Riemann sphere with specified combina-
torial data.

In the first two sections we recall some facts concerning Belyi func-
tions and second degree differential operators with algebraic solutions,
essentially described in [7] and in [1], [2]. We investigate, in section 3,
the rational maps which transform, by pull-back, a hypergeometric oper-
ator in another one, in the case when the monodromy groups are dihe-
dral. The last section contains some general results on Lamé operators
admitting a full set of algebraic solutions, and the estimates concerning
the case n41.

1. Belyi functions and «dessins d’enfants».

DEFINITION 1.1. Let C be a curve defined over C . A Belyi function
is a cover b : CKP1 , unramified above P1 0]0, 1 , Q(.

Belyi’s theorem states that the existence of a Belyi function b : CK

KP1 is equivalent to the possibility of defining C over a number field.
A Belyi function b : CKP1 will be called clean if (P�b21 (1) the

multiplicity eP 42, and pre-clean if (P�b21 (1), eP G2.
If we consider the real segment [0 , 1 ] %P1 , then b21 ( [0 , 1 ] ) can be

viewed as a bicoloured graph on the topological model of C , connected,
with no mutual intersections of the open edges or cells, such that the
vertices are endowed with two colors, corresponding to the points of
b21 (0) («l») and b21 (1) («˜») respectively. Every edge is bounded by
vertices of different colors. Such a graph is called «dessin d’enfants», the
one associated to b being denoted Db .

There exists a «dictionary» between the ramification data of b and
the combinatorial data of Db . For example, the multiplicity of an element
of b21 (]0, 1() coincides with the number of edges incident to the corre-
sponding vertex of Db ; in every cell of the graph there is an inverse im-
age of Q , its multiplicity being half of the number of edges bounding the
cell. In particular, to a morphism totally ramified over Q corresponds a
tree, the degree being the number of edges. If b is clean, then every «˜»
vertex has the valency 2; we call this a clean dessin. We can view a couple
of edges l22˜22l as a single edge, so regard a clean dessin as an
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unmarked graph, the vertices being the elements of b21 (0). In this case
the degree is twice the number of edges and the valency of every inverse
image of Q is the number of edges bounding the corresponding cell.

Grothendieck correspondence. There is a bijective correspondence
between the set of clean Belyi couples (C , b : CKP1 ) modulo isomor-
phisms and the set of abstract clean dessins (i.e. isomorphism classes of
dessins).

The equivalence relations are the natural ones. The correspondence
can be extended to pre-clean objects, and even to arbitrary ones (in the
sense that to isomorphic couples correspond isomorphic dessins).

DEFINITION 1.2. A Belyi function b : CKP1 is called ˜-mor-
phism if one of the following conditions is satisfied:

(i) g(C) 40 (i.e. C4P1 ) and ]0, 1 , Q( %b21 (]0, 1 , Q();

(ii) g(C) 41 (i.e. C4 (E , O) elliptic curve) and

O�b21 (]0, 1 , Q() ;

(iii) g(C) F2.

In [7] we give some properties of the degree of Belyi functions,
among which the following one will be used in this paper:

THEOREM 1.1. Let C be a curve defined over a number field and
MD1 a fixed real number. The set of ˜-morphisms CKP1 of degree at
most M is finite.

The cardinality of the set in the above theorem can be estimated in
terms of the number of graphs on a topological surface of given genus,
with a given number of vertices and edges.

2. Second degree differential operators with algebraic solutions.

Let C be a compact Riemann surface with function field K(C) and D
be a nontrivial derivation of K(C) /C . We are dealing with the second de-
gree differential operators on C:

L4D 2 1AD1B , A , B�K(C)
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If P�C and tP is a local parameter at P , then locally

L4R gg d

dtP
h2

1A1
d

dtP

1B1h .

Then P is singular for L if A1 and B1 are not both holomorphic at P . We
suppose that at each singular point P , L has two independent solu-
tions:

xi , P 4 tP
g i , P Qui , P , i41, 2 , g i , P �Q

ui , P being invertible power series in tP (we say that P is a regular singu-
lar point). Let

D P , L 4Ng 1, P 2g 2, P N , (P�C(2.1)

the exponential difference in P . If D P , L �N0]0, 1( we say that P is an
apparent singularity.

Obviously D P , L 41 if P is not singular. Let

D L 4 !
P�C

(D P , L 21) .(2.2)

We say that two differential operators as above are projectively
equivalent if they have a common ratio of algebraic solutions. Any such
operator L is projectively equivalent to one in normalized form:

L4D 2 1B .

Projectively equivalent operators have isomorphic projective mono-
dromy groups.

If (C , L) and (C 8 , L 8 ) are two curves endowed with differential oper-
ators as above and f : CKC 8 is a meromorphic function, we say that L is
a (weak) pull-back of L 8 on C if there are ratios of independent solutions
of L and L 8 , t and t 8 , such that t4t 8 i f . In this case, for all
P�C

D P , L 4eP , f QD f (P), L 8(2.3)

where eP , f is the multiplicity of P by respect to f . So we get ([1])

D L 22(g(C)21) 4 deg f (D L 822( g(C 8 )21) ) .(2.4)

The aim of this note is to «count», in some special case(s), such differ-
ential operators with a full set of algebraic solutions. Schwarz [8] deter-
mined all such operators on the projective line with three singular points
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— the hypergeometric differential operators:

Ll , m , n4D 2 1
12l 2

4x 2
1

12m 2

4(x21)2
1

l 2 1m 2 2n 2 21

4x(x21)
, l1m1nD1

which have exponential differences D P , Ll , m , n
equal to l , m , n at 0 , 1 , Q

respectively. We have the following possible cases («Schwarz list»):

(l , m , n) GLl , m , n

(1/n, 1, 1/n)
(1/2, 1/n, 1/2)
(1/2, 1/3, 1/3)
(1/2, 1/3, 1/4)
(1/2, 1/3, 1/5)

cyclic of order n
dihedral of order 2n

tetrahedral
octahedral
icosahedral

In general we have

THEOREM 2.1 (Klein, [6]; see also [1], [2]). A second order differen-
tial operator L in normalized form on a Riemann surface C has finite
projective monodromy group if and only if it is a pull-back of a hyper-
geometric one belonging to the Schwarz list, via a meromorphic func-
tion f : CKP1 .

As the Wronskian of a differential operator in normalized form be-
longs to K(C), it follows that it’s realization as such a pull-back is equiva-
lent to the fact that it admits a full set of algebraic solutions.

If L and Ll , m , n in the theorem have isomorphic projective monodromy
groups, then the function f is unique, under the additional assumption
that lcm . In general the group of L is a subgroup of that of Ll , m , n , and
the realization of L as in the theorem is not unique.

The following proposition is an easy consequence of (2.3) and theo-
rem 2.1:

PROPOSITION 2.2. Let L be a second order differential operator in
normalized form, with finite monodromy group, on a Riemann surface
C . If L has no apparent singularity, then the function f in theorem 2.1
is a Belyi function.
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REMARK 2.1. We are interested in counting operators modulo au-
tomorphisms of C , so we can suppose, in the hypothesis of the above
proposition, that f is a ˜-morphism.

COROLLARY 2.3. In the hypothesis of the above proposition, the
curve C and the function f can be defined over a number field. Moreover,
in this case the singular points are defined over Q.

The cases considered in the next sections will concern only the situ-
ation C4P1 .

3. The case of three singular points.

We consider rational functions f : P1 KP1 such that the pull-back of a
hypergeometric operator in the Schwarz list is again such an operator.
According to the proposition 2.2 and remark 2.1, f is a ˜-morphism.

PROPOSITION 3.1. Let L»4L 1

2
, 1

N
, 1

2

, L 8 »4L 1

2
, 1

N
, 1

2

two hypergeo-
metric operators with projective monodromy groups the dihedral
groups of order 2N , 2N 8 respectively, N , N 8D2. Then there exists at
most a ˜-morphism f : P1 KP1 , modulo homographies, such that
f * L4L 8 . More precisely, this morphism exists if and only if
N 8NN .

PROOF. The equation (2.4) implies that the degree of an eventual f
should be deg f4N/N 8 . Thus, such an f does not exist if N 8 does not di-
vide N .

On the other hand, the Hurwitz formula implies that

Jf 21 (]0, 1 , Q() 4N/N 812

and as ]0, 1 , Q( % f 21 (]0, 1 , Q(), let a1 , R , aN/N 821 be the other
points in f 21 (]0, 1 , Q(). Their distribution in the ramified fibers, with
their possible multiplicities, is according to the following table ([5]):

0 1 Q ai

0 0, 1 0 , 2 /N 8 0, 1 0 , 2

1 0 , N/2 0 , N/N 8 0, N/2 0 , N

Q 0, 1 0 , 2 /N 8 0, 1 0 , 2
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The sum of the multiplicities on each row must be N/N 8 , and in every
column there is only one element c0. If N/N 8 is even, the analysis of
this table leads to the only possibility as follows:

0 1 Q

0 1 1 11/2(N 8/N 822) points with multiplicity 2

1 N/N 8

Q 1N/2N 8 points with multiplicity 2

gand the one with the first and the last line switched, which is obtained

from this one applying the homography xO
1

x
h.

If we permute ]0, 1 , Q( in the image such that 0 O0, QO1, 1 OQ

gapply the homography xO
x

x21
h, the Belyi function we obtain corre-

sponds to a clean dessin, which is a tree with 2 vertices of valency 1 and
N

2N 8
21 vertices of valency 2 . There is only one such possibility:

If N/N 8 is odd, we have, again, essentially one possibility:

0 1 Q

0 1 11/2(N 8/N 821) points with multiplicity 2

1 N/N 8

Q 1 11/2(N/N 821) points with multiplicity 2

and the dessin (which is pre-clean this time) is

So the proposition is proven. r

This is the useful case in what follows. We can treat in the same man-
ner the other possible cases of projective monodromy groups in
Schwarz’s list.
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4. The case of Lamé operators.

We consider Lamé operators on the projective line:

Ln 4D 2 1
f 8

2 f
D2

n(n11) x1B

f
, n�N*

where f44(x2e1 )(x2e2 )(x2e3 ), e1 ce2 ce3 ce1 , ei , B�C .
The singular points are ei and Q , with exponential differences

D Ln , ei
4

1

2
, D Ln , Q4n1

1

2
.

As we are interested in such operators modulo homographies, we can
suppose that e1 40, e2 41, e3 4l�C . The only possible finite mon-
odromy group is the dihedral one of order 2N (see [3]). In this case,
there exists a ˜-morphism F and a hypergeometric operator with the
same monodromy group HN such that Ln 4F * HN ([1]). The degree of F
is nN , by 2.4. The theorem 1.1 implies

THEOREM 4.1. For any fixed N and n , there are only finitely many
Lamé operators Ln with dihedral monodromy group of order 2N .

The Hurwitz formula implies that

JF 21 (]0, 1 , Q() 4nN12 .

Let a1 , R , anN22 be the points of F 21 (]0, 1 , Q()0]0, 1 , Q , l(. Their
distribution in the ramified fibers, with their possible multiplicities, is
according to the following table ([5]):

0 1 l Q ai

0 0, 1 0 , 1 0 , 1 0 , 2n11 0, 2

1 0 , N/2 0 , N/2 0 , N/2 0 , nN1N/2 0 , N

Q 0, 1 0 , 1 0 , 1 0 , 2n11 0, 2

The sum of the multiplicities on each row must be nN , and in every
column there is only one element c0. The analysis of this table leads to
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the possible cases as follows (modulo homographies):

0 1 l Q

0 1nN/2 points with multiplicity 2
Ia

1 1n points with multiplicity N

Q 1 1 1 2n11 11/2(nN22n24) points with multiplicity 2

0 1 l Q

0 1 11/2(nN21) points with multiplicity 2
Ib

1 1n points with multiplicity N

Q 1 1 2n11 11/2(nN22n23) points with multiplicity 2

0 1 l Q

0 1 1 11/2(nN22) points with multiplicity 2
Ic

1 1n points with multiplicity N

Q 1 2n11 11/2(nN22n22) points with multiplicity 2

0 1 l Q

0 1 1 1 11/2(nN23) points with multiplicity 2
Id

1 1n points with multiplicity N

Q 2n11 11/2(nN22n21) points with multiplicity 2

0 1 l Q

0 1nN/2 points with multiplicity 2
II

1 N/2N/2 1n21 points with multiplicity N

Q 1 2n11 11/2(nN22n22) points with multiplicity 2

We have:

PROPOSITION 4.2. There is no Lamé operator having dihedral mon-
odromy group of order 4.
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PROOF. Suppose there exists such an operator. Then N42 and let F
be the rational map which realizes it as a pull-back of a hypergeometric
operator. In each of the five possible cases, the multiplicity of Q�
�F 21 (Q) is 2n11 D2n4 deg F , which is impossible. r

Using the Grothendieck correspondence, we shall count in what fol-
lows these operators for n41.

PROPOSITION 4.3. The number of ˜-morphisms compatible with
the table Ia is

k N

6
l Q

N23[N/6 ]23

2
1e

if NF6 and is even, and 0 if not, where e41 if 3NN and e40 if not.

PROOF. Permuting in a convenient way the points 0 , 1 , Q , the num-
ber of such covers is the same with the one of the covers with the follow-
ing ramification data:

0 1 l Q

0 1 1 1 3 11/2(N26) points with multiplicity 2

1 1N/2 points with multiplicity 2

Q 11 point with multiplicity N

But these are clean Belyi functions, which correspond to dessins with
the following topological and combinatorial properties:
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– they are trees with N

2
edges (as we have one inverse image of Q

with multiplicity N);
– there is only one vertex with valency 3;
– there are three vertices with valency 1 , all the others having va-

lency 2 .

The three branches have respectively A , B , C edges. Then

A1B1C4
N

2

A, B, CD0 and, for avoiding symmetries, AGB, AGC. It follows that

A� m1, 2 , R , k N

6
ln

and for each A

B� mA , A11, R ,
N

2
22A21n .

We also have an additional case if 3NN gA4B4C4
N

6
h. A simple calcu-

lation says that the numbers of couples (A , B) satisfying these condi-
tions is the one in the statement. r

PROPOSITION 4.4. The number of ˜-morphisms compatible with
the table Ib is

N23

4
Q

N21

2

if NF5 and is odd, and 0 if not.

PROOF. Permuting in a convenient way the points 0 , 1 , Q , the num-
ber of such covers is the same with the one of the covers with the follow-
ing ramification data:

0 1 l Q

0 1 1 3 11/2(N25) points with multiplicity 2

1 1 11/2(N21) points with multiplicity 2

Q 11 point with multiplicity N
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But these are Belyi functions, which correspond to pre-clean dessins
with the following topological and combinatorial properties:

– they are trees with N edges (as we have one inverse image of Q

with multiplicity N);

– there is only one «l» vertex with valency 3;

– there are three vertices with valency 1 , all the others having va-
lency 2; two of the three are «l» vertices, the third one is a «˜»
vertex.

The three branches have respectively A , B , C edges. Two of the
branches end with «l» vertices, the third one with a «˜» vertex. We
have

A1B1C4N

N odd, A , B , CD0, A odd and B , C even. It follows that

A� ]1, 3 , R , N24(

and for each A

B� ]2, 4 , R , N2A22(
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so N2A22

2
possibilities. The number of these trees is

N23

2
1

N25

2
1R1

2

2
41121R1

N23

2
4

N23

4
Q

N21

2
. r

PROPOSITION 4.5. The number of ˜-morphisms compatible with
the table Ic is

N22

4
Q

N

2
if NF5 and is even, and 0 if not.

PROOF. Permuting in a convenient way the points 0 , 1 , Q , the num-
ber of such covers is the same with the one of the covers with the follow-
ing ramification data:

0 1 l Q

0 1 3 11/2(N24) points with multiplicity 2

1 1 1 11/2(N22) points with multiplicity 2

Q 11 point with multiplicity N

As in the previous proposition, these are Belyi functions, which corre-
spond to pre-clean dessins as follows:
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– they are trees with N edges (as we have one inverse image of Q

with multiplicity N);

– there is only one «l» vertex with valency 3;

– there are three vertices with valency 1 , all the others having va-
lency 2; two of the three are «˜» vertices, the third one is a «l»
vertex.

The three branches have respectively A , B , C edges. Two of the
branches end with «˜» vertices, the third one with a «l» vertex. We
have

A1B1C4N
N even, A , B , CD0, A even and B , C odd. It follows that

A� ]2, 4 , R , N22( , B� ]1, 3 , R , N2A21(

and, as in the previous proof, the number of these trees is

N22

2
1

N24

2
1R1

2

2
41121R1

N22

2
4

N22

4
Q

N

2
. r

PROPOSITION 4.6. The number of ˜-morphisms compatible with
the table Id is

k N13

6
l Q

N23 k N13

6
l

2
1e

if NF3 and is odd, and 0 if not, where e41 if 3NN and e40 if
not.

PROOF. Permuting in a convenient way the points 0 , 1 , Q , the num-
ber of such covers is the same with the one of those with the ramification
data:

0 1 l Q

0 3 11/2(N23) points with multiplicity 2

1 1 1 1 11/2(N23) points with multiplicity 2

Q 11 point with multiplicity N

As in the proposition 4.3, these are Belyi functions, which correspond
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to dessins with the following topological and combinatorial proper-
ties:

– they are trees with N edges (as we have one inverse image of Q

with multiplicity N;

– there is only one «l» vertex with valency 3;

– there are three vertices with valency 1 , all the others having va-
lency 2; all three are «˜» vertices.

The three branches have respectively A , B , C edges. Then

A1B1C4
N13

2

A , B , CD0 odd and, for avoiding symmetries, AGB , AGC . It follows,
by a calculation similar to the one in the proof of the proposition 4.3 (re-
alized with N13 instead of N), that the numbers of couples (A , B) satis-
fying these conditions is the one in the statement. r

PROPOSITION 4.7. There is no ˜-morphism compatible with the ta-
ble II.

PROOF. Permuting in a convenient way the points 0 , 1 , Q , the num-
ber of the covers compatible with the table II is the same with the one of
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the covers with the following ramification data:

0 1 l Q

0 1 3 11/2(N24) points with multiplicity 2

1 1N/2 points with multiplicity 2

Q N/2 N/2

It is a clean Belyi cover, and the corresponding dessin has two
cells.

The cells have the same valency, but on the other hand there is a
unique vertex with valency three, so there is an edge starting in this ver-
tex, inside one of the cells. But in such a situation, the two cells cannot
have the same valency, so there is no cover with such a ramification
data. r

Taking into account that N must be even in the cases Ia and Ic, and
odd in the cases Ib and Id, we obtain (as in [5]):

THEOREM 4.8. The number C (1 , N) of non-homographic covers
P1 KP1 which transform by pull-back a hypergeometric operator HN
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into a Lamé operator L1 is

C (1 , N) 4
(N21)(N22)

6
1

2e

3
(4.5)

where e41 if 3NN and e40 if not.

Finally, we have

THEOREM 4.9. Let L(1 , N) be the number of non-homographic
Lamé operators L1 with finite dihedral monodromy group of order 2N .
Then

C (1 , N) 4 !
N 8 NN , N 8c2

L(1 , N 8 ) .(4.6)

PROOF. The proposition 4.2 implies that N 8c2. Let N be a fixed in-
teger and N 8 NN , N 8c2. As remarked at the beginning of this section,
for any Lamé operator L1 with finite dihedral monodromy group of order
2N 8 there exists an unique ˜-morphism F and a hypergeometric opera-
tor with the same monodromy group, HN 8 , such that L1 4F * HN 8 . On the
other hand, proposition 3.1 says that there exists an unique cover
F : P1 KP1 , such that F*(HN ) 4HN8 . The theorem follows. r
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