REND. SEM. MAT. UNIV. PADOVA, Vol. 107 (2002)

Addendum to «Prime graph components of finite almost simple groups».

MARIA SILVIA LUCIDO(*)

This is an addendum to the paper [2]. We refer to that paper for the definitions. We denote by $\Gamma(G)$ the prime graph of a finite group G.

The following groups have to be added to the list of the almost simple groups in which the prime graph is not connected in [2].

PROPOSITION 1. Let G be one of the following almost simple groups:

 $S < G \leq \text{Aut}(S)$ and G does not split over S, with S a simple non abelian group such that $\Gamma(S)$ is not connected;

PGL(2, q), with $q = p^n$, p an odd prime;

 $G = Sz(q)\langle a \rangle$ where $q = 2^{f}$, f is an odd prime number and a is a field automorphism of order f;

 $G = Ree(q)\langle a \rangle$ where $q = 3^{f}$, f is an odd prime number and a is a field automorphism of order f.

PSL(3, 4) = S < G < Aut(S) and |G/S| = 2. Then $\Gamma(G)$ is not connected.

PROOF. Let G be an almost simple group $S < G \leq \operatorname{Aut}(S)$ such that G does not split, we prove that $\Gamma(G) = \Gamma(S)$. As at the beginning of the proof of the case of Lie groups in [2], we can suppose that |G/S| = p. Let x be an element of $G \setminus S$, then $x^p \in S$ but $x^p \neq 1$. Moreover we can suppose that x is a p-element. Then $C_S(x) \leq C_S(x^p)$, therefore for any prime $r \in \pi(G)$ we have that $r \sim p$ in $\Gamma(G)$ if and only if $r \sim p$ in $\Gamma(S)$.

If G = PGL(2, q) with $q = p^{f}$, p an odd prime, then $\pi_{1}(G) = \pi(q^{2} - 1)$ and $\pi_{2}(G) = \{p\}$.

Let $G = Sz(q)\langle \alpha \rangle$ where $q = 2^{f}$, f is an odd prime number and α is a field automorphism of order f. If $S = Sz(q) = {}^{2}B_{2}(q)$, then the connected

(*) Indirizzo dell'A.: Dipartimento di Matematica e Informatica, Università di Udine, via delle Scienze 200, I-33100 Udine, Italy; e-mail: lucido@dimi.uniud.it

components of $\Gamma(S)$ not containing 2 are

 $\pi_2(S) = \pi(q-1), \quad \pi_3(S) = \pi(q-\sqrt{2q}+1), \quad \pi_4(S) = \pi(q+\sqrt{2q}+1).$

If α is a field automorphism, then $\pi(C_S(\alpha)) = \pi(|{}^2B_2(2)|) = \{2, 5\}$ (see [1], Theorem 9.1). We observe that 5 divides $2^{2f} + 1$. It can be proved that, if $f \equiv 1, 7$ (8), 5 divides $(q + \sqrt{2q} + 1)$; or, if $f \equiv 3, 5$ (8), then 5 divides $(q - \sqrt{2q} + 1)$. Therefore

$$\begin{split} &\pi_1(G) = \{2, f\} \cup \pi_4(S) \quad \pi_2(G) = \pi_2(S) \quad \pi_3(G) = \pi_3(S) \quad if \ f \equiv 1, 7 \quad (8), \\ &\pi_1(G) = \{2, f\} \cup \pi_3(S) \quad \pi_2(G) = \pi_2(S) \quad \pi_3(G) = \pi_4(S) \quad if \ f \equiv 3, 5 \quad (8). \end{split}$$

Let $G = Ree(q)\langle a \rangle$ where $q = 3^f$, f is an odd prime number and γ is a field automorphism of order f. If $S = Ree(q) = {}^2G_2(\overline{q}^2)$, then the connected components of $\Gamma(S)$ not containing 2 are

$$\pi_2(S) = \pi(q - \sqrt{3q} + 1), \qquad \pi_3(S) = \pi(q + \sqrt{3q} + 1).$$

If α is a field automorphism, then $\pi(C_S(\alpha)) = \pi(|^2G_2(3)|) = \{2, 3, 7\}$ (see [1], Theorem 9.1). We observe that 7 divides $3^{3f} + 1$. It can be proved that, if $f \equiv 1$, 11 (12), 7 divides $(q + \sqrt{3q} + 1)$; or, if $f \equiv 5$, 7 (12), then 7 divides $(q - \sqrt{3q} + 1)$. Therefore

$$\pi_1(G) = \pi(q(q^2 - 1) f) \cup \pi_3(S) \qquad \pi_2(G) = \pi_2(S) \quad \text{if } f \equiv 1, \ 11 \ (12),$$

$$\pi_1(G) = \pi(q(q^2 - 1) f) \cup \pi_2(S) \qquad \pi_2(G) = \pi_3(S) \quad \text{if } f \equiv 5, 7 \ (12).$$

If S = PSL(3, 4) and $G \leq Aut(S)$ with |G/S| = 2, then we have the following three possibilities:

 $G = S.2_1$, extension with a graph-field automorphism, then $\pi_1(G) = \{2, 3\}, \pi_2(G) = \{5\}$ and $\pi_3(G) = \{7\}.$

 $G = S.2_2$, extension with a field automorphism, then $\pi_1(G) = \{2, 3, 7\}, \pi_2(G) = \{5\}.$

 $G = S.2_3$, extension with a graph automorphism, then $\pi_1(G) = \{2, 3, 5\}, \pi_2(G) = \{7\}.$

REFERENCES

- D. GORENSTEIN R. LYONS, The local structure of finite groups of characteristic 2 type, Memoirs of the American Mathematical Society 276, March 1983 (vol. 42).
- [2] M. S. LUCIDO, Prime Graph Components of Finite Almost Simple Groups, Rendiconti Sem. Mat. Università di Padova, 102 (1999), pp. 1-22.

Manoscritto pervenuto in redazione il 19 ottobre 2001.