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A Density Property of the Tori and Duality.

PETER LOTH (*)

ABSTRACT - In this note, a short proof of a recent theorem of D. Dikranjan and M.
Tkachenko is given, and their result is extended.

1. Introduction.

Let us establish notation and terminology. The additive groups of in-
tegers and rational numbers taken discrete are denoted by Z and Q re-
spectively. Recall that two nontrivial subgroups of Q are isomorphic if
and only if they are of the same type (see [F] Theorem 85.1). The type of
Z is written t0 . By R we mean the additive topological group of real num-
bers, and by T we denote the one-dimensional torus with its usual topolo-
gy. All considered groups are locally compact abelian groups and will be
written additively. The subgroup of all compact elements of the group G
is denoted by bG , while G0 stands for the identity component of G . The
Pontrjagin dual of G is denoted by G×. If H is a subset of G , then (G×, H) is
the annihilator of H in G×. Throughout this paper, we use the term «iso-
morphic» for «topologically isomorphic». For details and fundamental
results on locally compact abelian groups and Pontrjagin duality, we may
refer to the book [HR] of Hewitt and Ross.

For a group G , a�G , and a positive integer n let

Sn (a) 4 ]x�G : nx4a( .

Notice that if G is divisible, in particular if it is a compact connected
group, Sn (a) is nonempty. Following Dikranjan and Tkachenko [DT], we
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say that a compact metrizable group G with an invariant metric d satis-
fies condition e if for every a�G and for every positive integer n there
is an e n D0 such that d(y , Sn (a) ) Ge n for every y�G and e n K0 as
nKQ . In [DT], it was shown that the finite-dimensional tori are exactly
those compact connected abelian groups having the property that every
closed connected one-dimensional subgroup satisfies condition e (see
[DT] Theorem 3.1). In this note, we give a short proof of a more general
result.

Pontrjagin duality shows that a nontrivial compact metrizable group
satisfies condition e if and only if its dual group is homogeneous of type t0

(Lemma 2.1). A locally compact abelian group G has the form Rn 3Zm 3

3bG exactly if every discrete torsion-free rank-one group G/H is cyclic
(see Theorem 2.2). This yields a characterization of finite rank free
abelian groups among the class of all discrete torsion-free groups
(Corollary 2.3). The groups of the form Rn 3Tm 3D (where D is totally
disconnected) are precisely those locally compact abelian groups having
the property that every compact connected one-dimensional subgroup
satisfies condition e (see Theorem 2.4). As an immediate consequence,
[DT] Theorem 3.1 follows.

2. Condition e and duality.

The following preliminary lemma will be useful:

LEMMA 2.1. A nontrivial compact metrizable abelian group satis-
fies condition e if and only if its discrete dual group is homogeneous of
type t0 .

PROOF. Suppose Gc0 is a compact metrizable group. By [DT] Lem-
ma 2.4, G satisfies condition e exactly if for every prime p and every infi-
nite set p of primes, the p-torsion part tp (G) and the p-socle socp (G) 45
5q�p G[q] are dense subgroups of G . Since

(G×, tp (G)) 4p v G× and (G×, socp (G)) 4 1
q�p

qG× ,

G satisfies condition e if and only if every nonzero element of G× is divisi-
ble by only finitely many primes and has finite p-height for every prime
p , i.e., if G× is homogeneous of type t0 . r
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THEOREM 2.2. The following conditions are equivalent for a locally
compact abelian group G :

(i) Every discrete torsion-free rank-one group G/H is cyclic;

(ii) G is isomorphic to Rn 3Zm 3bG where n and m are non-
negative integers;

(iii) every nontrivial discrete torsion-free group G/H is homoge-
neous of type t0 .

PROOF. (i) implies (ii). Suppose G satisfies condition (i). Let G 84

4G/(G0 1bG) and note that G 8 is discrete. Any locally compact abelian
group is isomorphic to Rn 3L with a nonnegative integer n and L con-
taining a compact open subgroup (see [HR] Theorem 24.30); thus G 84

4G/(G0 1bG) ` (Rn 3L) /(Rn 3bL) `L/bL is torsion-free. If G 8 has infi-
nite rank, it contains a free subgroup Z of infinite rank. Consequently, Q
is a homomorphic image of Z . Since Q is injective, it is isomorphic to a
factor group of G , a contradiction. Therefore G 8 has finite rank.

If rank (G 8 ) 41, then G 8 is isomorphic to Z , hence G is isomorphic to
Rn 3Z3bG . If rank (G 8 ) 4kD1, G 8 contains a free subgroup F of
rank k , say, F4X1 5R5Xk where each group Xi is isomorphic to Z .
Let Fi 45jc i Xj and Yi the purification of Fi in G 8 . Then we have an
embedding

G 8KG 8 /Y1 5R5G 8 /Yk ,

and every group G 8 /Yi is isomorphic to Z . Consequently, G 8 is free and
therefore G has the form Rn 3Zm 3bG , as desired.

(ii) implies (iii). Suppose G satisfies (ii). If the quotient G/H is discrete
and torsion-free, then bG1G0 is a subgroup of H , hence G/H is finitely
generated and (iii) follows.

By [F] Theorem 85.1, (iii) implies (i). r

COROLLARY 2.3. The following conditions are equivalent for a dis-
crete torsion-free abelian group G:

(i) Every torsion-free rank-one group G/H is cyclic;

(ii) G is a finite rank free abelian group;

(iii) every nontrivial torsion-free group G/H is homogeneous of
type t0 .

Locally compact abelian groups whose identity component have the
form Rn 3Tm , can be characterized in terms of condition e:
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THEOREM 2.4. The following conditions are equivalent for a locally
compact abelian group G:

(i) Every compact connected one-dimensional subgroup of G
satisfies condition e;

(ii) G is isomorphic to Rn 3Tm 3D where n and m are nonnega-
tive integers, and D is totally disconnected;

(iii) every nontrivial compact connected subgroup L of G is
metrizable and L× is homogeneous of type t0 ;

(iv) every compact connected subgroup of G is metrizable and sat-
isfies condition e .

PROOF. Using Pontrjagin duality (see [HR] Theorems 24.25, 24.28)
(i) implies (ii) because of Lemma 2.1 and Theorem 2.2. Suppose G is a
group as in (ii) and L is a compact connected subgroup of G . Then L is a
torus, hence L× is a free abelian group and therefore (ii) implies (iii). By
Lemma 2.1, (iii) implies (iv). Clearly (iv) implies (i). r

As a corollary, we obtain

THEOREM 2.5 (Dikranjan and Tkachenko [DT]). The following con-
ditions are equivalent for a compact connected abelian group G:

(i) Every closed connected one-dimensional subgroup of G satis-
fies condition e ;

(ii) G is a finite-dimensional torus;
(iii) every closed connected subgroup of G is metrizable and satis-

fies condition e .
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