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Right Ideals and Derivations on Multilinear Polynomials.

VINCENZO DE FILIPPIS (*)

ABSTRACT - Let R be an associative prime ring with center Z(R) and extended
centroid C, f (xl , ... , xn ) a non-zero multilinear polynomial over C in n non-
commuting variables, d a non-zero derivation of R , m -&#x3E; 1 a fixed integer and e
a non-zero right ideal of R . We prove that: (i) if (d(f(x1, ... , xn» -

... , is a differential identity for Q then CQ = eRC for some idempo-
tent element e in the socle of RC and f (xl , ..., xn ) is an identity for eRCe ; (ii) if

... , rn ) ) - f ( rl , ... , rn»m is central on R , for any r1, ... , rnEQ, then

CQ = eRC, for some idempotent element e in the socle of RC and either
... , xn ) is central in eRCe or eRCe satisfies the standard identity

... , X4)-

Let R be an associative prime ring with center Z(R ) and extended
centroid C . Recall that an additive mapping d of R into itself is a deriva-
tion if d(xy) = d(x) y + xd(y), for all x, In [5] J. Bergen proved
that if g is an automorphism of R such that ( g(x) - x)m = 0 , for all x e R , 9
where m ~ 1 is a fixed integer, then g = 1. Later Bell and Daif [3] proved
some results which have the same flavour, when the automorphism is re-
placed by a non-zero deivation d . They showed that if R is a semiprime
ring with a non-zero ideal I such that d( [ x , y ] ) - [ x , y] = 0, or

d([x, y]) + [x, y ] = 0, for all x , ?/e/, then I is central. More recently
Hongan [13] proved that if R is a 2-torsion free semiprime ring and I a
non-zero ideal of R , then I is central if and only if d([x, y ] ) - [x, y ] e
eZ(R), or d([x, y]) + [x, y] eZ(R), for all x, yeI.

In this paper we prove two results generalizing some of the previous
ones. More precisely we consider the case when f(x1, ... , is a multili-

(*) Indirizzo dell’A.: Dipartimento di Matematica, Universita di Messina, Sa-
lita Sperone 31, 89166 Messina, e-mail: enzo@dipmat.unime.it
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near polynomial over C in n non-commuting variables, Q a non-zero right
ideal of R and we show

THEOREM 1. If (d( f (rl , ... , rn ) ) - f (rl , ... , 
= o , for any

rl , ... , then CQ = eRC for some idempotent element e E Soc (RC)
and f(x1, is a polynomial identity for eRCe .

THEOREM 2. If (d(f(rI’ ... , rn)) - f(rl, ... , for any

r1, ... , r nee, then C~o = eRC for some idempotent element e E Soc (RC)
and either f(x1"’" is central in eRCe or eRCe satisfies
S4 ( xl , ... , X4).

To prove these theorems we need some notations concerning quo-
tient rings. Denote by Q the two-sided Martindale quotient ring of R and
by C the center of Q , which is called the extended centroid of R . Note
that Q is also a prime ring with C a field. We will make a frequent use of
the following notation:

for some and we denote ... , xn ) the polynomial obtained
... , xn ) by replacing each coefficient a ~ with Thus we

write ... , rn ) ) = f d (rl , ... , rn ) + ~ f (rl , ... , d(ri ), ... , rn ), for all
i

rl, ..., rn E R . We recall that any derivation of R can be uniquely exten-
ded to a derivation of ~, moreover by [19] the two-sided ideal I and Q sa-
tisfy the same differential identities. For this reason whenever R sati-
sfies a differential identity, by replacing R by Q we will assume, without
loss of generality, R = Q , C = Z(R ) and R will be a C-algebra centrally
closed.

To obtain the conclusions required we will also make use of the follo-
wing result:

CLAIM 1 [14]. Let R be a prime ring, d a non-zero derivation of R
and I a non-zero two-sided ideal of R . Let ... , xn, d(xl ), ... , 

a differential identity in I , that is

Then one of the following holds:

1) either d is an inner derivation in Q, in the sense that there
exists q E Q such that d = ad(q) and d(x) = ad(q)(x) = [q, x], for all x e
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E R , and I satisfies the generalized polynomial identity

2) or I satisfies the generalized polynomial identity

We premit the following:

LEMMA 1. Let Q be a non-zero right ideal of R and d a derivation of
R . Then the following conditions are equivalent: (i) d is an inner deri-
vation induced by some 6 E Q such that bQ = 0; (ii) = 0 (For its

proof we refer to [6, Lemma]).

LEMMA 2. If (d(.f’(rl, ... , rn)) - f(rl, ... , rn))’~ E Z(R), for any

rl , ..., rn E o , then R is a GPI-ring.

PROOF. Assume R is not commutative, otherwise we conclude trivial-
ly that R is a GPI-ring. Suppose that d is a inner derivation, d = ad(b),
for some 6 e Q, d(x) = [ b , x ], for all x E Q . Since d ~ 0, let b f1. C. Moreo-
ver, since R is not commutative, there exists Thus

... , 6M?~)] 2013/(~.ri, .... xn + 1 ] is a non-trivial GPI for R .
Let now d an outer derivation of R . If for all d(r) E rC, then

[d(r), r] = 0, that is R is commutative (see [4]). Therefore there exists
such that Write

Thus

is a generalized differential identity for R . In particular, by Kharchen-
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ko’s theorem in [14], since d( a) f/. aC, we have that

is a non-trivial GPI for R .

Before proceeding to he proof of main results, we need to resolve the
simplest case, when Q = R .

LEMMA 3. Let R = Mk(F) be the ring of k x k matrices over the
field F, with 2 , d a non-zero inner derivation induced by a non-cen-
tral eLerrzent A of R . Theorems 1 and 2 hold if Q = R .

PROOF. Suppose 3 . Let eij the usual matrix unit with 1 in ( i , j)-
entry and zero elsewhere. By the assumption

If assume f(ri , ... , xn ) not central in R , by [20, Lemma 2, proof of Lem-
ma 3] there exist r1, ..., rn E R such that f (rl , ..., rn ) = aeij, with 0 ~ a E

Since the ... , rn ) : rl , ... , rn E R ~ is invariant
under any F-automorphism, then for any there exist tl , ... , 

such that f (t1, ... , tn ) = Thus, for any i ~ j

moreover ( [A , has rank ~ 2, that is ( [A , = 0

in R.- Right multiplying by eij

It follows that the (j,i)-entry of the matrix A is zero, for all i ~ j and this
means that the A is diagonal, that is A = E a t ett , with a t E F . Now deno-

t

te d the inner derivation induced by A . If x is a F-automorphism of 1~ ,
then the derivation d. = x -1 dx satisfies the same condition of d , that is

Since the derivation dx is the one induced by the element x(A ) = x -1 Ax ,
then x(A ) is a diagonal matrix, according to the above argument. Fix now
i ~ j and for all Since x(A) _ ( 1 +
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must be diagonal then

is diagonal

that is a i = a j and we get the contradiction that A is a central matrix.
Therefore f (xl , ... , xn ) must be central in R .

Of course if ( [A , f ( r1, ... , rn ) ] - f ( rl , ... , rn ) )m = 0 , for all

ri, ..., rneR, the above argument can be adapted to prove that

f (xl , ... , xn ) is central, without any restriction on k . Moreover, since in
this case [A , ... , rn ) ] ... , rn ) = 0 for all rl, ... , rn E
E R and so f (xl , ... , xn ) is an identity in R [20, Lemma 3, proof of Theo-
rem 4].

LEMMA 4. Theorem 1 holds if Q = R .

PROOF. Let

If d is not inner then, by Claim 1, R satisfies the differential identity

g(X1, ..., Xn, Y1, ...,yn)=

In particular fm (Xl’ ..., xn ) is an identity for 1~ . In this case since R sati-
sfies a polynomial identity, there exists a suitable field F such that R and
Mk (F) satisfy the same polynomial identities. It follows that f (xl , ... , xn )
must be an identity in Mk (F) (see [20]) and so in I~ .

Now let d be an inner derivation induced by an element A e Q .
Then, for any r1, r2 , ... , ( [A , f ( rl , ... , rn ) ] - f ( rl , ... , 

= 0. Since by [1] (see also [7]) R and Q satisfy the same generalized po-
lynomial identities, we have ( [A , f ( rl , ... , rn ) ] - f ( rl , ... , rn ) )m = 0 , for
any r2 , ... , r n E Q. Moreover, since Q remains prime by the primeness
of R , replacing R by Q we may assume that A E R and C = Z(Q) is just
the center of R . In the present situation R is a centrally closed prime C-
algebra [10], i.e. By Martindale’s theorem in [21], RC = R is a
primitive ring which is isomorphic to a dense ring of linear transforma-
tions of a vector space V over a division ring D . Since R is primitive then
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there exist a vector space V and the division ring D such that is dense
of D-linear transformations over V.

Assume first that dimn V = 00. Recall that one can write
We want to show that,

for any v E V, v and Av are linearly D-dependent.
If Av = 0 then ~ v , Av) is D-dependent. Thus we may suppose that

Av # 0. If v and Av are D-independent, since then there
exist w3 , ... , wn E V such that v = wl , Av = w2 , w3 , ... , wn are also li-

nearly independent. By the density of I , there exist r1, ... , rn e l such
that

for all other possible choices of i , j .

Therefore

and we obtain the contradiction

Hence A , Av must be D-dependent, for any v E V.
Now we show that there exists b E D such that Av = vb, for any v E V.

Choose v , w E V linearly independent. Since there exists
U E V such that v, w, u are linearly independent. By above argument,
there exist av , a~, au E D such that

Moreover A(v + w + u) _ (v + w + u) for a suitable 

cause v , are linearly independent, au ~ aw = av = av + w + u ~ as requi-
red.

Let now r E R and v E V. As we have just seen, there exists b E D such
that Av = vb, r(Av) = r(vb), and also A(rv) _ (rv) b. Thus 0 = [A, r] v,
for any v E V, that is [A , r] V = 0 . Since V is a left faithful irreducible R-
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module, [A , r] = 0, for all r E I~ , i.e. A E Z(R ) and d = 0, which contradic-
ts our hypothesis.

Therefore dimD V must be a finite positive integer. In this case I~ is a
simple GPI ring with 1, and so it is a central simple algebra finite dimen-
sional over its center. From Lemma 2 in [16] it follows that there exists a
suitable field F such that R c Mk (F), the ring of all k x k matrices over F,
and moreover Mk (F) satisfies the generalized polynomial identity
([AW(xl ... , xn)] -J (xl ~ ... , xn))m.

As in Lemma 3 we conclude that f(x1, ... , xn ) is an identity in

R. D

LEMMA 5. Theorem 2 holds if Q = R .

PROOF. If, for every rn E I , ... , rn ) ) -
... , 

= 0, by Lemma ... , rn ) is an identity in R . Other-
wise, by our assumptions, I n Z(l~) ~ 0. Let now K be a non-zero two-si-
ded ideal of the ring of the central quotients of R . Since K n R is an
ideal of R then K n R n Z(R ) ~ 0, that is K contains an invertible ele-
ment in and so RZ is simple with 1.

We know that for any

Thus R satisfies the differential identity

If the derivation is not inner, by Claim 1, 1~ satisfies the polynomial
identity

and in particular R satisfies

Therefore R is a prime PI-ring. For a e
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E R - Z(R), we have that R satisfies

and in this situation we get the required conclusion by lemma 3.
Now let d be an inner derivation induced by an element A e Q.Also in

this case we will prove that either f(x1, ... , xn ) is central in R or R sati-
sfies ~4(~1, .... ~4).

By localizing R at Z(R) it follows that ( [A , f ( r1, ... , rn ) ] -
- f(r1, ..., for all r1, r2, ... , 

Since R and Rz satisfy the same polynomial identities, in order to
prove that R satisfies ... , xn ), xn + 1 ], we may assume that R is sim-
ple with 1.

In this case, ( [A , f ( r1, ... , rn ) ] - f ( rl , ... , rn ) )m E Z(R ), for all rl ,

r2 , ... , rn E R . Therefore R satisfies a generalized polynomial identity
and it is simple with 1, which implies that Q = RC = R and R has a mini-
mal right ideal. Thus A e R = Q and R is simple artinian that is R = Dk ,
where D is a division ring finite dimensional over Z(R) [21]. From Lem-
ma 2 in [16] it follows that there exists a suitable field F such that

the ring of all k x k matrices over F, and moreover Mk (F)
satisfies the generalized polynomial identity 
- f(x1, ..., xn))m, xn + 1]. We end up again by lemma 3.

REMARK. In all that follows we prefer to write the polynomial
f(x1, ... , by using the following notation:

where any gi is a multilinear polynomial of degree n - 1 and xi never
appears in any monomial of gi . Note that if there exists an idempotent
e E H = Soc ( ~ ) such that any gi is a polynomial identity for eHe , then
we get the conclusion that f (x1, ... , is a polynomial identity for
eHe . Thus we suppose that there exists an index i and r1, 1 E-=
E eHe such that gi ( rl , ... , rn -1 ) ~ 0. Now let f(x1’"’’ 
=gi(X1, ..., Xi-I’ xi + 1, ... , Xn) xi + h(xl , ... , Xn) where gi and h are mul-
tilinear polynomials, xi never appears in any monomials of gi and xi
never appears as last variable in any monomials of h . Without loss of
generality we assume i = n, say gn (Xl’ ... , Xn - 1) = t(xl , ... , xn -1 ) and
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where t

PROOF OF THEOREM 1. Suppose first ... , 1 is not

an identity for e. We proceed to derive a contradiction. Since by lemma 2
R is a GPI ring, so is also Q (see [1] and [7]). By [21] Q is a primitive ring
with H = Soc (Q) # 0, moreover we may assume that f ( xl , ... , xn ) xn + 1 is
not an identity for QH, otherwise by [1] and [7] it should be an identity
also for eQ, which is a contradiction. Let aI, ... , an + 1 E QH such that

... , an ) an + 1 ~ o . Since H is a regular ring, then for all a E H there
exists e 2 = e E H such that eH = a1 H + a2 H + .. + an + 1 H, e E eH, a = ea
and ai = eai for all i = 1, ... , n + 1. Therefore we have f ( eHe ) _
= f(eH) e ~ 0. By our assumption and by [19] we also assume that

(d( f (x1, ... , xn ) ) - f(x1, ... , xn ) )m is an identity for In particular
( d( f ( xl , ... , xn ) ) - f ( x1, ... , xn ) )m is an identity for eH . It follows that,
for all rl , ... , rn E H,

As we said above, xn ) = t(x1, ... , xn -1 ) xn + h(xl , ... , 

where xn never appears as last variable in any monomials of h . Let r E H
and pick rn = r ( 1 - e). Hence we have:

Left multiplying by ( 1 - e) we obtain

and so that is
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and, by eH = 0 which implies

Since eHe is a simple artinian ring and t( eHe ) ~ 0 is invariant under the
action of all inner automorphisms of eHe , by [8, lemma 2], ( 1 - e ) d( e ) =
= 0 and so d(e) = ed(e) E eH. Thus d(eH) c d(e) H + ed(H) c eH c oH and
d(a) This means that d(QH) g QH. Therefore the
derivation d induced another one d , which is defined in the prime ring

, where is the left annihilator in H of QH, and

6(Y) = d(x), for all Moreover we obviously have that

(d(, f (xl , ... , xn ) ) - f (xl , ... , is a differential identity for QH. So, by
lemma 4, one of the following holds: either 6 = 0, ... , is an

identity for (2H.
If 6 = 0 then d(gH) c that is d(gH) gH = 0 . By lemma 1, d is

an inner derivation induced by an element b E Q such that be = 0. Thus,
for all rl , ... , r E oH,

Right multiplying by f (rl , ... , rn ) we have ... , rn )m + = 0 and, as a
consequence of main theorem in [8] we get the contradiction

... , rn ) ~oH = 0 . Also in the case f(x1, ... , xn ) is an identity for oH
we obtain the contradiction that f (xl , ... , xn ) xn + 1 is an identity for
oH.

Finally we are in the case when f (rl , ... , rn ) rn + 1 = 0 for all

rl, ... , rn + In this case, the proof of theorem 6 of [18, page 17, rows
3-8] shows that there exists an idempotent element e E Soc(RC) such that
CQ = eRC and f ( xl , ... , is an identity for eRCe . 0

PROOF OF THEOREM 2. Consider first the case when [ f (x1, ... , xn),
is an identity for o . By [18, proposition] CQ = eRC for

some idempotent element e E Soc (RC). Moreover, by [7], theorem 2,
[f( Xl’ ... , is also an identity in QR and so in OQ . In
particular it is an identity for ~OC = eRC, that is

[ f ( erl , ... , ern ), 6~+2=0, for all r1, ... , so, for all

rl , ... , 7 ern e ), ern + 1 e ] = 0 . This means that

f(x1, ..., Xn) is central-valued in eRCe and we are done.
Suppose now that [f( Xl’ ... , is not an identity for e.
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As in proof of theorem 1, since by lemma 2 R is a GPI ring and so is
also Q ([1], [6]), Q is a primitive ring with socle H = Soc (Q) # 0 [21] and
[/(~i, .... xn + 1 ] xn + 2 is not an identity for QH, otherwise we have
the contradiction that 9 ... , xn ), xn + 1 ] xn + 2 should be an identity
for Let ..., such that [ f ( al , ... , an ), an + 1 ] an + 2 ~ ~ .
By the regularity of H, for all there exists an idempotent ele-
ment g E ()H such that a = ga , ai for all i = 1, ... , n + 2. Moreover,
by [19], [(d( f(xl, ... , xn)) - f(x1, ..., xn))m, xn + 1 ] is an identity in QQ, in
QH and also in gH. As above we write f(x1, ... , xn ) = t(xl , ... , Xn-1) Xn +
+ h(x1, ... , xn ), where t and h are multilinear polynomials, xn never ap-
pears in any monomials of t , xn never appears as last variable in any mo-
nomials of h and let rl , ... , rn E H, Thus

Therefore, by commuting (1) with we have

that is

and by [12] ( 1 - g) d( g) t(gr1, ... , grn -1) gH . Since gHg is a simple arti-
nian ring and t( gHg) ~ 0 is invariant under the action of all the inner au-
tomorphisms of gHg , by [8, lemma 2], ( 1 - g ) d( g ) = 0, that is d( g ) =
= gd(g) E gH. Therefore d(gH) c d(g) H + gd(H) c gH c oH and so

d( oH) Therefore the derivation d induced another one 6, which is
defined in the prime ring e where is the left an-

nihilator in H of QH, and = d(x), for all x E QH. Moreover we obviou-
sly have that [ ( d( f ( xl , ... , xn)) - f ( x1, ... , xn + 1 ] is a differential

identity for QH. By lemma 5, one of the following holds: = 0

or f(x1, ... , xn) is central-valued in W or QH satisfies the standard iden-
1_’1__ m , I -- u B
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If f ( x1, ... , xn ) is central-valued in C7 we get the contradiction

that

is an identity for o . On the other hand, if 3(gH) = 0, as in the proof of
theorem 1, we have that d is an inner derivation induced by an element
b such that bo = 0 and for all r1, ... , rn E gH

By commuting (2) with ... , rn ) we get
In this case, the main theorem in [8] says that f (r1, ... , eHb = 0 ,

for all ri, ...,~E~77. Since H is prime and b ~ 0 , it follows that

... , rn ) oH = 0 , and a fortiori ... , rn ), rn + 1 ] rn + 2 = o , for all
r1, ... , rn E eH, a contradiction.

Finally we consider the last case when S4 (XI X4) is an identity
for gH. In this condition 9 ... , x4 ) x5 is an identity for oH and so also
for QC. By [18, proposition], there exists an idempotent element e E
E Soc (RC) such that QC = eRC and so S4 (eRC) eRC = 0, which means
S4(eRCe) = 0, as required. 0

Acknowledgement. The author whishes to thank the referee for his
helpfull suggestions.
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