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Compact Embedding of a Degenerate Sobolev Space
and Existence of Entire Solutions to a Semilinear

Equation for a Grushin-type Operator.

FRANCESCA LASCIALFARI - DAVID PARDO (*)

ABSTRACT - We establish a compactness embedding result for suitable Sobolev
subspaces naturally arising in the study of a Grushin-type operator in RN. As
an application, we study the solvability of a semilinear problem involving the
above operator and a subcritical nonlinear term.

1. Introduction.

It is well known that, under a variational point of view, every positive
solution of the problem

.
/
´

2Du4 f (x , u)

uN¯V40
f non linear(1)

on a bounded domain V’RN , is a critical point of an Euler-type function-
al associated to (1).

Under a set of assumptions on the function f , such a critical point re-
ally exists so that equation (1) is solvable. We point out that a similar re-
sult relies on compact embeddings for Sobolev spaces, namely the Rel-
lich-Kondrachov Theorem. This approach does not work in general if V
is unbounded, say V4RN , because of the lack of compactness of the
above embeddings. Nevertheless, the geometry of the Laplace operator
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and the invariance of RN under rotations suggest to study the problem in
a restricted functional setting.

For instance, Béréstycki and Lions in [1] studied problem (1) on RN ,
with a function f which depends on u and NxN. The symmetry of f with re-
spect to NxN plays a crucial role since it allows to recover compactness
even if the domain is unbounded. The use of subspaces of spherical func-
tions was first introduced by Strauss in [9] where equation (1) is studied
in the whole space.

The aim of the present paper is to establish a similar result in a de-
generate elliptic case.

Precisely, for lD0 we study the following problem:

.
/
´

2D G u1lu4u q21

uD0

on RN

on RN
(2)

where D G stands for the operator:

D G4D x1NxN2a D y , aD0, x�Rn , y�Rm , n1m4N , nF2,

the power q is superlinear and subcritical for D G , that is 2 EqE2G*4

4
2Q

Q22
, and Q4n1 (a11) m. In the sequel we shall refer to D G as the

Grushin operator.
The Dirichlet problem for equation (2) has been investigated by Tri

in [11] in the case of starshaped bounded subsets of R2 and a zero bound-
ary data. Among the authors who faced similar matters for degenerate
operators we mention S. Biagini. In her work [2] she dealt with a semi-
linear problem involving the Heisenberg operator and used a technique
that can be fitted in our context.

Now let us make some remarks and introduce useful notations.
The Grushin operator D G can be written as the divergence of a modi-

fied gradient, namely

D G 4div (˜G ), ˜G 4 (˜x , NxNa ˜y ), (x , y) �Rn 3Rm .

Moreover, if we denote with A the N3N matrix

A(x) 4 gIn

0

0

NxNa Im
h
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an easy computation shows that

˜G 4A(x)u˜x

˜y

v4A(x) ˜ .(3)

If V’RN , we define the Sobolev space

S 1, 2 (V) 4 ]u�L 2 (V) : ˜G u�L 2 (V)( .

We remark that S 1, 2 (V) endowed with the inner product

au , vbS 1, 2 (V) 4�
V

(uv1˜G u Q˜G v) dx dy

is a Hilbert space. Besides, if V is bounded, the embedding

S 1, 2 (V) %KL q (V)(4)

is compact if 2 EqE
2Q

Q22
, whereas the embedding

S 1, 2 (RN ) %KL q (RN )(5)

for every q� k2, 2Q

Q22
l is only continuous (see [3], [10]).

We introduce the following closed subspaces of S 1, 2 (RN ):

S 4 ]u� S 1, 2 (RN ) : u(x , y) 4W(NxN , y)( ,

Sr 4 ]u� S 1, 2 (RN ) : u(x , y) 4W(NxN , NyN)( ,

and the cone

V »4 ]u� Sr (RN ) : W is non-increasing in NyN(

for which the following trivial inclusions holds:

V % Sr % S % S 1, 2 (RN ) .

We stress that the requested cylindrical symmetry in the definition of Sr

is suggested by the structure of the Grushin operator.

DEFINITION 1.1. A function u� S 1, 2 (RN ) will be called a weak sol-
ution of (2) if it satisfies the following identity:

�
RN

˜G u Q˜G f1l �
R N

uf4 �
RN

u q21 f

for every choice of f�C Q
0 (RN ).
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We are ready to state the main results of this paper:

THEOREM 1.1 (COMPACT EMBEDDING). If 2 EqE2G*, then the restric-
tion to the cone V of embedding S 1, 2 (RN ) %KL q (RN ) is compact.

THEOREM 1.2 (EXISTENCE AND REGULARITY). Let q�]2 , 2G*[. Then
there exists a weak solution u�C u

loc (RN )OC 2, u
loc (Rn 0]0(3Rm ) of prob-

lem (2).
Moreover, u is radially symmetric with respect to each group of

variables, that is u(x , y) 4u(NxN , NyN).

The plan of the paper is the following.
In section 2 we prove Theorem 1.1 mainly exploiting a decay Lemma

for functions belonging to V.
In section 3 we deal with problem (2). The existence of a positive sol-

ution will be achieved by applying Theorem 1.1 and rearrangements
techniques. We prove also the regularity properties for the solution.

2. Compact embedding.

The purpose of this section is the proof of Theorem 1.1. We expect
that a good decay of functions at infinity may help to recover compact-
ness of embeddings (5), although the domain is unbounded. The struc-
ture of V assures the following result:

LEMMA 2.1. Let nF2, mF1, and suppose u� V. The following
pointwise estimate holds:

u(x , y) G
kN

NxN
n21

2 NyN
m

2

VuVL 2 (RN )
1 /2

V˜x uVL 2 (RN )
1 /2

where kN is a dimensional constant.

PROOF. If u� V, there exists a two-variable function W such that
u(x , y) 4W(NxN , NyN). Since u is non-increasing with respect to NyN , for
a fixed sD0 we have

W(s , t) FW(s , t) (t� [0 , t] .
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We now multiply both terms by t m21 and integrate over [0 , t].
Then:

�
0

t

W(s , t) t m21 dtF�
0

t

W(s , t) t m21 dt4
t m

m
W(s , t) .(6)

Furthermore, an easy computation shows that

d

ds
ys n21u �

0

t

W(s , t) t m21 dtv2zF

F2s n21�
0

t

W(s , t) t m21 dt Q�
0

t
¯W

¯s
(s , t) t m21 dt .

Let sD0; then, by integrating with respect to s� [s , 1Q] we ob-
tain:

s n21u �
0

t

W(s , t) t m21 dtv2

G

G2 �
s

1Q

N�
0

t

W(s , t) t m21 dtN QN�
0

t
¯W

¯s
(s , t) t m21 dtNs n21 ds

G2 �
0

1Q

N�
0

t

W(s , t) t m21 s
n21

2 dtN QN�
0

t
¯W

¯s
(s , t) t m21 s

n21

2 dtNds .

Apply Hölder inequality in the ds-integral:

s n21u �
0

t

W(s , t) t m21 dtv2

G2 y �
0

1Qu �
0

t

W(s , t) t m21 dtv2

s n21 dsz1/2

3

3y �
0

1Qu �
0

t
¯W

¯s
(s , t) t m21 dtv2

s n21 dsz1/2

,
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and the same in the dt-integral:

s n21u �
0

t

W(s , t) t m21 dtv2

G

G2 y �
0

1Qu �
0

t

W 2 (s , t) t m21 dtv u �
0

t

t m21 dtv s n21 dsz1/2

3

3y �
0

1Qu �
0

t

g ¯W

¯s
(s , t)h2

t m21 dtv u �
0

t

t m21 dtv s n21 dtz1/2

.

Then we get:

s n21u �
0

t

W(s , t) t m21 dtv2

Gcm t m
VWVL 2 (RN ) QV˜x WVL 2 (RN ) .

By extracting the square roots of both members, and taking in account of
(6), we find:

W(s , t) G
km

NsN
n21

2 NtN
m

2

VWVL 2 (RN )
1 /2 QV˜x WVL 2 (RN )

1 /2 . r

REMARK 2.1. Suppose that the function W is non-increasing with
respect to its first variable, that is u non-increasing in NxN instead of
NyN. If nF1, mF2, the same argument of the proof of the previous
Lemma leads to the following estimate:

W(s , t) G
kn

NsN
n1a

2 NtN
m21

2

VWVL 2 (RN )
1 /2 QVNxNa ˜y WVL 2 (RN )

1 /2 .

We point out that in this case we need the additional hypotheses

aE
n

2
.

In order to prove compactness of embedding V %KL q (RN ) with q�
�]2 , 2*G [ we must show that every bounded sequence in V is precompact.
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We divide RN into suitable subsets Qi , i41, R , 4 , defined as fol-
lows:

Q1 »4 ](x , y) �Rn 3Rm : NxNGR ; NyNGR(

Q2 »4 ](x , y) �Rn 3Rm : NxNGR ; NyNFR(

Q3 »4 ](x , y) �Rn 3Rm : NxNFR ; NyNGR(

Q4 »4 ](x , y) �Rn 3Rm : NxNFR ; NyNFR(

where R is a constant to be chosen later.
The convergence of a bounded sequence in Q1 (enventually up to a

subsequence) readily comes from embedding (4); in Q4 it is a conse-
quence of Lemma 2.1. The main difficulties are represented by the par-
ticular unboundedness of Q2 and Q3 , where one variable is arbitrarily
large.

For overcoming this obstacle, we shall take advantage of a technique,
used by P. L. Lions in [7], that will be explained during the proof.

PROOF OF THEOREM 1.1. Let (uk )kF1 be a bounded sequence in V.
Then there exists u0 �L q and a subsequence, that we still denote by (uk ),
such that:

uk Ku0

uk (x , y) Ku0 (x , y)

in L q
loc OL 2

a.e. in RN .

Remark that

�
RN

Nuk 2u0N
q 4 !

j41

4

Ij where Ij »4�
Qj

Nuk 2u0N
q .

Due to embedding (4), we get I1 K0 as kK1Q.
About I4 we write:

I4 4 �
Q4

Nuk 2u0N
q GCqu �

Q4

NukNq22 NukN2 1�
Q4

Nu0N
q22 Nu0N

2v .

By Lemma 2.1 one gets:

I4 GCq
C

R (q22)( n21

2
1

m

2
)
u �

Q4

NukN2 1�
Q4

Nu0N
2v
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where C is a constant depending only on the norms of the functions uk.
Then I4 K0 as RKQ , uniformly in k�N.

It remains to prove the convergence of I2 and I3 to 0 as kKQ. For
this purpose we define

f k (x) »4 �
NyNFR

Nuk (x , y)Nq dy .

The sequence (f k )kF1 is bounded in L 1 (B), where B»4 ]NxNGR( %Rn ;
indeed the sequence (uk )kF1 is bounded in L q. In addition, Lemma 2.1
implies that

�
NyNFR

Nuk (x , y)Nq dyK �
NyNFR

Nu0 (x , y)Nq dy4: f(x)

as kKQ , by compact embedding in L q
loc . Then f k (x) Kf(x) almost

everywhere. As B is a compact set, the sequence f k converges to f in
L 1 (B). Moreover:

V˜x f k VL 1 (B) 4 �
NxNER

N˜x f k (x)Ndx4 �
Q2

N˜x (uk (x , y)N)q dxdyG

Gq�
Q2

Nuk (x , y)Nq21 N˜x uk (x , y)Ndx dy .

Apply Hölder inequality and get:

V˜x f k VL 1 (B) GCV˜x uk VL 2 (Q2 ) Vuk VL 2(q21) (Q2 )
q21 .

If 2(q21) G
2Q

Q22
, then

Vuk VL 2(q21) (Q2 )
q21 GCV˜G uk VL 2 (Q2 )

q21 ,

that implies V˜x f k VL 1 (B) GCN˜G uk VL 2 (Q2 )
q21 . We can conclude that the se-

quence (f k )kF1 is bounded in W 1, 1 (B), so that Vuk VL q (Q2 ) KVu0 VL q (Q2 ) .
Finally, we prove that I3 K0. Define, as above:

c k (y) »4 �
NxNFR

Nuk (x , y)Nq dx .



Compact embedding of a degenerate Sobolev space etc. 147

By a similar proceeding, it is enough to observe that, for almost every y ,

˜y c k (y) 4q �
NxNDR

uk
q21 (x , y)

NxNa
NxNa ˜y uk (x , y) dxG

Gq u �
NxNDR

uk
2(q21) (x , y)

NxN2a
dxv1/2u �

NxNDR

NxN2a N˜y uk (x , y)N2 dxv1/2

G

G
q

R a
u �

NxNDR

uk
2(q21) (x , y) dxv1/2u �

NxNDR

N˜G uk (x , y)N2v1/2

.

Then the sequence (c k ) is bounded in W 1, 1 (NyNGR) and Vuk VL q (Q3 ) K

KVu0 VL q (Q3 ) . Thus Theorem 1.1 is proved.

3. A semilinear problem for the Grushin operator.

This section is devoted to the proof of Theorem 1.2.
As announced in the Introduction, our approach to problem (2)

is variational. Therefore we define, for every u� S 1, 2 (RN ), the func-
tional:

J(u) 4
1

2
�

RN

(N˜G uN2 1lNuN2) dz .(7)

Our goal is to find a critical point of J as the minimum on a suitable mani-
fold. We first prove the following

LEMMA 3.1. Let v� S and let v * denote the spherical decreasing re-
arrangement of v with respect to the variable y. It holds

J(v *) GJ(v) .(8)
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PROOF. We first recall some useful properties of the rearrange-

ments we are dealing with. If v�L p , u�L p 8 , and 1

p
1

1

p 8
41, then:

(i) VvVL p 4Vv * VL p

(ii) �
Rm

u(x , y) v(x , y) dyG �
Rm

u *(x , y) v *(x , y) dy a.e. x�Rn

(iii) �
Rm

N˜y v * Np dyG �
Rm

N˜y vNp dy for all pD1 .

Properties (i) and (ii) are a trivial consequence of the fact that, for a
fixed x , u *(x , Q), v *(x , Q) are nothing but the Schwartz rearrangements
of u(x , Q), v(x , Q) (see for instance [6]). The third property follows direct-
ly from the Polya-Szegö inequality. We also remark that property (iii)
implies

�
RN

NxN2a N˜y v * N2 dx dyG �
RN

NxN2a N˜y vN2 dx dy .

In order to prove (8) it remains to show the following inequality:

V˜x v * VL 2 GV˜x vVL 2 .

Let j41, R , n and let hc0. From the above properties (i) and (ii) we
get:

�
Rm

Nv *(x1hej , y)2v *(x , y)N2

h 2
dy4

4�
Rm

1

h 2
(Nv *(x1hej , y)N2 1Nv *(x , y)N2 22v *(x , y) v *(x1hej , y)) dy

G �
Rm

1

h 2
(Nv(x1hej , y)N2 1Nv(x , y)N2 22v(x , y) v(x1hej , y)) dy

4 �
Rm

Nv(x1hej , y)2v(x , y)N2

h 2
dy
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4 �
Rm

N�
0

1

˜xj
v(x1 thej , y) dtN

2
dy

G �
Rm

�
0

1

N˜xj
v(x1 thej , y)Ndt 2 dy .

Then, by integrating with respect to x:

�
RN

Nv *(x1hej , y)2v *(x , y)N2

h 2
dx dyGV¯xj

vV

2
L 2 (RN ) .

This proves that the family

wh »4 g v *(Q1hej , Q)2v *(Q , Q)

h 2
h

h

is bounded in L 2 by the L 2-norm of ¯xj
v. Then, for a sequence hj 70, whj

weakly converges to a certain w in L 2 such that VwVL 2 GV¯xj
vVL 2 . It fol-

lows that w is the weak derivative of v * with respect to xj and
V¯xj

v * VL 2 GV¯xj
vVL 2. Since this inequality holds for any j41, R , n , we

get

V˜x v * VL 2 GV˜x vVL 2 . r

PROOF OF THEOREM 1.2.. Let M 4 ]u� S : VuVL q 41( and let J be
the functional defined in (7). Since JD0 on M, there exists inf

M
J(u) 4

4J0 F0. Our goal is to prove that J0 actually is a minimum for J , so that
J0 D0. Let (uk ) % M be a minimizing sequence. By definition, J(u) 4

4J(NuN), then we can assume uk F0 for every k.
Moreover:

1. Vuk VS 1, 2 (RN ) 4J(uk ) 4J0 1o(1), therefore (uk )k is bounded and
there exists a function u0 � S such that uk �u0 up to a subsequence.

2. Lemma 3.1 allows us to assume uk radially symmetric and de-
creasing with respect to NyN without loss of generality.

3. The sequence (uk )k is precompact in L q by Theorem 1.1. Hence
uk Ku0 in L q , and Vu0 VL q 41.

On the other hand, by the semicontinuity of J with respect to the
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weak convergence, we have

J(u0 ) G lim inf
kKQ

J(uk ) 4J0 .

Then J(u0 ) 4J0 . In addition, by Lagrange-Lusternik multiplier Theo-
rem, u0 verifies the following integral identity:

�
0

1Q

�
Rm

g ¯u0

¯r
(r , y)

¯W

¯r
(r , y)2

n21

r

¯u0

¯r
(r , y) W(r , y)h r n21 dy dr1

2 �
0

1Q

�
Rm

(r 2a a˜y u0 (r , y), ˜y W(r , y)b1lu0 (r , y) W(r , y)) r n21 dy dr4

4m �
0

1Q

�
Rm

[u0 (r , y) ]q21 W(r , y) r n21 dy dr

for every W4W(r , y) �C Q
0 (]0 , 1Q[3Rm ). Here m is a Lagrange multi-

plier. Since J(u0 ) D0 it must be mD0. In a standard way, we can rescale
u0 in order to get m41. Then u0 is a weak solution in (Rn 0]0()3Rm to
the elliptic equation

2
¯ 2 W(r , y)

¯r 2
2

n21

r

¯

¯r
W(r , y)2r 2a D y W(r , y)1lW4W q21 .

A classical bootstrap argument shows that is u0 is a pointwise solution of

2D G u1lu4u q21 in (Rm 0]0()3Rn .

Now we are going to prove that u0 is a weak solution on the whole space,
i.e. u0 is a weak solution of problem (2).

It suffices to establish that for all f�C Q
0 (RN ) one can find a se-

quence e j 70 verifying

�
RN 0Ce j

˜G u0 Q˜G f2 �
RN 0Ce j

(u0
q21 f2lu0 f) K0 as jKQ(9)

where

Ce j
»4 ](x , y) �Rn 3Rm : NxNGe j ; NyNGR(
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and R must be chosen in a way that supp f%Rn 3B m
R . Here we denote

by B m
R the set ]y�Rm : NyNGR(.

Now fix eD0. Since u0 is a classical solution in RN 0Ce and ff0 when
NyN4R , by divergence Theorem we obtain

�
RN 0Ce

(˜G u0 Q˜G f2u0
q21 f2lu0 f) 4 �

G e

fA˜u0 Qn ds(x)(10)

where we denoted with G e the set

](x , y) �Rn 3Rm : NxN4e ; NyNGR(

and with n 4 g x

e
, 0h .

Since u0 is symmetric in NxN and NyN , we have

u0 (x , y) 4n(NxN , NyN)

for a suitable 2-variable function n. Hence ˜u0 4 gn x Q
x

NxN
, n y Q

y

NyN
h and it

turns out that A˜u0 Qn4n x (NxN , NyN) on G e . So

�
G e

fA˜u0 Qn ds(x) 4 �
G e

fn x (NxN , NyN) ds(x) dy .

Since f is bounded

N�
G e

fA˜n Qn ds(x) dyN G sup NWN�
G e

Nn xNds(x) dy .(11)

The Hölder inequality yields:

�
G e

Nn x (NxN , NyN)Nds(x) dyGk u �
G e

Nn x N2 ds(x) dyv1/2

e
n21

2 .(12)

On the other hand, since n x belongs to L 2

�
0

1u �
G e

Nn xN2 ds(x) dyv de4 �
NyNER

u �
NxNE1

Nn x N2 ds(x)v dy

G �
R2n11

Nn xN2 dx dyE1Q .
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Then there exists a sequence e j 70 such that

e j �
G e j

Nn xN2 ds(x) dyK0 as jKQ .

Using this result in (12), (11) and (10), we get (9) completing the proof.
Finally, the local Hölder regularity of u0 can be proved applying the
Moser iteration technique as presented in [5] and extended to the
Grushin-type operators in [3] and [4].
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