RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

VINCENZO DE FILIPPIS

Right ideals and derivations on multilinear polynomials

Rendiconti del Seminario Matematico della Università di Padova, tome 105 (2001), p. 171-183

http://www.numdam.org/item?id=RSMUP_2001__105__171_0

© Rendiconti del Seminario Matematico della Università di Padova, 2001, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Right Ideals and Derivations on Multilinear Polynomials.

VINCENZO DE FILIPPIS(*)

ABSTRACT - Let R be an associative prime ring with center Z(R) and extended centroid C, $f(x_1, \ldots, x_n)$ a non-zero multilinear polynomial over C in n non-commuting variables, d a non-zero derivation of R, $m \ge 1$ a fixed integer and ϱ a non-zero right ideal of R. We prove that: (i) if $(d(f(x_1, \ldots, x_n)) - f(x_1, \ldots, x_n))^m$ is a differential identity for ϱ then $C\varrho = eRC$ for some idempotent element e in the socle of RC and $f(x_1, \ldots, x_n)$ is an identity for eRCe; (ii) if $(d(f(r_1, \ldots, r_n)) - f(r_1, \ldots, r_n))^m$ is central on R, for any $r_1, \ldots, r_n \in \varrho$, then $C\varrho = eRC$, for some idempotent element e in the socle of RC and either $f(x_1, \ldots, x_n)$ is central in eRCe or eRCe satisfies the standard identity $S_4(x_1, \ldots, x_4)$.

Let R be an associative prime ring with center Z(R) and extended centroid C. Recall that an additive mapping d of R into itself is a derivation if d(xy) = d(x)y + xd(y), for all $x, y \in R$. In [5] J. Bergen proved that if g is an automorphism of R such that $(g(x) - x)^m = 0$, for all $x \in R$, where $m \ge 1$ is a fixed integer, then g = 1. Later Bell and Daif [3] proved some results which have the same flavour, when the automorphism is replaced by a non-zero deivation d. They showed that if R is a semiprime ring with a non-zero ideal I such that d([x, y]) - [x, y] = 0, or d([x, y]) + [x, y] = 0, for all $x, y \in I$, then I is central. More recently Hongan [13] proved that if R is a 2-torsion free semiprime ring and I a non-zero ideal of R, then I is central if and only if $d([x, y]) - [x, y] \in Z(R)$, or $d([x, y]) + [x, y] \in Z(R)$, for all $x, y \in I$.

In this paper we prove two results generalizing some of the previous ones. More precisely we consider the case when $f(x_1, \ldots, x_n)$ is a multili-

^(*) Indirizzo dell'A.: Dipartimento di Matematica, Università di Messina, Salita Sperone 31, 89166 Messina, e-mail: enzo@dipmat.unime.it

near polynomial over C in n non-commuting variables, ϱ a non-zero right ideal of R and we show

THEOREM 1. If $(d(f(r_1, ..., r_n)) - f(r_1, ..., r_n))^m = 0$, for any $r_1, ..., r_n \in \varrho$, then $C\varrho = eRC$ for some idempotent element $e \in Soc(RC)$ and $f(x_1, ..., x_n)$ is a polynomial identity for eRCe.

THEOREM 2. If $(d(f(r_1, ..., r_n)) - f(r_1, ..., r_n))^m \in Z(R)$, for any $r_1, ..., r_n \in Q$, then CQ = eRC for some idempotent element $e \in Soc(RC)$ and either $f(x_1, ..., x_n)$ is central in eRCe or eRCe satisfies $S_4(x_1, ..., x_4)$.

To prove these theorems we need some notations concerning quotient rings. Denote by Q the two-sided Martindale quotient ring of R and by C the center of Q, which is called the extended centroid of R. Note that Q is also a prime ring with C a field. We will make a frequent use of the following notation:

$$f(x_1, \ldots, x_n) = x_1 \cdot x_2 \cdots x_n + \sum_{\sigma \in S_n} \alpha_{\sigma} x_{\sigma(1)} \cdots x_{\sigma(n)}$$

for some $\alpha_{\sigma} \in C$ and we denote by $f^d(x_1, \ldots, x_n)$ the polynomial obtained from $f(x_1, \ldots, x_n)$ by replacing each coefficient α_{σ} with $d(\alpha_{\sigma} \cdot 1)$. Thus we write $d(f(r_1, \ldots, r_n)) = f^d(r_1, \ldots, r_n) + \sum_i f(r_1, \ldots, d(r_i), \ldots, r_n)$, for all $r_1, \ldots, r_n \in R$. We recall that any derivation of R can be uniquely extended to a derivation of Q, moreover by [19] the two-sided ideal I and Q satisfy the same differential identities. For this reason whenever R satisfies a differential identity, by replacing R by Q we will assume, without loss of generality, R = Q, C = Z(R) and R will be a C-algebra centrally closed.

To obtain the conclusions required we will also make use of the following result:

CLAIM 1 [14]. Let R be a prime ring, d a non-zero derivation of R and I a non-zero two-sided ideal of R. Let $g(x_1, \ldots, x_n, d(x_1), \ldots, d(x_n))$ a differential identity in I, that is

$$g(r_1, \, \ldots, \, r_n, \, d(r_1), \, \ldots, \, d(r_n)) = 0 \quad \forall r_1, \, \ldots, \, r_n \in I .$$

Then one of the following holds:

1) either d is an inner derivation in Q, in the sense that there exists $q \in Q$ such that d = ad(q) and d(x) = ad(q)(x) = [q, x], for all $x \in Q$

 $\in R$, and I satisfies the generalized polynomial identity

$$g(x_1, \ldots, x_n, [q, x_1], \ldots, [q, x_n]);$$

2) or I satisfies the generalized polynomial identity

$$g(x_1, ..., x_n, y_1, ..., y_n).$$

We premit the following:

LEMMA 1. Let ϱ be a non-zero right ideal of R and d a derivation of R. Then the following conditions are equivalent: (i) d is an inner derivation induced by some $b \in Q$ such that $b\varrho = 0$; (ii) $d(\varrho)\varrho = 0$ (For its proof we refer to [6, Lemma]).

LEMMA 2. If $(d(f(r_1, ..., r_n)) - f(r_1, ..., r_n))^m \in Z(R)$, for any $r_1, ..., r_n \in Q$, then R is a GPI-ring.

PROOF. Assume R is not commutative, otherwise we conclude trivially that R is a GPI-ring. Suppose that d is a inner derivation, d = ad(b), for some $b \in Q$, d(x) = [b, x], for all $x \in Q$. Since $d \neq 0$, let $b \notin C$. Moreover, since R is not commutative, there exists $a \in Q - C$. Thus $[([b, f(ax_1, ..., ax_n)] - f(ax_1, ..., ax_n))^m, x_{n+1}]$ is a non-trivial GPI for R.

Let now d an outer derivation of R. If for all $r \in Q$, $d(r) \in rC$, then [d(r), r] = 0, that is R is commutative (see [4]). Therefore there exists $a \in Q$ such that $d(a) \notin aC$. Write

$$d(f(ax_1, \ldots, ax_n)) =$$

$$= f^d(ax_1, \ldots, ax_n) + \sum_i f(ax_1, \ldots, d(a)x_i + ad(x_i), \ldots, ax_n).$$

Thus

$$\Big[\Big(f^d(ax_1,\,\ldots,\,ax_n)\,+\,$$

$$+\sum_{i} f(ax_{1}, \ldots, d(a) x_{i} + ad(x_{i}), \ldots, ax_{n}) - f(ax_{1}, \ldots, ax_{n})^{m}, x_{n+1}$$

is a generalized differential identity for R. In particular, by Kharchen-

ko's theorem in [14], since $d(a) \notin aC$, we have that

$$\Big[\Big(f^d(ax_1,\,\ldots,\,ax_n)\,+\,$$

$$+\sum_{i} f(ax_{1}, \ldots, d(a) x_{i}, \ldots, ax_{n}) - f(ax_{1}, \ldots, ax_{n})^{m}, x_{n+1}$$

is a non-trivial GPI for R.

Before proceeding to he proof of main results, we need to resolve the simplest case, when $\rho = R$.

LEMMA 3. Let $R = M_k(F)$ be the ring of $k \times k$ matrices over the field F, with $k \ge 2$, d a non-zero inner derivation induced by a non-central element A of R. Theorems 1 and 2 hold if $\varrho = R$.

PROOF. Suppose $k \ge 3$. Let e_{ij} the usual matrix unit with 1 in (i, j)-entry and zero elsewhere. By the assumption

$$([A, f(r_1, ..., r_n)] - f(r_1, ..., r_n))^m \in Z(R) \quad \forall r_1, r_2, ..., r_n \in R.$$

If assume $f(x_1, \ldots, x_n)$ not central in R, by [20, Lemma 2, proof of Lemma 3] there exist $r_1, \ldots, r_n \in R$ such that $f(r_1, \ldots, r_n) = ae_{ij}$, with $0 \neq a \in F$ and $i \neq j$. Since the subset $\{f(r_1, \ldots, r_n) \colon r_1, \ldots, r_n \in R\}$ is invariant under any F-automorphism, then for any $i \neq j$ there exist $t_1, \ldots, t_n \in R$ such that $f(t_1, \ldots, t_n) = ae_{ij}$. Thus, for any $i \neq j$

$$([A, ae_{ii}] - ae_{ii})^m \in Z(R)$$

moreover $([A, ae_{ij}] - ae_{ij})^m$ has rank ≤ 2 , that is $([A, ae_{ij}] - ae_{ij})^m = 0$ in R. Right multiplying by e_{ij}

$$0 = (Aae_{ij} - ae_{ij}A - ae_{ij})^m e_{ij} = (ae_{ij}A)^m e_{ij}.$$

It follows that the (j,i)-entry of the matrix A is zero, for all $i \neq j$ and this means that the A is diagonal, that is $A = \sum_t \alpha_t e_{tt}$, with $\alpha_t \in F$. Now denote d the inner derivation induced by A. If χ is a F-automorphism of R, then the derivation $d_\chi = \chi^{-1} d\chi$ satisfies the same condition of d, that is

$$(d_{\gamma}(f(r_1, ..., r_n)) - f(r_1, ..., r_n))^m \in Z(R)$$
 for any $r_1, ..., r_n \in R$.

Since the derivation d_{χ} is the one induced by the element $\chi(A) = \chi^{-1}A\chi$, then $\chi(A)$ is a diagonal matrix, according to the above argument. Fix now $i \neq j$ and $\chi(x) = (1 + e_{ij}) \chi(1 - e_{ij})$, for all $x \in R$. Since $\chi(A) = (1 + e_{ij}) \chi(A) = (1 + e_{$

 $+e_{ij}A(1-e_{ij})$ must be diagonal then

$$\sum_{t} \alpha_{t} e_{tt} - \alpha_{i} e_{ij} + \alpha_{j} e_{ij} \quad \text{is diagonal}$$

that is $\alpha_i = \alpha_j$ and we get the contradiction that A is a central matrix. Therefore $f(x_1, \ldots, x_n)$ must be central in R.

Of course if $([A, f(r_1, ..., r_n)] - f(r_1, ..., r_n))^m = 0$, for all $r_1, ..., r_n \in R$, the above argument can be adapted to prove that $f(x_1, ..., x_n)$ is central, without any restriction on k. Moreover, since in this case $[A, f(r_1, ..., r_n)] = 0$, then $f^m(r_1, ..., r_n) = 0$ for all $r_1, ..., r_n \in R$ and so $f(x_1, ..., x_n)$ is an identity in R [20, Lemma 3, proof of Theorem 4].

LEMMA 4. Theorem 1 holds if $\rho = R$.

Proof. Let

$$g(x_1, \ldots, x_n, d(x_1), \ldots, d(x_n)) = (d(f(x_1, \ldots, x_n)) - f(x_1, \ldots, x_n))^m =$$

$$= \left(f^d(x_1, \ldots, x_n) + \sum_i f(x_1, \ldots, d(x_i), \ldots, x_n) - f(x_1, \ldots, x_n) \right)^m.$$

If d is not inner then, by Claim 1, R satisfies the differential identity $g(x_1, \ldots, x_n, y_1, \ldots, y_n) =$

$$= \left(f^d(x_1, \ldots, x_n) + \sum_i f(x_1, \ldots, y_i, \ldots, x_n) - f(x_1, \ldots, x_n) \right)^m.$$

In particular $f^m(x_1, ..., x_n)$ is an identity for R. In this case since R satisfies a polynomial identity, there exists a suitable field F such that R and $M_k(F)$ satisfy the same polynomial identities. It follows that $f(x_1, ..., x_n)$ must be an identity in $M_k(F)$ (see [20]) and so in R.

Now let d be an inner derivation induced by an element $A \in Q$.

Then, for any $r_1, r_2, \ldots, r_n \in R$, $([A, f(r_1, \ldots, r_n)] - f(r_1, \ldots, r_n))^m = 0$. Since by [1] (see also [7]) R and Q satisfy the same generalized polynomial identities, we have $([A, f(r_1, \ldots, r_n)] - f(r_1, \ldots, r_n))^m = 0$, for any $r_1, r_2, \ldots, r_n \in Q$. Moreover, since Q remains prime by the primeness of R, replacing R by Q we may assume that $A \in R$ and C = Z(Q) is just the center of R. In the present situation R is a centrally closed prime C-algebra [10], i.e. RC = R. By Martindale's theorem in [21], RC = R is a primitive ring which is isomorphic to a dense ring of linear transformations of a vector space V over a division ring D. Since R is primitive then

there exist a vector space V and the division ring D such that R is dense of D-linear transformations over V.

Assume first that $dim_D V = \infty$. Recall that one can write $f(x_1, \ldots, x_n) = x_1 x_2 \ldots x_n + \sum_{\sigma \neq 1} \beta_{\sigma} x_{\sigma(1)} x_{\sigma(2)} \ldots x_{\sigma(n)}$. We want to show that, for any $v \in V$, v and Av are linearly D-dependent.

If Av=0 then $\{v,Av\}$ is D-dependent. Thus we may suppose that $Av\neq 0$. If v and Av are D-independent, since $dim_DV=\infty$, then there exist $w_3,\ldots,w_n\in V$ such that $v=w_1,Av=w_2,w_3,\ldots,w_n$ are also linearly independent. By the density of I, there exist $r_1,\ldots,r_n\in I$ such that

$$r_n w_2 = w_{n-1}$$
 $r_i w_i = w_{i-1}$ for $4 \le i \le n-1$
 $r_3 w_3 = w_n$
 $r_2 w_n = w_1$
 $r_1 w_1 = w_1$

 $r_i w_j = 0$ for all other possible choices of i, j.

Therefore

$$([A, f(r_1, ..., r_n)] - f(r_1, ..., r_n)) v = -v$$

and we obtain the contradiction

$$0 = ([A, f(r_1, \ldots, r_n)] - f(r_1, \ldots, r_n))^m v = (-1)^m v \neq 0.$$

Hence A, Av must be D-dependent, for any $v \in V$.

Now we show that there exists $b \in D$ such that Av = vb, for any $v \in V$. Choose $v, w \in V$ linearly independent. Since $dim_D V = \infty$, there exists $u \in V$ such that v, w, u are linearly independent. By above argument, there exist $a_v, a_w, a_u \in D$ such that

$$Av = va_v$$
, $Aw = wa_w$, $Au = ua_u$ that is $A(v + w + u) = va_v + wa_w + ua_u$.

Moreover A(v+w+u)=(v+w+u) a_{v+w+u} , for a suitable $a_{v+w+u}\in D$. Then $0=v(a_{v+w+u}-a_v)+w(a_{v+w+u}-a_w)+u(a_{v+w+u}-a_u)$ and, because v,w,u are linearly independent, $a_u=a_w=a_v=a_{v+w+u}$, as required.

Let now $r \in R$ and $v \in V$. As we have just seen, there exists $b \in D$ such that Av = vb, r(Av) = r(vb), and also A(rv) = (rv)b. Thus 0 = [A, r]v, for any $v \in V$, that is [A, r]V = 0. Since V is a left faithful irreducible R-

module, [A, r] = 0, for all $r \in R$, i.e. $A \in Z(R)$ and d = 0, which contradicts our hypothesis.

Therefore $\dim_D V$ must be a finite positive integer. In this case R is a simple GPI ring with 1, and so it is a central simple algebra finite dimensional over its center. From Lemma 2 in [16] it follows that there exists a suitable field F such that $R \subseteq M_k(F)$, the ring of all $k \times k$ matrices over F, and moreover $M_k(F)$ satisfies the generalized polynomial identity $([A, f(x_1, \ldots, x_n)] - f(x_1, \ldots, x_n))^m$.

As in Lemma 3 we conclude that $f(x_1, ..., x_n)$ is an identity in R.

LEMMA 5. Theorem 2 holds if $\rho = R$.

PROOF. If, for every $r_1, r_2, ..., r_n \in I$, $(d(f(r_1, ..., r_n)) - f(r_1, ..., r_n))^m = 0$, by Lemma $4, f(r_1, ..., r_n)$ is an identity in R. Otherwise, by our assumptions, $I \cap Z(R) \neq 0$. Let now K be a non-zero two-sided ideal of R_Z , the ring of the central quotients of R. Since $K \cap R$ is an ideal of R then $K \cap R \cap Z(R) \neq 0$, that is K contains an invertible element in R_Z , and so R_Z is simple with 1.

We know that for any $r_1, r_2, \ldots, r_n \in R$, $(d(f(r_1, \ldots, r_n)) - f(r_1, \ldots, r_n))^m \in Z(R)$, i.e.

$$[(d(f(r_1, ..., r_n)) - f(r_1, ..., r_n))^m, s] = 0$$
 for any $s \in R$.

Thus R satisfies the differential identity

$$g(x_1, \ldots, x_n, d(x_1), \ldots, d(x_n)) =$$

$$= \left[\left(f^d(x_1, \ldots, x_n) + \sum_i f(x_1, \ldots, d(x_i), \ldots, x_n) - f(x_1, \ldots, x_n) \right)^m, x_{n+1} \right].$$

If the derivation is not inner, by Claim 1, R satisfies the polynomial identity

$$g(x_1, \ldots, x_n, y_1, \ldots, y_n) =$$

$$= \left[\left(f^d(x_1, \ldots, x_n) + \sum_i f(x_1, \ldots, y_i, \ldots, x_n) - f(x_1, \ldots, x_n) \right)^m, x_{n+1} \right]$$

and in particular R satisfies

$$\left[\left(\sum_{i} f(x_{1}, \ldots, y_{i}, \ldots, x_{n}) - f(x_{1}, \ldots, x_{n})\right)^{m}, x_{n+1}\right]$$

and so $[f^m(x_1, ..., x_n), x_{n+1}]$. Therefore R is a prime PI-ring. For $a \in$

 $\in R - Z(R)$, we have that R satisfies

$$\left[\left(\sum_{i} f(x_{1}, \dots, [a, x_{i}], \dots, x_{n}) - f(x_{1}, \dots, x_{n}) \right)^{m}, x_{n+1} \right] =$$

$$= \left[\left(\left[a, f(x_{1}, \dots, x_{n}) \right] - f(x_{1}, \dots, x_{n}) \right)^{m}, x_{n+1} \right]$$

and in this situation we get the required conclusion by lemma 3.

Now let d be an inner derivation induced by an element $A \in Q$. Also in this case we will prove that either $f(x_1, \ldots, x_n)$ is central in R or R satisfies $S_4(x_1, \ldots, x_4)$.

By localizing R at Z(R) it follows that $([A, f(r_1, ..., r_n)] - f(r_1, ..., r_n))^m \in Z(R_Z)$, for all $r_1, r_2, ..., r_n \in R_Z$.

Since R and R_Z satisfy the same polynomial identities, in order to prove that R satisfies $[f(x_1, \ldots, x_n), x_{n+1}]$, we may assume that R is simple with 1.

In this case, $([A, f(r_1, ..., r_n)] - f(r_1, ..., r_n))^m \in Z(R)$, for all $r_1, r_2, ..., r_n \in R$. Therefore R satisfies a generalized polynomial identity and it is simple with 1, which implies that Q = RC = R and R has a minimal right ideal. Thus $A \in R = Q$ and R is simple artinian that is $R = D_k$, where D is a division ring finite dimensional over Z(R) [21]. From Lemma 2 in [16] it follows that there exists a suitable field F such that $R \subseteq M_k(F)$, the ring of all $k \times k$ matrices over F, and moreover $M_k(F)$ satisfies the generalized polynomial identity $[([A, f(x_1, ..., x_n)] - f(x_1, ..., x_n))^m, x_{n+1}]$. We end up again by lemma 3.

REMARK. In all that follows we prefer to write the polynomial $f(x_1, ..., x_n)$ by using the following notation:

$$f(x_1, \ldots, x_n) = \sum_i g_i(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n) x_i$$

where any g_i is a multilinear polynomial of degree n-1 and x_i never appears in any monomial of g_i . Note that if there exists an idempotent $e \in H = \operatorname{Soc}(Q)$ such that any g_i is a polynomial identity for eHe, then we get the conclusion that $f(x_1, \ldots, x_n)$ is a polynomial identity for eHe. Thus we suppose that there exists an index i and $r_1, \ldots, r_{n-1} \in eHe$ such that $g_i(r_1, \ldots, r_{n-1}) \neq 0$. Now let $f(x_1, \ldots, x_n) = g_i(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n) x_i + h(x_1, \ldots, x_n)$ where g_i and h are multilinear polynomials, x_i never appears in any monomials of g_i and x_i never appears as last variable in any monomials of h. Without loss of generality we assume i = n, say $g_n(x_1, \ldots, x_{n-1}) = t(x_1, \ldots, x_{n-1})$ and

so
$$f(x_1, ..., x_n) = t(x_1, ..., x_{n-1}) x_n + h(x_1, ..., x_n)$$
 where $t(eHe) \neq 0$.

PROOF OF THEOREM 1. Suppose first that $f(x_1,\ldots,x_n)\,x_{n+1}$ is not an identity for ϱ . We proceed to derive a contradiction. Since by lemma 2 R is a GPI ring, so is also Q (see [1] and [7]). By [21] Q is a primitive ring with $H=\operatorname{Soc}(Q)\neq 0$, moreover we may assume that $f(x_1,\ldots,x_n)\,x_{n+1}$ is not an identity for ϱH , otherwise by [1] and [7] it should be an identity also for ϱQ , which is a contradiction. Let $a_1,\ldots,a_{n+1}\in \varrho H$ such that $f(a_1,\ldots,a_n)\,a_{n+1}\neq 0$. Since H is a regular ring, then for all $a\in H$ there exists $e^2=e\in H$ such that $eH=a_1H+a_2H+\ldots+a_{n+1}H, e\in eH, a=ea$ and $a_i=ea_i$ for all $i=1,\ldots,n+1$. Therefore we have $f(eHe)=f(eH)\,e\neq 0$. By our assumption and by [19] we also assume that $(d(f(x_1,\ldots,x_n))-f(x_1,\ldots,x_n))^m$ is an identity for ϱQ . In particular $(d(f(x_1,\ldots,x_n))-f(x_1,\ldots,x_n))^m$ is an identity for eH. It follows that, for all $r_1,\ldots,r_n\in H$,

$$0 = (d(ef(er_1, ..., er_n)) - f(er_1, ..., er_n))^m =$$

$$= (d(e) \ f(er_1, ..., er_n) + ed(f(er_1, ..., er_n)) - f(er_1, ..., er_n))^m.$$

As we said above, write $f(x_1, \ldots, x_n) = t(x_1, \ldots, x_{n-1})x_n + h(x_1, \ldots, x_n)$, where x_n never appears as last variable in any monomials of h. Let $r \in H$ and pick $r_n = r(1 - e)$. Hence we have:

$$\begin{split} 0 &= (d(e)\; t(er_1,\; \dots,\; er_{n-1})\; er(1-e) + ed(t(er_1,\; \dots,\; er_{n-1}))\; er(1-e) + \\ &+ et(er_1,\; \dots,\; er_{n-1})\; d(e)\; r(1-e) + et(er_1,\; \dots,\; er_{n-1})\; ed(r)(1-e) + \\ &+ et(er_1,\; \dots,\; er_{n-1})\; erd(1-e) - t(er_1,\; \dots,\; er_{n-1})\; er(1-e))^m = \\ &= (d(e)\; t(er_1,\; \dots,\; er_{n-1})\; er(1-e) + ed(t(er_1,\; \dots,\; er_{n-1}))\; er(1-e) + \\ &+ et(er_1,\; \dots,\; er_{n-1})\; d(e)\; r(1-e) + et(er_1,\; \dots,\; er_{n-1})\; ed(r)(1-e) + \\ &+ et(er_1,\; \dots,\; er_{n-1})\; erd(1-e) - t(er_1,\; \dots,\; er_{n-1})\; er(1-e)) \cdot \\ &\cdot (d(e)\; t(er_1,\; \dots,\; er_{n-1})\; er(1-e))^{m-1}. \end{split}$$

Left multiplying by (1 - e) we obtain

$$0 = (1 - e)(d(e) \ t(er_1, \dots, er_{n-1}) \ er(1 - e))^m$$
 and so $((1 - e) \ d(e) \ t(er_1, \dots, er_{n-1}) \ er)^{m+1} = 0$ that is
$$((1 - e) \ d(e) \ t(er_1, \dots, er_{n-1}) \ eH)^{m+1} = 0$$

and, by [11],
$$(1-e) d(e) t(er_1, ..., er_{n-1}) eH = 0$$
 which implies
$$((1-e) d(e) t(er_1 e, ..., er_{n-1} e) = 0.$$

Since eHe is a simple artinian ring and $t(eHe) \neq 0$ is invariant under the action of all inner automorphisms of eHe, by [8, lemma 2], (1-e) d(e) = 0 and so $d(e) = ed(e) \in eH$. Thus $d(eH) \subseteq d(e)$ $H + ed(H) \subseteq eH \subseteq \varrho H$ and $d(a) = d(ea) \in d(eH) \subseteq eH$. This means that $d(\varrho H) \subseteq \varrho H$. Therefore the derivation d induced another one δ , which is defined in the prime ring $\overline{\varrho H} = \frac{\varrho H}{\varrho H \cap l_H(\varrho H)}$, where $l_h(\varrho H)$ is the left annihilator in H of ϱH , and $\delta(\overline{x}) = \overline{d(x)}$, for all $x \in \varrho H$. Moreover we obviously have that $(d(f(x_1, \ldots, x_n)) - f(x_1, \ldots, x_n))^m$ is a differential identity for $\overline{\varrho H}$. So, by lemma 4, one of the following holds: either $\delta = \overline{0}$, or $f(x_1, \ldots, x_n)$ is an identity for $\overline{\varrho H}$.

If $\delta = \overline{0}$ then $d(\varrho H) \subseteq l_H(\varrho H)$ that is $d(\varrho H) \varrho H = 0$. By lemma 1, d is an inner derivation induced by an element $b \in Q$ such that $b\varrho = 0$. Thus, for all $r_1, \ldots, r \in \varrho H$,

$$0 = (d(f(r_1, ..., r_n)) - f(r_1, ..., r_n))^m = (f(r_1, ..., r_n) b - f(r_1, ..., r_n))^m =$$

$$= (-1)^{m-1} f(r_1, ..., r_n)^m b + (-1)^m f(r_1, ..., r_n)^m.$$

Right multiplying by $f(r_1, \ldots, r_n)$ we have $f(r_1, \ldots, r_n)^{m+1} = 0$ and, as a consequence of main theorem in [8] we get the contradiction $f(r_1, \ldots, r_n) \varrho H = 0$. Also in the case $f(x_1, \ldots, x_n)$ is an identity for $\overline{\varrho H}$ we obtain the contradiction that $f(x_1, \ldots, x_n) x_{n+1}$ is an identity for ϱH .

Finally we are in the case when $f(r_1, ..., r_n)$ $r_{n+1} = 0$ for all $r_1, ..., r_{n+1} \in \varrho$. In this case, the proof of theorem 6 of [18, page 17, rows 3-8] shows that there exists an idempotent element $e \in Soc(RC)$ such that $C\varrho = eRC$ and $f(x_1, ..., x_n)$ is an identity for eRCe.

PROOF OF THEOREM 2. Consider first the case when $[f(x_1,\ldots,x_n),x_{n+1}]x_{n+2}$ is an identity for ϱ . By [18, proposition] $C\varrho=eRC$ for some idempotent element $e\in\operatorname{Soc}(RC)$. Moreover, by [7], theorem 2, $[f(x_1,\ldots,x_n),x_{n+1}]x_{n+2}$ is also an identity in ϱR and so in ϱQ . In particular it is an identity for $\varrho C=eRC$, that is $[f(er_1,\ldots,er_n),er_{n+1}]er_{n+2}=0$, for all $r_1,\ldots,r_{n+2}\in RC$ and so, for all $r_1,\ldots,r_{n+1}\in RC$, $[f(er_1e,\ldots,er_ne),er_{n+1}e]=0$. This means that $f(x_1,\ldots,x_n)$ is central-valued in eRCe and we are done.

Suppose now that $[f(x_1, ..., x_n), x_{n+1}] x_{n+2}$ is not an identity for ϱ .

As in proof of theorem 1, since by lemma 2 R is a GPI ring and so is also Q ([1], [6]), Q is a primitive ring with socle $H = \operatorname{Soc}(Q) \neq 0$ [21] and $[f(x_1, \ldots, x_n), x_{n+1}] x_{n+2}$ is not an identity for ϱH , otherwise we have the contradiction that $[f(x_1, \ldots, x_n), x_{n+1}] x_{n+2}$ should be an identity for ϱQ . Let $a_1, \ldots, a_{n+2} \in \varrho H$ such that $[f(a_1, \ldots, a_n), a_{n+1}] a_{n+2} \neq 0$. By the regularity of H, for all $a \in \varrho H$, there exists an idempotent element $g \in \varrho H$ such that a = ga, $a_i = ga_i$, for all $i = 1, \ldots, n+2$. Moreover, by [19], $[(d(f(x_1, \ldots, x_n)) - f(x_1, \ldots, x_n))^m, x_{n+1}]$ is an identity in ϱQ , in ϱH and also in gH. As above we write $f(x_1, \ldots, x_n) = t(x_1, \ldots, x_{n-1}) x_n + h(x_1, \ldots, x_n)$, where t and h are multilinear polynomials, x_n never appears in any monomials of t, x_n never appears as last variable in any monomials of h and let $r_1, \ldots, r_n \in H$, with $r_n = r(1-g)$. Thus $f(gr_1, \ldots, gr_n) = t(gr_1, \ldots, gr_{n-1}) gr(1-g)$ and again

$$\begin{aligned} (1) \quad & (d(f(gr_1,\,\ldots,\,gr_n)) - f(gr_1,\,\ldots,\,gr_n))^m = \\ \\ & = (d(t(gr_1,\,\ldots,\,gr_{n-1})\,gr(1-g)) - t(gr_1,\,\ldots,\,gr_{n-1})\,gr(1-g)) \cdot \\ \\ & \cdot (d(g)\,t(gr_1,\,\ldots,\,gr_{n-1})\,gr(1-g))^{m-1} \in C \,. \end{aligned}$$

Therefore, by commuting (1) with gr(1-g), we have

$$0 = gr(1-g)(d(g)t(gr_1, \ldots, gr_{n-1})gr(1-g))^{m-1}$$

that is

$$((1-g) d(g)t(gr_1, ..., gr_{n-1}) gH)^{m+1} = 0$$

and by [12] $(1-g)\ d(g)\ t(gr_1,\ \dots,\ gr_{n-1})\ gH$. Since gHg is a simple artinian ring and $t(gHg)\neq 0$ is invariant under the action of all the inner automorphisms of gHg, by [8, lemma 2], $(1-g)\ d(g)=0$, that is $d(g)=gd(g)\in gH$. Therefore $d(gH)\subseteq d(g)\ H+gd(H)\subseteq gH\subseteq \varrho H$ and so $d(\varrho H)\subseteq \varrho H$. Therefore the derivation d induced another one δ , which is defined in the prime ring $\overline{\varrho H}=\frac{\varrho H}{\varrho H\cap l_H(\varrho H)}$, where $l_H(\varrho H)$ is the left annihilator in H of ϱH , and $\delta(\overline{x})=\overline{d(x)}$, for all $x\in \varrho H$. Moreover we obviously have that $[(d(f(x_1,\dots,x_n))-f(x_1,\dots,x_n))^m,\ x_{n+1}]$ is a differential identity for $\overline{\varrho H}$. By lemma 5, one of the following holds: either $\delta(\overline{\varrho H})=0$ or $f(x_1,\dots,x_n)$ is central-valued in $\overline{\varrho H}$ or $\overline{\varrho H}$ satisfies the standard identity $S_4(x_1,\dots,x_4)$.

If $f(x_1, ..., x_n)$ is central-valued in $\overline{\varrho H}$ we get the contradiction that

$$[f(x_1, \ldots, x_n), x_{n+1}] x_{n+2}$$

is an identity for ϱ . On the other hand, if $\delta(\overline{\varrho H}) = 0$, as in the proof of theorem 1, we have that d is an inner derivation induced by an element $b \in Q$ such that $b\varrho = 0$ and for all $r_1, \ldots, r_n \in \varrho H$

(2)
$$(d(f(r_1, ..., r_n)) - f(r_1, ..., r_n))^m = (f(r_1, ..., r_n) b - f(r_1, ..., r_n))^m =$$

$$= (-1)^{m-1} f(r_1, ..., r_n)^m b + (-1)^m f(r_1, ..., r_n)^m \in C.$$

By commuting (2) with $f(r_1, \ldots, r_n)$ we get $(-1)^{m-1}f(r_1, \ldots, r_n)^{m+1}b=0$. In this case, the main theorem in [8] says that $f(r_1, \ldots, r_n) \varrho Hb=0$, for all $r_1, \ldots, r_n \in \varrho H$. Since H is prime and $b \neq 0$, it follows that $f(r_1, \ldots, r_n) \varrho H=0$, and a fortiori $[f(r_1, \ldots, r_n), r_{n+1}] r_{n+2}=0$, for all $r_1, \ldots, r_n \in \varrho H$, a contradiction.

Finally we consider the last case when $S_4(x_1, ..., x_4)$ is an identity for $\overline{\varrho H}$. In this condition $S_4(x_1, ..., x_4)x_5$ is an identity for ϱH and so also for ϱC . By [18, proposition], there exists an idempotent element $e \in \operatorname{Soc}(RC)$ such that $\varrho C = eRC$ and so $S_4(eRC) eRC = 0$, which means $S_4(eRCe) = 0$, as required.

Acknowledgement. The author whishes to thank the referee for his helpfull suggestions.

REFERENCES

- [1] K. I. Beidar, Rings with generalized identites III, Moscow Univ. Math. Bull., 33 (1978).
- [2] K. I. Beidar W. S. Martindale III V. Mikhalev, Rings with generalized identites, Pure and Applied Math., Dekker, New York (1996).
- [3] H. E. Bell M. N. Daif, Remarks on derivations on semiprime rings, Int. J. Math. Math. Sci., 15. No. 1 (1992), pp. 205-206.
- [4] H. E. Bell W. S. Martindale III, Centralizing mappings of semiprime rings, Canad. Math. Bull., 30 (1987), pp. 92-101.
- [5] J. Bergen, Automorphisms with unipotent values, Rend. Circ. Mat. Pa-Lermo Serie II Tomo XXXI (1982), pp. 226-232.
- [6] M. Bresar, One-sided ideals and derivations of prime rings, Proc. Amer. Math. Soc., 122 (1994), pp. 979-983.
- [7] C. L. CHUANG, GPI's having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc., 103, No. 3 (1988), pp. 723-728.

- [8] C. L. CHUANG T. K. LEE, Rings with annihilator conditions on multilinear polynomials, Chinese J. Math., 24, N. 2 (1996), pp. 177-185.
- [9] C. L. CHUANG J. S. LIN, Rings with nil and power central k-th commutators, Rend. Circ. Mat. Palermo Serie II, Tomo XLI (1992), pp. 62-68.
- [10] J. S. ERICKSON W. S. MARTINDALE III J. M. OSBORN, Prime nonassociative algebras, Pacific J. Math., 60 (1975), pp. 49-63.
- [11] C. Faith, Lecture on Injective Modules and Quotient Rings, Lecture Notes in Mathematics, vol. 49, Springer Verlag, New York (1967).
- [12] B. FELZENSZWALB, On a result of Levitzki, Canad. Math. Bull., 21 (1978), pp. 241-242.
- [13] M. Hongan, A note on semiprime rings with derivation, Int. J. Math. Math. Sci., 20, No. 2 (1997), pp. 413-415.
- [14] V. K. KHARCHENKO, Differential identities of prime rings, Algebra and Logic, 17 (1978), pp. 155-168.
- [15] J. LAMBEK, Lecture on Rings and Modules, Blaisdell Waltham, MA, (1966).
- [16] C. LANSKI, An Engel condition with derivation, Proc. Amer. Math. Soc., 118, No. 3 (1993), pp. 731-734.
- [17] T. K. Lee, Derivation with Engel conditions on polynomials, Algebra Coll., 5:1 (1998), pp. 13-24.
- [18] T. K. Lee, Power reduction property for generalized identities of one-sided ideals, Algebra Coll., 3 (1996), pp. 19-24.
- [19] T. K. LEE, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica vol. 20, No. 1 (1992), pp. 27-38.
- [20] U. LERON, Nil and power central polynomials in rings, Trans. Amer. Math. Soc., 202 (1975), pp. 97-103.
- [21] W. S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra, 12 (1969), pp. 576-584.

Manoscritto pervenuto in redazione il 3 marzo 2000.