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A Problem of Transversal Anisotropic Ellipticity.

MARCO MUGHETTI (*)

Introduction.

In the celebrated paper of L. Boutet - A. Grigis - B. Helffer [2], the
authors consider a class of pseudodifferential operators P E OPSm (X),
whose symbol 1) - ~) vanishes of order k ~ 1 on a closed
conic submanifold X of (precisely, Pm-j(x, ~) vanishes of order
l~ - 2 j at least on E when j K k/2 , j ~ 0). They show how the hypoelliptici-
ty (or micro-hypoellipticity) in C °° of P, with minimal loss of 1~/2 derivati-
ves, depends on the injectivity in L 2, when Q belongs to I, of a suitable
«test» differential operator Pp defined in an invariant fashion. In [2] it is
assumed the transversal ellipticity of p,,,(x, ~) with respet to Z (i.e., p~
vanishes exactly of order 1~ on ~). Later on, B. Helffer and J. F. Nourri-
gat [9] have suggested to remove the condition of transversal ellipticity,
by considering the case 27 = 27, 1 n I 2 with transversal intersection. They
require that, for some integer h ~ 1, Pm (x, ç) is equivalent to

I ç (x, ~) + dist¿2 (x, ç»)k (where ç) denotes the distan-
ce of (x, ~/ ~ ~ ( ) to ~,z= 1,2) and 
+ dist¿2 (x, ç»)k - 2j k/2 . In this situation they again obtain a necess-
ary and sufficient condition for the C °° hypoellipticity of P with loss of
1~/2 derivatives in term of the injectivity in L 2 of a «test» differential ope-
rator Pp. defined in an invariant way.

The classical example of Grushin (in IR.2) Dx + that, from well
known results (see H6rmander Theorem 22.2.1 in [13], Rothschild-Stein
[20] and Fefferman-Phong [3]), is hypoelliptic with loss of 2 h/(h + 1) de-
rivatives, is not included (for h &#x3E; 1) in the framework of the papers cited
above. M. Mascarello - L. Rodino in [15] have suggested a variation of

(*) Indirizzo dell’A.: Department of Mathematics, University of Bologna,
P.zza Porta S. Donato, 5 - 40127 Bologna.
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Helffer-Nourrigat’s approach which should contain the Grushin model.

However, it seems to us that the classes of O.P.D. ll h ~ M (~ 1, ~ 2 , e) defi-
ned in [15] do not have an invariant meaning and therefore the results of

[15] seemingly refer to the «flat» case only (i.e., when X 1 and ~2 are flat

cones).
In this paper we give an invariant approach in the spirit of Boutet-

Grigis-Helffer [2] when Z is a symplectic cone of codimension 2 v , which
contains the Grushin model. The paper is organized as follows.

In Section 1 the flat case is studied (with h % 1) following a suit-
able anisotropic version of the calculus developed by Boutet de Monvel
in [1].

In Section 2 we show how the previous calculus, based on a flat

model, can be used to treat the general case of two involutive cones

~ 2 of with transversal and symplectic intersection E. We
consider a class of classical pseudodifferential operators P = p(x, D)
with «double characteristics», whose principal and subprincipal symbols
satisfy suitable vanishing conditions on Z i and Z  . Moreover, we suppo-
se that the principal symbol pm (x, ~) of P is transversally elliptic in the

following anisotropic sense, i.e.

We show that the hypoellipticity of P( x , D) with loss of 2 h/( h + 1 ) deri-
vatives depends on the injectivity in L 2 of a suitable parameter-depen-
dent differential operator P~ (x’ , Dx, ), Q E ~, in v variables. In particu-
lar, in Section 2.3 we show how it is possible to reduce the above spectral
condition on Dx - ) to an explicit algebraic condition when the cone
E has codimension 2.

1. The flat case.

1.1. Definition of symbols.

Let us fix the notations used throughout in this Chapter (~). For any
n &#x3E;- 2, consider = IE~ x Rl and fix a decomposition R~ =~, x 

(1) Unexplained notations used throughout are standard, and can be found in
H6rrnander’s book [13] vol.I and III.
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for some 1 ~ v  n (write, accordingly,

For some fixed positive int

function

As in [ 1 ], for two non-negative functions f , g defined on some open conic
subset F c T * Rn Bo , we use the notation

f* g (or g&#x3E;f )

to mean that, for every subcone r’ c r with compact base and for any
there exists a constant such that f(x, ~) ~ Cg(x, ~), for

any ( x , ~ ) E T ’ , ~ ~ ~ [ % E (we simply writef=g for f% g and g - f ).

DEFINITION 1.1. Let m, k E R and T c T* Rn B0 be an open conic set.
We denote by Sr, by Sr, k if r = T * Rn B0 ) the set of all
smooth functions a( x , ~ ) defined in r such that for any multi-index
a , f3 E Z’, y , 0 E ~ +- v , we have

(1) a~, ~) IPI. .

Define Sr, °° (T) = k(T) and note that, for any k, 
= S - 00 (n. 

k 
h 

m 
h

In particular, when T = T * X B0 (with X open set of Rn) we write
sr, k(X), sr, °° (X ) instead of sr, k (T), ,Sh ’ °° (n.

it f~ll~

easy to t if m ~ m ’ and m - -
- í’f 1’)’).’ h ’ - 1t ’ , . . From the Leibniz

Finally,
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PROPOSITION 1.1. Let a E x Rn) be a classical symbol with

asymptotic expansion a - E Let k ~ 0 . The following statements
are equivalent: 

j ~ 0

0 for 

(where (d)+ = max { 0, d} denotes the positive part of d).

PROOF. By the same arguments seen in Example 1.4 [1].

DEFINITION 1.2. We define, with the above notations,
1 1

Its elements are symbols of degree - - out of T and are called Hermite

symbols (simply, when T = T * X B0 , or ~Ch when T =

= T * Rn B0).

Adapting the arguments of Proposition 1.11 [1], we prove

PROPOSITION 1.2. We have the following results about asymptotic
expansions:

1 ) If a j E 
k + j/h with j = 0 , 1, 2 , ... , then there exists a e k ,

unique modulo S h 00, such that, for all N eN,

unique modulo h + ~ ~ , rc such that, j

In the following section, we show how it is possible to construct a

pseudodifferential calculus based on the symbols defined above.

1.2. Estimates of some oscillatory integrals.

The study of the stability of PDO’s associated with the previously de-
fined symbols requires having some estimates on oscillatory integrals
that are obtained in this section. It is useful to work in instead of
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with the standard identification T* R2n - x  ~); as in the

previous section, we fix a decomposition = ~, x and, accordin-
gly, In this can be identifed with 2 =

a subcone of
the cone A z, ~, (W,, Bi U I)lz=ul ~=01; so it is con-
venient to introduce the following weight functions on T * R2n Bo :

DEFINITION 1.3. Given any we denote by k, 1 the set of
all Coo functions a( x , z , ~ , ~ ) on T * R2n B0 such that for all a 1, p 
a2~ and y, 

1 8(F a(x, z ~ ~, ~) I ~

-w.rm+ h+1 h~+1 1~2 ~ - ~e~ I ~ d Is r 
+ 101 d±k - 1#21 

(r h 1’21 + 1#21--rm h+l 1 h+l 1 
2 

( d ) h+l L1 ) ·

Let x e Rn and y E Rn, we denote by xy their standard scalar product
in Rn. We are now in a position to state the main result of this
section.

PROPOSITION 1.3. Let a e QS!:’ k, 1 and suppose that there exists a
constant c &#x3E; 0 such that a(x, z , ~ , ~ ) vanishes for + z ( % c .

Then

PROOF. The proof is similar to the one in Proposition 2.7 [1] with so-
me modifications required because in the weight functions dj, d±, dz we
have instead of r -1~2 . First of all, we note that

Since a(x, z , ~ , ~ ies for I (
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I from now on we assume that r =

= I ç I. Therefore, it suffices to prove that To this purpose,
we define the operator

p= (rh+

and its transpose
, 

2 
,- I

in such a way that, for every integer N &#x3E; 0 we get I ( a ) = a) and
From this point the proof is similar to the one in

Proposition 2.7 [1] replacing the classical Qsm, k, l by QSh’ k, 1E

1.3. Pseudodifferential operators associated with Sh’ k (X).

Let X be an open set in Rn and a = a(x, ~) be a C 00 function on X x Rn
such that a E k(X). Then we define the pseudodifferential operator.
a(x, D) as 

°

a(x, D) f = (2n)-n f ç) dç

where f E and denotes the usual Fourier transform of

f(x).

DEFINITION 1.4. We denote by OpS,, k (X) (simply, OPSr, k when
X = Rn) the set of all operators of the form a( x , D) + R , where a( x , ~ ) is
as above and R is an operator with C 00 kernel,

Accordingly, we define:

As usual, we write and 
00 when X = R".

Now we are ready to give the following crucial result.

PROPOSITION 1.4. Let and suppose that

b(x, ~) = 0 , for x fI. K, where K is some compact set in Then
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Moreover, if c( x , D) = D) obex, D), then it follows that, for any in-
teger N &#x3E; 0 ,

PROOF. By definition of symbol, we have

where cl (x, z, ~, ~) = (2jr)’~(~ ~ + ~) b(x - z, ~). By using Proposi-
tion 1.3, the conclusion follows.

The next result is an immediate consequence of the previous
proposition.

COROLLARY 1.5. h If Be OPSr:’, k’ then AB,
BA E h + 1 k provided A or B is properly supported. Moreover,
if B e 

00 then AB , BA E OPS - 00.

Let A be a pseudodifferential operator with symbol a(x, ~); we deno-
te by A * the «formal» adjoint operator, defined by

where ~u, v) = u(x) v(x) dx . The next proposition shows that our clas-
ses of PDO are closed under the operation of taking formal adjoints; it
can be easily proved by using the arguments seen in the proof of Propo-
sition 1.4.

PROPOSITION 1.6. If A = D) is in then A * is also in
and its symbol ~*(~,~) has the following asymptotic 

sio%
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in the sense that, for any positive integer N

We are now going to discuss the continuity of the operators 
k

in Sobolev spaces. In order to do that, we shall introduce the distribution

spaces Hh, k which are related to operators in in the same way
usual Sobolev spaces are related to the usual pseudodifferential opera-
tors.

DEFINITION 1.5. Let X be an open set of W and s E R, k We de-

note by Hh, k (X) (simply, Hh’ k when X = Rn) the space of all distribu-
tions f on X such that, for any properly supported operator A E
E k (X), we have Af e L1~c(X). Hhs, k (X) is equipped with the weakest
locally convex topology for which the maps f ~ Af as above are conti-
nuous for any A E 

We observe that

Hence, by Proposition 1 we have

LEMMA 1.7. Fix m E R+, ~+ , and let A be a properly supported
operator Then, given acny s E I~, A maps -

~ Hloc m - h7ïk (X) (X) ~ (X ) ) continuously.

sion

Let p(x, ~) e S m n a classical symbol with asymptotic expan-
We recall that the Weyl-symbol ~) associated

with ~) is defined as
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wh Pr

For any fixed o = ( o , x ", 0 , ~" ), we define the localized polynomial
Pe (x’ , ~’) in O associated with p(r , ~) as

and denote by Dx - ) its Weyl-quantization.
Later on, we shall show that the problem of hypoellipticity of p(x, D)

can be reduced to the study of some spectral conditions on the operator
P~(x’, Dx~):

We define

From the vanishing properties of the terms of the asymptotic
expansion of p (as shown in Proposition 1.1), we obtain after a few
computations

so that

Actually, in the flat case considered there is no real need to use the We-
yl-symbol and the related quantization as we have done above. Never-
theless, the reasons of our approach will be made clear in the Section 2,
when we treat our hypoellipticity problem in a «no-flat» context.
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Finally, assume that k e N; with a little work we can show that

1.5. A class of parameter-dependent ~seudodifferentiaL operators.

The crucial idea of this paper is that the hypoellipticity with loss of
hk/(h + 1) derivatives of the pseudodifferential operator P = D) is

strictly related to the existence of a left inverse of PI (x ’ , x", Dx , , ~" ) in
a suitable class. In this section we develop the «machinery» by means of
which we can construct such a left inverse starting from the injectivity of

p~ ( x ’ , x ", Dx ~ , ~" ) in In order to do that, we introduce a pseudo-
differential calculus based on symbols, whose model is represented by

~" ) regarded as a smooth function in (x’ , ~’ ) eR" x R"

depending on a parameter (x", ~") x (R’~ ~ " )( 0 ) ). To make the
exposition clearer and more readable, we begin by considering symbols
without parameter (for more details we refer to Chapter 7 of Mascarello-
Rodino [16]); afterwards we shall put in evidence the changes which are

required when introducing the dependence on (x ", ~" ) E lE~n -’’ X

DEFINITION 1.6. Given k E lE$, we denote by Sk h the space of all smoo-
th functions a(x ’ , ~’ ) defined in IE~ - x R~, such that, for any multi-in-
dex a, (3 there exists a constant C = C( a , &#x3E; 0 for which

whenever ( x ’ , ~ ’ ) E W x W
Finaclly, we define 

.

We observe that S~ (with Frechet space when

equipped with the semi-norms defined by the best possible constants in

inequality (7).
As usual, we define the pseudodifferential operator a( x ’ , Dx , )

associated with the symbol a(x’ , i ’ ) E S~ (with as

where f E S(RV). This class of pseudodifferential operators is denoted
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by notice that every operator in (resp., maps
- (resp. S’ (RV) ~ continuously.

From now on, we denote by U the cone 

x ( IR~,= v B ~ 0 ~ ). Let r be an open subcone of U and a( ( x ", ~" ), 
e C 00 (r, S~), i.e. a( ( x ", ç"), x ’ , ~’ ) is a smooth function in T x ~, x W,,
such that, for any compact set H of r, for any multi-index y,
0 E ~ +- ", e Z% , there exists a constant C = C(H, y , 9 , a , ~3 ) &#x3E; 0 for
which

whenever (x", ~" ) E H.
We denote by ac( ( x ", ~" ), x ’ , Dx , ) the pseudodifferential operator of

type (8) depending on the parameter (x", ~" ) E T. We say that

~’ ) is semi-homogeneous of degreeu if, for any ~, &#x3E; 0, one
has

The above definitions are motivated by the fact that (x", ~") ~
x ", i ’ , S~) and is semi-homogeneous of degree

~2013W(~+l). Given any integer j ; 0 such that A~-~20132013~0~ define:
h

ience

Notice that, as in the classical case, the formal adjoint
_ ~~ (x ’ , x ", has symbol
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vitb

Si-lal=J

Since pz is a polynomial in (x’ , ~’ ), the above sums are finite and can be
deduced by a direct computation without using asymptotic expan-

The next lemma puts in evidence the relation betweer
and S’

LEMMA 1.8. Every function a( (x ", ~" ), x ’ , ~’) in Coo ( U, Sk) (re-

sp., Coo ( U, ~h 00 », semi-homogeneous of degree m - 
h~ 

(resp., m),
h+l

thought as map ( x ’ , x ", ~’ , ~" ) ~" ), x ’ , ~’ ), belongs to Sh’ k

(resp., We simply denote by a( x , D) the standard pseudodifferen-
tial operator in k obtained by quantizing the map

(x’ ~ x"~ ~’ , ~ ") x, ~ ~, ), .

PROOF. As we shall make clear later on, for our purpose we can sup-

pose that [ i " [ % C ~ ~’ ~ I for some positive constant C, so that [ i" [ = I ç I .

An easy computation completes the proof.

The following proposition contains results which represent an aniso-
tropic parameter-dependent version of well-known facts (see Chapter 7
of Mascarello-Rodino [16], Helffer [11] or Shubin [21]). They are the ba-
sic tools necessary to develop an elliptic theory based on the pseudodif-
ferential operators above described.

PROPOSITION 1.9. With the above notations, one has:

1) if a E C °° (r, S~) and for any compact set H of r there exists a
constant C = C(H) &#x3E; 0 such that ~ C( 1 + ~ Ix’lh+
+ ( ~’ ~ )k whenever (x", ç") e H, (x’ , ç’) E RV x RV, then a -1 e
eGoo (r, 

. h+1 .

then there exists c

unique modulo COO (r, ~h 00), such that, for all N EN,
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#b((x", ~" ), x’ , Dx, ) E for any fixed (x", E=- F, where # re-

presents the composition in Its symbol c((x", ~"), x’ , ç’) e
and has the following asymptotic expansion

. -Ial

c((~~~)- E c((x x - 

j a I [  N a ! 
~ a((x x X, b((x , x 1, E=

a! I

EC°° T 
~k+k’- ’+’NECOO(F, Sh+ -¡;:- )

for any integer N &#x3E; 0. Moreover, if a«x",ç"),x’,;’) and

6((~ ~’)~B ~’) are semi-homo g eneous of degree m - and m ’ -

M’ 
resp 

h + 1
- hk’ ~ respectively, then c((x , ~ " " ), x ’ ç’) is semi-homo g eneous of de-
h+l L

gree m+m’ - 20132013(~+~’).h+1

The next proposition is the main result of this section.

PROPOSITION 1.10. Fixed an integer k &#x3E; 0 , for any integer j ~ 0
- - h. + 1 _ - _ -

such that k - 0, let

’ 

where smooth homogeneous function of degree

m - j - 1131 in U with m~20132013). Defineh+1

and 1assume that, -’or every . f2xed (x "

1) the cone of the values of the principal symbol
ao ( (x ", ~"), x ’ , ~’ ) is not the whole complex plane;

2) ao((x", ~"), x’ , ~’ ) ~ 0 whenever 0 ~ (x’ , RV; i

3) the operator a( ( x’~ , ~’~ ), x ~ , Dx, ) : - is inj ective.

Then, there exists q( (x ", ~" ), x ’ , ~’ ) E C 00 (U, semi-homogene-
ous of degree - m + hk/( h + 1 ), such that q( ( x ", ~" ), x ’ , Dx , ) : 
- ~") = a((x", ~"), x’, Dx,) : - 

for any fixed (x", ~" ) E U.
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PROOF. First of all, we show how to construct a parametrix of
a( ( x ", ~" ), x ’ , Dx , ) in a way similar to the classical case. It is easy to see ,

that a( (x ", ~" ), x ’ , ~’) S~) and is semi-homogeneous of degree
m - hk/( h + 1). Using Hypothesis 2, we prove that for any compact set H
of U there exists a positive constant C = C(H) for which

..... - . I

whenever (x", ~" ) E H and x’ ~ h + ~ I ~’ I &#x3E; R . Now, consider a sequence
of compact of U such that

Let Rj be the constant such that (10) holds when (x", ~" ) It is no
restriction to suppose that be an increasing sequence. Consider
now the following sets:

Then F2 is contained in the interior of Fl , and one can find a smooth fun-
ction X defined in with 0 ~ x ~ 1, ;~=1 and supp X g Fl .
Put bo ( (x , , x , , ~, ) - x( x , ,~ ~~~ , x , ~ ~ ~ )/c~((x,~ , ~~~)~ x ~ ~ ~ ) , and de-
note by Bo(x", ~") the operator bo((x", ~"), x’, Dx,). By Proposition 1.9
we get

where for any fixed (x ", ~" ) E U, with

symbol in Using the asymptotic expansion
2:( -l)j Ro (x", (see 2) of Proposition 1.9) we deduce the existence of

symbol in that

where R1(x", ~" ) is a smoothing operator for any (x", ~") E U, whose
symbol belongs to Coo ( U, Sh 00). In the same way, we can construct a ri-
ght parametrix; therefore B1 (x", ~") is a right and left parametrix.

Now, if we consider A(x", ~") as an unbounded linear operator in
with for lal/h+
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+ (~3 ~ I K k ) (see Proposition 7.1.10 in [16]) for any fixed (x", ~") e U, then
it turns out that it has compact resolvent and, hence, its spectrum consi-

sts entirely of isolated eigenvalues with finite multiplicity. To show that,
we can develop a pseudodifferential calculus depending on a complex
parameter in the same way as done by Helffer in Section 1.11 of [11] (see
also Shubin [21]). It then suffices to replace the weight used in [11] by an

anisotropic weight of the type (1 + + I ~’ I ) and observe that there
exists a closed angle in the complex plane with vertex in the origin,
which does not intersect the cone of values of the principal symbol of

I") (’ " ~"), x’, ~’ ) described above). In fact, the set of

values of ao ( (x ", ~" ), . ) is a closed cone properly contained in the com-

plex plane.
From the existence of the parametrix B1 (x", ~") and the injectivity of

A(x", ~" ) in it follows that A(x", ~" ) is injective in L2(RV); since
its spectrum is discrete, A(x", ~" ) is invertible and its inverse ~(x", ~" )
is a continuous linear operator from depending on a par-
ameter (x", ~") e U. Moreover, we have

where Q(x", ~" ) #R1 (x", ~" ) is a continuous map from S’ (RV) to 

for any fixed (x", ~") E U; thus Q(x", f,") for any given

(x", ~") E U. Denote by q((x", ~"), x’, ~’) its symbol. One can prove
that Q(r", is smoothly dependent on (x", 
whence, the symbol of Q(x", ~") #R1 (x", ~") belongs to Coo (U, Sh (0).

Therefore, q((x", ~" ), x’ , ~’) belongs to C 00 ( U, by identity (11)
and is semi-homogeneous of degree - m + + 1 ), since A(x", ~") is

semi-homogeneous of degree m - + 1) (see [19]).

We conclude this section with the following important result.

PROPOSITION 1.11. Let Sjj ) be semi-homogeneous of de-

gree m - hk , , and semi-homogeneous of degree

m’ - ~" )~ ’~ ’ ’ D..), 3~6((.f", ~~~)~ ’~ ’ ’ Dx’) the
h+l

pseudodifferential operators of the type (8) depending on a parameter
(:K", a~" a((x"~ ~~~)~ x ~ ~ ~’ )~ ~~~)~ x’ , ;’),

Then, one has that a(x, D) e b(x, D) e 
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and for any integer

PROOF. We can repeat, step by step, the arguments used to prove
Proposition 1.4, by constructing a new class of symbols related to S~ in
the same way the class is related to 

1.6. The main result.

Let P = ~(x , D) be a properly supported operator as in Section 1.4
with m e R+ and k e Z+. We suppose that its characteristic set is the co-

n 22 previously defined and, moreover, that in a small conic

neighborhood of Z
, I B 1.

When (12) holds, we shall say that is transversally elliptic. In
view of (12), P is elliptic of degree m outside 2; thus, in order to con-
struct a parametrix, it is enough to study P in a small conic neighborhood
of 2. For this reason, we can assume that I ~’ I I~" I for some conve-
nient constant C &#x3E; 0.

Now we can state the main result of this paper.

THEOREM 1.12. If p(x, D) satisfies the above conditions, then the

follo2uing statements are equivalent:

(I) p(x, D) has a left (resp. right) parametrix B in 
-

OPSh-m, -k &#x3E;

(II) For any fixed (} E 2, the operator P~ (x ’ , Dx , ) (described in
Section 1.4) is injective from to S(RV) (resp. s~crj ective from

to 

(III) p(x , D) (resp. its formal adjoint p * (x, D)) is hypoelliptic
with loss of hk/(h + 1 ) derivatives.

PROOF. We show that (I)- (III) =&#x3E; (II)- (I) for the operator
p(x , D). From Lemma 1.7, it clearly follows that (I) =&#x3E; (III). In order to
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see that (III) implies (II), by the Closed Graph Theorem we prove that,

for any compact set and for any s , s ’ E R with s ’  s + m - hkh+1’
there exists a positive constant C = C(K, s , s’) for which

We now show that (13) implies (II). Take ~=(0~0,~); since

~~(x’ , x", i ’ , i") is semi-homogeneous of order m - + 1), we can

suppose I çö = 1 without loss of generality. Fix two compact neighbo-
rhoods of xo and K’ c RV of the origin 0 Define K = K’ x

x K" eRn and KeRn a compact such that supp (Pu) c K if u e Co (K).
Choose X e Co (Rn) with z = 1 near K, so that Pu = xP(u), for u e Co (K).
Hence, we can assume that p(.r, I) is compactly supported in x. Let now

and such that j ~ v " ( x " ) ( 2 dx " -1. Define
Put (wit:

We observe that for t large, ut e Co (K) and, after a few computations, by
(13) we get

for every v ’ E Co (RV) and, by density, for every v ’ e In view of re-

lation (5), this completes the first part of the proof.
In order to see that (I) is a consequence of (II), we follow the approa-

ch of Helffer in [8]. If we define ~) = ~)/( P. (x , ~) 12 +
n u- 2hk 

-

Lnen Lne operator fell )P Sh-m, -fC and by Propo-
J ’ I ’ , i

~ition 1.4 we Jet

vith Jsing the asymptotic expansion ]



128

Proposition 1.2.2) we deduce the existence of such
that

with R2 E OP Xoh -
Now, we observe that P* is a parameter-dependent pseudodiffe-

rential operator, whose symbol is

VlVll

I I

Therefore Coo ( U, and is semi-homogeneous of degree
2 m - 2 hk/( h + 1). Furthermore, the principal symbol #P~ ) is real
non negative for any (x", ~") E U. By (12) it follows that for any compact
H c U there exists a constant C &#x3E; 0 for which

whenever (x ", ~") E H. Finally, by Hypothesis (II) 
- is injective for any (x", ~") E U. Thus, using Proposition 1.10 we
get a left inverse Q of P# #P~ depending on a parameter (x ", ~" ) E U so
that the operator Q#P* is a left pseudodifferential inverse of Pz, whose
symbol c((x", ~"), x’ , ~’ ) belongs to C °° ( U, and is semi-homoge-
neous of degree - m + hk/(h + 1 ). Using Lemma 1.8, it immediately fol-
lows that C = c(x , D) E OPSH m, -k and by Proposition 1.11, we get

herE

Moreover, by (6)

rherefore, we deduce that

dth Now, using the asymptotic expansion
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Proposition 1.2.1 ) we get the existence of Q3 e OP Sh " -k such that

where I~6 E OP Sh ~ °° . Finally, if we define B = - I~6 ~2 + Q3 , we ob-
tain

oy iorouary 1.D.

It remains to prove the theorem for the formal adjoint

P*==p*(~D). First of all, we observe that p * (x, D) is a classical

pseudo-differential operator which belongs to by Proposition
1.6; its principal symbol is Pm (x, ~) and by (12) satisfies

Now if B is a right parametrix for
[ I [

P(x, D) in OPSH then, from Proposition 1.6, its formal adjoint B*
is a left parametrix for p * (x, D) in OP Sh m, -k . By the classical theory of
PDO we get that p* = and hence

Thus, for any 6

Finally, we observe that if is surjective in then

( P * )~ ( x ’ , Dx , ) is injective in by virtue of (16). Thus, in view

of the previous arguments, P * has a left parametrix in and,

hence, P has a right parametrix in This concludes the

proof.

2. Hypoellipticity for a class of pseudodifferential operators with
double characteristics.

2.1. A class of pseudodifferential operators with double characteri-

stics.

Let X be an open set of R" and ~ 1, ~ 2 be two involutive closed cones

of codimension v in T * X)0 , with transversal and symplectic intersection
. There locally exist some smooth functions ul ,1, ... , ul , v and

u2,1, ... , u2, v homogeneous of degree 0 and of degree 1, respectively, in

T * X B0 such that their differentials 2 ; j =1, ... , v ) are li-
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nearly independent and E, is defined by ~s,1= ~ ~ ~ _ ~s, v = o (with

s =1,2). In the following of the paper, it will be useful to observe that the

equations (s = 1, 2 ; j = 1, ... , v) can be extended to a complete
system of local coordinates of T * X B0 near E. Furthermore, since :¿ 1, ~ 2
are involutive, we locally have

and, is symplectic, the matrix

is invertible at every point of ~ (described by the local equations

The following proposition shows that, by using a canonical diffeomor-
phism, we can locally reduce Z, Z to the flat case.

PROPOSITION 2.1. ¿ 2, ¿ be as above. Then, for every point ~O
there exist a conic neighborhood U of o in T * X Bo , a conic neighbo-

rhood V in T* Rn B0 and a canonical sym~Zectomor~phism (i. e., homoge-
neous of degree one in the fibers) x : U - TT for which =

- ~(y~ ~) E V~W = ... = yv = ~~ 
= = 0}. Such a map x will be called a local canonical flattening of E 1
and E2 near o .

PROOF. This result is a consequence of Theorem 21.2.4 [ 13] (see also
Lemma 4.1 [14]).

At this point we would like to define a set of symbols in T * X B0 which
is invariant under change of coordinates and extends the class of

the flat case. Unfortunately, the construction of a pseudodifferential cal-
culus associated with these new symbols is not a trivial adjustmentlof the
methods used in [1], [9]; more precisely, the substitution of with

h

in our weight d~ involves some difficulties in the proof of the sta-
bility under composition and of the invariance under canonical symplec-
tomorphisms, which we do not know how to overcome in the general ca-
se, i.e. for arbitrary k . However, if we restrict to the study of classical
pseudodifferential operators with double characteristics (i.e., the ones in
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OP Sh’ 2 in the flat case), then we are able to treat our hypoellipticity
problem proceeding in a different way from [1], [9].

Let be a classical pseudodifferential operator, with

asymptotic expansion p --- 2: P~-~. We denote by ~m _ 1 ( x , I) the sub-

principal symbol of P
. ~ .... ’&#x3E; 

’

We shall say that P satisfies the vanishing conditions (H) if:

REMARK 2.2. We point out that the conditions (H) do not depend
on the particular equations chosen to described locally El, L 2.
Furthermore, we observe that if f 1, L 2 are flat as in Section 1, then

every classical operator D) verifying (H) belongs to OpS,,’ 2 as a
consequence of Proposition 1.1.

The next result is crucial to prove the invariance of conditions (H) un-

der homogeneous symplectomorphisms and related elliptic Fourier inte-

gral operators.

PROPOSITION 2.3. Let P = p(x, D) be as above described. The follow-
ing statements are equivalent:

1) P satisfies the vanishing conditions (H);

2) there exist classical pseudodifferential operators 
with principal symbols U2, j ( j = 1, ... , v) such that P admits

the following decomposition

where are classical
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pseudodifferential operators of degree m-j~j,m-l,~-2, respect-
ively. -

PROOF. It suffices to observe that assertions 1 ) and 2) are each other
equivalent to the following result about the structure of Pm (x, ~) and

there exist some smooth functions 
cp (x, ~) homogeneous of degree m- ~~m-l,m-2, respectively,
such that

with the usual notation

This concludes the proof.

be open set and let

be a smooth homogeneous (of degree one in the fibers) canonical tran-
sformation. Let (resp. 
x ( T * Y)0 ) ) be the canonical relation associated with X (resp. x -1) and fi-
nally denote by

an elliptic Fourier integral operator of order 0, associated with (resp.
(see [12] or [22]), with FF -1--_ I , F -1 F - I. As it is well-known,

we have that is also a classical pseudodifferential ope-
rator with principal symbol Us. o x -1 for any s = 1. 2 and = 1. 2 v _
Furthermore, 2

...



133

differential operators of the same order and C~ respectively.
Hence

Therefore, similarity preserves the structure shown in (19), whence the
invariance of the vanishing conditions (H) under homogeneous symplec-
tomorphisms immediately follows from Proposition 2.3. Moreover, by
Propositions 2.1 and 1.1, we see that every classical pseudodifferential
operator satisfying (H) belongs, microlocally, to the class mo-

dulo a suitable canonical symplectomorphism.

2.2. The localized polynomial and its invariant meaning.

We shall introduce an invariant «naturally» attached to the pseudo-
differential operators in the class considered above, which generalizes
the notion of localized polynomial described in Section 1.4. We shall give
an intrinsic definition of the «new» localized polynomial strictly related
to the geometry of the cone Z (see Parenti-Parmeggiani [18], for

example). From now on we suppose that P = D) be a classical pseu-
dodifferential operator with principal symbol Pm (x, i) and subprincipal
symbol pm _ 1 (x, ~). In order to make more readable the following exposi-
tion, we fix some notations. Let 3 =={ 1, 2 , ... , v ~ be a set of indexes; let

denotes the p-fold Cartesian product of 3 if p e N and
the empty set ifp=0) and define with s =

=1, 2 , where H us, j denotes the Hamiltonian field of us, j in (s = 1, 2

and j = 1, 2 , ... , v). Moreover, for any multi-index we define

i Ha2 2... v.i us ~ 2 . 
... 

The next lemma will be useful in the following of the paper:

LEMMA 2.4. If ~), ç) satisfy the vanishing condi-
tions (H), then one has:

1 ) for every p , with and for every 



2) for every p E Z+ with p  h - 1 and for every y

PROOF. As in the proof of Proposition 2.3, we can show that Pm(x, ~)
and ~m _ 1 (x, ~) have the structure described in (20) and (21). Moreover,
from (17) we have H~, s ?,c2, j = fU2, s, u2, j ~ = 0 on ~2. A computation com-
pletes the proof. 0

For any Q EL, we consider the symplectic vector space (i.e.,
the symplectic orthogonal of with respect to the canonical 2-form

of T * X ~0). Since T 1 and E 2 have a transversal intersection,
it follows that ( T~ ~)~ _ ( T~ ~ 2 )~ . Whence, any v E Te T * X can
be uniquely decomposed as v = v1 + v2 with and V2 E

e ( T~ ~’ 2 )a . Let Vl , V2 be two smooth sections of defined in a nei-

ghborhood tl of o such that, for any e E ~ s n U, E ( T~ , ~ s )~ and
Vs ( o ) (with s = 1, 2). We can now introduce the main invariant atta-
ched to the operator P = ~(x, D).

DEFINITION 2.1. The localized polynomials ~e (v) D) in

e- E with ve defined as

We now want to prove that the above definition is independent
of the extensions Vi, V2 of vl, v2. Suppose that -v 1 ~1 U = ~ (x, ;) E
Et/~~i(~~)=...=~i~(~~)=0}and~2~~={(~~)~~!~i(~~)=
= ... ~) =0} with the same assumptions on of Section 2.1.

. There exist some smooth functions ... , cl, v, c2,1, ... , C2, v and two

smooth vector fields Wi, W2 vanishing L 2, respectively, which are
defined near o , such that (with s = 1, 2)

If we use these relations in (23), by Lemma 2.4 we can write the localized



135

polynomial in a more explicit form

(with the usual convention cs ( O ) = if s = 1, 2). It
is easy to see that the r.h.s. of (24) depends on vi and V2 only, hence, on v

only. Moreover, the l.h.s. is independent of the local equations us,j cho-
sen to describe ~ 1 and ~ 2 near Q.

The next lemma puts in evidence the behaviour of the localized po-
lynomial under symplectic change of coordinates.

LEMMA 2.5. If F is a classical properly supported elliptic Fourier

operators of order 0 associated with a homogeneous sym~Lectomor~phism
x : and Op(p) then for any for
any 

PROOF. Let Vi , V2 as defined above; notice that n U) is a nei-

ghborhood in T * YBO (with s = 1, 2). If we define, for every g ’ e

E~,n~),~~)==~(~-’(~~))(V,(~-’(~~)))(s=l,2),thenVi,V2are
two smooth sections of TT * Y by means of which we can construct the lo-
calized polynomial of P in x(g ) and evalued in dx(o)(v) as previously done
in (23). Let Pm’ 1 be the principal and subprincipal symbols of Op (p).
As it is well-known, one has so that 
= (v~ v~’~m )(x(~o ) ) (with p/h + q = 2). Moreover, if one considers the struc-
ture of Op (p) and Op (~) shown in (19), (22) and writes the expression of
~m -1 (x , ~), ~m -1 ( y , ~I ), then one can easily see that =

- (V2 -1 (~m _ 1 ~ x) )(~ ) _ (11- 1 )(X(g», since ~ 2 is an involutive cone.
In fact, the terms in ~m _ 1 ( x , ~ ) (resp., in p~-1(?/, q)), which do not vani-
sh in g (resp., in x( ~o ) ) under the iterated action of the vector field V2
(resp., V2), are the only ones that involve the principal symbols of the
operators used in (19) (resp., of the operators

Cp, Us,j used in (22)). This completes the proof.



In order to «quantize» the polynomials pp(.), fix any and let

be a linear symplectomorphism. Put

and denote by = Dx , ) the operator

defined «

I - I

The next lemma will be useful in the sequel of the paper.

L E MMA 2.6. One has:

1) If 1jJ, 1jJ’: T * are two linear symplectic maps, then
the related operators Pe, 1jJ(x’ , Dx’) and Pe, (x’ , Dx’) are unitarily
equivalent.

2) If the operators P = Op(p) and P = Op(p) are defined as in
Lemma 2.5, then

1. 11 1 --""’B080’ 1il T ,7 7 T

for any o e I and any linear symplectic map T * 

PROOF. In order to prove 1), we observe that = P9, v, 0
o ( 1jJ -1 0 1jJ ’), whence, as it is well-known (see [13], Vol. III, thm. 18.5.9),
there exists an unitary operator Q : L 2 ( IRv ) - L 2 ( l~’’ ) (uniquely determi-
ned up to a complex factor of modulus 1), which is also an automorphism
of and s’ ( IE~’’ ), such that

Finally, the assertion 2) is a trivial consequence of Lemma 2.5. m

Without loss of generality, from now on we assume that the matrix
({~2,~ij}(~)),j=i,...~ is the identity. Infact, since f is a sym-
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plectic cone and Z 1, ~ 2 are involutive cones, the matrix

(I u2, j, ..., v is invertible; if we denote by ..., v its

inverse matrix, it suffices to replace the local equations u2,1, . ~ . , U2, v by
v

Therefore, if we define for any Q e T the map 
~ as

we get that cp is a linear simplectomorphism. Now, define the test opera-
tor associated with P as

.........;. "’P""’rIr. ’" ~ ,/.......... ’-

Some remarks are in order.

I ) In the flat case, i.e. when I) xj, u2, ~ (x, ~) _ ~~ (with
j =1, ... , v), the polynomial ~’ ) coincides with the localized po-
lynomial described in (3) of Section 1.4. Therefore the operator

Dx , ) defined above extends the one described in Section 1.4 when
we treated the flat case.

II) Denote by P * = 0p(p * ) the formal adjoint of P = p(x, D) and
observe that (p *)w = p w as we have already seen in (15). Hence, P * sati-
sfies the vanishing conditions (H) iff P does; moreover, for any Q and

any one has pe*(v) = Pe(v). As a consequence, for any e 
we have

III) In the same hypothesis of Lemma 2.5, let P = FPF -1. By
Lemma 2.6 the operators and are unitarily
equivalent so that they have the same «spectral properties » . Thus, in
particular Pe(x’ , Dx , ) is injective in iff Dy ~ ) is so.

IV) From Proposition 2.1 it follows that there exists a local

canonical flattening X of ~ 1 and ~ 2 near every point Q of ~ . Therefore,
if we denote by F (resp., F -1) an elliptic classical Fourier integral
operator of order 0, associated with X (resp., X-1), then we have
that P = FPF -1 belongs, microlocally, to since the operator
P satisfies the vanishing conditions (H) when and x(~ 2 ) are

flat near (see Remark 2.2). Moreover, using I) it is immediate
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to check that the operator Dy - ) coincides with the one de-

scribed in the Section 1.4.
Since the Fourier integral operators F and F -1 described in IV) pre-

serve Sobolev spaces, we can give a necessary and sufficient condition
for the hypoellipticity of the operator P with loss of 2 h/(h + 1) derivati-
ves, whose proof immediately follows from Theorem 1.12 by virtue of the
previous remarks.

THEOREM 2.7. Let P = p(x, D) be a classical properly supported
~seudodif, f’erentiaL operator satisfying the vanishing conditions (H)
and the cone ~, described above, be its characteristic set. Moreover,
suppose that the principal symbol Pm (x, ç) of P is transversally ellip-
tic, namely Pm(x, ç) satisfies, in a small conic neighborhood of ~, the
estimate

Then the following statements are equivalent:

(I) the operator P (resp. its formal adjoint P * ) is hypoelliptic
with loss of 2 h/( h + 1 ) derivatives;

(II) given any fixed the operator Dx’) is injective
from to (resp. surjective from to s’ (RV».

2.3. ,Some examples.

In this Section we show some examples for which we can reduce the
condition of hypoellipticity with loss of 2 h/(h + 1 ) derivatives to an expli-
cit algebraic condition by virtue of Theorem 2.7.

Assume that the cone T, 1 and E2 have codimension 1, namely, with
the above notations

We consider a classical pseudodifferential operator P = p(r, D) with
asymptotic expansion ~ --- 5i satisfying the hypotheses of Theorem

j;0
2.7. Thus the hypoellipticity with loss of 2 h/(h + 1) derivatives of P de-
pends on the injectivity of the ordinary differential operator P~ ( t , Dt)
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(where () e2), which is the Weyl-quantization in ( t , r) E R x R of

wiirli 1:;.

Therefore, we easily get

From the transversal ellipticity of Pm (x, ~) it immediately follows that
there exists a positive constant C depending on (} E L for which

when (t, r) e R x R. In particular one gets a( O ) ~ 0 and, moreover, if

A(Q) and are the complex roots of the equation

then 0 and 0. First of all, we observe that the injec-
tivity of the operator P~ ( t , Dt ) does not depend on the term when

Im ~,( o ) ~ Im,u( o ) &#x3E; 0 . More precisely, in view of the results contained in
Chapter 7 (Corollary 7.3.2) of Mascarello-Rodino [16] we have that

1) if Im A(Q)  0 and Imf1-«(})  0 then P. (t Dt) is injective in

2) if Im &#x3E; 0 and Im ,u(o) &#x3E; 0 then

dim (Ker P. (t Dt) n 8R» = 
2 when h is odd

0 when h is even .

In order to treat the case when h is an odd positive integer and Im 
 0 we refer to the results proved in the paper of Gilioli-Treves
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[4] and Gilioli [5]. In fact, consider the following second order pseudodif-
ferential operator in Rt x R~

where y( o ) _ - (i(~,( o ) - ~u( o ) ) h/2 + and Dx I is the pseudo-
differential operator with syrnbol [ i I (the behaviour of I near ~ = 0
is irrelevant here, because we are interested to study Q near the cone
2 = ( (t , x, r, ç) r = 0 )). It is easy to see that Q E 
with respect to the flat cones ~1= ~ ( t , x , z , ~ ) E T * I~..2 B0 ( t = 0 ~ and ~2 =
- ~ (t, x, z, ~) furthermore, the principal symbol of Q

is transversally elliptic. The crucial observation is that the test operator
in ( o , x , 0 , ± 1 ) associated with Q coincide with P~ ( t , Dt ). Hence the in-
jectivity of P~ ( t , Dt ) in S(R) is equivalent to the hypoellipticity with loss
of + 1 ) derivatives of Q . Without loss of generality, we can assume
that Im ~,(~o)  0 and &#x3E; 0. In view of the precise results given by
Gilioli in [5], we obtain that is injective in S(R) if and

only

Finally, if h is an even positive integer and  0, we re-
fer to the paper of A. Menikoff [17]; thus, by an argument similar to the
one above, it turns out that the test operator

is injective in if and only if 
’

Therefore, when the conditions above are satisfied for every the

operator P is hypoelliptic with loss of 2h/(h + 1) derivatives.
In [15], precise conditions are given for the injectivity of ordinary dif-

ferential operators with polynomial coefficients, that hold also for opera-
tors of order higher than the order of Pe (t, Dt ) in (26). We address the
reader to [15] for more details.
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