REND. SEM. MAT. UN1v. PADOVA, Vol. 107 (2002)

A Note on the Bifurcation of Solutions
for an Elliptic Sublinear Problem.

ALESSIO PORRETTA (*)

1. Introduction.

We consider the following semilinear problem in a bounded domain
QcRY:

Lu+u’=Ju in Q,
1.1) =0, u#0, in Q,
u=0 on 0%,

where 0 < 0 <1 and Lu is a linear differential operator defined as Lu =

= —div (A(x) Vu), A(x) being a symmetric, bounded and coercive matrix,
that is such that

(12)  «al&]P<A(@) &-E<PIE?
for every EeRYN, ae. xeQ, with a, >0.

A necessary condition to find nonnegative nontrivial solutions of (1.1) is
that A > 1, the first eigenvalue of the operator L on £ with Dirichlet

(*) Indirizzo dell’A.: Dipartimento di Matematica, Universita di Roma «Tor
Vergata», Via della Ricerca Scientifica, 00133, Roma, Italia.
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boundary conditions. Notice that (1.1) is the Euler equation of the
functional

1 A 1
13)  Jy(u) = —JA(m) Vu-Vu de — —J(u*)zdac+ —f|u|"”dw
29 2_@ 9+19

we Hi (Q),

which, since 0 < 0 <1, is not bounded from below if A >1;.

As it was remarked in [8] (see also [6]), the existence of a solution of
(1.1) for every A > A, can be obtained applying the abstract fixed point
results by Krasnoselskii ([9]). This approach relies on the definition of

. u .
the inverse operator of w—Lu + |u|® Tl and makes use of its compact-
u

ness properties and the computation of its derivative at zero and at infin-
ity. Similarly, using the results of Rabinowitz in [11], in [6] it is proved
the existence of a connected branch of solutions (4, u;) bifurcating from
infinity at A = 4. The same kind of arguments is used in a more general
context in [3] to deal also with sublinear eigenvalue problems, following
the method developed in [1] (see also [10]).

As a consequence of the previous results, the bifurcation diagram for
solutions of (1.1) reads as follows: there is bifurcation from infinity if and
only if A = 1, while no finite value of 1 can be a bifurcation point from the
zero solution. The aim of this note is to prove that the bifurcation from
the trivial solution actually occurs at 1 = + .

More precisely, we prove that there exists a sequence u;, A >4, of
Mountain Pass type solutions of (1.1) such that ||, ||z q) tends to zero as
A goes to infinity. In fact, we do not know whether any sequence of sol-
utions of (1.1) will converge to zero as A tends to infinity, nevertheless
the sublinear behavior of the absorption term both near the origin and at
infinity yields a classical Mountain Pass type structure to the functional
J;, which allows to construct such a sequence, obtaining the bifurcation
from =0 at 1 = + . This is the result that we prove.

THEOREM 1.1. Let 0 <60 <1, and let (1.2) be satisfied. Then for
every A > A, problem (1.1) admits a solution u, € H} () which is a criti-
cal point of Mountain Pass type of the functional J, defined in (1.3).
Moreover this family of solutions u,; satisfies

(1.4) i o g ) =0
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The bifurcation from the trivial solution at infinity has already been
proved for the semilinear problem

Lu = Au? in Q,
1.5) =0, u=0, in Q,
u =0 on 0%,

with p > 1. For a certain range of values of p this was obtained in [5] via
a priori estimates while a general result (for every subcritical p > 1) was
proved in [4] using the variational structure of the equation and esti-
mates on the Mountain Pass level of the related functional. Our problem
(1.1) is much different with respect to (1.5) since the nonlinearity Au — u°
is asymptotically linear at infinity and the Mountain Pass character is
due to a sublinear positive perturbation. This implies that the approach-
es of these previous papers do not work, in particular the standard regu-
larity (bootstrap) argument is not such helpful and the method used in
[4] would only give here an estimate on the L’*!(2) norm of u. For this
reason we use here a refined construction of the Mountain Pass solutions
u;, which are obtained through a recurrence argument, allowing, at fixed
7, to estimate J7 on the paths [0, u;], where A < 1 and u, is the Mountain
Pass solution previously found.

Let us stress that, in dimension N =1, a full study of the equation
(1.1) is carried out in the recent work [7]. In that paper the case of the p-
laplace operator is also considered and the set of solutions of the prob-
lem is fully characterized, giving multiplicity results as well. While our
results can be proved without relevant changes for the p-laplace opera-
tor as well, we cannot give here a full picture of the behavior of the sol-
utions in dependence of A.

2. Proof of Theorem 1.1.

We denote by 4, the first eigenvalue of the operator L with Dirichlet
boundary conditions on 9£2, and by ¢, the positive eigenfunction such

that Lo, =4,¢;, ”(PIHLZ(Q): L.

Proor oF THEOREM 1.1. The proof of Theorem 1.1 is a consequence
of the following two Propositions.

ProposITION 2.1. Let A > A,. Then problem (1.1) admits a solution
u; which is a critical point of Mountain Pass type of the functional J;
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defined in (1.3). Moreover u; satisfies:

)

11 (J 1w]** dae) T2
2.1) Jz(uz)g(m _E) 2

1+6

(2 fw? — [ A@) Voo Vawdr) =0
Q Q

for every w: Afw?dx — [A(x) Vw-Vwdx >0 .
Q Q

Proor. We are going to use the classical theorem of Ambrosetti and
Rabinowitz ([2]) with a little change in the choice of the paths.

We start by proving that « =0 is a local minimum for the functional
J,. Precisely, we claim that

(2.2) Fo>0: J(w)>0 VueB,\{0}= {llullze <o, u=0},
which will easily imply that
2.3) Jo: Jiw=zo Vu:lulge=0.

In order to prove (2.2) we argue by contradiction. If (2.2) were not true,
it would exist a sequence u, in H{ (L) such that:

||un||H01(Q)_)Oa u, #0,  Jy(u,) <0 VneNN,

that is

1 1 A
24) — fA(x) YV, Vi, dac + —J|un|9”d9¢$ —f|un|2dac.
29 9-‘1-19 29

Setting w, = u— we have:
||uﬂ ”H(](Q
/1(6 +1)
(2.5) J |, |0+1d9€ = ”un”HO(g)f [0, |
Q

Since [[w, |10y = 1, we have that, up to subsequences, w, converges to a
function we H} (L) almost everywhere in £, hence we deduce by Fa-
tou’s lemma and (2.5) that w = 0, so that w,, strongly converges to zero in
L%(Q2) as well by Rellich theorem. Dividing the equality in (2.4) by
[0, 712 @y, using the ellipticity of A(x) we conclude that w, tends to zero
in H{ (), contradicting the fact that ||wn||H01<Q> =1. Thus (2.2) is proved.
Now, assume that (2.3) is violated. Then we deduce again the existence of
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a sequence u, such that ||un||H01<Q) = and lim sup J;(u,,) =0. Up to a
n—> o

subsequence we have that there exists a function u in B, = {|ullz o) <o}
such that u, weakly converges to u in H{ (). By lower semicontinuity
we get that J;(u) <0, so that (2.2) implies that v = 0. As a consequence,
u, tends to zero strongly in LZ(£), hence from

1 A
%fwumdxs EJA(%) Vu, Vo, dae < J, (u,) + §J|un|2,
Q Q Q

we conclude, since lim sup J;(u,) = 0, that u,, strongly converges to zero

in Hy (), which is not possible since [[u, [|51(0) = o for every n in N. Thus
(2.3) is proved.

The proof that the functional J, satisfies the Palais-Smale condition is
standard and the details are left to the reader. Let us just recall that the
main tool is, as usual, the proof that a Palais-Smale sequence u,, is bound-
ed, in order to apply the compactness properties of the equation. To ob-
tain the boundedness of the sequence u,,, it is enough to argue by contra-
diction, assuming that ||u, [z1e) goes to infinity and reasoning on the

Uy,

normalized sequence , which can be proved to strongly converge

[z, ”H&(m
to zero (actually, it will converge to a nonnegative eigenfunction corre-

sponding to the eigenvector A, since 1>1; it must converge to
Zero).

We define now the class of paths to which apply the usual deforma-
tion lemma. First, let

C, = [WEHOI(.Q): zjwt jA(x) Vo -Vwde >0},
Q Q

which is clearly a nonempty subset of H{ () since ¢,eC, for every
A > A;. Note that for any w e C; we have that there exists only one value
t, >0 such that J,(t,w) =0.

Then we define the set of paths:

X, :={yeC(0, 1], H}(2)): JweC;: y(0) =0, y(1)=t,w}.
We can then prove that

c:= inf sup J;(y(t))

7€Xz [0,1]
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is a critical value for J;. Indeed, let o and o be given from (2.3). Since
J;(t,w) =0 it follows from (2.2) that HtwwHHOl(g) > 0, hence there exists a
value ¢ such that [|y(t)|y10) =0 and thus ¢=o. Now, if the set K, =
={veH{(Q): J,(v) =¢, J; (v) =0} were empty, it would exist a contin-
uous deformation # :[0, 1] x H}(Q2)—H{(2) and a value &£>0 such
that n(t,v) =v for any veH{(Q) such that |J,(v)—¢|> % and

J,(n(1, v)) < c — ¢ for every v such that J, (v) < c + ¢. If y, is a path such

that sup J;(y.(t)) <c+ e, we have that the path 5(1, y.(¢)) belongs to
[o,
X, and sup J;(n(1, v.(t))) <c—¢, contradicting the definition of c.

Therefore c 1s a critical value and there exists a critical point u; in K,.
Clearly, u; is a weak solution of (1.1). Moreover, note that the path
y(t) = tt,,w belongs to X, for any we C),, hence we get:

Ji(uy) =c < sup J, (tt,w).
[0,11
A straightforward calculation implies (2.1). =

ProOPOSITION 2.2. Let u; be the solution of (1.1) found in Proposi-
tion 2.1. Then we have:

(2.6) i o g ) =0

Proor. We denote, in what follows, by C all possibly different con-
stants which do not depend on A. First of all, since J; (u;) =0, we
have

1 1 1
(m - E)quie+ldx:Jl(ul) - E(J,{(u,l), u,1> :Ji(ui),

so that using (2.1) we obtain the estimate:

(g‘lw|9+1dx)ﬁ

2.7 fuf“dxs —, fore every weC;.

° (A fw? = [A(x) V- Vwda )7
Q Q

In particular, choosing w=¢; in (2.7) we get

2.8) fuf“dxs C s
o A1-0
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Moreover, for every A’ <1 we have that

Ax) Vuy -Vu, de —A' |upde=— [uf ™ ldx,
J J J

Q Q Q

hence

JA(ac) Vu;,-vm,dx—zfufdm (A" =) Jufrdoc— Juﬁ“dac<0.
Q Q Q Q

Thus u; € C; for every A’ <A1, so that (2.7) implies:

(f'ullle‘i*ldx)lf_g
Q

Juf”d.%’ﬁ oo
@ (Afu? - [A(@) Vuy - Vuy do) =7
Q Q

)

which yields, using the equation solved by u;.,

(e )

@9 [uf <
5 (A=2") fuf + [ |uz |*F dee) 7
Q Q

Vi <.

Our main task now is proving that the sequence {u;} is bounded in
H} (). To this purpose, we argue by contradiction. Assume then that
[[0; ||z () is not bounded. Then we can construct a subsequence 1, such
that:

(210)  Ap—4,_1=1, ||%1,1||H(}(9>2Huzh,1”Hg(9), hh_{{}o HUMHH(}(Q):"‘OO-

From (2.9) written for u,;, and u;, K we obtain (note that 1,—4,_,=1):

2
(f s, 17" )

0+1 7, <
J'ulh de < — .

e <qu/12h71+f!|uih—1|6+ldx)n

In order to simplify our notations, we denote henceforth u,, by u; and



160 Alessio Porretta

u;, , by u,_y, so that we rewrite the previous inequality as

2
(1o a1

(2.11) fuf“dx < — .
Q (fu12_1+f|u,1_1|0+1d90)ﬁ
Q Q
Let us set v, = . Then we have:
[l HHOI(Q)
Q)f
(2.12) ||U/1||H01(sz) =1, Ly + —a=— =
||%1||H01(9)

Moreover, using (2.11) and since | ||z @) = [[u; -1 |3 o) We obtain:

2
Jluy oy | )0
fv19+1dx< || ||]6-'+1 (Ql | ) 140
o Halg ) (JuZy+ [ || )7
Q Q
2
1 (J1wsa|” )2

< ||u ||041r1 =
i-1lm) @) (Qf“f-ﬁgflm—1|9+1dx)w

S v 1] dee
@

N

1+6 »

Jui_ i de 1-0
fo}

Jlw 1| dee
o

1+

which yields:

Jlv, 1| dw
Q

(2.13) fv,{’“doc < —.
o fuf_ldac 1-0
o]

1+|—2
w1 |? " da
Q

We claim now that there exists a constant £ > 0 such that:

Ju?de
(2.14) liminf —2—— =2¢>0.
A— flulleJrldx
Q
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Indeed, assume that (2.14) is not true: then we get that, for a subse-
quence (not relabeled)

Ju?dx

im —£2—— =0
A_)méﬂuﬂeﬂd%

so that, using (2.8),

fvfdoc= fufdacs ¢ —.

g ot H?H&(mg ot 7z ) 2 77

But, using (2.10) (recall that here u; =u,,), this implies that
: 2 _
,11520 ljm de=0,
Q
which yields, from the equation solved by v, (2.12):

lim [ |Vo,|*de=0.
Q

This can not hold because of (2.12), hence we deduce that (2.14) must be
true. Now, (2.13) and (2.14) together imply that there exists 1 > 1; and a
constant 6 > 0 such that:

1 _
jvf“dacS - Jv,{’_*fdx V> 7.
1+6
Q Q
Therefore, we also have that there exists a constant C > 0:

1 A
2.15 f 0+14 sC(—).
215 Qm ¢ 1+0

Now, (2.12) implies, on account of standard regularity results (see [12]),

that, for a value p > %:

”?)A ”L =) S C”M)A HLP(Q),
which yields, thanks to (2.15) (take also p > 6 + 1):

6+1

1 \» 1
' scz( ) :
L0712 146 ] |l ll= 07

V; ()

ol
LP(Q) [vallz = )

1< C/l‘ -
||UA||L°°(Q)
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Then we have

||wumscz%( ! )_
1+6

so that [[v; |, =) converges to zero as A tends to infinity. Then

RV
/lfvfdx$C/IJ'vf“dx$Cl(—) )
g g 1+0

Since (2.12) implies (recall (1.2))

a J' |V, |2 de < JA(ac) Vvl-Vvide/lfvfdac,
Q Q Q

we conclude that v, strongly converges to zero in H{ (), which contra-
dicts the fact that ||v, ||H01(9) = 1. The contradiction proves that no subse-
quence u;, satisfying (2.10) can exist, and then that |z is
bounded.

It is now easy to repeat the same arguments to prove that u,; con-
verges to zero in H{ (). Indeed, if this were not true it would exist a
value £ >0 and a subsequence u,, such that:

(2.16) Ap=2p-121, |y, gy =€ VR>0.

In this case (2.9) still implies that

2

(fgf |ulh,71 |6+1d9€)m

140 7

J"I/L;f)h’*— 1 de <

g (qufhfﬁgﬂuzm |7 dar)
and then
fluih—lleJrldx
.17 J uf, e < 2 e
2
o fulh_ldﬁc 1-6
1+ =

ér|uih—1|9+ldx

This is the same inequality as (2.13) previously obtained on v;. Thus, the
same arguments can now be applied; indeed, we have the alternative
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that either there exists a constant ¢ such that
Ju? de

liminf9—128>0 Vh >0,
h— o Qj‘|ulh|6+ da

or there exists a further subsequence (not relabeled) such that

2
f Uy,
lim e

h— o J|u,1h|0+ld90 N

In both cases, the same arguments used before for v, allow to conclude
that a subsequence of u;, strongly converges to zero in Hy (L), which
contradicts (2.16). This concludes the proof that u, strongly converges to
zero in Hi(Q) =

REMARK 2.3. Note that, at least if N-z
from the proof of Theorem 1.1 that

<6 <1, we can also argue

ih_{r}c 2 ]| = 2y =0 .

In fact, recall that we have the estimate:

J'u19+ldﬂcS% Vﬂ,>ﬂ.1
g =

If % <6, then % > %, hence we get from the equation solved by u;,

oz = @y < CAllw [, 55

L1-0(Q)"
. 0+1
Hence, using that — >0+1,
1<CA‘ R Y SCA‘ LTSI L
[l ||z, = @ e T=7 @) [l ||z = @ N2+t [l |I1.= o)

We first deduce from this inequality that |u, |, =g, is bounded, then we
o+1
1-0°

obtain, for a value p such that max{ﬁ +1, %} <p<

1
Alim l”fu,{’dx$€l”[uf“dx$0 —_

o s A1-0 "
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so that Au,; strongly converges to zero in L?(Q) with p > % Classical

regularity results (see [12]) then imply that u, converges to zero in
L * (). In particular, this proves the convergence of u; in L *(£) for
any value of 6 at least in dimension N < 2.
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