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A Note on the Bifurcation of Solutions
for an Elliptic Sublinear Problem.

ALESSIO PORRETTA (*)

1. Introduction.

We consider the following semilinear problem in a bounded domain
V%RN:

.
/
´

Lu1u u4lu

uF0, ug0,

u40

in V ,

in V ,

on ¯V ,

(1.1)

where 0 EuE1 and Lu is a linear differential operator defined as Lu4

42div (A(x) ˜u), A(x) being a symmetric, bounded and coercive matrix,
that is such that

(1.2) aNjN2 GA(x) j QjGbNjN2

for every j�RN , a.e. x�V , with a , bD0 .

A necessary condition to find nonnegative nontrivial solutions of (1.1) is
that lDl 1 , the first eigenvalue of the operator L on V with Dirichlet

(*) Indirizzo dell’A.: Dipartimento di Matematica, Università di Roma «Tor
Vergata», Via della Ricerca Scientifica, 00133, Roma, Italia.
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boundary conditions. Notice that (1.1) is the Euler equation of the
functional

(1.3) Jl (u) 4
1

2
�

V

A(x) ˜u Q˜u dx2
l

2
�

V

(u 1 )2 dx1
1

u11
�

V

NuNu11 dx

u�H 1
0 (V) ,

which, since 0 EuE1, is not bounded from below if lDl 1 .
As it was remarked in [8] (see also [6]), the existence of a solution of

(1.1) for every lDl 1 can be obtained applying the abstract fixed point
results by Krasnoselskii ([9]). This approach relies on the definition of

the inverse operator of uOLu1NuNu u

NuN
and makes use of its compact-

ness properties and the computation of its derivative at zero and at infin-
ity. Similarly, using the results of Rabinowitz in [11], in [6] it is proved
the existence of a connected branch of solutions (l , ul ) bifurcating from
infinity at l4l 1 . The same kind of arguments is used in a more general
context in [3] to deal also with sublinear eigenvalue problems, following
the method developed in [1] (see also [10]).

As a consequence of the previous results, the bifurcation diagram for
solutions of (1.1) reads as follows: there is bifurcation from infinity if and
only if l4l 1 while no finite value of l can be a bifurcation point from the
zero solution. The aim of this note is to prove that the bifurcation from
the trivial solution actually occurs at l41Q .

More precisely, we prove that there exists a sequence ul , lDl 1 , of
Mountain Pass type solutions of (1.1) such that Vul VH 1

0 (V) tends to zero as
l goes to infinity. In fact, we do not know whether any sequence of sol-
utions of (1.1) will converge to zero as l tends to infinity, nevertheless
the sublinear behavior of the absorption term both near the origin and at
infinity yields a classical Mountain Pass type structure to the functional
Jl which allows to construct such a sequence, obtaining the bifurcation
from u40 at l41Q . This is the result that we prove.

THEOREM 1.1. Let 0 EuE1, and let (1.2) be satisfied. Then for
every lDl 1 problem (1.1) admits a solution ul�H 1

0 (V) which is a criti-
cal point of Mountain Pass type of the functional Jl defined in (1.3).
Moreover this family of solutions ul satisfies

lim
lK1Q

Vul VH 1
0 (V) 40 .(1.4)
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The bifurcation from the trivial solution at infinity has already been
proved for the semilinear problem

.
/
´

Lu4lu p

uF0, uc0,

u40

in V ,

in V ,

on ¯V ,

(1.5)

with pD1. For a certain range of values of p this was obtained in [5] via
a priori estimates while a general result (for every subcritical pD1) was
proved in [4] using the variational structure of the equation and esti-
mates on the Mountain Pass level of the related functional. Our problem
(1.1) is much different with respect to (1.5) since the nonlinearity lu2u u

is asymptotically linear at infinity and the Mountain Pass character is
due to a sublinear positive perturbation. This implies that the approach-
es of these previous papers do not work, in particular the standard regu-
larity (bootstrap) argument is not such helpful and the method used in
[4] would only give here an estimate on the L u11 (V) norm of u . For this
reason we use here a refined construction of the Mountain Pass solutions
ul , which are obtained through a recurrence argument, allowing, at fixed
l, to estimate Jl on the paths [0 , ul ], where lE l and ul is the Mountain
Pass solution previously found.

Let us stress that, in dimension N41, a full study of the equation
(1.1) is carried out in the recent work [7]. In that paper the case of the p-
laplace operator is also considered and the set of solutions of the prob-
lem is fully characterized, giving multiplicity results as well. While our
results can be proved without relevant changes for the p-laplace opera-
tor as well, we cannot give here a full picture of the behavior of the sol-
utions in dependence of l .

2. Proof of Theorem 1.1.

We denote by l 1 the first eigenvalue of the operator L with Dirichlet
boundary conditions on ¯V , and by W 1 the positive eigenfunction such
that LW 1 4l 1 W 1 , VW 1 VL 2 (V) 41.

PROOF OF THEOREM 1.1. The proof of Theorem 1.1 is a consequence
of the following two Propositions.

PROPOSITION 2.1. Let lDl 1 . Then problem (1.1) admits a solution
ul which is a critical point of Mountain Pass type of the functional Jl
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defined in (1.3). Moreover ul satisfies:

(2.1) Jl (ul ) G g 1

u11
2

1

2
h gs

V
NwNu11 dxh

2

12u

gls
V

w 2 2s
V

A(x) ˜w Q˜w dxh
11u

12u

,

for every w : ls
V

w 2 dx2s
V

A(x) ˜w Q˜w dxD0 .

PROOF. We are going to use the classical theorem of Ambrosetti and
Rabinowitz ([2]) with a little change in the choice of the paths.

We start by proving that u40 is a local minimum for the functional
Jl . Precisely, we claim that

)rD0 : Jl (u) D0 (u� Br 0]0( 4 ]VuVH 1
0 (V) Gr , uc0( ,(2.2)

which will easily imply that

)s : Jl (u) Fs (u : VuVH 1
0 (V) 4r .(2.3)

In order to prove (2.2) we argue by contradiction. If (2.2) were not true,
it would exist a sequence un in H 1

0 (V) such that:

Vun VH 1
0 (V) K0, un c0, Jl (un ) G0 (n�N ,

that is

1

2
�

V

A(x) ˜un Q˜un dx1
1

u11
�

V

NunNu11 dxG
l

2
�

V

NunN2 dx .(2.4)

Setting wn 4
un

Vun VH 1
0 (V)

, we have:

�
V

NwnNu11 dxG
l(u11)

2
Vun VH 1

0 (V)
12u �

V

NwnN2 .(2.5)

Since Vwn VH 1
0 (V) 41, we have that, up to subsequences, wn converges to a

function w�H 1
0 (V) almost everywhere in V , hence we deduce by Fa-

tou’s lemma and (2.5) that w40, so that wn strongly converges to zero in
L 2 (V) as well by Rellich theorem. Dividing the equality in (2.4) by
Vun VH 1

0 (V)
2 , using the ellipticity of A(x) we conclude that wn tends to zero

in H 1
0 (V), contradicting the fact that Vwn VH 1

0 (V) 41. Thus (2.2) is proved.
Now, assume that (2.3) is violated. Then we deduce again the existence of
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a sequence un such that Vun VH 1
0 (V) 4r and lim sup

nKQ
Jl (un ) 40. Up to a

subsequence we have that there exists a function u in Br4]VuVH 1
0 (V)Gr(

such that un weakly converges to u in H 1
0 (V). By lower semicontinuity

we get that Jl (u) G0, so that (2.2) implies that u40. As a consequence,
un tends to zero strongly in L 2 (V), hence from

a

2
�

V

N˜unN2 dxG
1

2
�

V

A(x) ˜un Q˜un dxGJl (un )1
l

2
�

V

NunN2 ,

we conclude, since lim sup
nKQ

Jl (un ) 40, that un strongly converges to zero

in H 1
0 (V), which is not possible since Vun VH 1

0 (V) 4r for every n in N . Thus
(2.3) is proved.

The proof that the functional Jl satisfies the Palais-Smale condition is
standard and the details are left to the reader. Let us just recall that the
main tool is, as usual, the proof that a Palais-Smale sequence un is bound-
ed, in order to apply the compactness properties of the equation. To ob-
tain the boundedness of the sequence un , it is enough to argue by contra-
diction, assuming that Vun VH 1

0 (V) goes to infinity and reasoning on the

normalized sequence un

Vun VH 1
0 (V)

, which can be proved to strongly converge

to zero (actually, it will converge to a nonnegative eigenfunction corre-
sponding to the eigenvector l , since lDl 1 it must converge to
zero).

We define now the class of paths to which apply the usual deforma-
tion lemma. First, let

Cl »4 {w�H 1
0 (V) : l�

V

w 2 2�
V

A(x) ˜w Q˜w dxD0} ,

which is clearly a nonempty subset of H 1
0 (V) since W 1 �Cl for every

lDl 1 . Note that for any w�Cl we have that there exists only one value
tw D0 such that Jl (tw w) 40.

Then we define the set of paths:

Xl »4 ]g�C( [0 , 1 ], H 1
0 (V) ) : )w�Cl : g(0) 40, g(1) 4 tw w( .

We can then prove that

c»4 inf
g�Xl

sup
[0, 1]

Jl (g(t) )



Alessio Porretta158

is a critical value for Jl . Indeed, let r and s be given from (2.3). Since
Jl (tw w) 40 it follows from (2.2) that Vtw wVH 1

0 (V) Dr , hence there exists a
value t such that Vg(t)VH 1

0 (V) 4r and thus cFs . Now, if the set Kc 4

4 ]v�H 1
0 (V) : Jl (v) 4c , Jl8 (v) 40( were empty, it would exist a contin-

uous deformation h : [0 , 1 ]3H 1
0 (V) KH 1

0 (V) and a value eD0 such

that h(t , v) 4v for any v�H 1
0 (V) such that NJl (v)2cND

s

2
and

Jl (h(1 , v) ) Gc2e for every v such that Jl (v) Gc1e . If g e is a path such
that sup

[0, 1]
Jl (g e (t) ) Gc1e , we have that the path h(1 , g e (t) ) belongs to

Xl and sup
[0, 1]

Jl (h(1 , g e (t) ) ) Gc2e , contradicting the definition of c .

Therefore c is a critical value and there exists a critical point ul in Kc .
Clearly, ul is a weak solution of (1.1). Moreover, note that the path
g(t) 4 ttw w belongs to Xl for any w�Cl , hence we get:

Jl (ul ) 4cG sup
[0, 1]

Jl (ttw w) .

A straightforward calculation implies (2.1). r

PROPOSITION 2.2. Let ul be the solution of (1.1) found in Proposi-
tion 2.1. Then we have:

lim
lK1Q

Vul VH 1
0 (V) 40 .(2.6)

PROOF. We denote, in what follows, by C all possibly different con-
stants which do not depend on l . First of all, since Jl8 (ul ) 40, we
have

g 1

u11
2

1

2
h �

V

ul
u11 dx4Jl (ul )2

1

2
aJl8 (ul ), ul b 4Jl (ul ) ,

so that using (2.1) we obtain the estimate:

(2.7) �
V

ul
u11 dxG

gs
V

NwNu11 dxh
2

12u

gls
V

w 2 2s
V

A(x) ˜w Q˜w dxh
11u

12u

, fore every w�Cl .

In particular, choosing w4W 1 in (2.7) we get

�
V

ul
u11 dxG

C

l
u11

12u

, (lDl 1 .(2.8)
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Moreover, for every l 8El we have that

�
V

A(x) ˜ul 8 Q˜ul 8 dx2l 8�
V

ul 8
2 dx42�

V

ul 8
u11 dx ,

hence

�
V

A(x) ˜ul 8 Q˜ul 8 dx2l�
V

ul 8
2 dx4 (l 82l) �

V

ul 8
2 dx2�

V

ul 8
u11 dxE0 .

Thus ul 8�Cl for every l 8El , so that (2.7) implies:

�
V

ul
u11 dxG

gs
V

Nul 8N
u11 dxh

2

12u

gls
V

ul 8
2 2s

V
A(x) ˜ul 8 Q˜ul 8 dxh

11u

12u

,

which yields, using the equation solved by ul 8 ,

�
V

ul
u11 dxG

gs
V

Nul 8N
u11 dxh

2

12u

g(l2l 8 ) s
V

ul 8
2 1s

V
Nul 8N

u11 dxh
11u

12u

(l 8El .(2.9)

Our main task now is proving that the sequence ]ul( is bounded in
H 1

0 (V). To this purpose, we argue by contradiction. Assume then that
Vul VH 1

0 (V) is not bounded. Then we can construct a subsequence l h , such
that:

(2.10) l h2l h21F1, Vul h
VH 1

0 (V)FVul h21
VH 1

0 (V) , lim
hKQ

Vul h
VH 1

0 (V)41Q.

From (2.9) written for ul h
and ul h21

we obtain (note that l h2l h21F1):

�
V

ul h
u11 dxG

gs
V

Nul h21
Nu11 dxh

2

12u

gs
V

ul h21
2 1s

V
Nul h21

Nu11 dxh
11u

12u

.

In order to simplify our notations, we denote henceforth ul h
by ul and
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ul h21
by ul21 , so that we rewrite the previous inequality as

�
V

ul
u11 dxG

gs
V

Nul21N
u11 dxh

2

12u

gs
V

ul21
2 1s

V
Nul21N

u11 dxh
11u

12u

.(2.11)

Let us set vl4
ul

Vul VH 1
0 (V)

. Then we have:

Vvl VH 1
0 (V) 41, Lvl1

vl
u

Vul VH 1
0 (V)

12u 4lvl .(2.12)

Moreover, using (2.11) and since Vul VH 1
0 (V) FVul21 VH 1

0 (V) we obtain:

�
V

vl
u11 dxG

1

VulVH 1
0 (V)

u11

gs
V

Nul21N
u11 dxh

2

12u

gs
V

ul21
2 1s

V
Nul21N

u11 dxh
11u

12u

G
1

Vul21 VH 1
0 (V)

u11

gs
V

Nul21N
u11 dxh

2

12u

gs
V

ul21
2 1s

V
Nul21N

u11 dxh
11u

12u

G
s

V
Nvl21N

u11 dx

u11
s

V
ul21

2 dx

s
V

Nul21N
u11 dx

v
11u

12u

,

which yields:

�
V

vl
u11 dxG

s
V

Nvl21N
u11 dx

11 u s
V

ul21
2 dx

s
V

Nul21N
u11 dx

v
11u

12u

.(2.13)

We claim now that there exists a constant eD0 such that:

lim inf
lKQ

s
V

ul
2 dx

s
V

NulN
u11 dx

FeD0 .(2.14)
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Indeed, assume that (2.14) is not true: then we get that, for a subse-
quence (not relabeled)

lim
lKQ

s
V

ul
2 dx

s
V

NulN
u11 dx

40 ,

so that, using (2.8),

�
V

vl
2 dx4

1

Vul VH 1
0 (V)

2
�

V

ul
2 dxG

C

Vul VH 1
0 (V)

2 l
u11

12u

.

But, using (2.10) (recall that here ul4ul h
), this implies that

lim
lKQ

l�
V

vl
2 dx40 ,

which yields, from the equation solved by vl (2.12):

lim
lKQ

�
V

N˜vlN
2 dx40 .

This can not hold because of (2.12), hence we deduce that (2.14) must be
true. Now, (2.13) and (2.14) together imply that there exists l Dl 1 and a
constant dD0 such that:

�
V

vl
u11 dxG

1

11d
�

V

vl21
u11 dx (lD l .

Therefore, we also have that there exists a constant CD0:

�
V

vl
u11 dxGC g 1

11d
hl

.(2.15)

Now, (2.12) implies, on account of standard regularity results (see [12]),

that, for a value pD
N

2
:

Vvl VL Q (V) GCVlvl VL p (V) ,

which yields, thanks to (2.15) (take also pDu11):

1GCl
V

vl

Vvl VL Q (V)
V

L p (V)
GCl

V

vl

VvlVL Q (V)
V

L u11 (V)

u11

p
GCl g 1

11d
h

l

p 1

Vvl VL Q (V)
(u11)/p .
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Then we have

Vvl VL Q (V) GCl
p

u11 g 1

11d
h

l

u11

,

so that Vvl VL Q (V) converges to zero as l tends to infinity. Then

l�
V

vl
2 dxGCl�

V

vl
u11 dxGCl g 1

11d
hl

.

Since (2.12) implies (recall (1.2))

a �
V

N˜vlN
2 dxG�

V

A(x) ˜vl Q˜vl dxGl�
V

vl
2 dx ,

we conclude that vl strongly converges to zero in H 1
0 (V), which contra-

dicts the fact that Vvl VH 1
0 (V) 41. The contradiction proves that no subse-

quence ul h
satisfying (2.10) can exist, and then that Vul VH 1

0 (V) is
bounded.

It is now easy to repeat the same arguments to prove that ul con-
verges to zero in H 1

0 (V). Indeed, if this were not true it would exist a
value e D0 and a subsequence ul h

such that:

l h 2l h21 F1, Vul h
VH 1

0 (V) F e (hD0 .(2.16)

In this case (2.9) still implies that

�
V

ul h
u11 dxG

gs
V

Nul h21
Nu11 dxh

2

12u

gs
V

ul h21
2 1s

V
Nul h21

Nu11 dxh
11u

12u

,

and then

�
V

ul h
u11 dxG

s
V

Nul h21
Nu11 dx

11 u s
V

ul h21
2 dx

s
V

Nul h21
Nu11 dx

v
11u

12u

.(2.17)

This is the same inequality as (2.13) previously obtained on vl . Thus, the
same arguments can now be applied; indeed, we have the alternative
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that either there exists a constant e such that

lim inf
hKQ

s
V

ul h
2 dx

s
V

Nul h
Nu11 dx

FeD0 (hD0 ,

or there exists a further subsequence (not relabeled) such that

lim
hKQ

s
V

ul h
2

s
V

Nul h
Nu11 dx

40 .

In both cases, the same arguments used before for vl allow to conclude
that a subsequence of ul h

strongly converges to zero in H 1
0 (V), which

contradicts (2.16). This concludes the proof that ul strongly converges to
zero in H 1

0 (V) r

REMARK 2.3. Note that, at least if N22

N12
EuE1, we can also argue

from the proof of Theorem 1.1 that

lim
lKQ

Vul VL Q (V) 40 .

In fact, recall that we have the estimate:

�
V

ul
u11 dxG

C

l
u11

12u

(lDl 1 .

If N22

N12
Eu, then u11

12u
D

N

2
, hence we get from the equation solved by ul ,

Vul VL Q (V) GClVul V

L
u11

12u (V)
.

Hence, using that u11

12u
Du11,

1 GCl
V

ul

Vul VL Q (V)
V

L
u11

12u (V)
GCl

V

ul

Vul VL Q (V)
V

L u11 (V)

12u

GC
1

Vul VL Q (V)
12u

.

We first deduce from this inequality that Vul VL Q (V) is bounded, then we

obtain, for a value p such that max mu11, N

2
nEpE

u11

12u
:

lim
lKQ

l p�
V

ul
p dxGCl p�

V

ul
u11 dxGC

1

l
u11

12u
2p

,
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so that lul strongly converges to zero in L p (V) with pD
N

2
. Classical

regularity results (see [12]) then imply that ul converges to zero in
L Q (V). In particular, this proves the convergence of ul in L Q (V) for
any value of u at least in dimension NG2.
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